ANALYSIS OF CHEROKEE GROUP CUTTINGS SAMPLES FOR GAS CONTENT
-- EVERGREEN OPERATING CORP. EVERGREEN SHORT #41-32; NE NE 32-
T.18S.-R.20E., FRANKLIN COUNTY, KANSAS

By
K. David Newell¹, Galen A. Worthington¹, and Richard A. Robba²

¹Kansas Geological Survey, Lawrence, KS
²Professional Energy Services, Shawnee Mission, KS

Kansas Geological Survey
The University of Kansas
1930 Constant Avenue
Lawrence, KS 66047-3726

September 15, 2004

Disclaimer
The Kansas Geological Survey does not guarantee this document to be free from errors or inaccuracies and disclaims any responsibility or liability for interpretations based on data used in the production of this document or decisions based thereon. This report is intended to make results of research available at the earliest possible date, but it is not intended to constitute final or formal publication.
SUMMARY

Six cuttings samples from the Pennsylvanian Kansas City Group and Cherokee Group were collected from the Evergreen Operating Corp. #41-32 Short well, NE NE 32-T.18S.-R.20E., Franklin County, KS. The samples calculate as having the following gas contents:

- Hushpuckney Shale at 417.0' to 420.0' depth1 (10 scf/ton)
- Mulky coal at 760.0' to 761.5' depth2,3 (11 scf/ton)
- Bevier coal at 845.3' to 846.2' depth2 (14 scf/ton)
- Croweburg coal at 860.5' to 861.3' depth2 (27 scf/ton)
- Tebo coal at 932.0' to 933.0' depth2 (23 scf/ton)
- Riverton coal at 1128.0' to 1130.0' depth2 (54 scf/ton)

1no coal in sample
2assuming accompanying dark shales in sample desorb 3 scf/ton
3gas content should be considered a minimum due to a possible leak in the desorption canister

BACKGROUND

The Evergreen Operating Corp. #41-32 Short well, NE NE 32-T.18S.-R.20E., Franklin County, KS, was selected for cuttings desorption tests in association with an on-going coalbed gas research project at the Kansas Geological Survey. The samples were gathered March 28, 29, and 30, 2004, by K. David Newell and Galen A. Worthington of the Kansas Geological Survey, with assistance from Richard A. Robba (consultant to Evergreen). Samples were obtained during coring of the well. The well was drilled using a mud system, with a rig owned by Layne-Christensen, Canada, Ltd.

Lag times for samples to reach the surface (important for assessing lost gas) were determined with a rule-of-thumb rate of circulation of 100 feet per minute. A mud-logging trailer with a gas detector trailer was on site.

Six cuttings samples from the Pennsylvanian Cherokee Group were collected:

- Hushpuckney Shale at 417.0' to 420.0' depth (515 grams dry wt.)
- Mulky coal at 760.0' to 761.5' depth (391 grams dry wt.)
- Bevier coal at 845.3' to 846.2' depth (318 grams dry wt.)
- Croweburg coal at 860.5' to 861.3' depth (432 grams dry wt.)
- Tebo coal at 932.0' to 933.0' depth (386 grams dry wt.)
- Riverton coal at 1128.0' to 1130.0' depth (518 grams dry wt.)

The cuttings were caught in kitchen strainers as they exited the shale shaker emptying to the mud pit. The samples were then washed in water while in the kitchen strainers to rid them of as much drilling mud as possible before the cuttings were placed in desorption
canisters. Water with biocide was poured into the canisters before the canisters were sealed.

Temperature baths for the desorption canisters were on site, with temperature kept at approximately 75°F. The canistered samples at the end of the job were transported to the laboratory at the Kansas Geological Survey in Lawrence, KS, and desorption measurements were continued at the same temperature. Desorption measurements were periodically made until the canisters produced negligible gas with daily testing for at least two successive days.

DESORPTION MEASUREMENTS

The equipment and method for measuring desorption gas is that prescribed by McLennan and others (1995). The volumetric displacement apparatus is a set of connected dispensing burettes, one of which measures the gas evolved from the desorption canister. The other burette compensates for the compression that occurs when the desorbed gas displaces the water in the measuring burette. This compensation is performed by adjusting the cylinders so that their water levels are identical, then figuring the amount of gas that evolved by reading the difference in water level using the volumetric scale on the side of the burette.

Most desorption canisters were made in-house at the Kansas Geological Survey. The "ST" canisters enclosed a volume of 38 cubic inches (620 cm3). The "W" canisters enclosed a volume of 44 cubic inches (720 cm3).

The desorbed gas that collected in the desorption canisters was periodically released into the volumetric displacement apparatus and measured as a function of time, temperature, and atmospheric pressure.

The time and atmospheric pressure were measured in the field using a portable weather station (model BA928) marketed by Oregon Scientific (Tualatin, OR). The atmospheric pressure was displayed in millibars on this instrument, however, this measurement was not the actual barometric pressure, but rather an altitude-compensated barometric pressure automatically converted to a sea-level-equivalent pressure. In order to translate this measurement to actual atmospheric pressure, a linear regression was determined over several weeks by comparing readings from the Oregon Scientific instrument to that from a pressure transducer in the Petrophysics Laboratory in the Kansas Geological Survey in Lawrence, KS. The regression equation was entered into the desorption spreadsheet and was used to automatically convert the millibar measurement to barometric pressure in pounds per square inch (psi).

A spreadsheet program written by K.D. Newell (Kansas Geological Survey) was used to convert all gas volumes at standard temperature and pressure. Conversion of gas volumes to standard temperature and pressure was by application of the perfect-gas equation, obtainable from basic college chemistry texts:
\[n = \frac{PV}{RT} \]

where \(n \) is moles of gas, \(T \) is degrees Kelvin (i.e., absolute temperature), \(V \) is in liters, and \(R \) is the universal gas constant, which has a numerical value depending on the units in which it is measured (for example, in the metric system \(R = 0.0820 \text{ liter atmosphere per degree mole} \)). The number of moles of gas (i.e., the value \(n \)) is constant in a volumetric conversion, therefore the conversion equation, derived from the ideal gas equation, is:

\[\left(\frac{P_{\text{stp}}V_{\text{stp}}}{RT_{\text{stp}}}\right) = \left(\frac{P_{\text{rig}}V_{\text{rig}}}{RT_{\text{rig}}}\right) \]

Customarily, standard temperature and pressure for gas volumetric measurements in the oil industry are 60 °F and 14.7 psi (see Dake, 1978, p. 13), therefore \(P_{\text{stp}}, V_{\text{stp}}, \) and \(T_{\text{stp}} \), respectively, are pressure, volume, and temperature at standard temperature and pressure, where standard temperature is degrees Rankine (\(°R = 460 + °F \)). \(P_{\text{rig}}, V_{\text{rig}}, \) and \(T_{\text{rig}} \), respectively, are ambient pressure, volume, and temperature measurements taken at the rig site or in the desorption laboratory.

The universal gas constant \(R \) drops out as this equation is simplified and the determination of \(V_{\text{stp}} \) becomes:

\[V_{\text{stp}} = \left(\frac{T_{\text{stp}}}{T_{\text{rig}}}\right) \left(\frac{P_{\text{rig}}}{P_{\text{stp}}}\right) V_{\text{rig}} \]

The conversion calculations in the spreadsheet were carried out in the English metric system, the customary measure system used in American coal and oil industry. \(V \) is therefore converted to cubic feet; \(P \) is psia; \(T \) is °R.

The desorbed gas was summed over the time period for which the coal samples evolved all of their gas. Lost gas (i.e., the gas lost from the sample from the time it was drilled, brought to the surface, to the time it was canistered) was determined using the direct method (Kissel and others, 1975; also see McLennan and others, 1995, p. 6.1-6.14) in which the cumulative gas evolved is plotted against the square root of elapsed time. Time zero is assumed to be the moment that the rock is cut and its cuttings circulated off bottom. Characteristically, the cumulative gas evolved from the sample, when plotted against the square root of time, is linear for a short time after the sample reaches ambient surface pressure conditions, therefore lost gas is determined by a line projected back to time zero. The period of linearity generally is about an hour for cuttings samples.

LITHOLOGIC ANALYSIS

Upon removal from the canisters, the cuttings were washed of drilling mud, and either air-dried for several days, or dried in an oven at 150 °F for 1 to 3 days. After drying, the cuttings were weighed and then dry sieved into 5 size fractions: \(>0.0930" \), \(>0.0661" \), \(>0.0460" \), \(>0.0331" \), and \(<0.0331" \). For large sample sizes, the cuttings were run through
a sample splitter and a lesser portion (approximately 75 grams) was sieved and weighed, and the derived size-fraction ratios were applied to the entire sample.

The size fractions were then inspected and sorted by hand under a dissecting microscope. Three major lithologic categories were differentiated: coal, dark shales (generally Munsell rock colors N3 [dark gray], N2 [grayish black], and N1 [black] on dry surface), and lighter-colored lithologies and/or dark and light-colored carbonates. The lighter-colored lithologies are considered to be incapable of generating significant amounts of gas. After sorting, and for every size class, each of these three lithologic categories was weighed and the proportion of coal, dark shale, and light-colored lithologies were determined for the entire cuttings sample based on the weight percentages.

DATA PRESENTATION

Data and analyses accompanying this report are presented in the following order: 1) data tables for the desorption analyses, 2) lost-gas graphs, 3) "lithologic component sensitivity analyses" showing the interdependence of gas evolved from dark shale versus coal in each sample, 4) a summary component analysis for all samples showing relative reliability of the data from all the samples, and 5) a desorption graph for all the samples.

Data Tables of the Desorption Analyses (Table 1)
These are the basic data used for lost-gas analysis and determination of total gas desorbed from the cuttings samples. Basic temperature, volume, and barometric measurements are listed at left. Farther to the right, these are converted to standard temperature, pressure, and volumes. The volumes are cumulatively summed, and converted to scf/ton based on the total weight of coal and dark shale in the sample. At the right of the table, the time of the measurements are listed and converted to hours (and square root of hours) since the sample was drilled.

Lost-Gas Graphs (Figures 1-6)
Gas lost prior to the canistering of the sample was estimated by extrapolation of the first few data points after the sample was canistered. The linear characteristic of the initial desorption measurements is usually lost within the first hours after the cuttings leave the bottom of the hole, thus data are presented in the lost-gas graphs for only up to four hours after cuttings are off bottom. Lost-gas volumes derived from this analysis are incorporated in the data tables described above.

"Lithologic Component Sensitivity Analyses" (Figures 7-12)
Collection of pure lithologies using drill cuttings from relatively thin-bedded strata is rather difficult. Mixed lithologies are more the norm rather than the exception. Some of this mixing is due to cavings from strata farther up hole. The mixing may also be due to collection of two or more successively drilled lithologies in the kitchen sieve at the exit line, or differential lifting of relatively less-dense coal compared to other lithologies, all of which are more dense than coal.
The total gas evolved from the sample is due to gas being desorbed from both the coal and dark shale. Both lithologies are capable of generating gas, albeit the coal will be richer in gas than the dark-colored shale. Even though dark-colored shale is less rich in sorbed gas than coal, if a sample has a large proportion of dark, organic-rich shale and only a minor amount of coal, the total volume of gas evolved from the dark-shale component may be considerable. The lighter-colored lithologies are considered to be incapable of generating significant amounts of gas.

The total amount of gas evolved from a cuttings sample can be expressed by the following equation:

\[\text{Total gas (cm}^3) = [\text{weight}_{\text{coal}} \text{ (grams)} \times \text{gas content}_{\text{coal}} \text{ (cm}^3/\text{gram})] + [\text{weight}_{\text{dark shale}} \text{ (grams)} \times \text{gas content}_{\text{dark shale}} \text{ (cm}^3/\text{gram})] \]

A unique solution for gas content$_{\text{coal}}$ in this equation is not possible because gas content$_{\text{dark shale}}$ is not known exactly. An answer can only be expressed as a linear solution to the above equation. The richer in gas the dark shales are, the poorer in gas the admixed coal has to be, and vice versa. If there is little dark shale in a sample, a relatively well constrained answer for gas content$_{\text{coal}}$ can be obtained. Conversely, if considerable dark shale is in a sample, the gas content of a coal will be hard to precisely determine.

The lithologic-component-sensitivity-analysis diagram therefore expresses the bivariant nature inherent in the determination of gas content in mixed cuttings. The gas content of dark shales in Kansas can vary greatly. Proprietary desorption analyses of dark shales in cores from southeastern Kansas have registered as much as 50 scf/ton, but can be as low as 2-4 scf/ton.

A value of 3 scf/ton for average dark shale is based on the assay of the gas content of cores of dark shales with normal gamma-ray readings in Kansas wells. However, high-gamma-ray shales (such as the Excello Shale), also colloquially known as "hot shales", typically have more organic matter and associated gas content than dark shales with no excessive gamma-ray level. Determination of gas content for a coal associated with a "hot" shale therefore carries more uncertainty than if the coal were associated with a shale without a high gamma-ray value. For example, the Mulky coal is associated with a "hot shale" (Excello Shale).

In general, shale gas content does not have to be very much greater that 10 scf/ton before the associated coal starts to have a gas content less than that of the dark shale. In all the lithologic-component-sensitivity-analysis diagrams, a "break-even" point is therefore noted where the gas content of the coal is equal to that of the dark shale. This "break-even" point corresponds to the minimum gas content assignable to the coal and maximum gas content assignable to the dark shale. It can also be thought of the scf/ton gas content of the cuttings sample minus the weight of any of the lighter-colored lithologies, which are assumed to have no inherent gas content. Conversely, to assume that all the gas
evolved from a cuttings sample is derived solely from the coal would result in an erroneously high gas content for the coal.

Summary Component Analysis for all Samples (Figure 13)

This diagram is a summary of the individual "lithologic component sensitivity analyses" for each sample, all set at a common scale. The steeper the angle of the line for a sample, the more uncertainty is attached to the results (i.e., gas content,coal) for that sample. If the coal content is miniscule (i.e., < approximately 5%), the results are a better reflection of the gas content,dark shale.

Desorption Graph (Figure 14)

This is a desorption graph (gas content per weight vs. square root of time) for all the samples. The rate at which gas is evolved from the samples is thus comparable at a common scale. The final value represents the standard cubic feet of gas per ton (scf/ton) calculated for the sample, using the combined weight of the coal and dark shale in the sample.

RESULTS and DISCUSSION

One sample (Hushpuckney Shale at 417.0' to 420.0' depth) contained no coal. The gas analyses associated with these samples is therefore a gas content for shale.

The Mulky coal (902'-903' depth) and Croweburg coal (972'-973' depth) samples registered exceptionally high gas contents (respectively 2617 scf/ton and 1249 scf/ton, assuming accompanying black shales desorbed 3 scf/ton). These sample were dominated by very dark to black shales (N1, N2) that display a high gamma-ray values on wireline logs. These shales likely have a high gas content, perhaps close to that of the average gas content for the entire sample (i.e., 35 to 40 scf/ton).

The best constrained data are associated with the Bevier sample (845.3' to 846.2' depth), which contained 31% coal. This sample is followed closely by the Tebo coal (860.5' to 861.3' depth) and "upper Tebo" coal (1035' to 1036' depth), which, respectively, have 40% and 32% coal. The Riverton coal (1128.0' to 1130.0' depth), with 17% coal, also has acceptably constrained data, but the calculated gas content for the coal in this samples varies more with whatever value is assumed for the accompanying black shales. The subsidiary amount of coal in this sample imparts some uncertainty to the desorption measurements, but an approximation of its gas content is nevertheless obtained. An estimate for gas content for the coal in this sample can be made, assuming the admixed dark shale in the sample desorb 3 scf/ton.

A leak is suspected in the canister containing the Mulky coal (760.0' to 761.5' depth), thus any data collected for this sample is considered invalid. The peculiar lost-gas response, the overall low gas content (for a normally gas-rich zone), and a lack of variation in the quantity of gas emitted by the canister in response to day-to-day barometric and temperature changes all indicate a slight leak in the desorption canister.
REFERENCES

FIGURES and TABLES

TABLE 1. Desorption measurements for samples.

FIGURE 1. Lost-gas graph for Hushpuckney Shale at 417.0' to 420.0' depth.
FIGURE 2. Lost-gas graph for Mulky coal at 760.0' to 761.5' depth.
FIGURE 3. Lost-gas graph for Bevier coal at 845.3' to 846.2' depth.
FIGURE 4. Lost-gas graph for Croweburg coal at 860.5' to 861.3' depth.
FIGURE 5. Lost-gas graph for Tebo coal at 932.0' to 933.0' depth.
FIGURE 6. Lost-gas graph for Riverton coal at 1128.0' to 1130.0' depth.

FIGURE 7. Sensitivity analysis for Hushpuckney Shale at 417.0' to 420.0' depth.
FIGURE 8. Sensitivity analysis for Mulky coal at 760.0' to 761.5' depth.
FIGURE 9. Sensitivity analysis for Bevier coal at 845.3' to 846.2' depth.
FIGURE 10. Sensitivity analysis for Croweburg coal at 860.5' to 861.3' depth.
FIGURE 11. Sensitivity analysis for Tebo coal at 932.0' to 933.0' depth.
FIGURE 12. Sensitivity analysis for Riverton coal at 1128.0' to 1130.0' depth.

FIGURE 13. Lithologic component sensitivity analyses for all samples.

FIGURE 14. Desorption graph for all samples.
<table>
<thead>
<tr>
<th>Sample</th>
<th>417 to 420 (Kubchuck shale) cuttings in canister ST1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry sample weight:</td>
<td>2.714 lb 123.60 g</td>
</tr>
<tr>
<td>Rig Ab Measurements</td>
<td></td>
</tr>
<tr>
<td>Measured [F]</td>
<td>Measured T (F)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>76</td>
<td>1083</td>
</tr>
</tbody>
</table>

Notes:
- **Desorption Terminated 4/9/2004 Due to No More Gas Being Collected.**
- Sample air dried for 21 days.

<table>
<thead>
<tr>
<th>Sample</th>
<th>760 to 761.5 (Muddy shale) cuttings in canister ST4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry sample weight:</td>
<td>0.370 lb 167.30 g</td>
</tr>
<tr>
<td>Rig Ab Measurements</td>
<td></td>
</tr>
<tr>
<td>Measured [F]</td>
<td>Measured T (F)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>75</td>
<td>1087</td>
</tr>
</tbody>
</table>

Notes:
- **Desorption Terminated 4/9/2004 Due to No More Gas Being Collected.**
- Sample air dried for 21 days.

<table>
<thead>
<tr>
<th>Sample</th>
<th>545.3 to 45.52 (Bever shale) cuttings in canister W1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry sample weight:</td>
<td>0.279 lb 125.98 g</td>
</tr>
<tr>
<td>Rig Ab Measurements</td>
<td></td>
</tr>
<tr>
<td>Measured [F]</td>
<td>Measured T (F)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>72</td>
<td>1087</td>
</tr>
</tbody>
</table>

Notes:
- **Desorption Terminated 4/9/2004 Due to No More Gas Being Collected.**
- Sample air dried for 21 days.
<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Pressure (psia)</th>
<th>Volume (cubic ft)</th>
<th>Cumulative Volume (cubic ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>25</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td>0.77</td>
<td>1.32</td>
</tr>
<tr>
<td>30</td>
<td>35</td>
<td>1.05</td>
<td>2.37</td>
</tr>
<tr>
<td>45</td>
<td>40</td>
<td>1.38</td>
<td>3.75</td>
</tr>
<tr>
<td>60</td>
<td>45</td>
<td>1.73</td>
<td>5.48</td>
</tr>
<tr>
<td>75</td>
<td>50</td>
<td>2.14</td>
<td>7.62</td>
</tr>
<tr>
<td>90</td>
<td>55</td>
<td>2.57</td>
<td>10.19</td>
</tr>
<tr>
<td>105</td>
<td>60</td>
<td>3.04</td>
<td>13.23</td>
</tr>
<tr>
<td>120</td>
<td>65</td>
<td>3.54</td>
<td>16.77</td>
</tr>
</tbody>
</table>

Notes:
- The data was collected for 21 days.
- DESORPTION TERMINATED on 4/14/2004 due to no more gas being evolved; sampled air dried for 21 days.
Table 1: Measured and Calculated Data

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Temperature (°F)</th>
<th>Pressure (psig)</th>
<th>Volume (cc)</th>
<th>Mass (lbm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>120</td>
<td>14.7</td>
<td>3</td>
<td>1.0</td>
</tr>
<tr>
<td>30</td>
<td>120</td>
<td>14.7</td>
<td>3</td>
<td>1.0</td>
</tr>
<tr>
<td>60</td>
<td>120</td>
<td>14.7</td>
<td>3</td>
<td>1.0</td>
</tr>
<tr>
<td>90</td>
<td>120</td>
<td>14.7</td>
<td>3</td>
<td>1.0</td>
</tr>
<tr>
<td>120</td>
<td>120</td>
<td>14.7</td>
<td>3</td>
<td>1.0</td>
</tr>
<tr>
<td>150</td>
<td>120</td>
<td>14.7</td>
<td>3</td>
<td>1.0</td>
</tr>
<tr>
<td>180</td>
<td>120</td>
<td>14.7</td>
<td>3</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 2: Calculated Data

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Temperature (°F)</th>
<th>Pressure (psig)</th>
<th>Volume (cc)</th>
<th>Mass (lbm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>120</td>
<td>14.7</td>
<td>3</td>
<td>1.0</td>
</tr>
<tr>
<td>30</td>
<td>120</td>
<td>14.7</td>
<td>3</td>
<td>1.0</td>
</tr>
<tr>
<td>60</td>
<td>120</td>
<td>14.7</td>
<td>3</td>
<td>1.0</td>
</tr>
<tr>
<td>90</td>
<td>120</td>
<td>14.7</td>
<td>3</td>
<td>1.0</td>
</tr>
<tr>
<td>120</td>
<td>120</td>
<td>14.7</td>
<td>3</td>
<td>1.0</td>
</tr>
<tr>
<td>150</td>
<td>120</td>
<td>14.7</td>
<td>3</td>
<td>1.0</td>
</tr>
<tr>
<td>180</td>
<td>120</td>
<td>14.7</td>
<td>3</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Notes
- The data is collected at intervals of 30 minutes.
- The temperature is maintained at 120 °F.
- The pressure is maintained at 14.7 psig.
- The volume and mass are calculated based on the initial conditions.

Desorption Terminated due to No More Gas Being Evolved:

Sample air dried for 14 days.
<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

DESORPTION TERMINATED 4/22/04 DUE TO NO MORE GAS BEING EVOLVED; sampled air dried for 14 days.
417' to 420' (Hushpuckney Shale) cuttings in canister ST1
Evergreen #41-32 Short; NE NE 32-T.18S.-R.20E.; Franklin County, KS

FIGURE 1.
760' to 761.5' (Mulky coal) cuttings in canister ST4
Evergreen #41-32 Short; NE NE 32-T.18S.-R.20E.; Franklin County, KS

Elaborated

elapsed time (off-bottom to canister)
= 0.689
= \sqrt{0.475 \text{ hrs.}}
= 28.5 \text{ min.}

elapsed time (off-bottom to surface)
= 0.354
= \sqrt{0.125 \text{ hrs.}}
= 7.5 \text{ min.}

Figure 2.
845.3' to 846.2' (Bevier coal) cuttings in canister W1
Evergreen #41-32 Short; NE NE 32-T.18S.-R.20E.; Franklin County, KS

Elapsed time (off-bottom to canister)
- 0.570
- \(\sqrt{0.325}\) hrs.
- 19.5 min.

Elapsed time (off-bottom to surface)
- 0.376
- \(\sqrt{0.142}\) hrs.
- 8.5 min.

7 cc estimated lost gas

FIGURE 3.
860.5' to 861.3' (V-shale/Croweburg coal) cuttings in canister W2
Evergreen #41-32 Short; NE NE 32-T.18S.-R.20E.; Franklin County, KS

Elapsed time (off-bottom to canister) = 0.559
= SQRT(0.313 hrs.)
= 18.8 min.

Elapsed time (off-bottom to surface) = 0.376
= SQRT(0.142 hrs.)
= 8.5 min.

FIGURE 4.
932' to 933' (Tebo coal) cuttings in canister W3
Evergreen #41-32 Short; NE NE 32-T.18S.-R.20E.; Franklin County, KS

Elapsed time (off-bottom to canister) = 0.591
= \sqrt{0.358 \text{ hrs.}}
= 21.5 \text{ min.}

Elapsed time (off-bottom to surface) = 0.398
= \sqrt{0.158 \text{ hrs.}}
= 9.5 \text{ min.}

18cc estimated lost gas
1128' to 1130' (Riverton coal) cuttings in canister W4
Evergreen #41-32 Short; NE NE 32-T.18S.-R.20E.; Franklin County, KS

Elapsed time (off-bottom to canister) = \sqrt{0.296 \text{ hrs.}} = 17.8 \text{ min.}

Elapsed time (off-bottom to surface) = \sqrt{0.188 \text{ hrs.}} = 11.3 \text{ min.}

20 cc estimated lost gas

FIGURE 6.
Desorption Characteristics of Cuttings Samples
Evergreen #41-32 Short; NE NE 32-T.18S.-R.20E.; Franklin County, KS

LITHOLOGIC COMPONENT SENSITIVITY ANALYSIS for calculation of gas content of Hushpuckney Shale from 417'-420'

\[\text{GAS CONTENT}_{\text{coal}} = \frac{\text{total gas desorbed} - ((\text{gas content}_{\text{dark shale}}) \cdot (\text{weight}_{\text{dark shale}}))}{\text{weight}_{\text{coal}}} \]

total gas desorbed = 37.2 ccs

TOTAL DRY WEIGHT OF SAMPLE = 514.79 grams
- weight_{light-colored lithologies} = 391.70 grams (76.1%)
- weight_{dark shale} = 123.09 grams (23.9%)
- weight_{coal} = 0.00 grams (0.0%)

<table>
<thead>
<tr>
<th>sieve size</th>
<th>grams</th>
<th>% coal</th>
<th>% dark shale</th>
<th>% light-colored liths</th>
</tr>
</thead>
<tbody>
<tr>
<td>>0.0930"</td>
<td>241.33</td>
<td>0.00%</td>
<td>27.71%</td>
<td>72.29%</td>
</tr>
<tr>
<td>>0.0661"</td>
<td>124.90</td>
<td>0.00%</td>
<td>20.98%</td>
<td>79.02%</td>
</tr>
<tr>
<td>>0.0460"</td>
<td>81.60</td>
<td>0.00%</td>
<td>21.26%</td>
<td>78.74%</td>
</tr>
<tr>
<td>>0.0331"</td>
<td>34.32</td>
<td>0.00%</td>
<td>22.94%</td>
<td>77.06%</td>
</tr>
<tr>
<td><0.0331"</td>
<td>32.44</td>
<td>0.00%</td>
<td>14.63%</td>
<td>85.37%</td>
</tr>
</tbody>
</table>

514.79 TOTAL

FIGURE 7.
Desorption Characteristics of Cuttings Samples
Evergreen #41-32 Short; NE NE 32-T.18S.-R.20E.; Franklin County, KS

LITHOLOGIC COMPONENT SENSITIVITY ANALYSIS for calculation of gas content of Mulky coal from 760.0'-761.5'

\[
\text{GAS CONTENT}_{\text{coal}} = \frac{\text{total gas desorbed} - ((\text{gas content}_{\text{dark shale}}) \times (\text{weight}_{\text{dark shale}}))}{\text{weight}_{\text{coal}}}
\]

Total gas desorbed (including estimated lost gas) = 24.7 ccs

TOTAL DRY WEIGHT OF SAMPLE = 391.22 grams

- **weight**_{light-colored lithologies} = 223.36 grams (57.1%)
- **weight**_{dark shale} = 130.16 grams (33.3%)
- **weight**_{coal} = 37.70 grams (9.6%)

<table>
<thead>
<tr>
<th>sieve size</th>
<th>grams</th>
<th>% coal</th>
<th>% dark shale</th>
<th>% light-colored liths</th>
</tr>
</thead>
<tbody>
<tr>
<td>>0.0930"</td>
<td>240.54</td>
<td>12.42%</td>
<td>33.96%</td>
<td>53.62%</td>
</tr>
<tr>
<td>>0.0661"</td>
<td>66.37</td>
<td>3.95%</td>
<td>32.06%</td>
<td>64.00%</td>
</tr>
<tr>
<td>>0.0460"</td>
<td>43.42</td>
<td>3.66%</td>
<td>32.33%</td>
<td>64.10%</td>
</tr>
<tr>
<td>>0.0331"</td>
<td>22.31</td>
<td>4.29%</td>
<td>35.36%</td>
<td>60.36%</td>
</tr>
<tr>
<td><0.0331"</td>
<td>18.58</td>
<td>14.29%</td>
<td>28.57%</td>
<td>57.14%</td>
</tr>
</tbody>
</table>

391.22 TOTAL

FIGURE 8.
Desorption Characteristics of Cuttings Samples
Evergreen #41-32 Short; NE NE 32-T.18S.-R.20E.; Franklin County, KS

LITHOLOGIC COMPONENT SENSITIVITY ANALYSIS for calculation of gas content of Bevier coal from 845.3'-846.2'

\[
\text{GAS CONTENT}_{\text{coal}} = \frac{\text{total gas desorbed} - ((\text{gas content}_{\text{dark shale}}) \ast (\text{weight}_{\text{dark shale}}))}{\text{weight}_{\text{coal}}}
\]

total gas desorbed (including estimated lost gas) = 46.6 ccs

TOTAL DRY WEIGHT OF SAMPLE = 318.18 grams

\[
\begin{array}{l}
\text{weight}_{\text{light-colored lithologies}} = 191.20 \text{ grams (60.1\%)} \\
\text{weight}_{\text{dark shale}} = 29.34 \text{ grams (9.2\%)} \\
\text{weight}_{\text{coal}} = 97.64 \text{ grams (30.7\%)}
\end{array}
\]

\begin{tabular}{|c|c|c|c|c|c|}
\hline
\text{sieve size} & \text{grams} & \% coal & \% dark shale & \% light-colored liths \\
\hline
>0.0930" & 58.44 & 93.44\% & 1.31\% & 5.25\% \\
>0.0661" & 34.91 & 67.04\% & 5.97\% & 26.99\% \\
>0.0460" & 56.98 & 18.67\% & 12.86\% & 66.46\% \\
>0.0331" & 74.66 & 7.34\% & 9.17\% & 83.49\% \\
<0.0331" & 93.19 & 3.77\% & 13.21\% & 83.02\% \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline
\text{318.18 TOTAL} & \\
\hline
\end{tabular}

\[
\begin{array}{l}
\text{coal N (scf/ton) (scf/ton)} \\
0 & 15.3 \\
1 & 15.0 \\
2 & 14.4 \\
3 & 13.8 \\
4 & 13.2 \\
5 & 12.6 \\
6 & 12.0 \\
7 & 11.6 \\
8 & 11.6 \\
9 & 11.6 \\
\hline
\end{array}
\]

Equation solutions

FIGURE 9.
Desorption Characteristics of Cuttings Samples
Evergreen #41-32 Short; NE NE 32-T.18S.-R.20E.; Franklin County, KS

LITHOLOGIC COMPONENT SENSITIVITY ANALYSIS for calculation of gas content of Croweburg coal from 860.5'-861.3'

\[
\text{GAS CONTENT}_{\text{coal}} = \frac{\text{total gas desorbed} - (\text{gas content}_{\text{dark shale}} \times \text{weight}_{\text{dark shale}})}{\text{weight}_{\text{coal}}}
\]

Total gas desorbed (including estimated lost gas) = 131.0 ccs

TOTAL DRY WEIGHT OF SAMPLE = 432.37 grams
- \text{weight}_{\text{light-colored lithologies}} = 123.31 grams (28.5%)
- \text{weight}_{\text{dark shale}} = 171.67 grams (39.7%)
- \text{weight}_{\text{coal}} = 137.39 grams (31.8%)

<table>
<thead>
<tr>
<th>sieve size</th>
<th>grams</th>
<th>% coal / % dark shale / % light-colored liths</th>
</tr>
</thead>
<tbody>
<tr>
<td>>0.0930"</td>
<td>124.15</td>
<td>47.32% / 19.80% / 32.88%</td>
</tr>
<tr>
<td>>0.0661"</td>
<td>107.28</td>
<td>43.93% / 34.25% / 21.82%</td>
</tr>
<tr>
<td>>0.0460"</td>
<td>113.47</td>
<td>20.38% / 58.77% / 20.85%</td>
</tr>
<tr>
<td>>0.0331"</td>
<td>51.86</td>
<td>7.80% / 62.41% / 29.79%</td>
</tr>
<tr>
<td><0.0331"</td>
<td>35.61</td>
<td>12.20% / 31.71% / 56.10%</td>
</tr>
</tbody>
</table>

432.37 TOTAL

FIGURE 10.
Desorption Characteristics of Cuttings Samples
Evergreen #41-32 Short; NE NE 32-T.18S.-R.20E.; Franklin County, KS

LITHOLOGIC COMPONENT SENSITIVITY ANALYSIS for calculation of gas content of Tebo coal from 932'-933'

\[\text{GAS CONTENT}_{\text{coal}} = \frac{\text{total gas desorbed} - ((\text{gas content}_{\text{dark shale}}) \times (\text{weight}_{\text{dark shale}}))}{\text{weight}_{\text{coal}}} \]

\[\text{total gas desorbed (including estimated lost gas)} = 127.8 \text{ ccs} \]

\[\text{TOTAL DRY WEIGHT OF SAMPLE} = 385.90 \text{ grams} \]
\[\text{weight}_{\text{light-colored lithologies}} = 65.21 \text{ grams (16.9\%)} \]
\[\text{weight}_{\text{dark shale}} = 165.70 \text{ grams (42.9\%)} \]
\[\text{weight}_{\text{coal}} = 154.99 \text{ grams (40.2\%)} \]

\[\begin{array}{ccc}
\text{sieve size} & \text{grams} & \% \text{coal} / \% \text{dark shale} / \% \text{light-colored liths} \\
>0.0930'' & 21.87 & 62.03\% / 34.04\% / 2.84\% \\
>0.0661'' & 49.25 & 73.27\% / 20.44\% / 6.29\% \\
>0.0460'' & 94.07 & 60.11\% / 30.05\% / 9.84\% \\
>0.0331'' & 94.98 & 33.07\% / 48.03\% / 18.90\% \\
<0.0331'' & 125.73 & 13.64\% / 59.09\% / 27.27\% \\
\end{array} \]

\[\begin{array}{c}
\text{TOTAL} & 385.90 \text{ TOTAL} \\
\end{array} \]

\[\begin{array}{c}
\text{Equation solutions} \\
\text{dark shale} & \text{coal} & \text{(scf/ton)} & \text{(scf/ton)} \\
0 & 26.4 & \\
1 & 26.3 & \\
2 & 23.2 & \\
5 & 21.1 & \\
7 & 18.9 & \\
9 & 16.8 & \\
11 & 14.7 & \\
12.8 & 12.8 & \\
\end{array} \]

FIGURE 11.
Desorption Characteristics of Cuttings Samples
Evergreen #41-32 Short; NE NE 32-T.18S.-R.20E.; Franklin County, KS

LITHOLOGIC COMPONENT SENSITIVITY ANALYSIS for calculation of gas content of Riverton coal from 1128'-1130'

GAS CONTENT_{coal} =
\frac{\text{total gas desorbed} - ((\text{gas content}_{\text{dark shale}}) \times (\text{weight}_{\text{dark shale}}))}{\text{weight}_{\text{coal}}}

\text{total gas desorbed (including estimated lost gas)} = 179.2 \text{ ccs}

\text{TOTAL DRY WEIGHT OF SAMPLE} = 517.75 \text{ grams}
\text{weight}_{\text{light-colored lithologies}} = 115.98 \text{ grams (22.4%)}
\text{weight}_{\text{dark shale}} = 313.29 \text{ grams (60.5%)}
\text{weight}_{\text{coal}} = 88.48 \text{ grams (17.1%)}

\text{Equation solutions}
\begin{align*}
\text{dark shale} & \quad \text{coal} \\
0 & \quad 64.9 \\
1 & \quad 61.4 \\
3 & \quad 54.3 \\
5 & \quad 47.2 \\
7 & \quad 40.1 \\
10 & \quad 29.5 \\
12 & \quad 22.4 \\
14.3 & \quad 14.3
\end{align*}

\text{FIGURE 12.}
Desorption Characteristics of Cuttings Samples
Evergreen #41-32 Short; NE NE 32-T.18S.-R.20E.; Franklin County, KS

LITHOLOGIC COMPONENT SENSITIVITY ANALYSIS for all samples

<table>
<thead>
<tr>
<th>surface</th>
<th>UNIT</th>
<th>coal in sample</th>
<th>scf/ton w/ shale @ 3 scf/ton</th>
<th>maximum scf/ton</th>
<th>minimum scf/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>100'</td>
<td>Hushpuckney Sh. 0%</td>
<td>....</td>
<td>....</td>
<td>9.8</td>
<td>4.7</td>
</tr>
<tr>
<td>200'</td>
<td>Mulky 10%</td>
<td>10.6</td>
<td>21.0</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bevier 31%</td>
<td>14.4</td>
<td>15.3</td>
<td>11.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Croweburg 32%</td>
<td>26.8</td>
<td>30.6</td>
<td>13.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tebo 40%</td>
<td>23.2</td>
<td>26.4</td>
<td>12.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riverton 17%</td>
<td>64.3</td>
<td>64.9</td>
<td>14.3</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 13.
Desorption Characteristics of Cuttings Samples

based on total weight of gas-generating lithologies (i.e., coal and dark shale) in sample

Evergreen #41-32 Short; NE NE 32-T.18S.-R.20E.; Franklin County, KS

FIGURE 14.