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Abstract 

Characterizing the drivers of flow in non-perennial streams is increasingly important for 
understanding the effects of variable flow regimes on local communities and ecosystems. 
Regime shift theory has been used to explain changes in other hydrologic systems, but the theory 
as it applies to non-perennial streams has yet to be fully explored. Here, we use the Arkansas 
River basin near Larned, Kansas, to determine whether changes between flow and no-flow 
conditions can be described using a regime shift framework. We combined hydrological, 
meteorological, and ecological time series data to test for the presence of statistical “hints” 
commonly associated with regime shifting systems and used a sequential t-test analysis of 
regime shifts (STARS) algorithm to test for regime shifts in the time series of weekly and 
monthly no-flow days. Although flow data exhibited hints such as critical slowing down and 
asymmetry of flow rates, evidence for increased variance and autocorrelation was weak. STARS 
identified at least five shifts between dry (predominantly no-flow conditions), intermediate 
(alternating flowing and no-flow conditions), and wet (predominantly flowing conditions) 
regimes in the river between 1998 and 2021. The intermediate regime appears to be a transitory 
phase between the stable wet and dry regimes observed at Larned. Regime shifts at the site are 
likely driven by a complex interaction between climate, pumping, and stream-aquifer 
interactions. 
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1. Introduction 

Non-perennial streams, which are streams that experience both flow and no-flow 
conditions and include intermittent rivers and ephemeral streams (Busch et al., 2020), make up 
approximately 51–60% of the world's streams and rivers (Messager et al., 2021).They provide a 
variety of ecosystem services and host a wide range of organisms that are suited to both aquatic 
and dryland environments (Datry et al., 2017; Kaletová et al., 2019). Non-perennial streams are 
essential in providing hydrologic connections between perennial river reaches or between the 
stream and aquifer (e.g., groundwater recharge) and in transporting biota, materials, nutrients, 
and water within the landscape for humans and other animals (Yeakley et al., 2016; Acuña et al., 
2017; Boulton et al., 2017). 

Just as they are robust in biodiversity, non-perennial streams are sensitive to changes in 
environmental and anthropogenic activity. No-flow conditions are becoming more prevalent, 
notably in the southern United States (Zipper et al., 2021) and much of Europe from community 
water use and increases in aridity (Tramblay et al., 2021). Because of their importance as an 
ecological niche and vital water source, characterizing physical mechanisms associated with flow 
and no-flow periods in non-perennial streams is essential to understand and anticipate future 
water availability. 

Modeling changes between system states, or regime shifts, offers a potentially useful 
framework to investigate non-perennial streams. The Stockholm Resilience Centre’s Regime 
Shifts Database (https://www.regimeshifts.org/) documents numerous studies that identify state 
changes in many earth systems, including oligotrophic and eutrophic aquatic systems, glacial 
fields, and biota food-web interactions (Andersen et al., 2009; Guttal et al., 2013; Chemello et 
al., 2018; Pedersen et al., 2020). However, the database does not include reference to non-
perennial streams, and in the broader hydrologic literature, studies have investigated non-
perennial streams using primarily linear and monotonic changes and trends in streamflow and 
intermittency in non-perennial streams (Zipper et al., 2021; Tramblay et al., 2021). As a result, 
nonlinear changes in non-perennial streams, particularly abrupt shifts, have not been thoroughly 
investigated. 

To address this, we investigated the question, is there evidence for regime shifting in a 
non-perennial section of the Arkansas River near Larned, Kansas? To determine the 
applicability of regime shift frameworks and test quantitative evidence of regime shifting, we 
investigated historical Kansas Geological Survey (KGS) and U.S. Geological Survey (USGS) 
groundwater and surface water data from the KGS Larned Research Site in south-central Kansas. 
These data were used to address three objectives: 

1. Quantitatively analyze and discuss indicators of regime shifting in surface water and 
groundwater time series data at the site. 

2. Evaluate the ability of statistical models to detect the presence of regime shifting in 
historical stream intermittency data and identify potential drivers of regime shifts. 

3. Design and discuss conceptual models for the observed regime shifts, including 
suggesting stabilizing ecohydrological feedback during both wet and dry regimes. 
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2. Study Site 

Figure 1. Map of Arkansas River stream reach in Larned, Kansas. The blue-shaded region defines the 
Kansas Geological Survey’s study area. Active wells labeled LWPH4a and LWPH4b are used to measure 
groundwater levels of the alluvial aquifer, while well LWPHc measures groundwater levels in the High Plains 
aquifer. USGS stream gage 07141220 is slightly downstream of the KGS study area and has been collecting 
data since 1998. 

The KGS Larned Research Site (fig. 1) is located approximately 10 kilometers northeast 
of Larned, Kansas, at a latitude of 38°12'13" N and longitude of 99°00'07" W, surrounded by 
rural farmlands consisting both of irrigated and non-irrigated agriculture. The site includes 
USGS gaging station 07141220, which has been active since 1998 (fig. 2). The KGS has 
conducted research at Larned since 2001, with past work focusing on hydrostratigraphic 
characterization (Healey et al., 2001; Loheide et al., 2005; Butler et al., 2007), evapotranspiration 
by phreatophytic vegetation (Loheide, 2005; Butler et al., 2007), and aquifer responses to 
barometric pressure variations (Butler et al., 2011). The primary hydrostratigraphic units at the 
site are, from top to bottom, a surficial alluvial aquifer, a leaky clay confining unit, and the High 
Plains aquifer. The research site contains 19 monitoring wells, and each of the three 
hydrostratigraphic units at the site has at least two wells screened in it. The alluvial aquifer is 
composed of mixed gravels and sands with occasional clay layers, extending to about 10 meters 
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below the surface (Healey et al., 2001). The leaky confining unit is composed of clay and is 
several meters thick, with variability across the site (Healey et al., 2001). The leaky confining 
unit divides the local alluvial aquifer from the regional, heavily pumped High Plains aquifer. The 
High Plains aquifer is composed of sand and gravel. Bordering vegetation consists of 
cottonwood trees as well as woody and herbaceous riparian grasses. 

Recently, Compare et al. (2021) investigated potential historical drivers of flow at the 
Larned Research Site, including the roles of weather, groundwater pumping, and subsurface 
stratigraphy. They found that dry periods most frequently begin during the summer months, but 
switches between dry and wet conditions typically occur on annual or longer timescales and are 
coincident with long-term (greater than or equal to 12 month) precipitation anomalies. Although 
the interface between the stream and the alluvial aquifer is highly conductive, the leaky 
confining unit impedes water movement between the alluvial and the High Plains aquifers. The 
subsurface structure creates a delayed temporal relationship between the units, where alluvial 
aquifer head tends to increase before the High Plains aquifer during recharge events. While 
Compare et al. (2021) suggested that shifts between flowing and no-flow conditions were 
characteristic of wet and dry regimes, potential regime shifting has not been rigorously tested. 
This report extends this past work by investigating quantitative evidence for wet and dry regimes 
and developing a conceptual model to explain observed hydrologic dynamics. 

Figure 2. Time series graphs of stream stage (meters above sea level) and groundwater levels of wells located 
in the alluvial (labeled LWPH4a, LWPH4b) and High Plains (LWPH4c) aquifers in Larned, Kansas. Yellow 
shading indicates observed no-flow periods in the stream. For groundwater levels, well LWPH4a is obscured 
by well LWPH4b because both wells are screened in the alluvial aquifer and therefore their hydrographs are 
very similar. 
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3. Regime shift concepts 

Natural systems often center on predictable trends or averages that are characteristic of 
system stability (Scheffer et al., 2009). However, there are instances where regime shifts can 
occur between two or more alternative stable states (table 1), characterized by abrupt changes in 
system behavior or dynamics. Regime shifts have been widely recognized in many ecosystems, 
and the Regime Shifts DataBase (https://www.regimeshifts.org/) compiles a body of literature 
showing regime shifts that include bivalve collapse, freshwater eutrophication, and bush 
encroachment (Hammond et al., 2012; Rocha et al., 2017; Luvuno et al., 2018), among other 
studies. The regime shift framework can even be used in non-earth system disciplines, such as in 
healthcare studies that attempt to predict episodes of epilepsy and asthma (Scheffer et al., 2009). 

Table 1. Definitions of terms that frequently occur in regime shift literature (from Mac Nally et al., 2014; 
Capon et al., 2015). Some terms have interchangeable synonyms. 

Term Definition 

Ecological A time series of values of an individual component of ecosystem state, such as the abundance of 
Response a taxon or a rate of an ecological process (e.g., primary production). 

Regime A numerical description of an ecosystem that includes one or more ecological responses. This 
definition does not imply that the ecosystem state is equilibrial or stationary; rather, the 
ecosystem state is a vector of ecological responses that varies with time. Multiple regimes — 
also known as alternative stable states — can exist in a system. 

Driver A spatially and temporally large source of change, usually anthropogenic, that may create 
multiple pressures. For example, anthropogenic climate change produces multiple pressures, 
such as increasing global temperature and exacerbating droughts. 

Tipping Point A value of an ecological variable that acts as a threshold of change. Beyond this threshold, a 
previous ecosystem state cannot be recovered, even when pressure is released, and restoration 
actions are applied. Synonymous with critical point. 

Regime Shift Movement from one regime to another when drivers overcome a tipping point. 

The movement of a system between alternative stable states can be visualized using a 
ball-and-hill diagram (fig. 3). In a trough, the ball (which represents the system) is stabilized in 
its current state based on a combination of the environmental or external drivers and pressures 
creating negative feedback mechanisms. The crest between regimes represents a tipping point 
beyond which feedback keeping the system in the current state is broken and the system moves 
into a new stable state or regime. The system can move between states when pressures and 
drivers become sufficient to push the system past the tipping point. In some cases, this transition 
can be irreversible. For the purposes of clarity, “regime” will be the preferred term for the rest of 
this report. 
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Only systems that have stability-inducing negative feedback exhibit regime shifting 
behavior, and identifying the presence of alternate regimes is challenging. Certain common 
“hints,” reviewed in Scheffer et al. (2009), have been identified in a wide class of regime-shifting 
systems as they approach a critical point between state changes. These hints include critical 
slowing down, asymmetry of the state distribution, and flickering of state changes. Critical 
slowing down manifests as increasingly slow recovery from perturbations when the system 
approaches a critical point as well as an increase in autocorrelation (Scheffer et al., 2009). 
Asymmetry of state distribution is often characterized by skewness, caused by the tendency of 
the system to remain near the unstable regime for increasingly longer periods of time before the 
system crosses the tipping point to its other regime. Flickering is also seen near the tipping point 
when the system moves between two states’ basins of attraction at a rapid speed. Evidence for 
flickering includes bimodality and an increase in the variance of ecosystem states and their 
relevant variables. 

Figure 3. Ball-and-hill diagram commonly used in regime shift studies. At step 1, the system (ball) is within
the basin of attraction for regime 1, but system drivers and pressures have pushed it toward the tipping point. 
If these pressures are sufficiently strong, the system can undergo a regime shift at step 2 into regime 2, 
overcoming the tipping point. 

4. Methods 

In this section, we investigate whether the hints identified by Scheffer et al. (2009) and 
other regime shift literature (Dakos, Scheffer et al., 2008; Dakos van Nes et al., 2012, 2013; 
Dakos, Carpenter et al., 2015) are present in the non-perennial stream and groundwater system at 
the Larned Research Site. All analyses were conducted using the R statistical software (R Core 
Team, 2020) in RStudio (R Studio Team, 2020), with visualization primarily using the ggplot2 
package (Wickham, 2016). Other packages and tools used are cited where further discussed in 
the text. 

4.1. Investigation of Regime Shift Hints 

4.1.1 Critical Slowing Down 
Time series that exhibit critical slowing down can be used to identify when a system is 

approaching a shift near a tipping point (Scheffer et al., 2009). The first hint most directly 
relating to critical slowing down in regime-shifting systems is the physical slowing down of 
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recovery rates as a state approaches a tipping point. In a hydrologic time series, we hypothesize 
that slowing down can be observed when the drying curve takes longer to recover to the average 
stream stage. 

To evaluate critical slowing down at the Larned Research Site, we compared streamflow 
recession rates between wet periods and dry periods. We did this by plotting discharge since the 
day that streamflow dropped below 20 cubic meters per second (cms) for recession events that 
reached no flow eventually and for those that did not dry completely but reached a discharge of 
less than 5 cms. For these recession events, the discharge rate for each period was graphed from 
the time flow dropped below 20 cms until (1) discharge started to rise without an immediate 
recession, (2) streamflow reached 0 cms (no flow event), or (3) 130 days had passed since the 
flow dropped below 20 cms. 

4.1.2 Increase in Autocorrelation of Groundwater Levels 
Increases in autocorrelation are another hint that a system is undergoing a regime shift 

(Scheffer et al., 2009). Because rates of change slowly decrease as the system approaches a 
regime shift, future rates become increasingly similar to the past. Near a threshold, the system’s 
memory for perturbations is longer (Scheffer et al., 2009) and as a consequence, there is a 
stronger (auto)correlation between subsequent system conditions. 

We calculated rolling 28-day autocorrelation — AR(28) — for groundwater levels in 
well LWPH4a between 2003 and 2016 using the “roll” package (Foster, 2020). We used 
groundwater stage, rather than stream stage, for this analysis since stream stage data are not 
available during no-flow periods. We then compared the distribution of autocorrelation between 
wet and dry states in the system, temporally divided based on the system regime state (wet or 
dry) that was identified using the STARS analysis described in section 4.2. 

4.1.3 Increase in Variance of Stream Stage and Groundwater Levels 
An increase in variance in the system can be evidence for a regime shift change as the 

system nears a tipping point. Increases in variance occur because the system is more unstable and 
changes more rapidly near regime shift conditions. Variance fluctuations also can develop well 
before regime tipping points, making it more difficult to differentiate true signals of regime shifts 
from normal levels of variance (Scheffer et al., 2009). 

To compare surface water and shallow groundwater variations, we calculated rolling 
weekly (seven day) variance using the “roll” package (Foster, 2020) for both surface water stage 
and groundwater stage from well LWPH4a. We then evaluated the variance time series between 
1998 and 2021 to determine whether changes in variance accompanied shifts between wet and 
dry regimes. 

4.1.4 Asymmetry, Skewness of No-Flow Distribution 
Asymmetry in a system’s state distribution, much like variance, can be an indicator of a 

system with alternate stable regimes. As the system approaches a regime shift, it will remain in 
the current regime until it is forced past the system's tipping point, which will translate as either 
an asymmetric skewed or bimodal distribution of system states. 

We assessed skewness for the percent of no-flow days per month and per year using a 
histogram and the Pearson skewness coefficient (Skp) (Meyer et al., 2021). To test for 
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multimodality, we used histograms of the percent of no-flow days in each month and year. The 
presence of at least two modes between 0% and 100% no-flow days would indicate multiple 
stable states are present in the Larned system. 

4.2 Testing for Regime Shifting with Sequential T-test Analysis of Regime Shifts (STARS) 

Many regime shift detection techniques have been created and evaluated in regime shift 
literature (Rodionov, 2005). Methods that focus on shifting variable means are commonly used 
and have the most robust selection of developed work to choose from, as opposed to shifts in 
variance or frequency (Rodionov, 2005). The sequential t-test analysis of regime shifts (STARS) 
developed by Rodionov (2004) is best suited for the hydrologic data available at Larned because 
it is well suited for accurately estimating regime shifts at the tail end of time series (Rodionov, 
2005) and because the basin has shifted between wet and dry regimes within the past decade. 

The STARS algorithm identifies regime shifts by continuously comparing means using 
the Student’s t-test at a predetermined cutoff length interval l, a time span from the first 
measurement until the first perceived regime shift. When the difference between two means 
within the interval is statistically significant, STARS reports a regime shift (Rodionov, 2004). 
The STARS method includes an optional prewhitening approach to reduce noise in the time 
series data prior to regime shift detection analysis to correct for serial autocorrelation in the data 
(Rodionov, 2006). Of the four methods commonly used, estimating autocorrelation bias using 
ordinary least squares (OLS) regression is considered an older standard and struggles to 
accurately remove strong bias and noise on time scales that record monthly or smaller increments 
(Rodionov, 2006). Inverse proportionality with 4 corrections (IP4) is an alternative approach that 
is based on the assumption that the bias is approximately inversely proportional to sample size, 
allowing for more accurate results with smaller subsets of data by reducing the likelihood of a 
biased result and regime mean overestimation (Rodionov, 2006). For the purposes of this study, 
we considered IP4 best suited for our data but also repeated our analysis using OLS prewhitening 
for comparison. 

To statistically test regime shifting of flow patterns in the Larned non-perennial stream 
system using STARS, we used the RSTARS package in Rstudio by Stirnimann and Conversi 
(Stirnimann et al., 2019; Rodionov, 2004; Rodionov, 2005). The time series input to RSTARS 
was the Larned site’s USGS gage 07141220 discharge data, limiting our time series between 
October 1, 1998, and December 31, 2020. Initially, cleaned discharge data were aggregated into 
daily, weekly, and monthly time scales, but using discharge data with STARS did not provide 
clear results of regime shifting because of the highly skewed nature of discharge data. In other 
words, the data have a high volume of low discharge values (i.e., less than 1 cms), which, 
considered relative to the full range of recorded discharge values, are grouped in the same regime 
as 0 cms despite the important hydrologic difference between low flow and no flow. Instead, we 
were more interested in the frequency and duration of no-flow conditions (rather than low-flow 
conditions), so we transformed discharge data into the (1) percent of no-flow days per week and 
(2) percent of no-flow days per month to better evaluate the presence of possible regime shifts 
between wet and dry regimes using different temporal resolution of the input data. 

We ran STARS with four different scenarios to compare how regime shift detection was 
sensitive to the prewhitening method and temporal resolution: (1) weekly no-flow percent and 
OLS prewhitening, (2) weekly no-flow percent and IP4 prewhitening, (3) monthly no-flow 
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percent and OLS prewhitening, and (4) monthly no-flow percent and IP4 prewhitening (table 2). 
We used a probability value (�̂) of 0.05 to identify significant changes and selected the cut-off 
length l by identifying the number of weeks and months between the first timestep and the first 
no-flow day (185 weeks and 43 months, respectively). 

Table 2. The four approaches and selected parameters used for STARS analysis. The prewhitening methods 
ordinary least squares (OLS) and inverse proportionality with 4 corrections (IP4) were used to initially clean 
the time series data. The time series data were aggregated by percent of no-flow days per week or percent of 
no-flow days per month. The cutoff value (l) for the STARS algorithm was determined by the number of 
weeks or months from the initial date the first no-flow day occurred in the time series — 185 weeks or 43 
months. 

Approach Prewhitening 
Method 

Temporal 
Aggregation 

Cutoff Value l 

1 OLS Weekly 185 
2 IP4 Weekly 185 
3 OLS Monthly 43 
4 IP4 Monthly 43 

 

          

 
   

 
 

 

        
     

               
             

                 
  

 
 

 
 

  

    
    
    
    

 

 

  
 

  
 
 

 
  

     

  
    
    

   
 

     
  

 
   

 

4.3 Testing System-Driver Relationships 

Identifying important influences of potential drivers on environmental systems is easier 
with a longer time series of data (Spanbauer et al., 2014; Reynolds et al., 2015; Taranu et al., 
2018). Since we had only 23 years of streamflow data, and an even shorter period of 
groundwater-level data, measurements from remote sensing provided a potential longer time 
scale for analysis. We investigated land surface temperature (LST) and the enhanced vegetation 
index (EVI) as two potential indicators of ecosystem dynamics at the site. 

4.3.1 LST and Stream Stage 
Land surface temperature (LST) is the temperature of the land surface as viewed from 

space and includes vegetation, streams, and exposed streambeds in a given location (Zink et al., 
2018). As a result, LST serves as an indicator of the relative wetness of the site, with cooler 
temperatures associated with water in either streams or healthy transpiring vegetation. Raw LST 
data in Celsius were compiled, cleaned, and screened for cloud cover from a collection of 
Landsat images taken between December 6, 1982, and May 15, 2021, for the Larned Research 
Site (fig. 1, blue-shaded region). Cleaned Larned LST data were then transformed from daily 
temperature values to yearly temperature range values, calculated as the difference between the 
minimum and maximum LST value of each year (Range LSTYear N = Maximum LSTYear N -
Minimum LSTYear N). 

To visualize the distribution of yearly LST ranges during periods of regime shifting, 
yearly LST range data were grouped into the six regimes identified from the results of the 
STARS analysis (section 4.2). We hypothesized that when the system is experiencing a dry 
regime, the LST range would be wider than the LST range in a wet regime since there would be 
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higher summer temperatures due to a lack of evapotranspiration at the site. Furthermore, we 
compared LST time series data with LWPH4a data using Pearson’s product-moment correlation 
to get a correlation coefficient. This analysis was used to specifically quantify the relationship 
between the change in LST range and the change in groundwater levels. 

4.3.2 EVI and Stream Stage 
The enhanced vegetation index (EVI) offers insight into the presence and health of 

vegetation (Kang et al., 2016). Similar to LST, EVI data were compiled, cleaned, and screened 
for cloud cover from a collection of Landsat images taken between December 6, 1982, and May 
15, 2021, with the spatial area limited to the Larned Research Site. From cleaned EVI data, the 
yearly max EVI value from each year’s summer period (defined as April 1–September 30) was 
isolated and then graphed using a line plot. 

To visualize the distribution of yearly EVI summer maximum values during periods of 
regime shifting, yearly EVI maximums were grouped by the regimes identified using the STARS 
algorithm described in Section 4.2. Our hypothesis was that EVI would be lower during a dry 
regime than during a wet regime because there would be less water available for vegetation 
during these periods.  

As we did for LST, we calculated Pearson’s product-moment correlation between the 
cleaned Larned bimonthly EVI measurements and LWPH4a well measurements to directly 
compare stream stage and EVI movement over time. Again, being able to directly measure the 
change in EVI with the change in stream change offers a way to quantify the relationship 
between vegetation activity and groundwater levels. 

5. Results 

5.1. Identification of Regime Shift Hints 

5.1.1 Critical Slowing Down 
During streamflow recession events, we see that streamflow decreases rapidly when it 

passes below 20 cms, beginning to slow at around 5 cms and asymptoting close to 0 cms (fig. 4). 
This general pattern is true for both dry and wet regimes, though dry regimes appear to generally 
asymptote at a lower value since they eventually reach 0 cms. This asymptotic behavior is 
characteristic of slowing rates of change before a regime shift from flow to no-flow conditions 
and suggests feedback causing the stream system to be resistant to change until the system is 
pushed past a tipping point. When using a log-scaled hydrograph to investigate dynamics during 
these asymptotic periods, we found two distinct patterns of behavior during dry regime recession 
events (fig. 5). One grouping decreases to 0 relatively quickly (less than one month), while the 
other mimics the asymptote behavior of wet regime recession events before eventually drying. 
One possible explanation for this differentiation is the infiltration behavior into the subsurface. 
We would expect the more rapid drying events, which have a larger second derivative, to occur 
when groundwater levels are lower and surface water can quickly drain into a relatively dry 
alluvial aquifer. These rapid drying events are therefore characteristic of ephemeral, 
precipitation-driven flow events. In contrast, the asymptotic behavior of the more prolonged 
drying events may be characteristic of conditions in which groundwater levels are near the 
streambed elevation and slowly recede until they drop below the streambed elevation and the 
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river dries. Future investigation of the factors differentiating these two types of drying recession 
curves could provide insight into the drivers of regime shifts in future work. 

Figure 4. Discharge rates at Larned, Kansas. Blue lines indicate drydown periods that do not reach a no-flow
condition, and red lines indicate drydown periods preceding no-flow events. Time is expressed as the number 
of days since discharge last exceeded 20 cms. The x-axis is cut off at 130 days. 
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Figure 5. Discharge rates at Larned, Kansas, with base-10 logarithm scale on the y-axis. Blue lines indicate 
drydown periods preceding recharge events, and red lines indicate drydown periods preceding no-flow 
events. Time is expressed as the number of days since discharge last exceeded 20 cms. The x-axis is cut off at 
130 days. 

5.1.2 Increase in Autocorrelation of Groundwater Levels 
Stream discharge is typically highly autocorrelated because, in the absence of major 

hydrometeorological changes such as precipitation, discharge on a day of interest is typically 
very similar to discharge on the preceding days (Yue et al., 2002). As a result, the 28-day rolling 
autocorrelation (AR[28]) is very high, typically above 0.75 except during high discharge events, 
where it decreases briefly to the 0.25–0.5 range. The high baseline level of autocorrelation makes 
it difficult to discern indicators of regime shifts in AR(28) time series data (fig. 6a). However, 
the boxplots (fig. 6b) show AR(28) is highest during dry regimes, intermediate during 
intermediate regimes, and lowest during wet regimes. The lower autocorrelation during wet 
regimes is the result of greater variability in groundwater levels during these periods, which is 
due to the close relationship between water levels in the alluvial aquifer and the stream, while 
during dry regimes the groundwater levels in the alluvial aquifer tend to change relatively slowly 
(fig. 2). Although there are many instances of local increases in AR(28) before no-flow events, 
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these are comparable in magnitude to other local maxima and therefore do not provide a clear 
early warning signal for regime shifts. 

Figure 6. (a) Time series for 28-day lag autocorrelation, AR(28), of LWPH4a well levels, where yellow 
shading illustrates periods of no surface flow. (b) Distribution of AR(28) of LWPH4a well levels for each 
regime identified in the STARS analysis (section 4.2) between 2003 and 2016. “Wet” regimes have surface 
flow, “dry” regimes have no surface flow, and “IA” regimes are an intermediate regime with periods of both 
flow and no flow. 

5.1.3 Increase in Variance of Stream Stage and Groundwater Levels 
Increases in variation in alluvial aquifer groundwater levels, stream stage, and discharge 

are associated with transitions from no-flow to flow conditions (fig. 7). Variance in stream stage 
and alluvial aquifer groundwater levels is primarily associated with changes in flow, which are 
driven by wet meteorological conditions but may also be associated with pumping and other 
drivers (Compare et al., 2021). For example, variability in LWPH4c (fig. 2) appears driven by 
seasonal water use in the High Plains aquifer. Further study of dynamics in LWPH4c could 
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provide insight into the role of irrigation and other water use practices that could affect the 
aquifer and streamflow in the future. 

Interpreting the variance within the system is challenging due to the presence of zeros 
and very low values in stage and discharge measurements associated with low-flow conditions. 
Because streamflow is by definition low immediately prior to drying and generally follows a 
relatively smooth, asymptotic recession (figs. 4–5), there are no increases in variance associated 
with wet to dry regime shifts. Given the time series data, it is difficult to interpret whether both 
variance and autocorrelated measurements match patterns associated with regime shifts as 
described in the literature, and if they do align, whether they reflect a regime shift change. 

Figure 7. (a) Time series of calculated rolling variance for stream stage and (b) alluvial aquifer water levels 
from well LWPH4a. Raw stream stage and well-level data were collected and cleaned from USGS gage 
07141220 and LWPH4a. Stream stage data span 1998 to 2021 and LWPH4a data span 2003 to 2015. Yellow 
shading indicates periods of no surface flow. 

5.1.5 Asymmetry and Skewness of No-Flow Distribution 
Both skewness and multimodality are visually apparent in the no-flow distributions at 

monthly and annual timescales (fig. 8). However, the skewness coefficient Skp is not statistically 
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significant for either distribution (0.206854 %NFD/Yr, 0.2629865 % NFD/Mo). A possible 
explanation for this is that depending on the usage, skewness can be a difficult hint to work with 
in ecosystem assessment (Meng et al., 2021), where temporal methods are more descriptive, and 
the skewness coefficient is not well suited for strongly bimodal data. We observe that the large 
majority of both months (fig. 8a) and years (fig. 8b) have less than 10% or more than 90% no-
flow days, making both distributions bimodal. The locations of the modes within the distribution 
explain the lack of skewness. Because both modes are on the farthest ends of the histograms, 
both distributions are almost balanced and reflect the system’s distribution between dry regimes 
(100% no-flow days) and wet regimes (0% no-flow days). 

Figure 8. Distribution of no-flow days at (a) monthly and (b) yearly timescales, as a proportion of total days. 
Both show a clear bimodal distribution with modes of 0 and 1. 

5.2 Sequential T-test Analysis of Regime Shifts (STARS) 

STARS identified multiple regime shifts for both weekly and monthly percent no-flow 
days. For each regime, STARS provides the start date, end date, and mean value during that 
regime. Regardless of the approach used, STARS identified similar timing of regime shifts that 
closely align with the observed shifts between flow and no-flow on the hydrograph. The primary 
difference between the weekly and monthly approaches was that using STARS on weekly 
resolution data identified one additional intermediate flow regime from 2015 to 2017 (table 3 and 
fig. 9), which was not identified in the monthly data (fig. 10). The prewhitening methods more 
heavily filtered the weekly time series compared to the monthly time series, which decreased the 
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estimated regime means relative to the raw data. Due to IP4’s superior performance in past work 
(Rodionov, 2006), IP4 outputs were used for further comparisons. 

Table 3. STARS output using approach 2 from table 2 (weekly aggregation, IP4 prewhitening method, cutoff 
value l = 185, subsample size M = 62). STARS detected six distinct regimes using this approach, with regime 5 
illustrating an “intermediate” alternate state. 

Regime Regime Type Start Date End Date Mean Value 
[% No-Flow Days/Week] 

1 Wet 10-02-1998 04-10-2002 0 
2 Dry 04-17-2002 12-27-2006 48.3% 
3 Wet 01-03-2007 06-15-2011 0.2% 
4 Dry 06-22-2011 04-29-2015 49.5% 
5 Intermediate 05-06-2015 03-29-2017 32.8% 
6 Wet 04-05-2017 12-29-2020 1.8% 

 
 

     
 

 
 

     
     
     
     
     
     

 

 
 

  
 

 

Six regimes were detected using weekly data, and five regimes were detected using 
monthly data. The regime mean estimates for monthly no-flow days are higher than for weekly 
no-flow days due to more pronounced prewhitening effects on the weekly data. Differentiation 
between start and end dates for regimes 1–3 for yearly and monthly data is marginal but shows 
that weekly percentages more precisely mirror first and last flow dates recorded in the discharge 
data because of the finer temporal resolution of the input data. The monthly and weekly 
approaches differ most in regimes 4–6, as STARS does not register a sixth regime change for 
monthly no flow and instead interprets regime 5 as an “intermediate regime” balanced by a high 
frequency of flickering. For weekly no flow, regime 5 also serves as an intermediate regime 
before the stream transitions into regime 6, a true dry regime. 
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Figure 9. Output of STARS algorithm using approach 2 (weekly aggregation, IP4 prewhitening method, 
cutoff value l = 185, subsample size M = 62). Six regimes were detected between October 1, 1998, and January 
1, 2021, illustrated by the red line. The blue line indicates the prewhitened filtered time series, and the yellow 
line indicates the original time series. 

Figure 10. Output of STARS algorithm using approach 4 (monthly aggregation, IP4 prewhitening method, 
cutoff value l = 43, subsample size M = 14.667). Five regimes were detected between October 1, 1998, and 
January 1, 2021, illustrated by the red line. The blue line indicates the prewhitened filtered time series, and 
the yellow line indicates the original time series. 
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For time frames in which no-flow data show flickering, classifying those periods as 
“intermediate” regimes may be temporary as more data are gathered to gain a better 
understanding of general trends. As future data are collected, STARS would be able to accurately 
reinterpret changes of regimes based on the new discharge data toward the end of the time series. 

5.3 Testing System-Driver Relationships 

Qualitatively, yearly LST range values (fig. 11a) appear to trend upward before a drying 
event and decrease toward the end of and after a dry regime. Overall, however, there are no clear 
and consistent patterns for how LST varies between wet and dry regimes, though the LST range 
is often larger during dry regimes than wet regimes. The highest median LST range occurs 
during the first dry regime (regime 2), while the lowest median LST range occurs during wet 
regimes (regime 1 and regime 6). Since this Larned Research Site is heavily vegetated (fig. 1), 
and much of the vegetation at the site is phreatophytic (Butler et al., 2007), the higher 
temperature range during dry regimes may also indicate that the vegetation is experiencing 
greater stress during these periods. 

The distribution of LST ranges for dry regimes have a narrower total range (fig. 11b). 
The difference is in part due to regime periods (i.e., regime 5) being only a couple of years long, 
while other regime periods are almost a decade and will naturally have larger LST range 
variations. With an increase in LST range indicating more variability in LST values, even local 
climatic conditions are exhibiting increases in variability similar to other environmental drivers 
analyzed at smaller time scales. Comparing cleaned LST time series data with LWPH4a data, 
Pearson’s product-moment correlation between Larned bimonthly LST measurements and 
LWPH4a well measurements produced a positive weak correlation (R = 0.139) with a p-value of 
0.0124. This positive correlation could indicate underlying vegetation-driven dynamics that force 
the system into a dry regime, but those dynamics are not readily apparent given the scope of this 
analysis. 
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Figure 11. (a) Larned yearly land surface temperature (LST) range between 1982 and 2021. Yellow shading 
indicates observed no-flow periods in the stream. (b) Distribution of Larned yearly LST ranges using the data 
from (a). The regime time periods correspond to STARS output using approach 2 (table 2). 

For EVI, the temporal pattern is less clear than for LST, but there is a stronger 
relationship with groundwater-level data. With respect to EVI yearly summer maximums (fig. 
12a), EVI increases before drought periods but decreases shortly before or in the first year of a 
dry regime. The decrease in EVI during dry regimes further supports the effect of phreatophyte-
water table interactions in vegetation; phreatophyte activity reaches a peak, then dramatically 
declines, potentially triggered by a lack of water availability. Distribution of Larned yearly EVI 
maximums (fig. 12b) generally illustrates that dry regimes have a lower median than wet regimes 
and exhibit a wider and more skewed distribution compared to wet regimes, with the exception 
of regime 1, which included a longer series of data (1982–2003) that included a long-term 
increase in maximum EVI potentially associated with the expansion of phreatophytic vegetation 
at the site. A smaller EVI maximum range during wet and intermediate regimes could indicate 
that phreatophyte activity is more consistent in the wet regimes, when the plants are able to 
access groundwater within their root zone, as opposed to dry regimes, when the water table can 
drop below the root zone. This suggests that the terrestrial ecosystem at the Larned Research Site 
is adapted to the stable wet state. Furthermore, the Pearson’s product-moment correlation 
between Larned bimonthly EVI measurements and LWPH4a well measurements produced a 
positive weak correlation (R = 0.204) with a p-value of 0.0002, a stronger relationship than 
between LST and LWPH4a measurements. With phreatophyte activity so closely connected to 
water table and thus alluvial aquifer levels, the stronger correlation is consistent with the 
interpretation that phreatophytes can both influence and drive a response to groundwater levels at 
the site. 
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Figure 12. (a) Larned yearly maximum summer month EVI values between 1982 and 2021, where summer 
months were defined as April 1–September 30. Yellow shading indicates observed no-flow periods in the 
stream. (b) Distribution of Larned yearly maximum summer month EVI values using the same data as (a). 
The regime time periods correspond to STARS output using approach 2 (table 2). 

6. Discussion 

6.1 Conceptual Models 

6.1.1 Larned Regime Model 
Our results suggest that the Larned system can go back and forth between wet and dry 

regimes but can also linger in an unstable intermediate regime before transitioning (fig. 13). As 
of 2021, the system appears to have transitioned from an unstable intermediate regime back to a 
wet regime (table 3, figs. 9–10). However, this interpretation remains somewhat ambiguous 
depending on the temporal scale. Looking at the system over the 23 years of available data, there 
appear to be wet, dry, and intermediate regimes that last a few years in duration. However, 
zooming out to a larger temporal scale, it may make more sense to label the period of perennial 
flow prior to the first no-flow date as the only wet regime, and the past 20 years of 
wet/dry/intermediate regimes shifts we identify here may be one protracted intermediate regime 
as the system shifts from predominantly wet to predominantly dry. Which of these interpretations 
is correct will ultimately depend on the future trajectory of the system. At present, having three 
regimes better emphasizes the phases of transition and effect of the system’s drivers on stream 
flow activity. 
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Figure 13. Updated ball-and-hill regime shift conceptual model for the Arkansas River near Larned, Kansas, 
non-perennial stream system derived from hydrological data. When the system (ball) is moving between the 
wet or dry stable states (arrows a, b), the system passes through an intermediate unstable state (c). The system, 
depending on the ecological drivers influencing movement, will stay in this intermediate state until pushed 
either direction into a stable state again. 

6.1.2 Larned System Models 
Six primary drivers that define regime activity at Larned were identified from regional 

hydrogeologic and remote sensing data: stream stage, solar radiation (land surface temperature), 
surface-aquifer interactions (LWPH4c well measurements), phreatophyte groundwater 
consumption (EVI), phreatophyte activity (EVI, land surface temperature), and groundwater 
pumping for anthropogenic use (consumption). Although we are able to directly observe the 
effects of some of these drivers (i.e., pumping, precipitation), drivers that have more gradual 
influence, such as phreatophyte activity, can lead to similar abrupt changes over a longer time 
scale. Combined, these factors create feedback loops that create stability in both the wet and dry 
regimes at the Larned system and can lead to unstable transitions when pushed beyond their 
normal limits. The specific roles and interactions of these drivers vary between wet and dry 
regimes. 

In the wet regime, precipitation both at the site and upstream (fig. 14a) are sources of 
water that contribute to flow, and evapotranspiration (fig. 14b) is an outflow from the local 
hydrological system. Water movement between the stream (fig. 14c), the alluvial aquifer (fig. 
14c.i), and the High Plains aquifer (fig. 14c.ii) can be either upward (toward the stream) or 
downward (away from the stream) because increased surface flow percolates into the subsurface 
to recharge the alluvial and High Plains aquifers when water levels in the stream are higher than 
those in the aquifer and groundwater feeds back to surface flow from the alluvial aquifer when 
water levels in the stream are lower than water levels in the aquifer. Phreatophyte water 
consumption (fig. 14d), phreatophyte primary production (fig. 14e), and anthropogenic water 
consumption via pumping (Fig. 14f) act as negative feedback that reduce the amount of water in 
the system and can therefore exacerbate drier conditions. 
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Figure 14. Conceptual system model for the Arkansas River reach near Larned, Kansas, during a wet regime. 
Precipitation (a) and evaporation (b) add water to and remove water from the surface. Water moves between 
surface water and the subsurface via the alluvial and High Plains aquifers (c, c.i, c.ii). Phreatophytes remove 
water via root uptake (d) and evapotranspiration (e). Human water use (f) can remove water at a much larger 
scale. Ultimately, the system is balanced by baseflow and precipitation counteracting the drying negative 
feedback mechanism. 

In the dry regime, precipitation can generate brief periods of flow (fig. 15a), but unlike 
the wet regime, these are not sustained. Evapotranspiration (fig. 15b) and recharge into the 
alluvial and the High Plains aquifer (fig. 15c) are driven by the hydraulic gradient from the 
stream to the aquifers since dry regimes are associated with losing conditions for the stream. 
Phreatophyte water consumption (fig. 15d), phreatophyte primary production (fig. 15e), and 
anthropogenic water consumption via pumping (fig. 15f) further intensify dry conditions, 
maintaining the system in a dry regime. However, the system can transition from a dry regime to 
a wet regime when there is sufficient forcing from a large external climatic input, such as intense 
continuous precipitation events or flooding, which largely depends on climate and precipitation 
variability. That being said, it is difficult at this time to determine what magnitude of an input 
would recharge both aquifers and reinitiate surface flow if the Larned reach of the stream were in 
complete dry conditions. 
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Figure 15. Conceptual system model for the Arkansas River reach near Larned, Kansas, during a dry regime. 
Precipitation (a) and evaporation (b) add water to and remove water from the surface. Water moves 
downward into the subsurface through the alluvial and High Plains aquifers (c). Phreatophytes remove water 
via root uptake (d) and evapotranspiration (e). Human water use (f) removes water, further promoting water 
depletion. Ultimately, the system is unbalanced and surface water depletes until dry conditions exist. The lack 
of baseflow cannot be recovered by precipitation and upstream flow, and the water table eventually lowers. 
The drying negative feedback mechanism is strengthened as water is constantly leaving the stream. 

6.1.3 Limitations and Uncertainties 
To best characterize the hydrological system at the Larned Research Site, using an 

appropriate temporal scale is extremely important. Time series shorter than a decade do not give 
complete and accurate signatures for many of the environmental “hints” used in regime shift 
theory, and smaller flickering events can be misinterpreted as larger regime shift dynamics. Even 
here, where we had 23 years of data, it is possible that the hints analyzed from results (section 5) 
could have different interpretations if the time series used were expanded as system perturbations 
became better contextualized. For example, hints such as an increase in variance close to a 
regime shift could be more clearly interpreted with respect to historical variability if there was a 
longer period of historical monitoring data that included both extensive wet and dry regimes and 
shifts between the two. Though statistical regression models have been used elsewhere (such as 
Irving et al., 2018) to lengthen hydrological time series, our finding that there may be wet and 
dry regimes at this site implies that extrapolating previous precipitation patterns and hydrological 
responses from a single gage could produce an oversimplified result due to the nonstationarity 
associated with multiple regimes and different feedback during these two regimes (see section 
6.1.3). 

If the relationship between the hydrologic system and environmental variables appears to 
be different with the addition of more data, defining specific regime periods and timelines of 
shift patterns would be time scale dependent. Regime shift identification requires an accurate 
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time scale reference, especially if the temporal scale of the data is limited. This is shown in the 
STARS analysis (figs. 9–10), where even changing the temporal scale between weekly and 
monthly percent of no-flow days changed the number of regime shifts identified by the 
algorithm. If the time series is to be expanded to multiple decades, a monthly or even yearly 
temporal scale may more accurately describe larger system dynamics. 

It is also possible that our conceptual models exclude an important driver that remains 
unrecognized or not explained properly given the complexity of the system. Though there has 
been substantial historical work at the Larned Research Site (reviewed in section 2), there is 
always the possibility of new findings and drivers to explore. 

7. Conclusions and Future Research Needs

This report aimed to identify and evaluate potential regime shifts in the Arkansas River 
near Larned, Kansas, with the goal of exploring whether regime shift statistical methods are a 
useful framework to study non-perennial stream dynamics. We identified and aggregated data for 
potential environmental drivers of system behavior, used these data to investigate potential 
regime shifts, and developed environmental conceptual models to illustrate system dynamics and 
feedback mechanisms. Our analysis suggests that the Larned Research Site includes three 
possible regimes: a stable wet regime, an unstable intermediate regime, and a stable dry regime. 
The STARS algorithm identified the intermediate regime only when using weekly input data, 
illustrating how regime shift indicators may be dependent on temporal scaling. 

Building on previous KGS research that identified controlling factors of perennial 
streamflow, we analyzed environmental variables potentially influential in surface water activity 
to look for regime shift signatures, including critical slowing down and changes in variance and 
asymmetrical state distribution. We successfully identified some signatures at the Larned 
Research Site, such as critical slowing down and state multimodality, while other signatures such 
as variance and autocorrelation were difficult to isolate from already highly correlated 
hydrologic data patterns and the presence of zeros in flow data. Datasets with longer time series 
from remote sensing data, such as LST and EVI, have weak correlations with stage flow but have 
larger variations during modern dry regimes, indicating instability consistent with the 
hypothesized intermediate regime state. 

Future development of regime shift applications for non-perennial stream activity at 
Larned, Kansas, is necessary to understand implications of regime shifting for water availability, 
quality, and ecological health. Formal identification of regime shifting in non-perennial streams 
could provide a pathway to predict regime shifts of streams by looking at certain indicators such 
as precipitation, discharge, vegetative indices, and groundwater levels that signal changes in 
drying and wetting patterns. Quantifying and predicting regime shifts prior to stream drying and 
identifying pathways for the potential of reversal from a dry to a wet regime is imperative for 
projecting surface water and groundwater supply in western Kansas and other regions concerned 
with diminishing groundwater storage. To maintain non-perennial streams and their downstream 
receiving water bodies such as perennial rivers and reservoirs as viable sources for water supply, 
water managers should keep the vulnerability of non-perennial streams in mind when looking at 
local sources of water for irrigation. What is the history of the water source? Has it ever gone dry 
before and why? Are groundwater and surface water levels in the area unstable? What is the 
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potential of destabilizing the system if that water is to be withdrawn? These are important 
questions that the regime shifting framework could help answer. 
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