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I. Introduction 
 In this report, the mathematical derivation of the solution of Butler et al. (2001) 
for drawdown and stream depletion produced by pumping in the vicinity of a finite-width 
stream of shallow penetration is presented and the definition of the Hunt (1999) leakance 
parameter is examined.  For the sake of generality, the solution is obtained in a 
dimensionless form. See Butler et al. (2001) for notation definitions that are not given in 
this report.   
 
II. Drawdown Solution 
 The drawdown solution was obtained using a straightforward extension of the 
approach described in Butler and Liu (1991).  Equations (1)-(10) of Butler et al. (2001) 
describe the flow conditions of interest here.  Dimensionless forms of these equations are 
as follows: 
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where 
�i (dimensionless drawdown) =siT3/Q, i=1,3;    
τ (dimensionless time)=(T3t)/(w2S3);  
ξ=x/w;   �=y/w;   α = a/w;   
Β (stream leakance) = (k’w2)/(b’T2);  
XRB=xrb/w;   XLB=xlb/w;   �i=Ti+1/Ti, i=1,2; 
Pi= �i/�3, i=1,2;  �i=Si/Ti, i=1,3. 

 
Note that these dimensionless parameters are obtained by simply grouping terms in the 
dimensional equations (eqns. (1)-(10)) of Butler et al. (2001). 
 A solution can be obtained for equations (1)-(10) through use of integral 
transforms (Robinson, 1968; Churchill, 1972).  A Laplace transform in time followed by 
a Fourier exponential transform in the � direction produces Fourier-Laplace space 
analogues to (1)-(3) of the following form: 
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where  
�i =the Fourier-Laplace transform of �i, i=1,3; 

 p=Laplace transform variable; 
 �=Fourier transform variable; 
 �1 = (�2+P1p)0.5; 
 �2 = (�2+�+P2p)0.5; 
 �3 = (�2+p)0.5. 
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 The Fourier-Laplace space solutions to (11) and (12) are quite straightforward: 
 
�1 1 2

1 1� �
�C e C e� � � �           (1 4 ) 

� 2 3 4
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�C e C e� � � �           (1 5 ) 

The Fourier-Laplace space solution to (13) cannot be found as easily owing to the non-
homogeneous delta function term in that expression.  The approach used for obtaining a 
solution to (13) was to divide zone 3 into two subregions, subregion 31 (0�	�
) and 
subregion 32 (
<	�XRB).  The solution for subregion 31 consists of a homogeneous part 
and a particular solution ( �3p ): 
 
� �3 1 5 6 3

3 3� � �
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p           (1 6 ) 

Using Theorem 3.13 of Boyce and DiPrima (1986), the particular solution can be written 
as: 
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The solution for subregion 32 consists solely of a homogeneous part: 
 
� 3 2 7 8

3 3� �
�C e C e� � � �           (1 8 ) 

The division of region 3 into two subregions requires two additional boundary conditions 
to ensure continuity across the division: 
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The constants in equations (14)-(16) and (18) can be evaluated by substituting these 
expressions into (19)-(20) and the following Fourier-Laplace space analogues of (5) and 
(7)-(10): 
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Evaluation of the constants is a straightforward but tedious algebraic exercise.  Once the 
constants are found, they are substituted back into equations (14)-(16) and (18) to obtain 
the following expressions: 
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Equations (26)-(29) form the Fourier-Laplace space solutions to (1)-(10).  Substitution of 
(26)-(29) into the transform-space analogues of (1)-(10) will demonstrate the viability of 
the proposed solutions.   

The Fourier-Laplace space solution must be transformed back to real space for 
practical applications.  Butler et al. (2001) discuss the numerical inversion schemes used 
in this work and compare the numerically inverted solution, which is computed using 
Butler and Tsou (1999), with existing analytical and numerical models.    
 
III. Stream Depletion Solution 
 The solution for stream depletion was obtained following the approach outlined 
by Hunt (1999).  Butler et al. (2001) define stream depletion in equation (11), the 
dimensionless form of which is:   
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Application of the Laplace transform to equation (30) and switching the � and � integrals 
results in: 
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where 
 �Q p( ) =Laplace transform of �Q. 
 
The term in parentheses is simply the Fourier-Laplace transform of �2 for �=0: 
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Substitution of equation (27) into (32) and performing the integration results in: 
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Equation (33) is the Laplace-space solution for stream depletion.  Butler et al. (2001) 
describe the numerical scheme used to invert equation (33) to real space, and compare the 
resulting solution to existing analytical and numerical models.  As with the drawdown 
solution, the numerical inversion scheme is implemented in Butler and Tsou (1999). 
 Zlotnik et al. (1999) and Hunt (1999) obtain closed-form analytical solutions to 
various simplifications of equation (33) for laterally infinite aquifers.  For pumping wells 
relatively close to the stream (� < 5), equation (11) of Zlotnik et al. (1999) is the 
preferred approach because stream width cannot be considered negligible relative to the 
distance from the pumping well to the stream.  For pumping wells at larger normalized 
distances from the stream, the two approaches produce approximately the same results 
when the Hunt leakance parameter is defined as discussed in the following section.  
 
IV. Hunt Leakance Parameter 
 In this section, the Hunt leakance parameter is defined in terms of streambed and 
aquifer characteristics, and its correspondence with the retardation coefficient of Hantush 
is discussed. 
 The model proposed by Hunt (1999) is based on the assumption that stream width 
is small relative to the distance from the stream to the pumping well.  Under that 
condition and the assumptions of aquifer homogeneity and a laterally unbounded aquifer, 
equations (1)-(3) of Butler et al. (2001) can be rewritten as a single expression: 
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Comparison of equation (34) with equation (7) of Hunt (1999) shows that the Hunt 
leakance parameter (�) can be defined as: 
 

(35)              '/)'( bwk��

The dimensionless form (distance from the stream to the pumping well (a) used as the 
normalizing length) of equation (35) is: 
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which is given as equation (12) in Butler et al. (2001). 
 Hunt (1999) derives the condition for which the Hunt and Hantush models are 
equivalent.  This equivalence occurs when the retardation coefficient of Hantush (L) is 
defined as: 
 

(37)               /)2( �TL �

Substitution of equation (35) and the definition of the retardation coefficient (L=(Kb’)/k’, 
where K is the hydraulic conductivity of the aquifer) into equation (37) results in: 
 

(38)              2/wb �

where b is aquifer thickness.  Thus, if the aquifer thickness is set to half the stream width, 
the Hantush solution will be equivalent to that of Hunt.  This condition was used to 
generate the plots of Figure 7 in Butler et al. (2001).  These plots, in addition to Figure 
3A in Butler et al. (2001), demonstrate the viability of the Hunt and Hantush solutions for 
estimation of stream depletion in a laterally infinite aquifer when the distance from the 
stream to the pumping well is at least five times the stream width (� � 5) and the model 
of Figure 2 in Butler et al. (2001) is a reasonable representation of stream-aquifer 
interactions. Note that these solutions are also appropriate for stream-channel 
penetrations that cannot be assumed negligible relative to aquifer thickness.  In that case, 
the k’ parameter should be redefined as (k’l/w), where l is the length along the perimeter 
of the streambed. 
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