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Abstract 

Field data from Yuma Proving Ground, Arizona was used to test the feasibility of merging 

common multichannel analysis of surface waves (MASW) processing routines with mode- 

consistent shear-wave refraction traveltime tomography and synthetic modeling to optimize and 

constrain inversion results. Shear-wave first-arrival refraction tomography was used to enhance 

layer-model resolution and refine the MASW layer model with independent body-wave 

information. Shear-wave tomograms suggested a high-velocity layer, not found in initial ‘smooth’ 

MASW velocity sections that were used as initial models for tomographic inversion. Increasing 

the stratification of the MASW layer model, to generally match tomogram structure, resulted in a 

higher-resolution MASW model constrained through joint analysis. This mutual analysis of 

shear-wave velocity (Vs) provided multiplicity to the structural interpretation of the site. 

Constrained-parameterization MASW results, compressional-wave tomography (Vp:Vs ratio), and 

density well logs populated a 2D model for numerical modeling, which was manually updated 

over several iterations to converge upon the site’s first-arrival and dispersion characteristics. 

Further evaluation of the synthetic seismograms gave insight into the relationship between 

acquisition geometry (offset selection) and the associated dispersion-image character. 

Furthermore, modeling gave a secondary measurement on depth to half-space, velocity structure, 

and relative Vp:Vs ratios, which formulated a final MASW profile. The gradual change of the earth 

model, given an evolving hierarchy of constraint, is seen as the main finding of this thesis. The 

calculated movement towards a higher-resolution inversion based on joint geophysical 

measurements, analysis, and interpretation, engenders a constrained-parameterization solution 

with highest confidence.  

 



iv 

Acknowledgments 

I thank Rick Miller, Shelby Peterie, Brett Bennett, Benjamin Rickards, Joseph Kearns, 

Owen Metheny, Anthony Wedel, Brett Wedel, and Joe Anderson for their work in acquiring the 

data that this research was based on. Many stories originated from the two acquisition phases and I 

am grateful for their labors.  

 

Special thanks goes to Rick for making all this possible and bringing a healthy mix of levity 

and seriousness into the halls of Moore. I also thank my committee members, Julian Ivanov, and 

Shelby Peterie for their time and thoughts throughout my career at the KGS on my various 

research projects, problems, and concerns. I thank my family: Philip, Dee Ann, Lauren, and the 

little man Gabriel (Schwenk) for their continual support during my tenure at KU. I also thank my 

grandparents Glen and Dee, uncles and aunts Brett, Cathy, Bruce, and Johna (Butler) and note their 

support during my time at JCCC; your investment paid dividends. Lastly, I thank my fellow 

Jayhawks, graduate and undergrad alike, for their support and help throughout my scholarly 

career. I wouldn’t have made it without all of you.  



v 

TABLE OF CONTENTS 

 

ABSTRACT ....................................................................................................................................... III 

ACKNOWLEDGMENTS ..................................................................................................................... IV 

1. INTRODUCTION ......................................................................................................................... 1 

1.1. REGIONAL AND LOCAL GEOLOGY ................................................................................................... 4 

1.2. MASW METHOD ....................................................................................................................... 8 

2. DISPERSION IMAGING .............................................................................................................. 11 

2.1. IMAGING METHODS .................................................................................................................. 16 

2.2. IMPLICATIONS WITH APPLICATION ................................................................................................ 19 

3. INVERSION THEORY ................................................................................................................. 21 

3.1. FORWARD MODELING ............................................................................................................... 21 

3.2. LEAST-SQUARES APPROACH ........................................................................................................ 23 

3.3. GLOBAL OR STOCHASTIC APPROACH ............................................................................................. 25 

3.4. FUNDAMENTAL VS. MULTI-MODE COMPLEXITY ............................................................................. 26 

3.5. MODEL SPACE AND PARAMETERIZATION ....................................................................................... 27 

4. DATA ACQUISITION .................................................................................................................. 32 

5. PROCESSING METHODS ............................................................................................................ 37 

5.1. PRELIMINARY MASW ................................................................................................................ 40 

5.2. VS-JARS APPROACH.................................................................................................................. 50 

5.3. VP-TOMOGRAPHY (JARS) .......................................................................................................... 55 

6. CONSTRAINED-PARAMETERIZATION MASW DISCUSSION .......................................................... 60 

6.1. VS-JARS AND MASW ............................................................................................................... 60 

6.2. RMS ERROR ............................................................................................................................ 64 

6.3. P-WAVE TOMOGRAPHY (JARS) ................................................................................................... 65 

7. CONSTRAINED INVERSION CONCLUSION .................................................................................. 68 

8. MODELING OF SITE CHARACTERISTICS ...................................................................................... 70 

8.1. MODEL GENERATION ................................................................................................................. 71 

8.2. ACQUISITION EFFECTS ................................................................................................................ 76 

8.3. MODELING CONCLUSIONS .......................................................................................................... 81 

9. FINAL THOUGHTS ..................................................................................................................... 83 

10. REFERENCES ............................................................................................................................ 84 

11. APPENDIX I .............................................................................................................................. 90 

12. APPENDIX II ............................................................................................................................. 91 

13. APPENDIX III ............................................................................................................................ 93 

14. APPENDIX IV ............................................................................................................................ 94 



vi 

TABLE OF FIGURES  

 

FIGURE 1:  (A-C) LARGE- TO SMALL-SCALE MAP SEQUENCE OF THE YUMA PROVING GROUND TUNNEL 

DETECTION SITE. 2 

FIGURE 2:  PHYSIOGRAPHIC REGIONS OF THE AREA SOUTH OF QUARTZITE, AZ (AFTER EASTMAN, 2007). 5 

FIGURE 3:  STRUCTURAL MAP WITH GEOLOGIC OVERLAY OF THE NORTH AND SOUTH TRIGO PEAKS AND THE 

SOUTHERN EXTENT OF THE DOME ROCK MOUNTAINS (AFTER SHERROD AND TOSDAL, 1991). 6 

FIGURE 4:  GEOLOGIC LOG INTERPRETATION AFTER RICKARDS (2011). 7 

FIGURE 5:  LEFT) DIAGRAM OF A PHASE-SHIFTED SV REFLECTION AND AN EVANESCENT CRITICALLY 

REFRACTED P-WAVE INDUCED FROM AN INCIDENT POSTCRITICAL REFLECTED SV WAVE. LARGE 

ARROWS DEPICT PARTICLE MOTION, SMALL ARROWS AND PERPENDICULAR LINES GIVE 

PLANE-WAVE PROPAGATION DIRECTION. RIGHT) THE INTERFERENCE OF THE EVANESCENT 

P-WAVE AND SV-PARTICLE MOTION AT THE FREE SURFACE PRODUCE RAYLEIGH WAVES. 12 

FIGURE 6:  LEFT) DISPLACEMENT COMPONENTS SHOWN AS A FUNCTION OF PERIOD FOR ONE POINT IN THE 

SUB-SURFACE. RIGHT) COMPONENT DISPLACEMENTS AS A FUNCTION OF DEPTH. 13 

FIGURE 7:  REFERENCE SHOT GATHER FROM THE YUMA SITE WITH RAYLEIGH-WAVE DISPERSION 

HIGHLIGHTED. 15 

FIGURE 8:   REFERENCE DISPERSION CURVE FROM THE YUMA SITE. 15 

FIGURE 9:   GRAPHICAL REPRESENTATION OF THE P-τ METHOD, WITH THE DATA TRANSFORMED FROM THE 

OFFSET-TIME DOMAIN TO THE SLOWNESS VS. TIME DOMAIN (YILMAZ, 2001) 18 

FIGURE 10:  A FOUR-TRACE TRANSFORM USING (LEFT TO RIGHT): F-K METHOD, P-τ METHOD, AND 

PHASE-SHIFT METHOD (AFTER DAL MORO ET AL., 2003). 20 

FIGURE 11:  RESULTS AFTER DAL MORO ET AL. (2003) WITH A SEQUENCE OF DISPERSION CURVES 

CALCULATED FROM 24-GEOPHONE GATHERS WITH THE A) F-K METHOD, B) P-τ METHOD, AND 

C) PHASE SHIFT METHOD. COLUMN 1 IS WITH A (0-2-20-30) BANDPASS FILTER, COLUMN 2 IS 

THE SAME AS COLUMN 1 WITH A NORMALIZATION FACTOR, AND COLUMN 3 IS WITH A 

(0-3-50-70) BANDPASS FILTER. 20 

FIGURE 12:  AQUALOCK GEOLOGIC SAMPLING SYSTEM AT WORK ON THE YPG SITE. 32 

FIGURE 13:  PHOTO OF THE WEIGHT DROP USED FOR P-WAVE REFRACTION AND MASW PROCESSING WITH 

THE TRIGO PEAKS IN THE BACKGROUND. 33 

FIGURE 14:  SHEAR-BLOCK SETUP FOR SHEAR-WAVE TOMOGRAPHY. THE OPPOSITE DIRECTION OF INITIAL 

MOTION IS NOT SHOWN IN THE DIAGRAM. THIS IS A SIMPLIFICATION, BOTH SV AND SH SOURCES 

WILL GENERATE BOTH SHEAR-WAVE MODES; HOWEVER ONE IS DOMINANT. 34 

 

 

 

file:///C:/Users/expostud1/Dropbox/Schwenk_Thesis_v3_3_1.docx%23_Toc361219907
file:///C:/Users/expostud1/Dropbox/Schwenk_Thesis_v3_3_1.docx%23_Toc361219907


vii 

FIGURE 15:  PICTURE OF THE IVI MINIVIB SYSTEM USED AT YPG WITH THREE DIFFERENT ORIENTATIONS OF 

THE HYDRAULIC MASS:  TOP LEFT) SH-; BOTTOM LEFT) SV-; RIGHT) P-WAVE. NOTE THE 

WAFFLE PLATE USED FOR SHEAR GENERATION IN THE LOWER LEFT IMAGE AND THAT THE SURVEY 

LINE IS PARALLEL TO THE LONG AXIS OF THE MINIVIB. 35 

FIGURE 16:  GENERALIZED WORKFLOW FOR A CONSTRAINED-PARAMETERIZATION MASW APPROACH. 
PRELIMINARY, FIRST-RUN MASW ALLOWS A VS-JARS/JARS APPLICATION, THE RESULTS OF 

WHICH MAY BE USED TO UPDATE THE LAYER MODEL OF THE NEXT GENERATION MASW 

INVERSION. LATER SECTIONS WILL DISCUSS THE ADDITION OF SYNTHETIC MODELING FOR 

ADDITIONAL CONSTRAINT ON DISPERSION INTERPRETATION AND LAYER-MODEL REFINEMENT. 
ARROWS DEPICT UPDATES WITH EACH ADDITIVE CONSTRAINT OR INFORMATION. 38 

FIGURE 17:  FOUR 47 INCH TELEVISION SETUP USED TO PICK DISPERSION CURVES. 39 

FIGURE 18:  DISPERSION CURVE SHOWING GOOD SIGNAL TO 80 HZ WITH VARIABLE HM CONTAMINATION 

ABOVE 30 HZ. SQUARES HIGHLIGHT SEVERAL INSTANCES OF THE COMPETING SIGNAL BETWEEN 

THE FUNDAMENTAL AND THE HIGHER-MODE. THE BOLD BLACK LINE HIGHLIGHTS A 

QUESTIONABLE TRAJECTORY FOR THE FUNDAMENTAL. 42 

FIGURE 19:  LEFT) UNMUTED SHOT GATHER. RIGHT) MUTED SHOT GATHER. 43 

FIGURE 20: UPPER) UNMUTED RECORD WITH STRONG HIGHER-MODE CONTAMINATION PAST 30 HZ. 
LOWER) MUTED RECORD ABOVE AN APPROXIMATE PHASE VELOCITY OF 450 M/S WITH 

INCREASED BANDWIDTH TO 80 HZ. 44 

FIGURE 21:  WELL LOG SUITE FOR WELL 11. LOGS INCLUDE: TEMPERATURE, DENSITY, GAMMA, NEUTRON, 
AND RESISTIVITY/CONDUCTIVITY. 47 

FIGURE 22:  INITIAL, FEW-LAYER MASW INVERSION OF THE YPG DATA. NOTE THE LACK OF STRATIFICATION 

AND APPARENT SMOOTH TRANSITION TO 9 M. 49 

FIGURE 23:  REPRESENTATIVE SH-WAVE HAMMER SHOT GATHER OF REVERSED AND VERTICALLY STACKED 

POLARITIES, WITH FIRST-ARRIVAL PICKS (IN GREEN). 50 

FIGURE 24:  SH-WAVE REFRACTION TOMOGRAM USING VS-JARS APPROACH. NOTE THE HIGH-VELOCITY 

LAYER AT APPROXIMATELY 6 M. 51 

FIGURE 25:  CONSTRAINED MASW VS SECTION. NOTE THE INCORPORATION OF THE HVL AT 6M. 52 

FIGURE 26:  RESULTS OF REPEATED METHODOLOGY FOR LINE 3. NOTE THE SIMILAR STRUCTURAL PATTERN 

OF THE SH- AND SV-METHODS AND ALSO THE MISMATCH OF THE SV-VIBE VELOCITY VALUES. 53 

FIGURE 27:  TOMOGRAM COMPARISON FOR LINE 2. NOTE THE STRUCTURAL AND VELOCITY AGREEMENT 

BETWEEN THE SH- AND SV-METHODS. 54 

FIGURE 28: LINE 2 VP-TOMOGRAPHY RESULTS AND VP:VS RATIO MAP. 55 

FIGURE 29: LINE 3 VP-TOMOGRAM AND VP:VS RATIO MAP. 56 

FIGURE 30:  FIRST-ARRIVAL GATHER WITH 3-LAYER REFRACTION INTERPRETATION. 57 

 

 

file:///C:/Users/expostud1/Dropbox/Schwenk_Thesis_v3_3_1.docx%23_Toc361219927
file:///C:/Users/expostud1/Dropbox/Schwenk_Thesis_v3_3_1.docx%23_Toc361219927


viii 

FIGURE 31:  GRAPH OF A MOVING 20-POINT LEAST-SQUARES FIT OF THE FIRST-ARRIVAL DATA GIVEN IN 

FIGURE 29. NOTE THE OSCILLATION OF APPARENT VELOCITY NOT INTERPRETED WITH THE 

STANDARD 3-LAYER ASSESSMENT. 58 

FIGURE 32:  FIGURE DISPLAYING DATA FROM 274 BOREHOLES, WITH POISSON’S RATIO LINES IN VARIOUS 

COLORS (AFTER BOORE, 2007). NOTE THE LOWER TREND CENTERED BELOW OR IN THE VICINITY 

OF 0.3 (VP:VS-1.87, THE GREEN LINE) WITH MANY VALUES BELOW 0.2 (VP:VS-1.63, THE 

LOWEST PINK LINE). YPG DATA AVERAGED ACROSS LAYERS IS OVERLAIN FOR COMPARISON. 67 

FIGURE 33:  LEFT) SYNTHETIC SHOT GATHER OF FINAL LAYER MODEL. RIGHT) REFERENCE FIELD GATHER FOR 

THE YPG SITE. NOTE THE RELATIVE MATCH OF THE FIRST-ARRIVAL TREND. 72 

FIGURE 34:  SYNTHETIC MODEL WITH EQUIVALENT FINAL LINE 2 AND LINE 3 CONSTRAINED- 

PARAMETERIZATION MASW RESULTS TO HALF-SPACE DEPTH. 75 

FIGURE 35:  GRAPH OF PHASE-VELOCITY VARIATION WITH SPREAD LENGTH. ALL SUBSETS HAVE A 1 M 

SOURCE OFFSET, WHERE SHORT REFERS TO A 78M 65-GEOPHONE SPREAD AND LONG REFERS TO 

A 178M 147-GEOPHONE SPREAD. AT MAXIMUM DEVIATION, PERCENT DIFFERENCE IS UNDER 

6% FOR CORRESPONDING SPREAD LENGTHS. THE SLIGHT OVERESTIMATION AT 

HIGH-FREQUENCY MODEL DATA, IN COMPARISON TO THE THEORETICAL CURVE, IS A RESULT OF 

THE AUTOMATIC PICKING ROUTINE. 76 

FIGURE 36:  DISPERSION CURVE COMPARISON FOR THE FULL 147-GEOPHONE SPREAD LENGTH (178 M 

SPREAD: SYNTHETIC DATA TO LEFT, FIELD DATA TO RIGHT). NOTE THE HIGHER-AMPLITUDE HM 

ENERGY IN THE FIELD DATA. 78 

FIGURE 37:  DISPERSION CHARACTER COMPARISON FOR THE OPTIMIZED 65-GEOPHONE SPREAD LENGTH (78 

M SPREAD: SYNTHETIC DATA TO LEFT, FIELD DATA TO RIGHT). NOTE THE AMPLIFIED HM 

INTERFERENCE AT FREQUENCIES GREATER THAN 25 HZ ON THE FIELD DATA. 78 

FIGURE 38:  SEQUENCE OF DISPERSION CURVES PREPARED FROM DIFFERENT ACQUISITION PARAMETER 

SUBSETS: LEFT) MODEL DATA, RIGHT) FIELD DATA. 79 

FIGURE 39:  MUTED GATHERS OF THE MODEL (LEFT) AND FIELD (RIGHT) DATA. NOTE THE IMPROVEMENT IN 

OVERALL QUALITATIVE MATCH BETWEEN THE CURVES’ MODAL TRENDS. 80 



1 

1. Introduction 

A site at the Yuma Proving Ground (YPG) near Yuma, Arizona, has been designated the 

Joint Tunnel Test Range (JTTR) for use with the Joint Capability Technology Demonstration 

(JCTD) (ONDCP, 2009). The site is located in the Sonora Desert on the Joint Experimentation 

Range Complex (JERC) in the North Cibola Range sector of YPG (Figure 1-B). Specifically, the 

Exploration Services section of the Kansas Geological Survey (KGS) was tasked for the 

development and testing of anomaly-detection seismic methods and establishing baseline data for 

future testing at the JTTR. 

With the present political and societal pressures on both domestic and foreign border 

stability, a systematic and reliable means for tunnel detection and delineation is made necessary. 

For the purposes of discovery, plans were made for the emplacement of tunnels at JERC with 

funding for the JTTR and the JCTD. A more-perfect procedure can be outlined for future 

real-world applications by preparing a sterile site for experimentation and methodology 

enhancement. The emplacement of foreign material and/or the disruption of native substrate will 

be used to the advantage of geophysical response. The change in bulk composition and the 

predominant material properties of density (ρ) and elastic moduli (μ, k, etc.) will be associated to 

anomalous changes in wave-mode properties (Vp, Vs) that correspond to the excitation of the 

incident wave field. Due to the unprecedented nature of this experimentation and its theoretical 

development, there is a requisite need for extensive knowledge of the test site’s geophysical 

properties before the emplacement of tunnel features.  
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Figure 1:  (A-C) Large- to small-scale map sequence of 

the Yuma Proving Ground tunnel detection 

site.   

A :  Surveyed geophone locations with line markers 

(±2cm) (After Google, 2013).   

 

B :  YPG sector map (After U.S. Army, 2010).  

  

C :   Arizona map (MapsOpenSource, 2013).   
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For adequate modeling/method restraint, wave propagation must be understood to the 

greatest degree possible before and after tunneling activity. As such, a baseline survey was 

attained during two trips in the summer and fall of 2009; data were collected from July 10
th

 

through the 16
th

 and from October 13
th

 through the 17
th

. This research was funded and designed to 

process the data collected during these two trips which encompassed a broad spectrum of 

geophysical sources and sensors (Table 1).     

Table 1:  List of the various source/receiver methods undertaken at the JTTR site (Miller et al., 2010c). 

 

The acquisition strategy allowed for multiple seismic tests of the area through time, before 

and after the emplacement of tunnel features (see Appendix I). Although it encompasses a small 

portion of the data set collected and processed, the portion reported on here is centered upon the 

multichannel analysis of surface waves (MASW). The technique uses the property of 

Rayleigh-wave dispersion to garner a shear-wave (S-wave) velocity (Vs) profile, through standard 

off-end shooting techniques. The method was studied for enhancements to the standard work-flow 

that would bring about more stable, constrained, and higher-resolution Vs profiles.  

The resulting 2D-Vs profiles will be compared to shear- and compressional-wave 

refraction and relative density logs as a correlation tool for model and inversion refinement. These 

comparisons should validate the layer structure and interval velocities, as well as provide a relative 
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Vp:Vs ratio. Furthermore, seismic modeling will be used to substantiate the geologic model with 

the production and processing of synthetic seismograms. Synthetic comparisons shall compare the 

relative match between shot gathers within the x-t domain and look at matching the effects of the 

domain transformations related to the MASW method, as a means to justify dispersion and 

acquisition-subset interpretations. These additional and unrelated measurements will be used as a 

priori information to parameterize the inversion scheme. The use of multiple geophysical methods 

to constrain the solution space, along with additional techniques to broaden both the applicability 

and information content beyond standard MASW surveying, will engender higher-resolution, 

more constrained (more ‘unique’) solutions with more confidence in the final results.     

1.1. Regional and Local Geology  

Located within the basin and range province of the southwestern United States, the 

regional geomorphology is denoted by uplifted regions bounded by normal faults in an extensional 

regime. The extension throughout the area is believed to have started during the early Miocene 

(Sherrod and Tosdal, 1991; Tosdal, 1990). With respect to physiographic region, the area is 

located within the Trigo Peaks Area, at the margin of the La Posa Plain (Figure 2) (Eastman, 

2007). The site is bounded to the North by the Dome Rock Mountains and to the west and 

southwest by the North and South Trigo Peaks, respectively. The Tyson Wash to the 

south-southeast and the Felipe Pass to the south form the primary drainage for the area. The relief 

throughout the arid region transitions to down-dropped lowlands by alluvial fan and bajada 

formation along with colluvium deposits of grus, etc. The site lies off the tail of alluvial fans 

produced from volcanic tuff formations to the west.        
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Figure 2:  Physiographic regions of the area south of Quartzite, AZ (After Eastman, 2007). 

Sherrod and Tosdal (1991) undertook a structural study of the area, denoting general 

geology and rock ages (Figure 3). The Dome Rock Mountains are composed of metasedimentary 

rocks of the “Jurassic (?) and the Cretaceous McCoy Mountains Formation,” which were then 

overthrust by Jurassic metavolcanic and plutonic rocks by way of the Late Cretaceous Mule 

Mountains thrust system (Sherrod and Tosdal, 1991; Tosdal, 1990). The Trigo Peaks are 

composed of Jurassic granitic structural panels that are tilted to the northeast through normal 

faulting in a general northeast to southwest extensional regime (Tosdal and Sherrod, 1985). East- 

to northeast-striking tear faults have dextral strike-slip offsets of up to several kilometers and 

follow/modify the fabric of the Mule Mountains Thrust (Sherrod and Tosdal, 1991; Tosdal and 

Sherrod, 1985). The granitic blocks are overlain by distally derived arkosic sandstone (Miocene to 

Oligocene) and the Felipe Pass silicic tuff sequence sourced from the calderas of the Kofa 

Mountains to the south during the Miocene (Sherrod and Tosdal, 1991). Between the Dome Rock 

Mountains and the Trigo Peaks, and along the local drainage valleys, there are bands of Miocene 

fanglomerates and Holocene to Pleistocene alluvium deposits (Sherrod and Tosdal, 1991). 
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Figure 3:  Structural map with geologic overlay of the North and South Trigo Peaks and the southern extent of the 

Dome Rock Mountains (after Sherrod and Tosdal, 1991).   
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The site is located at the edge of the La Posa alluvial plain, with soil primarily 

characterized by SM (USCS) classification and Superstition-Rositas (USDA-NRCS) texture 

(McDonald et al., 2009; Miller et al., 2010b). Located between two natural drainage ditches, there 

is a slight dip to the southeast with scattered vegetation. As characteristic of alluvial plains, the 

locality is denoted by a broad outwash basin with little elevation change across the site. Well 

logging and sample retrieval generated a suite of geologic logs: gamma, neutron, resistivity, 

density, and temperature (Davis and Culig, 2009). The substrate contains large amounts of clay 

and silt, with lesser amounts of coarse- to fine-grained sand. Limited quantities of biotite and 

chlorite, with larger granules of quartz and feldspar were documented (Miller et al., 2010b). Some 

work was done to correlate the sedimentary units between wells; however, due to the highly 

variable nature and sparse and intermittent sampling of the subsurface, the results were deemed 

unreliable. Nevertheless, figure 4 relates the variable clay-content of the geologic logs across line 

3.     

 
 

Figure 4:  Geologic log interpretation after Rickards (2011). 
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1.2. MASW Method 

During the past several decades, Rayleigh-wave dispersion has increasingly been used to 

study Vs. The multichannel analysis of surface waves (MASW) is used for Rayleigh-wave Vs 

estimations (Miller et al., 1999a). MASW employs a linear line of low frequency (e.g., <10 Hz) 

vertical geophones, with off-end/in-line source acquisition, to record the local variation in 

dispersion properties (Vs) of the near-surface (<100 m). The shot gathers are then examined using 

a spectral analysis to retrieve a phase-velocity vs. frequency plot, which is interpreted for 

dispersion curves. These curves are then inverted, assuming a layered-earth model, to form 

sequential 1D-Vs profiles.  

Drilling and seismic-method comparisons have confirmed the accuracy of the MASW 

approach and its sensitivity to changes in Vs (Xia et al., 1999). Surface-wave investigations have 

included: depth to bedrock (Casto et al., 2009; Miller et al., 1999a), comparison with refraction 

microtremor analysis (Anderson et al., 2007; Richwalski et al., 2007; Stephenson et al., 2005), 

hydrophone acquisition (Kaufmann et al., 2005), pavement characterization (Ryden et al., 2004), 

mapping of complex dipping structures (Xu and Butt, 2006), stratigraphic analysis (Watabe and 

Sassa, 2008), and time-lapse levee investigations (Ivanov et al., 2005b; Ivanov et al., 2006a). 

Hazard evaluations of anthropological voids and natural sinkholes have used Vs analysis to 

delineate such structures through their anomalous signatures (Billington et al., 2006; Miller et al., 

2010a; Xia et al., 2007b). Furthermore, the relation between Vs and shear modulus (μ) may be 

exploited to assess the sensitivity of a site to ground motion (Anbazhagan and Sitharam, 2008; 

Hunter et al., 2010; Parolai et al., 2006; Yilmaz et al., 2006). Others have studied dispersion-curve 

imaging (Dal Moro et al., 2003; Duputel et al., 2010; Luo et al., 2008). Sensitivity testing has 
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included method resolution (Boiero and Socco, 2010; O’Neill et al., 2008; Xia et al., 2005; Xia et 

al., 2007a) and repeatability (Beaty and Schmitt, 2003). 

Care must be taken to limit inaccurate inversion of an under- or over-parameterized 

problem. The nonuniqueness inherent with the stratification of a layer model may restrict vertical 

1D resolution if too coarse or create situations of inversion instability if too fine. In contrast to the 

number and thickness of layers, the overall depth to the halfspace is often a subjective calibration 

based on knowledge of a site and rules of thumb (depth conversion ratio). In light of this, 

multi-mode inversion (Luo et al., 2007; O’Neill and Matsuoka, 2005; Xia et al., 2003) and 

constrained inversion schemes (Renalier et al., 2010; Socco et al., 2009) act to limit inversion 

nonuniqueness and instability. Although some have worked to lessen model parameterization, 

caution must be taken with standard MASW techniques. 

Additionally, both deterministic and stochastic inversion schemes depend upon ‘perfect’ 

imaging of a site’s dispersion characteristics. Domain transformation, and the finite windowing of 

the x-t space, introduces possible dispersion misinterpretation due to spectral leakage (Lyon, 

2009), inadequate sampling of low-frequency Rayleigh waves, higher-mode (HM) contamination, 

and insufficient resolution of dispersion characteristics (wavenumber and phase velocity). 

Adopting new methods of domain transformation may lessen these effects (Ivanov et al., 2010; 

Luo et al., 2008). In the end, only a strenuous examination of dispersion characteristics and 

site-dependent offset-selection effects can lead to proper dispersion interpretation.  

The inversion and dispersion-imaging techniques of the relatively new method rely on 

several subjective processing decisions that may result in inaccurate Vs estimations. The use of a 

priori information from other geophysical methods or geologic and borehole studies are suggested 

to limit such ambiguities of classical MASW routines. In the same light, numerical modeling of 
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synthetic data may help reduce the uncertainty of dispersion-image interpretation, inversion 

instability, and model parameterization. Current research seeks incremental, modular 

improvements of the MASW technique. Assimilating these various singular adaptations is 

proposed to further the methodology of MASW by engendering a more constrained routine which 

provides higher resolution, higher confidence velocity models.  
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2. Dispersion Imaging   

MASW uses the property of dispersion to image the near-surface. When compared to 

contemporary spectral analysis of surface waves (SASW) (Nazarian and Stokoe, 1984), more 

accurate phase-velocity information requires a multichannel approach (Park et al., 1999).  

Gathers are analyzed for Rayleigh-wave dispersion to solve the inverse problem of S-wave 

velocity. Interpretation of the dispersion image (overtone image) is imperative for proper inversion 

and accurate resulting Vs models. The resolution and quality of the overtone image (OT) is a 

function of the analysis used to extract velocity information. The purpose of this section is to 

discuss the procedure of several imaging methods, compare their capabilities, and discuss possible 

implications to ongoing research. The phase shift method developed, and currently used, at the 

Kansas Geological Survey (KGS), outperforms standard methods because of its versatility and 

resolution (Park et al., 1998; Dal Moro et al., 2003).  

Dispersion is defined by Sheriff (2002) as “variation of velocity with frequency.” 

Dispersive waves may include:  

Guided or channel waves – Induced when a wave guide traps seismic energy   

Lamb waves – High-stiffness contrast, trapped (guided) waves 

Love waves – Free-surface excitation with horizontal shear motion (SH)  

Rayleigh waves – Free-surface excitation with retrograde elliptical motion (SV) 

Stoneley waves – Solid-Solid boundary excitation   

Sholte waves – Solid-Liquid boundary excitation  
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This thesis discusses Rayleigh waves, which propagate as the interference of P- and 

SV-waves along the free surface (Figure 5; Stein and Wysession, 2003; Xia, 2008; Xu et al., 2006). 

Postcritical SV waves incident on the free surface (XY plane) give rise to critically refracted 

P-waves and phase-shifted reflected SV waves. The simultaneous existence of these wave modes 

gives rise to the Rayleigh wave.    

  

Figure 5:  Left) Diagram of a phase-shifted Sv reflection and an evanescent critically refracted P-wave induced from 

an incident postcritical reflected Sv wave. Large arrows depict particle motion, small arrows and 

perpendicular lines give plane-wave propagation direction. Right) The interference of the evanescent 

P-wave and SV-particle motion at the free surface produce Rayleigh waves.   

Using the equations after Stein and Wysession (2003), the Rayleigh-wave motion for a 

Poisson solid halfspace may be modeled (Figure 6). As the waves are coupled to the air-earth 

boundary, investigation depth is a function of frequency (wavelength) and attenuation. At roughly 

one fifth of a wavelength, the motion becomes purely vertical. Below this, the motion converts to a 

prograde-elliptical motion as the attenuation vector changes sign. 
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Figure 6:  Left) Displacement components shown as a  

 function of period for one point in the sub- 

 surface. Right) Component displacements  

 as a function of depth. 

 

Assuming a media with distinct velocity layering, dispersion results as the various 

frequencies of Rayleigh waves travel within different velocity horizons of the subsurface. As seen 

on shot gathers, the variable phase velocities of individual wavelengths result in surface-wave 

dispersion (Figure 7). Through domain transforms, phase velocity may be extracted from standard 

shot gathers to produce the overtone image (Figure 8). Curvilinear maxima are most usually 

studied for the apparent fundamental-mode Rayleigh-wave curve (Socco et al., 2010). As 

discussed in later chapters, the compressional-wave velocity (Vp) component of the Rayleigh 

wave has a relatively small effect on the Rayleigh-wave phase velocity when compared to the Vs 
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component. This dominant character allows us to obtain a Vs model, through deterministic 

inversion, given a picked dispersion curve.  

The proper identification of the fundamental modal-curve, and its separation from 

harmonic higher modes, is of particular interest. Resolution of the overtone image is a result of 

both transformation technique and survey parameterization (Park et al., 1998). As a dispersion 

curve is generated over a selected range of geophones, the dispersion curve can be seen as a 

laterally averaged measure of the velocity structure. Horizontal model-resolution is therefore a 

function of the spread length, with longer lengths resulting in increased averaging. While longer 

spreads may limit final lateral resolution, research shows that higher overtone resolution and the 

separation of harmonic modes are achieved with longer spreads (Ivanov et al., 2008; Xu et al., 

2006; Dal Moro et al., 2003). Some sites may require a reduction in Vs-model resolution to 

guarantee an adequate quality threshold and overall clarity of the dispersion curve/image. In the 

presence of HM excitation, the trade-off between overtone image and model resolution is critical. 

Considering this, optimal dispersion curve generation will give the greatest resolution over the 

largest range of offset, survey parameters, and geologic setting. Appendix II reiterates the 

variables and equations listed in the following sections.       
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Figure 7:  Reference shot gather from the Yuma site with Rayleigh-wave dispersion highlighted. 

 

Figure 8:  Reference dispersion curve from the Yuma site.  
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2.1. Imaging Methods 

2.1.1. f-k 

The f-k method uses Fourier analysis to apply a 2D transformation from the x-t to the kx-ω 

domain (eq. 1-2).   

                             

 
       ∫              (1) 

 
        ∫           

    (2) 

The first step is to apply the Fourier transform in time (t) to result in angular frequency (ω) 

vs. offset (x). The next step involves a Fourier transform in the spatial domain (offset), which 

results in spatial wavenumber (kx). The phase velocity is then interpreted from the relation of 

frequency divided by wavenumber. This method is clear and straightforward; however, it lacks 

resolution of phase velocity, and, as such, has limitations in distinguishing higher modes. In 

general, the method is more suited to SASW and passive methods that deal with non-linear arrays 

that often require more processing than common MASW surveys (Socco et al., 2010). Other issues 

of this method are the dense spatial sampling required to prevent spatial aliasing and the need for 

long receiver arrays for proper wavenumber resolution (Foti et al., 2002). 
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2.1.2. p-τ 

McMechan and Yedlin (1981) first proposed the slant-stack, or slowness-tau (p-τ) method 

(eq. 3-5).   

                                    [          ] (3) 

                    
    ∫                (4) 

      
    ∫     

          (5) 

Here, data are first coordinately transformed with a linear move-out (t→τ), whose 

application transforms the time axis (t) by a specific slowness (  ), the inverse of velocity (v)  

(eq. 3). Amplitudes are then stacked across offset (x) (eq. 4); the process is repeated for a range of 

phase velocities that are concurrent with the site-specific Rayleigh-wave dispersion. In relation to 

the p-τ transform, reflection hyperbolas map onto ellipses, and linear events map onto points. In a 

layered earth, the dispersion of surface waves will result in a series of points in the p-τ domain. 

Transformed to the frequency domain (eq. 5), the moving maxima along frequency may be 

interpreted as the dispersion curve (McMechan and Yedlin, 1981). The sensitivity of this method 

is largely a function of the step-size used for ω,  , and x (Park et al., 1999). Where p, f, and their 

step value are arbitrary and set by the user, the geophone spacing is a survey parameter that may 

affect the quality of the dispersion curve. Figure 9 shows a graphical representation of the 

transform. 
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Figure 9:   Graphical representation of the p-τ method, with the data transformed from the offset-time domain to the 

slowness vs. time domain (Yilmaz, 2001) 

2.1.3. Phase Shift 

The phase shift method was pioneered at the KGS, mainly through the work of Choon B. 

Park. The technique can be thought of as a particular implementation of the p-τ method (eq. 6-9) 

(Park et al., 1998).  

        ∫             
(6) 

                     (7) 

                                    (8) 

        ∫    [
      

|      |
]    (9) 

  ∫         [
      

|      |
]     

The ( - ) data are first transformed to the frequency domain (eq. 6). At this point, the wave 

field may be thought of as a two-spectrum system of amplitude and phase (eq. 7). This leads to 

equation 8, where the phase spectrum is expressed as a function of Rayleigh-wave phase velocity 

(  ), or the associated wavenumber (  ). Next, an operation reminiscent of a slant-stack is applied 

across offset normalized amplitudes, at a particular frequency, and assuming a particular 

Rayleigh-wave velocity that corresponds to a phase-shift across offset ( ) (eq. 9). The dispersion 
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curve is a result of the phase-correction values measured across moving, maximum-stacked 

amplitudes of       , which are transformed to         through the relation of       . 

Due to the separation of frequencies at the initial transformation, this method is considered more 

accurate than the standard p-τ method, which loses resolution along the frequency axis.  

Where the p-τ method may suffer from loss of resolution with HM interference or 

superpositioning, the phase method offers “perfect resolution” (Park et al., 1998). As Park et al. 

(1998) mentions, the algorithm still retains the p-τ limitation of phase velocity resolution, but has 

proven effective across a multitude of applications. Additionally, the normalization factor may 

help to reduce spectral leakage and HM interference.    

2.2. Implications with Application 

Of those studied, the phase-shift method gives the highest resolution dispersion-curve 

images. The f-k method lacks resolution and the ability to accurately separate harmonic modes; 

also, it is not dependable when surveys are under-sampled in time or space. While the p-τ method 

makes improvements over f-k analysis, it may lack resolution in phase velocity at specific 

frequencies. Dal Moro et al. (2003) studied the effect of a short spread length on each method 

(Figure 10), and demonstrated the effects of normalization and bandpass filtering on the overtone 

image (Figure 11). A short spread resulted in spatial aliasing of the f-k method, while filtering and 

normalization had a lesser effect on the phase shift method as compared to the conventional p-τ 

method. Dal Moro et al. (2003) concluded that the phase shift method proved most insensitive to 

survey design and processing. As the most robust across broad survey configurations and 

processing routines, the phase-shift method is the first choice in dispersion analysis. It should be 

noted that other techniques exist that were not studied here (e.g., SPAC)  
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Figure 10:  A four-trace transform using (left to right): f-k method, p- τ method, and phase-shift method (after Dal 

Moro et al., 2003). 

 

 

 1 2 3

 
 

Figure 11:  Results after Dal Moro et al. (2003) with a sequence of dispersion curves calculated from 24-geophone 

gathers with the a) f-k method, b) p-τ method, and c) phase shift method. Column 1 is with a (0-2-20-30) 

bandpass filter, column 2 is the same as column 1 with a normalization factor, and column 3 is with a 

(0-3-50-70) bandpass filter. 
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3. Inversion Theory 

Sheriff (2002) describes inversion as “[d]eriving from field data a model to describe the 

subsurface that is consistent with the data.” The previous section described how Fourier analysis 

was used to assess a site’s dispersion characteristics and develop a relationship between frequency 

and phase velocity. Forward modeling is then implemented, which can be thought of as the 

opposite of inversion, to transform a layered-earth velocity model (Vs, Vp, density (ρ), and 

thickness (h)) into a dispersion curve. This forward problem is the basis for the inversion and ties 

the model parameters, specifically Vs, to the phase-velocity data through wave theory. Inverse 

methods minimize the difference between this earth-model generated curve and that of the 

experimental data through an update of the model-space parameters (Vs). This process is looped to 

iteratively minimize the data mismatch until an acceptable model converges to site characteristics. 

The following sections discuss, in more detail, the methods of the MASW inversion scheme. As a 

clerical note, matrices are indicated in bold and variables in italic.    

3.1. Forward Modeling  

The equations of motion for a Rayleigh wave have long been known. Texts such as Ewing, 

Jardetzky, and Press (1957) have fundamental equations, and their derivations, for the motion of 

the Rayleigh wave. The advancement of computers led to the development of software code that 

allowed for the modeling of such wave processes. Early work by Thomson (1950) and Haskell 

(1953) centered on the formulation of matrix expressions of the elastodynamic equations and their 

implementation as code, known as the ‘transfer matrix method’ (propagator matrix). The transfer 

matrix method is based on the assumption of a layered earth model. Limiting factors, such as 

numerical overflow and precision limits hampered the initial implementation of Raleigh-wave 

motion numerical modeling. Today, the transfer matrix numerical solutions to wave-equation 



22 

motion are widely utilized.  

Schwab and Knopoff (1972) developed a particular code that reduced the aforementioned 

computational problems and resulted in faster forward-calculation of the Rayleigh-wave 

dispersion curve. Particularly, they implemented precision-loss normalization and a 

layer-reduction scheme into their formulation of the wave equations. This code is used for the 

forward modeling of surface-wave dispersion curves in the SurfSeis program. The objective 

function, in its linear, implicit form is:  

                                                         (10) 

where     is the frequency;     is the Rayleigh-wave phase velocity at frequency    ;    

               
  is the S-wave velocity vector, where vsi is the shear-wave velocity of the ith layer 

and n is the number of layers;                   
  is the compressional P-wave velocity 

vector, with     being the P-wave velocity of the ith layer;     
 
  

 
    

 
   is the density 

vector, with  
 
 being the density of the ith layer; and                 

  is the thickness 

vector, with    being the thickness of the ith layer (Xia et al. 1999). If given an input h, vs, vp, and 

ρ model, along with a range of frequencies (  ), one can calculate the Rayleigh-wave phase 

velocities (   ) from the roots of equation 10. The roots of equation 10 are found using the 

bisection method to find the phase velocities      (Press et al., 1992). This process involves 

bounding the equation about zero and continuously halving the interval distance, using subsequent 

end members for further calculation, until a certain amenable threshold is reached. Repeating this 

search for various frequencies, results in a set of dispersion points (        that together may be 

compared to the experimental curve for minimization.   
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3.2. Least-Squares Approach  

Xia et al. (1999) wrote the code that SurfSeis uses to invert dispersion curves for Vs; his 

work forms much of the following computational explanation (Xia et al., 2008). The inversion 

follows the basic theory of a least-squares approach. The method applies a weighted, damped 

least-squares method to reduce the error between the calculated forward-model and the observed 

data. In particular, the Levenberg-Marquardt (LM) method is used to hamper non-singularity and 

to ensure convergence of the model. The technique also applies singular value decomposition 

(SVD) in order to limit computing costs and allow fluid variability of the damping factor with 

convergence. 

The non-linear problem is linearized through Taylor series expansion, by looking at small 

perturbations of the system, and setting up a finite-difference numerical calculation (Lourakis, 

2005; Xia et al., 1999). This leads to the application of equation 11: 

             (11) 

where              and is the difference between the observed data ( ) and the forward 

model response (  ) to the initial S-wave velocity estimates (  ), which is minimized;    is the 

stepwise adjustment of the initial estimation;   is the Jacobian matrix. The elements of the 

Jacobian matrix are the first-order partial derivatives of    with respect to S-wave velocities (   ) 

(eq. 12).  

  
    

       

       
 |
    

 (12) 

The Jacobian is calculated using Ridders’ method of polynomial extrapolation and 

finite-difference evaluation employing Neville’s algorithm (Press et al., 1992; Xia et al., 1999). 

Neville’s algorithm extrapolates numerical finite-difference derivatives and, at each step size, a 

higher-order extrapolation is checked against those of lower-order for optimization (Press et al., 
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1992). 

For a damped, weighted least-squares inversion, the objective function becomes: 

       ‖      ‖   ‖      ‖    ‖  ‖ 
  (13) 

where ‖ ‖  is the L2-norm length of a vector,   is the damping factor, and   is a weighting 

matrix. The weighting matrix is a function of changes in Rayleigh-wave phase velocities with 

respect to frequency change, as denoted by the Jacobian; this is a representation of the resolution of 

such frequencies and therefore the basis for such weighting (Xia et al., 1999). Transforming the 

weighting matrix to:  

         (14) 

where   is a diagonal matrix, the objective function may be represented in terms of the LM 

method as: 

                    (15) 

where     ,     , and   is the identity matrix (Xia et al., 1999; Zhdanov, 2002). Using 

singular value decomposition for the model space  , the objective function may be minimized 

while adjusting the damping factor without recalculating the inverse matrix in equation 15:  

      [             ]             [ ]    (16) 

where matrix   is decomposed as       ; where   [          ] is composed of the 

eigenvectors that span    , where   [          ] is the matrix of eigenvectors that span 

   , and where   is the diagonal monotonically increasing matrix of the square roots of the 

eigenvalues of     and     (Gavin, 2011; Pujol, 2007).  

The LM method allows for a combination of steepest decent and Gaussian-Newton 

convergence by changing the damping factor from large (α→∞) to small (α→0) values, 

respectively. The convergence starts with high values of α using steepest decent to constrain 

movement, and then reduces α to converge quickly upon a solution in a Gaussian-Newton sense. 
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This implementation minimizes the objective function while remaining robust.      

3.3. Global or Stochastic Approach 

Other inversion approaches use stochastic inversion to conduct global searches of the 

solution space (Socco and Boiero, 2008; Ryden and Park, 2006; Wathelet et al., 2004). These 

schemes are generally used to reduce the risk associated with local minima and the non-uniqueness 

problem of the non-linear Rayleigh-wave problem. The computational cost and the subjective 

control on the search range, step sequence, regularization, and misfit criteria make them 

impractical for many applications and limit their robustness. These approaches may also lack any 

greater rationalization of the layer-model when using static layering and/or underparameterizing 

the problem. Socco and Boiero (2008) developed an optimized Monte Carlo scheme that was 

capable of limiting the effects of inversion controls with the ability to search outside the original 

search space (velocity) and allowing varying layer thickness. When using global-search methods, 

choosing a proper layer-model is compounded with the exponential rise in computational costs 

seen with increasing stratification. Stochastic inversion may better define the minimum(s) within 

the search range, but they do not intrinsically protect against global minimization of an incorrect or 

underparameterized model space.  

In preliminary investigations, the ability to quickly test and compare differing 

parameter-sets, particularly the number of layers, across an entire survey area is essential. 

Global-search methods are frequently commended for their production of multiple models that 

converge to site characteristics. The multiplicity is seen as a greater sampling and more complete 

mapping of the solution space. The issue with such reasoning is when, in the end, a singular model 

must be decided upon. If such a sample formulates the final interpretation, few applications allow 

such variance outside of error estimation. Furthermore, relying only on error minimization may 
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lead to solution variability unrelated to site characteristics. The decoupling of parameterization 

from fitness estimations (whether quantitative or qualitative) makes relative noise thresholds, 

uncertainty, and processing methods more critical. As the solution complexity and variance 

increases within global searches, some metric outside of minimizing RMS error is needed.  

3.4. Fundamental vs. Multi-Mode Complexity 

The standard approach of surface wave methods is to solve the inverse problem through the 

minimization of the fundamental-mode curve (Socco et al., 2010; Xia et al., 1999). The 

forward-model waveform equations of motion are solved specifically for the fundamental-mode 

Rayleigh wave. Research later proved the usefulness of including HM information during the 

inversion (Luo et al., 2007; Maraschini et al., 2010; Xia et al., 2003). Higher-modes were shown to 

increase the depth of investigation and the model resolution of the inverse problem, while 

stabilizing the inversion by limiting the solution space. This improvement comes at the cost of a 

more-difficult interpretation. 

Authors have shown that fundamental-mode inversion may be imperfect due to mode 

superposition and HM contamination. The effects of higher modes on dispersion characteristics, 

particularly the idea of an apparent curve, must be considered (O’Neill and Matsuoka, 2005; 

Tokimatsu et al., 1992). Due to the sampling of the Rayleigh-wave, which is a function of both 

acquisition parameters and dispersion imaging, individual modes may be masked, hidden, or 

skewed. This can create an apparent curve that may jump from mode to mode along the frequency 

axis rather than following the true fundamental-mode trend. This brings into question not only the 

phase-velocity picks, but also their mode assignment. However, muting in the x-t domain has been 

shown to reduce HM interference at high frequencies (Ivanov et al., 2005a). Moreover, some 

methods implicitly solve for an apparent curve which negates the need for mode assignment (Lai 
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and Rix, 1998). This strategy, however, only guards against misinterpreted modes and provides no 

constraint for the inherent effects of the transformation. An ill-posed acquisition scheme could 

control the dispersion character and result in inaccurate results.  

To confidently incorporate HM data into the inversion scheme, the processor must 

accurately identify mode-number/HM superposition and empirically test the effects of acquisition 

on dispersion-curve characteristics. An initial processing scheme, suggested by Ivanov et al. 

(2008), is to vary the source offset and the spread length to gain an understanding of the variance 

of the phase-velocity curve found using different parameter sets. General practice assumes that a 

long initial spread gives the highest-resolution, most-accurate curve (especially at low 

frequencies). Departures from this spread length are made to increase the lateral resolution of the 

survey, but must be assessed for inaccurate sampling of the Rayleigh-wave. Also, as the method 

averages the wave field over the entire spread length, there is no inherent way to separate local 

heterogeneity from sampling effects.  

3.5. Model Space and Parameterization 

Xia et al. (1999) analyzed the Jacobian matrix and the effect of                on the 

phase velocity solution for a given synthetic model. They found that the ratio of percentage change 

in phase velocity to percentage change for each variable to be 1.56, 0.64, 0.4, and 0.13, 

respectively. This comparison shows empirical evidence of the sensitivity of Rayleigh-wave phase 

velocity to Vs structure. It also restates the importance of the layer model, specifically layer 

thickness ( ), to Vs inversion. Considered small, and within known values for most sites, the 

divergences seen with Vp and density variation were deemed minimal. For sites where such values 

are not known to 25%, as suggested in Xia et al. (1999), such generalizations may not be 

acceptable. Ivanov et al. (2009) demonstrated that Vs inversion may not always be insensitive to 
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density; the research revealed that the density gradient, rather than a bulk shift, is important to 

achieve accurate results for some sites. Others have studied the significance of the initial layer 

model (layer: number, velocity, thickness; and depth to halfspace) on inversion results (Casto et 

al., 2009; Renalier et al., 2010; Wathelet et al., 2004). For all considered, and whenever available, 

a priori information should be used to constrain the inversion and improve the method’s 

reliability.  

The 1D-inversion scheme results in interval velocities that correspond to a layer model for 

each dispersion-curve midpoint. This layer model may be entirely generalized to best fit the initial 

dispersion properties of a site, or be more constrained through evaluation of a priori information. 

The initial Vs layer model may be guided by the asymptotic values of the apparent fundamental 

dispersion curve, which are approximately 90% of the Vs of the first and halfspace layers. Serving 

as an initial smooth case, a less parameterized, fewer-layer (<10) model may converge to the 

experimental dispersion curve, while limiting the instability of the inversion. Departures from this 

initial model may be affected by borehole data, or other geophysical methods, that dictate a 

particular stratigraphic sequence. With MASW, the lack of high-frequency content may limit the 

confidence of the uppermost velocity interval(s). Similarly, the further stratification of basal layers 

may destabilize the inversion as deeper structures are sampled by longer wavelengths which smear 

the velocity field. The adoption of a more parameterized layer model, especially within regions 

that have limited or no dispersion-curve data may result in a profile not representative of the true 

Vs structure.     

A proper balance between model smoothness, inversion stability, and vertical resolution is 

not always intuitive. To limit such ambiguity, the incorporation of refraction tomography is 

suggested as a means to constrain the layer model of MASW. This allows a more discretized 
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model whose layers may not have direct frequency to depth constraint using the general 

half-wavelength association of the dispersion curve to depth (Song et al., 1989), yet are upheld by 

tomographic inversion results. 

3.5.1. Refraction Tomography and Joint Analysis 

The inverse refraction traveltime problem (IRTP) poses several dilemmas due to 

nonuniqueness. Ivanov et al. (2006b) discussed the continuous multi-dimensional valley that 

defines the topology of the IRTP solution space. The occurrence of local minima and 

hidden/low-velocity layers make the IRTP difficult to properly invert, and leads to an infinite 

number of possible solutions that reasonably fit the traveltime data (Ackermann et al., 1986; 

Healy, 1963). The parameterization of the geologic model, from which the inverse problem 

initially precedes, is imperative as it will drive the convergence of a deterministic inversion 

scheme (Ivanov et al., 2006b; Palmer, 2010). Ivanov et al. (2006b) suggested the use of a reference 

model, derived from MASW, to properly constrain the convergence of Vp-refraction tomography 

(i.e., the joint analysis of refractions with surface waves (JARS)). The inclusion of a priori 

information is needed to accurately account for IRTP nonuniqueness.   

Authors have documented the benefit of incorporating refraction and surface-wave 

methods (SWM) data into parallel processing routines. The similar acquisition techniques of the 

two approaches produce dual-purpose and cost-effective surveys. Near-surface refraction studies 

have been combined with SWM to reach more stable and constrained Vs inversions. Dal Moro 

(2008) used a Multi-Objective Evolutionary Algorithm (MOEA) to jointly invert P-wave 

refraction and Rayleigh-wave dispersion curves with a priori fixed Poisson’s ratios. Foti et al. 

(2003) used a constrained inversion scheme that used P-wave refraction results to parameterize the 

inverse Vs problem. Schuler (2008) used the method after Dal Moro to separately and jointly invert 
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Rayleigh and Love waves with P- and S-wave refractions. Piatti et al. (2012) discussed a 

least-squares joint inversion of P-wave first arrivals and Rayleigh-wave dispersion that reached 

greater accuracy for low-velocity layers (LVL) than Dal Moro for synthetic data. Joint inversions, 

although more statistically precise, necessitate rigorous computational development essential to 

constraining the added degrees of freedom. The regularization and subjective a priori information 

needed to properly formulate joint inversion schemes act as fundamental limitations on their 

robustness and ease of use.  

Where several papers discuss constrained layer-model inversion, they often reduce 

near-surface stratigraphy to a linearly smooth or several-layer problem. This is often a function of 

the limitations of common refraction theory (e.g., increasing velocity with depth), stochastic 

inversion’s computational costs, or a belief in the parsimony of Occam’s razor. While this may 

adequately formulate many analysis functions, higher-resolution models are often needed for 

various applications (e.g., modeling). The degree of smoothing may be compounded when SWM 

seek to delineate increasingly deeper strata with the inclusion of passive data (Di Giulio et al., 

2012; Louie, 2001). Increasing the depth to the half space, while keeping the layer 

parameterization constant, may result in an over-simplification of the ultra near surface. 

Most applications interpolate many 1D-profiles into a 2D-model space. In contrast, many 

research groups, especially those using stochastic approaches, implicitly use a single 1D profile to 

confer their conclusions. Although this is a correct representation of the initial results, few 

real-world applications rely on 1D-estimations, but rather seek to expand a site’s characterization 

to 2D. Socco et al. (2009) and then Bergamo et al. (2012) used a laterally constrained inversion 

that mitigates the decoupling of 2D-imaging with many 1D-profiles. Their inversion routine 

simultaneously solves a set of 1D dispersion curves, constraining 2D-lateral variation and 
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improving structural imaging. They also displayed results in a 2D-fashion using non-interpolated 

sets of 1D-profiles. When incorporating tomographic methods, which intrinsically use 2D-grids, a 

direct SWM comparison would benefit from the use of interpolated imaging. 
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4. Data Acquisition 

The YPG JTTR site was developed to advance the research of current tunnel-detection 

methods. To provide adequate control on the experimental testing of seismic tunnel detection, a 

baseline survey was conducted before the emplacement of a tunnel at the site. Data acquisition was 

approached with the intent of diversification, giving the broadest possible data set for future 

comparison. A multitude of seismic source and receiver methodologies were used to garner a 

well-balanced dataset for comparison study (see Table 1). Different sources imparted varying 

amounts of energy with different frequency signatures and dominant wave-mode propagation. 

Several natural frequency geophones were used to optimize the sampling of certain wave modes 

(surfaces waves, reflection, diffraction, shear vs. compressional, etc.). The KGS also procured a 

geologic investigation through drilling and well-log analysis. Due to the dry and unconsolidated 

nature of the predominantly fine-grained substrate, sonic drilling methods were used along with an 

AquaLock sampler to optimize sample retrieval (Figure 12). 

 

Figure 12: AquaLock geologic sampling system at work on the YPG site. 
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Although six lines were acquired, this thesis focuses on the two lines that had the full 

complement of source and receiver pairs, line 2 and line 3 (see Figure 1). A compressional-wave 

survey was conducted for MASW and refraction analysis, while several shear-wave surveys were 

acquired to garner a suite of Vs tomograms. The P-wave survey used a bungee-assisted 

drop-weight source (Figure 13) in conjunction with a fixed spread of 4.5 Hz vertical geophones 

spaced at 1.2 m, with three impacts at each station. The surveys used the Geometrics distributed 

Geode system, with line tap unit (LTU) implementation, and a custom KGS ‘Gator’ acquisition 

vehicle.   

 

 

Figure 13: Photo of the weight drop used for P-wave refraction and MASW processing with the Trigo Peaks in the 

background. 
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For comparison, shear-wave surveys were designed with concurrent stations parallel and 

proximal to the MASW line. Horizontal 14 Hz geophones’ direction of sensitivity were orientated 

perpendicular to the line with the source energy vector similarly orientated for SH-wave recording; 

an in-line sensor and energy source were used for the SV-wave mode (Figure 14). Hammer blows 

were struck three times in both directions every 24 stations using a shear block; vertically stacking 

both polarizations at each station sought to enhance S-wave energy and destructively counteract 

spurious P-wave energy (Helbig, 1986).  

 

Figure 14:  Shear-block setup for shear-wave tomography. The opposite direction of initial motion is not shown in the 

diagram. This is a simplification, both SV and SH sources will generate both shear-wave modes; however 

one is dominant.  
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Similarly, both SH- and SV-modes were recorded using an Industrial Vehicles International 

Minivib and a waffle plate; however, the density of source locations was increased to every 2 

stations (Figure 15).  

 

 

 

 

Figure 15:  Picture of the IVI Minivib system used at YPG with three different orientations of the hydraulic mass:  

top left) SH-; bottom left) SV-; right) P-wave. Note the waffle plate used for shear generation in the lower 

left image and that the survey line is parallel to the long axis of the Minivib. 

The vibroseis data were given least confidence in light of the common issues found in 

interpreting correlated first-arrivals. They are included to add multiplicity, strengthen the 

confidence of the shear-wave refraction results and, thereby, the MASW Vs models. S-wave 

hammer data and polarization comparisons helped to determine zero-phase first-arrival signatures.    
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Different modes of the seismic wavefield may illuminate the subsurface distinctly. As 

Rayleigh waves intrinsically rely on the interference of SV- and P-waves, there is likely to be some 

disagreement between the MASW calculated shear wave velocity field and SH–tomography 

velocity profiles. The degree to which anisotropy causes a disassociation of the Vs profiles is not 

directly measured here and was assumed to be negligible. The use of separate wave-mode 

propagation, along with two geophysical methods, should allow for independent assessment of site 

stratigraphy and velocity. As it relates to refining the MASW layer model, the velocity structure 

calculated from the refraction survey, rather than absolute values, is of primary interest. 
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5. Processing Methods 

The various processes listed above: muting, offset selection, dispersion interpretation, 

inversion convergence and instability, refraction regularization, nonuniqueness and starting/ 

reference models, must be formed into one cohesive routine (Figure 16). Each round of processing 

conveys additional information which guides dispersion interpretation, layer-model refinement, 

and complimentary inversion of refraction and surface-wave methods.   

The integration of MASW and refraction tomography incorporates layer-model refinement 

and inversion constraint (reference model), while producing multiplicity for Vs-model 

comparison. Where classical MASW assumes stratigraphic sequences based on regional geology 

or default layer schemes (Renalier et al., 2010; Xia et al., 1999), a constrained-parameterization 

approach uses independent measurements and data driven methods to constrain the layer-model 

inversion scheme. Refraction methods refine the reference velocity model (i.e. preliminary 

MASW) using non-Rayleigh wave seismic data (i.e., body waves) and an unrelated inversion 

scheme using the JARS methodology (Ivanov et al., 2006b). The resulting tomograms are 

interpreted for structural patterns to define a more-stratified parameterization of the 

Rayleigh-wave inversion, which compliments body-wave information (optimized constrained- 

parameterization MASW). Although there is some degree of dependence built into this system 

based on the use of reference models, independent data sources ultimately drive the convergence. 

The constrained-parameterization MASW routine progresses from a smooth, less-stratified 

solution to a constrained, higher-resolution Vs model, with refraction-tomography enhancement.   
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Raw Data 

 

Geometry and Sorting 

 

 Vertical Stacking (Shot Gathers)     Or       No Stacking* 

 

Offset Selection 

x-t Domain Muting  

 

Dispersion Curve Imaging 

Transform Selection 

Vertical Stacking (Overtone Images)* 

 

Display 

Color Scale 

Visualization Medium 

Normalization and Digital Gains 

 

Dispersion Curve Interpretation 

  Offset-dependent Effects, Transform Artifacts, Near/Far Field Effect  

Dispersion Coherency and Bandwidth 

Fundamental Mode              Curve Picking             Multi-Mode   

 

Inversion / Layer Model (h) 

Layer Model Constraint (Depth Conversion, Number of Layers, etc.) 

Vp & Density Constraint 

 

Vs Profile & Interpretation 

 

Vs-JARS Refraction Tomography Refinement (h) 

JARS Refraction Tomography Refinement (h & Vp) 

Synthetic Modeling Refinement (h & Vp) 

 

Figure 16:  Generalized workflow for a constrained-parameterization MASW approach. Preliminary, first-run 

MASW allows a Vs-JARS/JARS application, the results of which may be used to update the layer model 

of the next generation MASW inversion. Later sections will discuss the addition of synthetic modeling for 

additional constraint on dispersion interpretation and layer-model refinement. Arrows depict updates with 

each additive constraint or information.  
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Proprietary software, developed at the KGS, was used for all processing steps. 

KGSSeisUtilities was used for initial geometry assignment, sorting, and first arrival picking. 

SurfSeis was used for overtone analysis, dispersion-curve picking, and Vs inversion. TomoSeis 

was used to invert the first-arrival data for velocity models. In house modeling software (FFDM) 

was used to produce synthetic seismograms and layer models (Zeng et al., 2011). Golden 

Software’s® Surfer 8® and FFDMGUI were used as a gridding and display tool. 

All dispersion curves were picked using a 47 inch LCD television (TV). The 

high-definition, high-resolution screens allowed an unparalleled picking environment (Figure 17). 

A simple comparison between manual picks made on the TV and a 19 inch laptop showed clear 

separation in point density, curve smoothness, and curvilinear trend. Quite simply, this is a product  

 

Figure 17: Four 47 inch television setup used to pick dispersion curves. 
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of pixilation, or discretization, and an ability to increase point coverage and better define the 

dispersion curve over an arc length. Furthermore, the relative change from one pixel to another is 

reduced allowing for greater picking control and reduced sensitivity to minor adjustments in the 

curve. This scheme is somewhat irrational for many applications; however, the ability to more 

confidently follow trends across noise/amplitude irregularities, HM contamination, and within the 

phase-velocity resolution band is worth noting. 

5.1. Preliminary MASW 

The first round of testing resolves an initial, classical MASW study of the site’s velocity 

structure using conservative layering and inversion parameters. These parameters typically 

include a smooth, relatively few layer (i.e., <10 layers; Xia et al., 1999) model to restrict inversion 

instability and improve convergence. Of great importance is the offset selection that controls the 

sampling of the Rayleigh wave and eventual overtone image. Dispersion interpretations are guided 

by analysis of offset-range sampling effects, x-t domain muting, and lateral changes in dispersion 

character. Moreover, curve analysis should dictate a relative depth of investigation and layer 

structure assuming a depth conversion ratio (Song et al., 1989). Additional information from well 

logs, etc. may be used to constrain the layer model if available; density values are used here. The 

preliminary, smooth MASW solution will guide further refinement using refraction methods.      

5.1.1. Offset Selection 

Initial processing focused on searching the geophone array for an appropriate parameter set 

(offset range in the x-t domain) that maximized lateral resolution, adequately sampled low 

frequencies, and reduced transformation effects in the frequency vs. phase velocity domain. A 

minimum offset of 1.2 m and a maximum offset of 78 m was determined to be optimal for the site. 
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This correlates to a 65 geophone spread with a 1.2 meter source offset. Common rules of thumb 

would dictate this source offset as detrimental to long wavelength, low frequency sampling of 

Rayleigh waves due to the near-field effect (Park et al., 1999; Xu et al., 2006). At close offsets, 

swept-frequency shot gathers would contain erratic linear inconsistencies at low frequencies that 

still behave non-linearly.  

Rayleigh waves can only be treated as plane waves past a certain offset dependent on 

velocity structure and distance from the source (Richart et al., 1970). However, past studies at 

locations near the site have suggested the use of small source offsets are necessary for proper 

sampling of the Rayleigh wave (Ivanov et al., 2008). Through parameter analysis, the near-field 

disruption was deemed limited and marginal in comparison to the benefit of modal-separation, an 

expansion of bandwidth to higher frequencies, and overall dispersion coherency across frequency. 

The relatively longer length of the line (78m) acts to prevent the near-field effect through statistical 

averaging across offset. In comparison, longer offsets and shorter spreads lead to the degradation 

of the fundamental mode and HM interference (see Chapter 8). Without additional data control, 

there wasn’t any definitive way to prove offset-specific changes in the overtone images (i.e., 

near/far-field effects, HM interference) were not related to velocity heterogeneity (lateral and 

vertical) rather than spatial sampling within the x-t domain.  

5.1.2. Higher-Mode Contamination & Muting  

Understanding HM contamination and using muting in the x-t domain to interpret its 

effects are an integral part of dispersion interpretation during offset selection and curve picking. In 

relation to section 3.4, higher-modes may be a valuable addition to Rayleigh-wave inversion (Luo 

et al., 2007; O’Neill and Matsuoka, 2005; Xia et al., 2003). However, in a different context, they 

may be equally adverse to the method. Of particular concern is HM contamination (Boore, 1969). 
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HM contamination encompasses all mode-phenomena that restrict the signature or strength of the 

fundamental-mode. This usually manifests as a strong-amplitude HM trend that starts above a 

certain ‘cut-off frequency’. Classical texts use ‘cut-off frequency’ as the theoretical lowest 

observable frequency of an n
th

 mode. At these transitions, the fundamental-mode amplitude and/or 

coherency across frequency is denigrated as the higher-mode(s) is excited.    

As the optimal spread was rolled down the line, there were changes in HM excitation, and 

strength (amplitude) of the fundamental mode (Figure 18). Although there is sporadic loss of 

amplitude, the dispersive signature is interpretable to 80 Hz on many overtone images. The 

fundamental-mode curve reaches an asymptotic value at approximately 200 m/s, which assuming 

a 90% correlation, estimates a first-layer velocity of 222 m/s.  

 

 
Figure 18:  Dispersion curve showing good signal to 80 Hz with variable HM contamination above 30 Hz. Squares 

highlight several instances of the competing signal between the fundamental and the higher-mode. The 

bold black line highlights a questionable trajectory for the fundamental. 

 The dispersion-curve’s high-frequency tails oscillated between two interpretable pathways 

across all lines (e.g., Figure 18). As many curves did not have high-amplitude high frequencies 

(>40 Hz), there was a need to assess whether the dispersion characteristics were related to 

site-wide geology or an anomalous lateral change in velocity.  
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 In the presence of HM contamination, Ivanov et al. (2005a) suggested muting HM 

signatures on x-t domain gathers (Figure 19) to increase the signal strength, bandwidth, and 

interpretability of the fundamental mode (Figure 20). Linear muting increased the interpretable 

bandwidth of the fundamental-mode curve toward higher frequencies, but also adversely affected 

the low-frequency trend. Comparison between the muted and unmuted overtone image brings 

confidence that the previous record’s curve properties (i.e., Figure 18) were not a result of a lateral 

change in velocity. 

 

Figure 19: Left) Unmuted shot gather. Right) Muted shot gather.  
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Figure 20: Upper) Unmuted record with strong higher-mode contamination past 30 Hz. Lower) Muted record above 

an approximate phase velocity of 450 m/s with increased bandwidth to 80 Hz. 

Instead, it is related to a general velocity trend across the line with relative changes in the 

excitation of higher-modes resulting in variable cut-off frequencies. It is also noted that the 

fundamental frequencies below 30 Hz become less reliable as certain frequency data traveling near 

the velocities of the higher-frequency higher modes are partially muted. This agrees with the 

original research conducted by Ivanov et al. (2005a) where a disruption of low-frequency data was 

noticed with high-frequency gains. Thus, the muting technique acts as a two-edged sword in 
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extending higher-frequency data, while constricting the lower.  

Although muting allows for a more aggressive picking scheme beyond strong fundamental 

signatures, inverting a line using this approach would create processing challenges. To limit 

uncertainty, the user would need to combine the low-frequency data from unmuted gathers, while 

appending higher-frequency picks from the muted record (Ivanov et al., 2005a). Also, there is 

some disagreement between the records for the intermediate-frequency phase velocities, so the 

cross-over frequency may need to be fluctuated with each midpoint. Muting was used 

intermittently across the line to constrain the dispersion-curve interpretations at high frequencies 

where HM contamination resulted in low amplitudes. This procedure ultimately ensured proper 

inversion, especially for the high frequencies of the ultra near surface, while limiting possible 

errors seen with low-frequency interference. 

An in-depth analysis of a site’s dispersion character is necessary to properly invert 

Rayleigh waves for Vs. Avoiding or restraining HM contamination with muting and an optimal 

offset range prevents erroneous inversion of curves that do not follow true fundamental signatures. 

Extending curves to reach asymptotic velocities ensure appropriate fundamental inversion of the 

uppermost stratigraphic layers. High-confidence picking routines lead to more accurate Vs 

estimations with layer models that converge to true velocity characteristics of a site. 

5.1.3. Layer Model and Inversion 

With an initial interpretation of dispersion character, the method continues to 

parameterization of the layer model and Vs inversion. Preliminary MASW sections applied 7-layer 

models to limit inversion instability and match assumptions of a homogeneous ‘sand box’. This 

conservative parameterization ensured fast convergence to measured curves and restricted 

instability. A Vp:Vs ratio of 1.87 (Poisson’s ratio of 0.3) was assumed to set initial Vp and 
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Poisson’s ratio values as required by the inversion. The arid climate and negligible rain-fall of the 

area, along with initial assessment of the refraction data, confirm minimal subsurface saturation. A 

depth conversion ratio of approximately 35 percent generated an initial model and established the 

depth to the halfspace.  

Wishing to incorporate accurate density values into processing, borehole logging was 

undertaken at all the wells drilled on site (Figure 21). However, as the AquaLock sampler system 

was used, the local substrate was subjected to water flooding. The sonic sampler works with water 

above the cutting shoe that acts to create a vacuum seal to extract samples. When retrieving a 

sample, some of this water is transferred to the sample, and some is transferred into the casing. 

This resulted in a water flood of the borehole with each extraction phase. As a detailed log of the 

drilling progress was not kept, specifically when each well was completed and how much water 

was ‘lost’ per well, the pore saturation at the time of the density logging cannot be estimated. 

Therefore, the density values may be skewed from the material properties of the site. As such, 

individual wells were not tied to proximal sections of the survey lines. Each well’s density data 

was smoothed along the depth axis using a 21-pt (0.6 m) moving average filter. These smoothed 

well values were then averaged at each depth increment to obtain a mean density profile for each 

line.  



47 

F
ig

u
re

 2
1

: 
W

el
l 

lo
g

 s
u

it
e 

fo
r 

w
el

l 
1

1
. 

L
o

g
s 

in
cl

u
d

e:
 t

em
p

er
at

u
re

, 
d

en
si

ty
, 
g

am
m

a,
 n

eu
tr

o
n

, 
an

d
 r

es
is

ti
v

it
y

/c
o

n
d

u
ct

iv
it

y
. 



48 

This treatment sought to limit the possibility of local water-saturation effects on the borehole 

density; however, it assumes that the elastic properties are relatively equivalent across the site and 

the stratigraphic layering is consistent with the negligible changes in surface elevation. 

Inversion was initially guided by a smooth convergence of the misfit function to a 

reasonable match between the calculated and picked curves. Stopping RMS error was somewhat 

inconsequential as solutions were manually stopped as convergence reached an asymptotic trend 

and a reasonable curve match. Careful attention guarded against large fluctuations of Vs values for 

individual layers that corresponded to small changes in curve character or RMS error. This 

procedure kept the inversion from converging to unrealistic models that conform to the non-unique 

topology of the misfit function. The inversion keeps the Poisson’s ratio constant while updating Vs 

values (and Vp assuming a Poisson’s ratio) with convergence. 

5.1.4. Preliminary MASW Results 

The above parameterization formulated an initial inversion scheme for the Yuma site. Due 

to the variability of the fundamental energy, the inversion results disregard the upper 3 m. 

Velocities values above this depth have limited or no frequency to phase-velocity data to constrain 

the inversion. Although the layer model takes this uppermost section into consideration, the lack of 

data constraint limits the confidence of these measurements and ultimately results in an averaging 

of the wave field beyond the intrinsic sampling of the Rayleigh-wave. This treatment ensures the 

results are representative of the data. This is especially important with the interpolation of 1D 

midpoints into 2D grids. The tomographic methods assume ‘thin rays’, which lose coverage as 

rays bend at velocity transitions. As initial constraints will work with refraction results that were 

limited to such depths, all models are shown to 12 m below the surface. Later sections will include 

MASW results that extend to deeper strata (see Chapter 8). To facilitate viewing, all models have 
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an approximate 4:1 vertical exaggeration; all profiles are shown from E-W (low-high station 

number). The 2D interpolated results are pictured below in (Figure 22).  

 

Figure 22:  Initial, few-layer MASW inversion of the YPG data. Note the lack of stratification and apparent smooth 

transition to 9 m. 

As expected, the low number of layers produces a statistically smoothed ‘average’ of the 

1D velocity estimate. Intrinsically, a smooth model creates layers that cover wider sections of the 

curve. Any fluctuations of the curve will be linearly approximated by a reduced number of layers, 

thereby restraining the possible Vs oscillation with iterative convergence. Moving away from a 

sparse layer model, care must be taken to adequately constrain increased stratification.         
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5.2. Vs-JARS Approach 

Next, the preliminary MASW Vs profile (Figure 22) is used as a reference model and refined with 

a complimentary refraction inversion using SH first-arrival tomography. This scheme allows body 

wave information to update a smooth-parameterized velocity function that constrains the 

nonunique refraction solution space. The model was re-gridded using Surfer, to obtain a 1.2 m by 

1.2 m cell size following the JARS implementation (Ivanov et al., 2006b). Polarized shot gathers 

were vertically stacked to enhance shear-wave arrivals (Figure 23).   

 
Figure 23:  Representative SH-wave hammer shot gather of reversed and vertically stacked polarities, with 

first-arrival picks (in green). 

After an initial search for smoothing and iteration values, a Vs profile was attained using 

first-order horizontal regularization (Figure 24). Regularization coefficients were selected that 

allowed for stable conversion to a realistic model that agreed with relative velocity values found 

during previous geophysical surveys in the area. Incorrect coefficients resulted in unrealistically 

high velocity values (>50% deviation from MASW), velocity discontinuities produced by 

irregular ray coverage, and non-convergence. By relying on the initial MASW model to steer 

conversion, and applying reasonable horizontal smoothing parameters, a more realistic model is 
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reached that relies on physical measurements rather than gradient generalizations or best-guess 

approximations. Using smooth MASW models as a reference reduces the threat of hidden-layer 

scenarios and produces Vs-models in accordance with local geology. Additionally, the relaxation 

of vertical regularization, in lieu of letting the MASW model drive initial vertical gradients, allows 

a LVL solution not accepted in many refraction approaches. 

      

 

Figure 24:  SH-wave refraction tomogram using Vs-JARS approach. Note the high-velocity layer at approximately   

6 m. 

The updated velocity model found with Vs-JARS application, presents a constrained 

layer-model guided by Rayleigh-wave and body wave information and distinct inversion methods. 

These complimentary methods garner a higher-resolution image of the subsurface, not previously 

found with classical smooth MASW techniques. The structural findings of the refraction study (i.e. 

Figure 24) give empirical data to support a more stratified MASW layer model.  

With evidence to support increased layering, the Vs-JARS tomogram was then used to 

update the layer model of the initial preliminary MASW inversion. The new MASW model was 

formulated on the velocity structure (layer thickness) of the tomogram and updated density values 

from the borehole-logging investigation (Figure 25). Such an approach mimics the layer-splitting 

strategy presented by Socco et al. (2010a), although here the method is not limited to the intercept 
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time method’s layer-parameterization. Furthermore, this method may further divide layers along 

sections of interest, in the vertical sense, to allow greater flexibility during inversion.     

 

Figure 25:  Constrained MASW Vs section. Note the incorporation of the HVL at 6m. 

To demonstrate repeatability, increase the confidence of the velocity models, and 

reevaluate the methodology, the constrained-parameterization process was repeated for line 3. 

Moreover, refraction tomography analysis was performed with both SH- and SV-vibroseis data 

along both lines. The line 3 data sets followed the same general trend from smooth to 

higher-resolution imaging of the Rayleigh wave field using optimized 

constrained-parameterization MASW techniques (Figure 26). A HVL layer is also apparent using 

the SH-hammer data for line 3; however, the signature is more subtle with a decreased vertical 

velocity gradient. The SH-vibroseis results also show a HVL, giving more confidence to the 

analysis. In comparison, a greater disparity is seen between the SH-wave datasets and the 

SV-vibroseis tomogram.  

A complete compliment of line 2 data is shown below (Figure 27). In contrast to line 3, the 

four velocity profiles show greater agreement across source and shear-wave mode.   
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Figure 26:  Results of repeated methodology for line 3. Note the similar structural pattern of the SH- and SV-methods 

and also the mismatch of the Sv-Vibe velocity values.  
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Figure 27:  Tomogram comparison for line 2. Note the structural and velocity agreement between the SH- and 

SV-methods. 
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5.3. Vp-Tomography (JARS) 

 In an attempt to further constrain the MASW inversion to include Vp information, Vp 

tomography was performed for both lines. In a similar manner to the Vs-JARS approach, regridded 

smooth MASW results served as reference models to constrain the solution space of the 

tomographic inversion. As a caveat, these inversions don’t use the same parameterized 

layer-models as discussed above for the Vs tomograms. The JARS approach assumes a Vp:Vs ratio 

to formulate the starting layer model; the results presented below assume a ratio of 2. A Vp:Vs ratio 

map was also calculated from the Vs constrained-parameterization MASW results (Figure 28 and 

29). 

 

Figure 28: Line 2 Vp-tomography results and Vp:Vs ratio map. 
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Figure 29: Line 3 Vp-tomogram and Vp:Vs ratio map. 

Both Vp:Vs ratio maps include uncharacteristically low values (<1.5). These are thought to 

be an effect of the relative accuracy and non-unique convergence of both geophysical methods. 

Also, the Vp:Vs maps suggest there is a disconnect between the Vp results and the Vs 

constrained-parameterization MASW model, particularly at the layer transition below 10 m. 

Including updated Vp results (e.g., Poisson’s ratio, layer structure) in final MASW processing, is 

needed to increase Vp:Vs ratios to more realistic values (> 1.5). Interestingly, both lines have an 

average Vp:Vs ratio of 1.74 for the images shown. 
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To further substantiate the Vp-tomography findings, a standard velocity/intercept time 

depth calculation was made for representative refraction data of line 2. First arrivals were 

manually assessed, across several shot points, to reduce near-source and time-break variation. 

Following visual changes in dips, the arrivals were then fitted with a three-layer model (Figure 30).  

 

Figure 30: First-arrival gather with 3-layer refraction interpretation. 

Standard least-squares methods fitted a line to the arrivals from which velocity and 

intercept time estimates were calculated. Depths to the second and third layers were calculated 

using standard intercept-time methods. An estimate of the apparent velocity variation was 

obtained by examining the variation of velocity for a 20-station segment across offset (Figure 31).  
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Figure 31:  Graph of a moving 20-point least-squares fit of the first-arrival data given in figure 29. Note the 

oscillation of apparent velocity not interpreted with the standard 3-layer assessment. 

One may notice that there are several inflection points across offset and a general increase 

in velocity with offset. While some variance is related to signal/noise ratio, statics, etc., the 

geology that causes these variations is not resolved using standard methods and a several-layer 

parameterization. However, the three-layer velocity and depth estimates generally agree with 

tomographic inversion (Table 2).  

Table 2: Intercept-time refraction results. 

V1 396 m/s 

V2 653 m/s 

V3 838 m/s 

Z2 1.6 m 

Z3 5.5 m 
 

Using this simple method, the more statistical refraction approaches discussed above may 

be confirmed. The direct wave is in line with Rayleigh-wave character using the asymptotic value 

of the dispersion curve (222 m/s), which correlates to a Vp:Vs ratio of 1.8. The second layer moves 

the velocity gradient transition seen on the Vp tomography at 3 m to 1.6 m. The third-layer 
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estimates match well with the ~6 m HVL given in optimized MASW results and the previous Vp 

tomography analysis. Moreover, the Vp:Vs ratio for the third layer is in agreement with the 

previous results, with a value of 1.76. Although there are slight differences (layer 2), the relative 

velocity values and layer depths are consistent with the Vp refraction inversion methods. 
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6. Constrained-Parameterization MASW Discussion 

6.1. Vs-JARS and MASW 

Refraction and surface-wave methods incorporate different assessments of velocity-model 

resolution with unique inversions of independent seismic information. MASW’s vertical 

resolution is a function of both the interpretable frequencies and the layer model. As we invert 

surface-wave data, longer wavelengths average velocities over their ‘ray’ paths, resulting in 

increased smearing for deeper layers. Ignoring such effects and interpolation, the number of layers 

in a 1D profile will determine the overall smoothness and vertical differentiation of the resulting 

2D model. In comparison, refraction-tomography resolution is a function of cell size and ray 

coverage/density (assuming ‘thin rays’). Additionally, the regularization of the refraction problem 

affects the resolving power of rays, as each iteration step is modified by these subjective controls. 

A highly regularized solution may reduce artifacts at the cost of horizontal and vertical model 

resolution. Similarly, MASW’s vertical 1D approach to Vs inversion restricts lateral resolution by 

averaging heterogeneity over the spread length. The use of both inversion schemes works to 

balance the limitations of each method and increase the overall resolution of final Vs models. 

Compared to MASW, the nonuniqueness and regularized solution to refraction 

tomography introduces a more dynamic inversion routine prone to processing-induced error and 

artifacts. However, the Vs-JARS method reduced the solution space inherent with tomographic 

inversion and ensured confident layer parameterization. More importantly, this application was 

able to provide a LVL solution, which may not have been possible using standard tomography 

methodology. With MASW, the use of a distinct layer model results in a more constrained, 

simplified 1D inversion and interval velocities that are directly related to the dispersion curve. 

Conversely, if not adequately stratified, the layer model may exaggerate smoothing. The solution 
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variability of refraction tomography is guided by MASW results to effectively constrain 

convergence. 

The HVL structure, found with Vs-JARS routines, may be interpreted as an artifact of our 

parameterization. A linearly increasing velocity gradient and classical refraction methods may 

adequately converge to site first-arrivals. However, the constrained-parameterization approach is 

guided by physical measurements (seismic response) of the site, rather than generalizations. 

Moreover, the optimized MASW results independently confirm the presence of a HVL. It is the 

joint analysis that gives greater weight to a more stratified MASW layer model, while limiting 

concerns of instability and confirming refraction findings. The constrained-parameterization 

approach increases the confidence of the HVL structure due to repeatable, independent analysis 

using multiple geophysical methods for support.   

6.1.1. Line 2 

The MASW survey had shot points located every 2.4 m, while the refraction analysis was 

limited to a 20-station or greater shot-point interval. Also, the MASW line used a 78 m spread to 

create the dispersion images, where the refraction survey could theoretically differentiate 1.2 m
2
 

cells. The high degree of smoothing required to stabilize (regularize) the refraction inversion, 

along with further spaced shot points may hamper imaging smaller-scale horizontal anomalies. 

However, the refraction survey initially identified the HVL and indicated more-distinct lateral 

breaks compared to the final MASW profile. It was only after a more stratified layer model was 

implemented with refraction constraint that MASW was able to delineate the upper HVL.  

The Vs tomograms and constrained-parameterization MASW model imaged a lateral 

pinch-out, or loss of coherence, of the HVL left of station 2175 and right of station 2260. 

Nevertheless, the SH-hammer refraction profile provided more distinct lateral and vertical 
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boundaries. Conversely, the hammer tomogram had multiple artifacts resulting from raypath 

coverage and ineffective smoothing; the elliptical arcs at 2194 and the abrupt lateral velocity 

change at 2225 and 9 m are examples in the SH-hammer section. With respect to other features, all 

surveys confined the uppermost layer to 4 m depth and the lowermost layer to 11 m. It is noted that 

the refraction tomograms (hammer vs. vibe) are not identical. Due to changes in source and 

geophone coupling, shot point coverage, raypath geometry, time-picks, smoothing constraints, and 

convergence there are small differences in the velocity field for each section.  

This study reaffirms the intrinsic smearing of MASW (horizontal and vertical), and 

suggests that refraction analysis may better define anomalies at the cost of velocity artifacts. The 

ray coverage varied for specific inversions as convergence, dependent upon regularization 

controls, dictated preferential velocity structures. Final models were chosen to limit the loss of ray 

coverage across the model in response to regularization controls and convergence. Model sections 

below zones of high Vs must be analyzed for ray coverage to assure adequate resolution of the 

model to depth and defend a 2D interpolation and expression of LVL solutions. Overall, the two 

methods produce complimentary Vs information that strengthens the site’s velocity 

interpretations.   

6.1.2. Line 3  

The refraction results display more variance for line 3, expressing the vulnerability of the 

refraction method to subjective inversion controls. Elevated smoothing parameters notably 

reduced ray-coverage artifacts, as seen in line 2 results, but also limit the methods ability to resolve 

lateral heterogeneity. The SH-hammer refraction tomogram had a lower gradient HVL, in 

comparison to line 2 SH-hammer results. Line 3’s shear-wave vibroseis surveys also show more 

differentiation as a result of inversion convergence error. However, the SH-vibe tomogram 
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conforms to the structural interpretations of line 2 with a more distinct HVL layer. The line 3 

results identify a trade-off between model smoothness (artifact reduction) and horizontal model 

resolution.     

The SV-vibe refraction model was chosen to give an example of the issues of 

non-uniqueness and the limitations inherent with the convergence of deterministic methods. The 

model converged upon over-estimated velocities as raypaths passing through the HVL and basal 

layers drove the model to higher velocities at the precipice of nonconvergence. As more rays pass 

through the HVL portions of the model (following Snell’s Law), intermediate LVL rays (lower in 

number) receive less weight on each iterative update. In effect, the solution is moving towards a 

several layer solution that negates the LVL solution and promotes a high-velocity gradient. 

Limiting the iteration number before such structure and velocities are manifested is evidence of 

tomography’s nonuniqueness and demonstrates the subjective control that is essential for proper 

inversion of first-arrival refraction tomography in the presence of LVL solutions.  

As a whole, line 3 results suggest a more coherent and laterally continuous HVL across the 

site. There is also a shift in the top of the HVL from approximately 6 m across line 2 to 

approximately 5 m on line 3; MASW results show a less dramatic shift. The basal layer signature 

of the HVL is comparable to line 2 results with a similar velocity (MASW) and depth (both 

tomography and MASW). Likewise, the top layer is evident above 4 m, although slightly thinner 

with the shift of the HVL. Lastly, the LVL below the 6-m deep HVL is more laterally continuous 

with a consistent thickness of 3 m.  

Density logs across the site and the sparsely sampled geologic logs along line 3 suggest 

high material variability (e.g. clay content, Figure 4); however, in situ measurements lack great 

correlation on the order of stratigraphic interpretations as only one well continuously sampled the 
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site (well 10.5; Miller et al., 2010b).       

The iterative approach to updating both the tomographic and MASW starting layer-models 

resulted in complimentary Vs profiles. The Vs-JARS application was proven successful for both 

lines at the YPG site. However, line 3’s Sv-vibe data express the need for careful analysis of 

refraction convergence to limit instability and unstable divergence from realistic solutions 

(nonconvergence). Also, regularization-data incompatibility may result where smoothing 

constraints inhibit convergence or numerically over-smooth a problem. This is manifested as 

lateral inconsistencies in the first-arrival convergence (preferential velocity/shot-to-shot-point 

match). Multi-method assessment of a site’s velocity structure allows a qualitative assessment of 

solution fitness to guide refraction-inversion parameterization. Refraction solutions should be 

relatively similar to the initial values of MASW inversion and dispersion trends. By using multiple 

sources/inversions, a constrained velocity profile was garnered for the respective lines with 

extraneous velocity perturbations (>50% deviation) recognized and accounted for.    

6.2. RMS Error 

Further iterations and starting-model refinement of the tomography’s inversion 

parameterization (iteration number, smoothness values, starting layer model), not shown here, lead 

to decreased RMS errors, but also resulted in unrealistically high velocities for the HVL and 

deeper strata based on known material properties, resultant Vp:Vs ratios, and relative MASW 

values (e.g., line 3 SV-vibe tomogram). Taking into consideration an ambient noise/error floor, 

imperfect data constraint (non-infinite data, cell discretization, etc.), and the effects of smoothing 

constraints, a global minimum (lowest RMS error) may reach a solution that is less related to the 

data/geology, but rather a statistical manifestation of the inversion scheme.  
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Indeed, the idea of global minima may be misunderstood during any inversion study. Care 

must be given to understanding the limitations of specific inversion schemes to defend against 

‘over-working’ a data set. The processor must make a calculated decision on where to stop an 

iterative, deterministic problem. The same applies to global search methods, which are more 

sensitive to such miscalculations as there is often unrestrained variance and no qualitative measure 

of a model’s fitness beyond RMS error.  

6.3. P-wave Tomography (JARS) 

P-wave tomography has the same inversion limitations as the Vs-JARS methods listed 

above. The results for line 2 and line 3 show general agreement for the structural character 

garnered from the Vs-JARS approach. In contrast, the HVL is less pronounced and coherent across 

line 3 and both lines show a less coherent basal layer. In general, the P-wave tomograms used 

lower smoothing constraints which might have guided the solution to a more discontinuous 

stratigraphic sequence. On the other hand, the models have near identical basal signatures from 

X200-X220 and X260-X280. When compared to the S-wave tomogram results, the HVL has a 

smaller variability in depth across lines.  

Of interest for many engineering studies is the Poisson’s ratio, or the comparable Vp:Vs 

ratio, which generally speaking is a measure of the ratio of bulk to shear moduli. The Vp:Vs ratio 

was calculated for both lines 2 and 3 using the Vp-tomography and Vs optimized MASW profiles. 

The results (Figure 28 and Figure 29) may lead many to question the validity of the velocity 

measurements from field data at this site. One explanation is that dispersion is often not accounted 

for in laboratory testing, which tends to lead to overestimated Vp:Vs ratios (Mavko et al. 2009). 

Das (2002) gave a ratio range of 1.63-2.5 for loose sands. White (1965) and Gregory (1977) give a 

minimal Vp:Vs value of 1.5 for loose sands. Indeed, the lower values for the site push below the 
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acceptable levels for the geology of the area.    

When looking at the geologic report (e.g., Figure 4) the high clay content would suggest 

higher Vp:Vs ratios more consistent with those as found in lab tests (Prasad et al., 2004). However, 

the geologic report suggests most depths have greater than 40% clay content, which means the soil 

matrix (load-bearing) is clay with lesser amounts of sand/silt. With this composition, we may 

expect the bulk system to respond to the increased porosity associated with increased clay content 

beyond a critical limit (Marion et al., 1992). Salem (2000) gave an overview of several Poisson’s 

ratio studies and restated the relation to a decrease in the Vp:Vs ratio with increasing porosity. We 

may speculate that the porosity increase seen with an increase in clay, with variable sand and silt 

content, is driving the system to lower Poisson’s ratios. Similarly, we would expect lower ratios 

given a more pure sand layer, as indicated in some geologic reports (i.e., well 14, Figure 4). 

David Boore’s unpublished data on unconsolidated sediments’ Vp:Vs ratios also gives 

credence to the low ratios of the YPG site (Boore, 2007). Boore examined data from 274 borehole 

sites in southern California and found many wells trend to a Vp:Vs ratio of approximately 1.87 (0.3 

Poisson’s ratio) with routine variance to below 1.63 (0.2 Poisson’s ratio) when under unsaturated 

conditions (Figure 32).  

The average change in velocity needed to alter all the values found in the Vp:Vs maps to 1.6 

or greater would correlate to a change of less than 5%. This deviation is within the inherent 

uncertainty of the MASW method (Xia et al., 2002) without consideration of the affects of 

refraction tomography’s uncertainty. However, the low values (<1.5) are a sign of inversion error, 

or method incompatibility (Vp data point vs. Vs data point). The final MASW inversion will need 

to incorporate Vp information to adequately constrain the inversion and keep ratios above a given 

threshold (1.5). Also, the Vs tomography and MASW results suggest a more laterally continuous 
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layer structure, particularly below 10 m. Increasing the smoothing parameters for the Vp 

tomography would smear the velocity section, and increase the Vp:Vs ratios.      

Figure 32:  Figure displaying data from 274 boreholes, with Poisson’s ratio lines in various colors (after Boore, 

2007). Note the lower trend centered below or in the vicinity of 0.3 (Vp:Vs-1.87, the green line) with many 

values below 0.2 (Vp:Vs-1.63, the lowest pink line). YPG data averaged across layers is overlain for 

comparison. 
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7. Constrained Inversion Conclusion 

The proposed Vs-JARS application with coincident analysis of the MASW method 

provides more possibilities for near-surface seismic-data analysis. The application of MASW and 

refraction traveltime tomography permits evaluation of the Vs structure of an area using different 

yet complementary portions of the seismic wave field. As the methods utilize entirely different 

inversion schemes and wave-mode propagation, their integration should garner a more complete 

understanding of the velocity structure. This evaluation suggests the integration of MASW with 

refraction traveltime tomography leads to a more constrained MASW layer model with increased 

vertical resolution and a refraction tomogram that better defines lateral heterogeneity. The 

refraction solution provided superior lateral resolution and additional a priori data control for 

MASW layer-model constraint. The integrated approach may offer advantages to Vs estimation, 

especially for those sites that have limited information to steer initial study. This work 

recommends this joint methodology for future shear-wave investigations using MASW.   

Using the constrained-parameterization approach, higher-resolution models were achieved 

for both geophysical methods that honor site first-arrival and dispersion characteristics. The 

limitation of LVL solutions and hidden layer problems associated with refraction analysis was 

mediated by incorporating MASW’s initial model as a priori information. The relaxation of the 

vertical increase in velocity demanded by most inversion techniques, and the initiation of 

horizontal smoothing constraints, resulted in a more representative refraction image of the 

subsurface. Moreover, by using both P- and S-wave refraction information, we were able to assess 

Vp:Vs ratios, and add another fitness criteria to the layer model.  
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The method I am reporting on here suggests incorporating mode-consistent Vs tomography 

into MASW workflows may improve Vs estimation in several ways: 

1. As found previously by Foti et al., (2003), Ivanov et al., (2006b), and others:  

a. Limit the non-uniqueness of the solution space inherent in refraction inversion 

b. Ability to confidently incorporate low-velocity layers into refraction solutions 

i. Capacity to mediate the hidden-layer phenomena of refraction problems 

2. Compare mode-consistent (S-wave) velocity values through separate inversion schemes 

3. Compare 2D (or pseudo-2D) variation of S- and P-wave fields  

a. Quasi-check on 2D approximation of interpolated 1D Vs sections 

4. Create high-resolution MASW and refraction results constrained through joint analysis 

a. Increase lateral and vertical resolution of near-surface models 

5. Construct QA/QC analysis based on a multi-method approach 

a. Associate model fitness beyond standard RMS criteria     
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8. Modeling of Site Characteristics 

Inversion schemes ultimately assume ‘perfect’ imaging of dispersion characteristics. 

Imperfect spread parameters (offset selection) may produce images with poor resolution of modes 

(Foti et al., 2002), higher-mode domination (Cercato et al., 2010; Cornou et al., 2006), near-field 

non-plane-wave interference (Park et al., 1999), or poor sampling of longer wavelengths (Ivanov 

et al., 2008). An optimized offset selection will reduce negative effects and enhance the 

fundamental-mode signature. Rules of thumb have been developed for acquisition design, but are 

routinely disputed with actual field application (Xia et al., 2009; Xu et al., 2006; Zhang et al., 

2004). The optimum offset distance for proper formation and sampling of Rayleigh waves is often 

determined during acquisition, but rarely involves adequate testing of acquisition effects on 

dispersion images.  

Numerical modeling of the constrained-parameterization MASW layer model gives a 

measure of acquisition effects on dispersion imaging in the absence of noise and lateral 

heterogeneity. Without rigorous testing, or a priori knowledge, a balance between imaging lateral 

heterogeneity with shorter spreads and adequately sampling longer wavelengths with relatively 

longer spreads is not intuitive. Moreover, if there are geologic transitions across a site, competing 

fundamental-mode trends may overlay one-another. It is proposed that modeling may act to reduce 

uncertainty in acquisition effects and dispersion interpretation, thereby confirming/refuting 

preliminary findings.  

Furthermore, the development of a layer model permits the forward-modeling of the 

theoretical modal curve(s) which should help in separating specific mode signatures from 

transformation effects and mode superpositioning. While the initial processing and interpretations 

are geared toward the fundamental mode and its inversion, this procedure will allow an 
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independent interpretation of the overtone image that includes higher-modes. The dispersion 

image may be thought of as an amplitude map with various independent events including: 

higher-modes, cross-over/cut-off frequencies, spectral leakage, coherent noise, etc. A 2D lateral 

sampling of the synthetic seismogram, gives an enhanced interpretation of the layer-model 

developed using the constrained-parameterization MASW approach.   

The algorithm discussed by Zeng et al. (2011) was used to create synthetic seismograms 

that closely match both P-wave first-arrivals and Rayleigh-wave dispersion characteristics. The 

previous constrained-inversion techniques of Chapter 6 form the basis of the initial layer models 

(          ; see section 3.1). The resulting synthetic S- and P-wave velocity models permitted an 

inference of the site’s Vp:Vs ratio. Spread-length comparison led to qualitative estimations of 

lateral heterogeneity and the effects of acquisition parameters on specific frequency segments of 

dispersion images. In the presence of complex velocity structures, the use of modeling may help to 

constrain and improve the interpretation of Rayleigh-wave dispersion characteristics. 

8.1. Model Generation 

The modeling algorithm takes a layer model ( ), populated with density ( ), P-wave 

velocity (  /Vp), and S-wave velocity (  /Vs) to generate synthetic shot gathers. The initial values 

were guided by the results of Chapter 6. Preliminary layer models applied successively more 

discretized layering to assimilate the gradients apparent in the constrained-parameterization 

MASW Vs profiles. Refraction results were also central in guiding stratification of the synthetic 

layered-earth model.  

 The modeling algorithm used several parameters to match field acquisition. The source 

wavelet was a 35-Hz center-frequency first-order Gaussian derivative, mimicking the impulsive 

source. In order to match spectral characteristics, the wavelet was selected based on frequency vs. 
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amplitude analysis of the field/synthetic data and qualitative analysis of the synthetic wavelets, 

specifically the first arrivals. Simulating the field layout, the source offset was 1.2 m from the first 

geophone with a 1.2 m geophone spacing. The common-source gather consisted of 147 

geophones. The full-spread seismogram, generated using the above parameters, was used for 

further processing (Figure 32). 

   
Figure 33:  Left) synthetic shot gather of final layer model. Right) reference field gather for the YPG site. Note the 

relative match of the first-arrival trend. 
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Dispersion-curves were analyzed from consecutive synthetic seismograms (layer models).  

Each dispersion image was fitted to experimental data for comparison of both the fundamental and 

higher-mode curves. After minimal adjustments, a reasonable match was obtained between the 

experimental and synthetic dispersion curves. In addition, the P-wave first arrivals were assessed 

in relation to changes in the Vp:Vs ratio of the input models. The synthetic P-wave first arrivals 

were compared to several field gathers. From these comparisons, the average RMS error between 

offset-consistent picks was calculated to be approximately 9ms. The Vp:Vs ratio of the synthetic 

velocity models was 1.7, reaffirming the average previous calculated from independent 

tomography and MASW surveys.   

The 11-layer half-space model used to generate the synthetic seismogram was the final 

constraint applied to the MASW layer model for lines 2 and 3 (Figure 33). The MASW models 

vary slightly with those of Chapter 6 (upper 12 m); they integrate the layer constraint of both P- 

and S-wave tomography along with the depth to halfspace and the Vp:Vs ratio of 1.7 found with the 

synthetic study (Poisson’s ratio). The final models use more discrete layers, which resulted in 

lower velocities for the layer below 10 m and the LVL below 20 m. This also led to an increase in 

the Vp:Vs ratios as compared to the models in section 5 (>1.57). This exemplifies the necessity of 

continually adapting velocity models as site analysis dictates. As each new piece of information is 

added to the inversion scheme, the earth model will converge to a slightly different solution. 

Additionally, the synthetic modeling allowed for a final check on the depth to the half-space and a 

confirmation of the deepest structure, or layers, of the model-space. Although the cyclical 

methodology is laborious, the treatment gives the processor the most control and eventual highest 

confidence in the final model.   

Local heterogeneities cause lateral changes in the individual layer velocities. Where the 
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model case assumes a homogeneous, horizontally layered system, vertical discontinuities are 

evident across the lines. Moving from one 1D profile to the next, there are obvious changes in the 

dispersion character, which are not accounted for in the synthetic modeling. The lowest velocities 

of the LVL, centered at 25 m, may suggest some instability of the problem. The homogenous, 

synthetic model nowhere ‘perfectly’ matches the final Vs MASW images, however, the general 

character of the velocity section is maintained. 
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Figure 34:  Synthetic model with equivalent final line 2 and line 3 constrained-parameterization MASW results to 

half-space depth. 
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8.2. Acquisition Effects 

This section will look at conclusions drawn from the dispersion character of the synthetic 

data based on changes in the recording parameters (offset selection). Interpreting dispersion 

properties correctly, especially in the presence of complex velocity structure (LVL, HVL, HM 

excitation, etc.), is paramount to accurate inversion of Rayleigh waves. The figures of this section 

focus on the change in dispersion trends as a function of different spread lengths and source offset. 

This mimics the methods of Ivanov et al. (2008), as previously mentioned. As with any MASW 

survey, the synthetic seismograms are first transformed to the phase velocity vs. frequency 

domain.  

Dispersion curves calculated from the full spread length closely match theoretical curves 

calculated by Schwab and Knopoff (1972), (Figure 35). 

 
 
Figure 35:  Graph of phase-velocity variation with spread length. All subsets have a 1 m source offset, where short 

refers to a 78m 65-geophone spread and long refers to a 178m 147-geophone spread. At maximum 

deviation, percent difference is under 6% for corresponding spread lengths. The slight overestimation at 

high-frequency model data, in comparison to the theoretical curve, is a result of the automatic picking 

routine. 

  

200

250

300

350

400

450

500

5 15 25 35 45 55 65

P
h

as
e

 V
e

lo
ci

ty
 (

m
/s

) 

Frequency (Hz) 

Fundamental-Mode Comparison 

Field Short Field Long

Model Short Model Long

Model Theoretical



77 

Several inferences may be drawn from the comparison of the field and synthetic dispersion 

results. Reductions in spread length resulted in a separation of apparent phase-velocity trends at 10 

Hz for both field and synthetic data sets. This verifies that the separation is not a function of lateral 

heterogeneity. Analysis of modeled dispersion images confirms that direct higher-mode 

interference and superposition is negligible (e.g., Figure 36, Figure 37). The velocity pull-down, of 

shorter-spread lengths, is attributed to spectral leakage and smearing within the frequency domain, 

resulting in a loss of resolution. Also, the slight separation above 25 Hz, observed in long spreads 

of the field data, is interpreted as spread-length averaging induced by lateral heterogeneity in the 

upper several meters of overburden. 

The synthetic dispersion curves suggest the analysis begins to lose phase-velocity 

resolution below 19 Hz using the short spread. However, the curve trends back towards 

long-spread values below 7 Hz. This empirically quantifies the necessity of adjusting the 

processor’s picking routines, which would otherwise be made on qualitative assumptions of curve 

variance with offset (as made in the preliminary phase of this thesis; even if correctly so). These 

frequency-dependent effects of the domain transformation were associated with an optimized 

spread length (e.g. Figure 37). The 65-geophone gather was obtained from a systematic sampling 

of field data. This resulted in an optimal spread-length and source-offset subset which balanced 

image and lateral-velocity resolution under the assumption of a subjective interpretation. Synthetic 

comparison reaffirms preliminary dispersion interpretation and gives a quantitative measure of 

initial qualitative assessments.  
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Figure 36:  Dispersion curve comparison for the full 147-geophone spread length (178 m spread: synthetic data to 

left, field data to right). Note the higher-amplitude HM energy in the field data. 

 

Figure 37:  Dispersion character comparison for the optimized 65-geophone spread length (78 m spread: synthetic 

data to left, field data to right). Note the amplified HM interference at frequencies greater than 25 Hz on 

the field data. 

Longer source offsets resulted in mode superposition and higher-mode velocity pull-ups of 

the fundamental in the same frequency-band affected by spectral leakage (Figure 38). Field data 

suffered more than modeled data from these mode-interference patterns; this is believed to be due 

to attenuation effects and additive coherent signal (scattering, etc.) from local heterogeneity not 

incorporated into the synthetic model. These disruptions of the wave field produced a zigzag 
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phase-velocity trend that was the most compelling support for using closer source-offsets, with the 

optimized spread-length, during preliminary investigations. 

 

Figure 38:  Sequence of dispersion curves prepared from different acquisition parameter subsets: Left) Model data, 

Right) Field data. 

The field data was affected by attenuation, resulting in incoherent and discontinuous 

fundamental-mode signatures below a 200-800 ms sloping ‘timeline’ on the shot gathers (Figure 

33). Conversely, the elastic-modeling algorithm did not incorporate attenuation analysis into wave 

propagation. This discrepancy between the synthetic and field data was approximated with muting 

(Ivanov et al., 2005a). A long-taper bottom mute was applied to both data along this slope to 

introduce attenuation. The field data showed little change in the dispersion image, while the 

modeled image saw a drop in the high-frequency amplitudes of the fundamental (Figure 39). 

Moreover, muting on synthetic gathers enhanced the cut-off frequency around 30 Hz, past which 
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the fundamental-mode became over-estimated and the true trend was obscured in field data. This 

suggests that attenuation and near-field near-surface scattering of the fundamental-mode Rayleigh 

wave may intensify the effects of higher-mode excitement and hamper dispersion interpretation 

after domain transformation. 

 

Figure 39:  Muted gathers of the model (left) and field (right) data. Note the improvement in overall qualitative match 

between the curves’ modal trends.   

Using the muted gathers, the dispersion character of the model data reaches a better match for the 

entire overtone image. The higher-mode starting below 600 m/sec, which previously had 

comparatively lower contrast in the model data, now more closely matches the field response. 

Calculating the theoretical higher-mode curve of the synthetic model, we see that this HM energy 

is the first higher mode. My approach allows for a HM evaluation of the model space, which was 

based entirely off of fundamental data analysis. This check on model fitness is a major advantage 

of this approach and allows significant constraint on the interpretation of modal trends beyond 

standard MASW workflows.     
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8.3. Modeling Conclusions 

Complicated Vs structures introduce some potential error when interpreting dispersion 

images. Selecting optimal acquisition parameters may be seriously under-constrained without 

ample site analysis. For the inversely dispersive model, analysis of the processed waveform was 

negatively affected by loss of resolution and the finite windowing of the x-t domain; which agrees 

with previous research (Foti et al., 2002; Xia et al., 2006). Comparison of low-frequency synthetic 

data with complimentary field gathers verified that the modal responses of certain frequency data 

were an effect of wavelength sampling and domain transformation rather than local heterogeneity, 

as assumed in preliminary interpretation. Understanding how modal curves were affected by 

spatial sampling and acquisition parameters increased confidence in the optimal spread length and 

dispersion interpretations used in MASW investigations.  

Classical research (Park et al., 1999) suggests a proper source offset is equal to the 

maximum depth of investigation (half the longest wavelength); in this case, approximately 40m. 

This rule of thumb caused erroneous modal trends and a 10% maximum overestimation of phase 

velocity. Non-optimal spreads were shown to add, or increase the severity, of modal inflection 

points, which could introduce inversion instability and lead to erroneous layer perturbations. On 

the other hand, a short offset resulted in a more sinuous curve, matching site dispersion 

characteristics, which underestimated velocities by less than 6% at maximum deviation. These 

outcomes suggest that shorter offsets, together with longer spread lengths, may be preferable to 

improve sampling of long wavelengths in certain geologic terrains (e.g. dry sand/clay soil sites).  

Utilizing this modeling approach would benefit future surveys with a secondary estimate 

on dispersion interpretation, Vp:Vs ratios, layer-model parameterization, and the depth to the 

half-space. If dispersion interpretation would ignore zigzag patterns and introduce some 
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smoothing constraint on modal sinuosity, one might minimize the effects of imperfect acquisition 

parameter sets. For new sites, however, past experience and best-guess interpretation is often what 

geoscientists must rely on for preliminary results. Data-driven methodologies are always 

preferable, and adding synthetic modeling to compliment a constrained-parameterization MASW 

investigation gives greater insight into modal trends and their interpretation, with a final constraint 

on MASW inversion.  
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9. Final Thoughts 

The constrained-parameterization approach outlined in previous sections, and repeated in 

Appendix III, combines qualitative interpretations and quantitative measurements geared to 

optimize the inversion of MASW data. The complimentary use of refraction and surface-wave 

methods allowed an in-depth examination of the seismic wavefield at the YPG site using body and 

surface waves. Mode consistent Vs-JARS provided multiplicity that improved confidence in the 

final structural interpretations of the MASW inversion.  

The mixing of inverse theory and modeling permitted a dramatic increase in 

interpretability of the dispersive events captured with the experimental data and gave a secondary 

evaluation of the earth model. The synthetic modeling incorporated 2D-wavefield calculations into 

the MASW method. This could be used in future MASW research to limit the inherent 1D-2D 

disassociation of the approach. Integrating a 2D MASW inversion scheme, with the use of 

synthetic modeling as a forward-model operator, would dramatically increase the constraint on 

lateral resolution of the method and the overall information content of the analysis. Moreover, 

attenuation analysis could easily be integrated into the forward problem.    

As a whole, each new analysis dictated a change in the parameterization of the MASW 

inverse problem. With proper refinement of the system, each new empirical data set better 

constrained the solution space. This led to a higher-resolution, higher-confidence, 

constrained-parameterization MASW Vs model. The gradual change of the earth model, given an 

evolving hierarchy of constraint, is seen as the main finding of this thesis. 
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11. Appendix I 

Related KGS Processing of MASW/Backscatter data sets 
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YPG February 2011 

 

Dugway November 2010 
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12. Appendix II 

Equation and Variable List 

Variables  

  Distance, offset   Density 

  Time   Thickness/Layer model 

   Spatial wavenumber   Jacobian matrix 

  Angular frequency    Model minimization adjustment 

  Frequency    Minimization vector 

  Slowness    Initial model parameterization 

  Tau – time transform     Weighting matrix 

  Phase-shift   Damping factor 

   Rayleigh Wave phase velocity I Identity matrix 

   Shear-wave velocity (Vs)    Compressional velocity (Vp) 

T Period π Pi 

μ Shear modulus k Compressibility 

      
Singular-Value Decomposition 

Matrices 
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f-kx Method 
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13. Appendix III 

Constrained-Parameterization MASW Flow Diagram 

Raw Data 

 

Geometry and Sorting 

 

 Vertical Stacking (Shot Gathers)     Or       No Stacking* 

 

Offset Selection 

x-t Domain Muting  

 

Dispersion Curve Imaging 

Transform Selection 

Vertical Stacking (Overtone Images)* 

 

Display 

Color Scale 

Visualization Medium 

Normalization and Digital Gains 

 

Dispersion Curve Interpretation 

  Offset-dependent Effects, Transform Artifacts, Near/Far Field Effect  

Dispersion Coherency and Bandwidth 

Fundamental Mode              Curve Picking             Multi-Mode   

 

Inversion / Layer Model (h) 

Layer Model Constraint (Depth Conversion, Number of Layers, etc.) 

Vp & Density Constraint 

 

Vs Profile & Interpretation 

 

Vs-JARS Refraction Tomography Refinement (h) 

JARS Refraction Tomography Refinement (h & Vp) 

Synthetic Modeling Refinement (h & Vp) 
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14. Appendix IV 

Abbreviations List 

1D One-dimensional 

2D Two-dimensional 

DC Dispersion Curve 

e.g. exempli gratia; for example 

HM Higher mode 

HRLRT High-Resolution Linear Radon Transform 

HVL High-velocity layer 

Hz Hertz 

i.e. id est; that is/in other words 

IRTP Inverse Refraction Travel-Time Problem 

JARS Joint Analysis of Refractions with Surface Waves 

JCTD  Joint Capability Technology Demonstration  

JTTR Joint Tunnel Test Range 

KGS Kansas Geological Survey 

LTU Line Tap Unit 

LVL Low-velocity Layer 

m meter 

MASW Multichannel Analysis of Surface Waves 

ONDCP Office of National Drug Control Policy 

OT Overtone Image 

P- Primary, compressional-wave 

RAWD Rubber-band Assisted Weight-Drop 

s second 
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S- Secondary, shear-wave 

SASW Spectral analysis of surface waves 

sec second 

SWM Surface Wave Methods 

YPG Yuma Proving Ground 

USCS Unified Soil Classification System 

USDA-NRCS United States Department of Agriculture-Natural Resources Conservation Service 

Vp Compressional-wave velocity 

vs. versus 

Vs Shear-wave velocity 

Vs-JARS Mode-consistent Vs Joint Analysis of Refractions with Surface waves 
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