ANALYSIS OF MARMATON AND CHEROKEE GROUP CUTTINGS SAMPLES FOR GAS CONTENT -- DART CHEROKEE BASIN OPERATING COMPANY #CH-1 HOLDER; SE NE sec. 1-T.30S.-R.14E.; WILSON COUNTY, KANSAS

By K. David Newell, Troy A. Johnson, and W. Matthew Brown

Kansas Geological Survey The University of Kansas 1930 Constant Avenue Lawrence, KS 66047-3726

OCTOBER 30, 2003 (to be held proprietary to August 9, 2005)

Disclaimer

The Kansas Geological Survey does not guarantee this document to be free from errors or inaccuracies and disclaims any responsibility or liability for interpretations based on data used in the production of this document or decisions based thereon. This report is intended to make results of research available at the earliest possible date, but it is not intended to constitute final or formal publication.

Kansas Geological Survey Open-file Report no. 2005-44

SUMMARY

Four cuttings samples from the Pennsylvanian Marmaton Group and Cherokee Group were collected from the Dart Cherokee Basin #CH-1 Holder; SE NE sec. 1-T.30S.-R.14E. in Wilson County, KS. One sample (Little Osage Shale) did not have any coal present. The samples calculate as having the following gas contents:

Mulberry coal at 718' to 720' depth¹ (149.2 scf/ton)
Little Osage Shale at 808' to 810' depth² (18.4 scf/ton)
Mulky coal/Excello Shale at 820' to 824' depth³ (70.7 scf/ton)

• Weir-Pittsburg coal at 1012' to 1014' depth (251.4 scf/ton)

²no coal in sample ³reliability of result is unclear due to small amount of coal in the sample; desorption value should be considered a minimum value for the Mulky coal and a maximum value for the accompanying dark shale

BACKGROUND

The Dart Cherokee Basin #CH-1 Holder well (SE NE sec. 1-T.30S.-R.14E.) in Wilson County, KS was selected for cuttings desorption tests in association with an on-going coalbed gas research project at the Kansas Geological Survey. The samples were gathered August 9, 2003 by K.D. Newell, T.A. Johnson, and W.M. Brown of the Kansas Geological Survey. Samples were obtained during normal drilling of the well, with no cessation of drilling before zones of interest (i.e., coals and dark shales in the Marmaton Group and Cherokee Group) were penetrated. The well was drilled using an air rotary rig owned by McPherson Drilling.

Lag times for samples to reach the surface (important for assessing lost gas) were determined by periodically noting the time it took for cuttings to reach the surface following resumption of drilling after new pipe was added to the drill string.

Four cuttings samples from the Pennsylvanian Marmaton and Cherokee Groups were collected:

Mulberry coal at 718' to 720' depth (1899 grams dry wt.)
Little Osage Shale at 808' to 810' depth (1936 grams dry wt.)
Mulky coal/Excello Shale at 820' to 824' depth (1609 grams dry wt.)
Weir-Pittsburg coal at 1012' to 1014' depth (1806 grams dry wt.)

The cuttings were caught in kitchen strainers as they exited the air-stream pipe emptying to the mud pit. The samples were then washed in water while in the kitchen strainers to rid them of as much drilling mud drilling mud as possible before the cuttings were placed in desorption canisters. Temperature baths for the desorption canisters were on site, with temperature kept at approximately 75 °F for the Mulky/Excello sample and shallower samples, and 80 °F for the Weir-Pittsburg sample. The canistered samples were later that

assuming accompanying dark shales in sample desorb 3 scf/ton

day transported to the laboratory at the Kansas Geological Survey in Lawrence, KS and desorption measurements were continued at approximately these respective temperatures. Desorption measurements were periodically made until the canisters produced negligible gas with daily testing for at least two successive days.

DESORPTION MEASUREMENTS

The equipment and method for measuring desorption gas is that prescribed by McLennan and others (1995). The volumetric displacement apparatus is a set of connected dispensing burettes, one of which measures the gas evolved from the desorption canister. The other burette compensates for the compression that occurs when the desorbed gas displaces the water in the measuring burette. This compensation is performed by adjusting the cylinders so that their water levels are identical, then figuring the amount of gas that evolved by reading the difference in water level using the volumetric scale on the side of the burette.

The desorption canisters were made in-house at the Kansas Geological Survey. On average, the canisters were approximately 15 inches long (38.1 cm), 3 inches (7.6 cm) in diameter, and enclosed a volume of approximately 106 cubic inches (1740 cm³).

The desorbed gas that collected in the desorption canisters was periodically released into the volumetric displacement apparatus and measured as a function of time, temperature and atmospheric pressure.

The time and atmospheric pressure were measured in the field using a portable weather station (model BA928) marketed by Oregon Scientific (Tualatin, OR). The atmospheric pressure was displayed in millibars on this instrument, however, this measurement was not the actual barometric pressure, but rather an altitude-compensated barometric pressure automatically converted to a sea-level-equivalent pressure. In order to translate this measurement to actual atmospheric pressure, a regression correlation was determined over several weeks by comparing readings from the Oregon Scientific instrument to that from a pressure transducer in the Petrophysics Laboratory in the Kansas Geological Survey in Lawrence, Kansas (Figure 1). The regression equation shown graphically in Figure 1 was entered into a spreadsheet and was used to automatically convert the millibar measurement to barometric pressure in pounds per square inch (psi).

A spreadsheet program written by K.D. Newell (Kansas Geological Survey) was used to convert all gas volumes at standard temperature and pressure. Conversion of gas volumes to standard temperature and pressure was by application of the perfect-gas equation, obtainable from basic college chemistry texts:

n = PV/RT

where n is moles of gas, T is degrees Kelvin (i.e., absolute temperature), V is in liters, and R is the universal gas constant, which has a numerical value depending on the units

in which it is measured (for example, in the metric system R = 0.0820 liter atmosphere per degree mole). The number of moles of gas (i.e., the value n) is constant in a volumetric conversion, therefore the conversion equation, derived from the ideal gas equation, is:

$$(P_{stp}V_{stp})/(RT_{stp}) = (P_{rig}V_{rig})/(RT_{rig})$$

Customarily, standard temperature and pressure for gas volumetric measurements in the oil industry are 60 °F and 14.7 psi (see Dake, 1978, p. 13), therefore P_{stp} , V_{stp} , and T_{stp} , respectively, are pressure, volume and temperature at standard temperature and pressure, where standard temperature is degrees Rankine (°R = 460 + °F). P_{rig} , V_{rig} , and T_{rig} , respectively, are ambient pressure, volume and temperature measurements taken at the rig site or in the desorption laboratory.

The universal gas constant R drops out as this equation is simplified and the determination of V_{stp} becomes:

$$V_{stp} = (T_{stp}/T_{rig}) (P_{rig}/P_{stp}) V_{rig}$$

The conversion calculations in the spreadsheet were carried out in the English metric system, as this is the customary measure system used in American coal and oil industry. V is therefore converted to cubic feet; P is psia; T is *R.

The desorbed gas was summed over the time period for which the coal samples evolved all of their gas. In the case of well cuttings from Dart Cherokee Basin #CH-1 Holder well, the maximum time of desorption was 58 days.

Lost gas (i.e., the gas lost from the sample from the time it was drilled, brought to the surface, to the time it was canistered) was determined using the direct method (Kissel and others, 1975; also see McLennan and others, 1995, p. 6.1-6.14) in which the cumulative gas evolved is plotted against the square root of elapsed time. Time zero is assumed to be the moment that the rock is cut and its cuttings circulated off bottom. Characteristically, the cumulative gas evolved from the sample, when plotted against the square root of time, is linear for a short time period after the sample reaches ambient surface pressure conditions, therefore lost gas is determined by a line projected back to time zero. The period of linearity generally is about an hour for cuttings samples.

LITHOLOGIC ANALYSIS

Upon removal from the canisters, the cuttings were washed of drilling mud, and dried in an oven at 150 °F for 1 to 3 days. After drying, the cuttings were weighed and then dry sieved into 5 size fractions: >0.0930", >0.0661", >0.0460", >0.0331", and <0.0331". For large sample sizes, the cuttings were ran through a sample splitter and a lesser portion (approximately 75 grams) were sieved and weighed, and the derived size-fraction ratios were applied to the entire sample.

The size fractions were then inspected and sorted by hand under a dissecting microscope. Three major lithologic categories were differentiated: coal, dark shales (generally Munsell rock colors N3 (dark gray), N2 (grayish black), and N1 (black) on dry surface), and lighter-colored lithologies and/or dark and light-colored carbonates. The lighter-colored lithologies are considered to be incapable of generating significant amounts of gas. After sorting, and for every size class, each of these three lithologic categories was weighed and the proportion of coal dark shale and light-colored lithologies were determined for the entire cuttings sample based on the weight percentages.

DATA PRESENTATION

Data and analyses accompanying this report are presented in the following order: 1) lag time to surface for the well cuttings, 2) data tables for the desorption analyses, 3) lost-gas graphs, 4) "lithologic component sensitivity analyses" showing the interdependence of gas evolved from dark shale versus coal in each sample, 5) a summary component analysis for all samples showing relative reliability of the data from all the samples, and 6) a desorption graph for all the samples.

Graph of Lag-time to Surface for Well Cuttings (Figure 2)

Lag time of cuttings to surface varied, but there is a general trend of longer lag times for greater depth. The lag times accepted for cuttings were taken to be a visual average of the trend (defined by the scatter of data points on this graph) at the depth at which the samples were taken.

Data Tables of the Desorption Analyses (Table 1)

These are the basic data used for lost-gas analysis and determination of total gas desorbed from the cuttings samples. Basic temperature, volume, and barometric measurements are listed at left. Farther to the right, these are converted to standard temperature, pressure and volumes. The volumes are cumulatively summed, and converted to scf/ton based on the total weight of coal *and* dark shale in the sample. At the right of the table, the time of the measurements are listed and converted to hours (and square root of hours) since the sample was drilled.

Lost-Gas Graphs (Figures 3-6)

Gas lost prior to the canistering of the sample was estimated by extrapolation of the first few data points after the sample was canistered. The linear characteristic of the initial desorption measurements is usually lost within the first hour after the cuttings leave the bottom of the hole, thus data are presented in the lost-gas graphs for only up to one hour after cuttings are off bottom. Lost-gas volumes derived from this analysis are incorporated in the data tables described above.

"Lithologic Component Sensitivity Analyses" (Figures 7-10)

The rapidity of penetration of an air-drilled well makes collection of pure lithologies from relatively thin-bedded strata rather difficult. Mixed lithologies are more the norm

rather than the exception. Some of this mixing is due to cavings from strata farther up hole. The mixing may also be due to collection of two or more successively drilled lithologies in the kitchen sieve at the exit line, or differential lifting of relatively less-dense coal compared to other lithologies, all of which are more dense than coal.

The total gas evolved from the sample is due to gas being desorbed from both the coal and dark shale. Both lithologies are capable of generating gas, albeit the coal will be richer in gas than the dark-colored shale. Even though dark-colored shale is less rich in sorbed gas than coal, if a sample has a large proportion of dark, organic-rich shale and only a minor amount of coal, the total volume of gas evolved from the dark-shale component may be considerable. The lighter-colored lithologies are considered to be incapable of generating significant amounts of gas.

The total amount of gas evolved from a cuttings sample can be expressed by the following equation:

A unique solution for gas content_{coal} in this equation is not possible because gas content_{dark shale} is not known exactly. An answer can only be expressed as a linear solution to the above equation. The richer in gas the dark shales are, the poorer in gas the admixed coal has to be, and visa versa. If there is little dark shale in a sample, a relatively well constrained answer for gas content_{coal} can be obtained. Conversely, if considerable dark shale is in a sample, the gas content of a coal will be hard to precisely determine.

The lithologic-component-sensitivity-analysis diagram therefore expresses the bivariant nature inherent in the determination of gas content in mixed cuttings. The gas content of dark shales in Kansas can vary greatly. Proprietary desorption analyses of dark shales in cores from southeastern Kansas have registered as much as 50 scf/ton, but can be as low as 2-4 scf/ton. For a general understanding of the lithologic-component-sensitivity-analyses diagrams, the calculated gas content_{coal} is given for assumed gas content_{dark shale} at 30 scf/ton and 50 scf/ton. For most samples gathered in east-central and northeastern Kansas, the resultant gas content_{coal} is a negative number for 30 scf/ton and 50 scf/ton gas content_{dark shale}. The only conclusion is that the gas content_{dark shale} or most samples taken from this region has to be lower than 30-50 scf/ton. Conversely though, to assume that all the gas evolved from a cuttings sample is derived solely from the coal would result in an erroneously high gas content for the coal.

In all the lithologic-component-sensitivity-analysis diagrams, a "break-even" point is noted where the gas content of the coal is equal to that of the dark shale. This "break-even" point corresponds to the minimum gas content assignable to the coal and maximum gas content assignable to the dark shale. It can also be thought of the scf/ton gas content of the cuttings sample minus the weight of any of the lighter-colored lithologies, which are assumed to have no inherent gas content.

Summary Component Analysis for all Samples (Figure 11)

This diagram is a summary of the individual "lithologic component sensitivity analyses" for each sample, all set at a common scale. The steeper the angle of the line for a sample, the more uncertainty is attached to the results (i.e., gas content_{coal}) for that sample. If the coal content is miniscule (i.e., < approximately 5%), the results are a better reflection of the gas content_{dark shale}.

Desorption Graph (Figure 12)

This is a desorption graph (gas content per weight vs. square root of time) for all the samples. The rate at which gas is evolved from the samples is thus comparable at a common scale. The final value represents the standard cubic feet of gas per ton (scf/ton) calculated for the sample, using the combined weight of the coal and dark shale in the sample.

RESULTS and DISCUSSION

The Little Osage Shale sample did not contain any Summit coal. Colors of the shale were gradational between very dark gray (N1) and light gray (N7), thus it was impossible to pick out any single, distinct shale in this sample that could have been representative of the Summit interval. Nearby cores of the Summit are not dominated by coal, but rather this zone is a carbonaceous shale having varying amounts of carbonaceous material, thus the sample is probably reflective of the Summit zone at this locality.

The Mulky/Excello sample contained very little (1.8%) coal. These samples were dominated by a very dark to black shale (N1, N2), which is identified as Excello Shale. Due to the small amount of coal in the sample, the calculated gas content of the coal varies greatly with any slight variation in gas content assumed for the accompanying shale in the sample. The Excello, however, is very rich in organic matter, and it may have a gas content close to that of the average gas content for the entire sample (i.e., 70.7 scf/ton).

Maximum gas content (gas content calculated assuming no gas contribution by admixed dark shale), minimum gas content (gas content calculated assuming equal gas content for coal and admixed dark shale) and "most likely" gas content (gas content calculated with admixed dark shales desorbing 3 scf/ton) for all the coal samples are presented on Figure 11. According to this diagram, the Mulberry sample has the most tightly constrained results, which corresponds to the highest ratio of coal to dark shale in this sample. The least constrained results are for the Mulky/Excello sample, which contained only 1.8% coal.

The value of 3 scf/ton for average dark shales is based on the assay of the gas content of the dark shales in nearby wells. High-gamma-ray shales (such as the Excello Shale), also colloquially known as "hot shales", however, typically have more organic matter and associated gas content than a normal shale, and thus determination of gas content for a

coal associated with a "hot" shale carries more uncertainty than if the coal were associated with a shale without a high gamma-ray value.

REFERENCES

- Dake, L.P., 1978, Fundamentals of Reservoir Engineering, Elsevier Scientific Publishing, New York, NY, 443 p.
- Kissel, F.N., McCulloch, C.M., and Elder, C.H., 1975, The direct method of determining methane content of coals for ventilation design: U.S. Bureau of Mines, Report of Investigations, RI7767.
- McLennan, J.D., Schafer, P.S., and Pratt, T.J., 1995, A guide to determining coalbed gas content: Gas Research Institute, Chicago, IL, Reference No. GRI-94/0396, 180 p.

FIGURES and TABLES

- FIGURE 1. Correlation of field barometer to Petrophysics Lab pressure transducer.
- FIGURE 2. Lag-time to surface for well cuttings.
- TABLE 1. Desorption measurements for samples.
- FIGURE 3. Lost-gas graph for Mulberry coal at 718' to 720' depth.
- FIGURE 4. Lost-gas graph for Little Osage Shale at 808' to 810' depth.
- FIGURE 5. Lost-gas graph for Mulky coal/Excello Shale at 820' to 824' depth.
- FIGURE 6. Lost-gas graph for Weir-Pittsburg coal at 1012' to 1014' depth.
- FIGURE 7. Sensitivity analysis for Mulberry coal at 718' to 720' depth.
- FIGURE 8. Sensitivity analysis for Little Osage Shale at 808' to 810' depth.
- FIGURE 9. Sensitivity analysis for Mulky coal/Excello Shale at 820' to 824' depth.
- FIGURE 10. Sensitivity analysis for Weir-Pittsburg coal at 1012' to 1014' depth.
- FIGURE 11. Lithologic component sensitivity analyses for all samples.
- FIGURE 12. Desorption graph for all samples.

Correlation of Field Barometer to KGS Petrophysics Lab Barometer

Oregon Scientific Field Barometer (mbars normalized to sea level)

FIGURE 1.

Dart Cherokee Basin #CH-1 Holder; SE NE sec. 1-T.30S.-R.14E., Wilson County, KS lag-time to surface for well cuttings lag time of cutting to surface (seconds)

TABLE 1 -- Description data for DART HOLDER #CH-1; SE NE 1-T.308.-R.14E.

	lbs.		n canister Brad grama						est. lost gas (oc) =				elapsed time (off bottom to canist
ample weight:		0.3652	185.836						58	off bottom	at surface	in canister	10.1 minutes
VERSION OF VO	LUMES TO STP									8/9/03 9:44		8/9/03 9:58	0.166 hours
MEASUREMENTS						ft; @60 degrees; @14.7 pel)			SCF/TON (approx)		TIME SINCE		0.410284454 SQRT (hrs)
sured cc meas	ured T (F) med	asured P	cubic ft (Orig)	ABSOLUTE T (F) (@rig)	psia (@rig)	cubic ft (@STP) cc (@STF	cubic ft (OSTP) oc (OSTP)	without lost gas	with lost gas	TIME OF MEASURE		in canister	SQRT hrs. (since off bottom)
8	75	1088	0.000211889	53	14.122	0.000197847 5.80238	0.000197847 5.602363	1.083803993	12.30187098	8/9/03 10:0	0:12:36	0:02:30	0.458257569
4	75	1088	0.000141259	53	14.122	0.000131898 3.73492	0.000329745 9.337306	1.808006655	13.02427382	8/9/03 10:02	0:14:08	0:04:00	0.484767966
4	75	1088	0.000141259	53	14.122	0.000131898 3.73492	0.000481643 13.07223	2.528409317	13.74887828	8/9/03 10:04	0:15:36	0:05:30	0.509901951
8	75	1088	0.000211889	53	14.122	0.000197847 5.60238	0.00085949 18.67461	3.812013309	14.83028027	8/9/03 10:00	0:18:08	0:08:00	0.549241902
3	75	1088	0.000105944	53	14.122	9.89235E-05 2.80119	0.000758414 21.4758	4.153815308	15.37208227	8/9/03 10:08	0:19:38	0:09:30	0.571547607
8	75	1088	0.000282518	53	14.122	0.000283798 7.48984	0.00102221 28.94565	5.598820829	18.81688759	8/9/03 10:11	0:23:08	0:13:00	0.620483662
4	75	1088	0.000141259	53	14.122	0.000131898 3.73492	0.001154108 32.88057	6.321023291	17.53929025	8/9/03 10:15	0:28:21	0:18:15	0.862696512
3	75	1088	0.000105944	53	14.122	9.69235E-05 2.80119	0.001253031 35.48178	6.882825288	18.08109225	8/9/03 10:17	0:29:06	0:19:00	0.696419414
4	75	1088	0.000141259	53	14,122	0.000131898 3.73492	0.001384929 39.21688	7.58522795	18.80349491	8/9/03 10:21	0:32:36	0:22:30	0.73711148
3	75	1088	0.000105944	53	14,122	9.89235E-05 2.80119	0.001483853 42.01787	8.127029946	19.34529691	8/9/03 10:23	0:34:51	0:24:45	0.762124224
2	75	1088	7.08296E-05	53	14.122	6.5949E-05 1.88746	0.001549802 43.88534	8.488231277	19.70849824	8/9/03 10:25	0:36:36	0:26:30	0.781024968
14	75	1088	0.000494407	53	14,122	0.000481843 13.0722	0.002011445 58.95756	11.01884059	22.23490758	8/9/03 10:39	0:50:51	0:40:45	0.920597632
2	75	1088	7.08296E-05	539		8.5949E-05 1.88748		11.37784192		8/9/03 10:42			0.942956344
10	75	1089	0.000353148	53		0.000330048 9.34588		13.18550851	24.40377547	8/9/03 10:55			1.057512805
7	75	1089	0.000247204	53		0.000231034 8.54212		14.45087512		8/9/03 11:08			1.155422001
9	75		0.000247204	53		0.000197847 5.60238		15.53447912		8/9/03 11:18			1.223723825
7	75	1088	0.000211003	53		0.000230822 8.538114		18,79868377		8/9/03 11:37			1.343812963
,	75		0.000141259	53		0.000131898 3.73492		17.52108844		8/9/03 11:47			1.40445719
4				53		0.000230822 8.538114		18.78529109		8/9/03 12:05			1.507481343
/	75									8/9/03 12:35			1.665082581
9	75			53		0.000296771 8.40357		20.41089708					1.885691739
13	74		0.000459092	534		0.000429471 12.1812		22.78290238		8/9/03 13:22			
9	75		0.000317833	535		0.000296771 8.403579		24.36830837	35.60657533	8/9/03 14:02			2.054872259
15	78		0.000529722	538		0.00048553 13.7486		27.04754814		8/9/03 18:05			2.504495957
3	75		0.000105944	535		9.85598E-05 2.79089		27.58735822		8/9/03 17:30			2.772934667
33	75		0.001165388	538		0.001085158 30.7281		33.53074685		8/9/03 23:17			3.67049043
44	75			538		0.001448211 41.0088		41.48256872		8/10/03 12:43			5.187083317
45	75		0.001589168	538		0.001481125 41.94084		49.57465927	60.79292824	8/11/03 9:42			8.920199901
33	75			538		0.001089159 30.8414		55.53995901	66.75622597	8/12/03 11:31			8.585210151
24	75	1091	0.000847555	535		0.00079357 22.4713		59.8663265		8/13/03 13:49			10.00029166
20	75	1093	0.000706296	535		0.000882521 18.78043	0.011598712 326.3811	83.51493913	74.73320809	8/14/03 11:20			11.02372442
18	75	1091	0.000835868	535	14.181	0.000595178 18.85349	0.012191689 345.2346	68.77471475	77.99298171	8/15/03 15:39	149:50:21	149:40:15	12.24088098
15	75	1083	0.000529722	535	14.057	0.000492345 13.94159	0.012684234 359.1782	69.47127523	80.8895422	8/18/03 16:09	174:20:21	174:10:15	13.20375578
10	75	1081	0.000353148	535	14.031	0.000327624 9.27723	0.013011858 388.4534	71.26566236	62.48392932	8/17/03 12:38	194:49:21	194:39:15	13.95788308
14	76	1082	0.000494407	536	14.044	0.000458241 12.97588	0.013470098 381.4293	73.77543707	84.99370404	8/18/03 20:28	228:37:21	226:27:15	15.05398618
14	78	1082	0.000494407	536	14.044	0.000458241 12.97588	0.013928339 394.4052	78.28521179	87.50347875	8/20/03 10:01	284:12:21	264:02:15	18.25440966
13	78	1081	0.000459092	538	14.031	0.000423538 11.9931	0.014351875 406.3983	78.60490742	89.62317438	8/21/03 20:32	298:43:21	298:33:15	17.28359048
9	78	1083	0.000317833	538		0.000294856 8.349349		80.21982517	91.43809213	8/24/03 22:37			19.30818048
11	78		0.000388463	538		0.000359048 10.1870		82.18832348		8/28/03 18:32	414:43:21	414:33:15	20.36473668
3	80		0.000105944	540		9.74871E-05 2.75995		82.72014856		8/27/03 14:06			20.68753616
8	80		0.000211889	540		0.000194394 5.50459		63.76463854		8/28/03 16:33			21.51137296
-1	79	1084	-3.5315E-05	538		-3.26095E-05 -0.9233		63.60623719		8/29/03 14:08			22.00657099
0	78	1088	0	538		0 (83.60623719		9/1/03 14:35			23.59602721
2	77	1084	7.06296E-05	537		8.54618E-05 1.853886		83.96477026		9/2/03 18:37			24.18275901
2	77	1084	7.08298E-05	537		8.54818E-05 1.853686		84.32330333	95.5415703	9/3/03 17:34			24.65270438
0	77	1084	7.002902-03	537		0.54616E-05 1.653666		84.32330333	95.5415703	9/4/03 17:48			25.13939472
0			0.000141259	535		0.000131413 3.72119		85.0430501	98.28131707	9/7/03 17:35			28.52871086
4	75	1084	3.53148E-05			3.28533E-05 0.930296		85.2229868		9/8/03 14:16			28.91571722
1	75	1064		535									
2	75	1082	7.08296E-05	535		6.55853E-05 1.857183		65.58219621	96.80048317	9/9/03 17:34			27.41818812
3	78			538		9.79222E-05 2.77283		86.11651392		9/10/03 19:06			27.87990815
8	78	1079	0.000211889	538		0.000195844 5.545874		87.19114935		9/12/03 14:06			28.64089075
-1	77	1083	-3.5315E-05	537		-3.27007E-05 -0.92598		87.01204819		9/13/03 18:06			29.12540415
-3	78	1088	-0.00010594	538		-9.83719E-05 -2.7655		88.4732874	97.69153438	9/14/03 19:33			29.55907926
0	75	1085	0	535	14.083	0 (0.015788499 447.0788	88.4732874	97.69153436	9/15/03 15:25	693:36:21	893:26:15	29.8932406

SAMPLE: 808' to 810' (Little Osage Shale) in canister Brady 27 lbs. grams
dry sample weight: 3.3870 1527.24
CONVERSION OF VOLUMES TO STP

est. lost gas (oc) = TIME OF:

77 off bottom at surface in canister 9.8 minutes 8/9/03 10:30 8/9/03 10:31 8/9/03 10:39 0.148 hours

FIG MEASUREMEN	urs .		CONVERSION	OF RIG MEASUREMENTS	TO STP (cub	ic ft; 0 60 degrees;	9 14.7 psi)	CUMULATIVE VOI	UMES	SCF/TON (approx)	SCF/TON (approx)			TIME SINCE		0.382608009 SQRT (hrs)
measured co me	easured T (F)	measured P	cubic ft (Orig)	ABSOLUTE T (F) (@rig)	paia (@rlg)	cubic ft (OSTP)	oc (OSTP)	cubic ft (@STP)	oc (OSTP)	without lost gas	with lost gas	TIME OF MEAS	SURE C	off bottom in ce	anister	SQRT hrs. (since off bottom)
20	75	1088	0.000706296	535	14.122	0.00065949	16.87481	0.00065949	18.87481	0.391738978	2.006974832	8/9/03	10:44	0:14:02	0:05:15	0.483820804
10	75	1089	0.000353146	535	14.135	0.000330048	9.345688	0.000969538	28.0205	0.587766494	2.203024348	8/9/03	10:47	0:16:47	0:08:00	0.526867722
9	75	1089	0.000317833	535	14.135	0.000297043	8.411299	0.001286562	38.4316	0.784233058	2.379468912	8/9/03	10:49	0:19:32	0:10:45	0.570574759
7	75	1089	0.000247204	535	14.135	0.000231034	6.542121	0.001517815	42.97392	0.901487719	2.518703574	8/9/03	10:51	0:21:32	0:12:45	0.599073359
3	75	1089	0.000105944	535	14.135	9.90144E-05	2.803788	0.00161663	45.77789	0.960282574	2.575518428	8/9/03	10:53	0:22:47	0:14:00	0.616216052
31	75	1089	0.001094759	535	14.135	0.001023149	28.97225	0.002839779	74.74994	1.568038074	3.183271928	8/9/03	11:07	0:37:17	0:28:30	0.788282239
7	75	1089	0.000247204	535	14.135	0.000231034	8.542121	0.002670813	81.29206	1.705270735	3.320506589	8/9/03	11:12	0:41:47	0:33:00	0.834499184
10	75	1089	0.000353148	535	14.135	0.000330048	9.345888	0.003200861	90.63795	1.901320251	3.518556105	8/9/03	11:18	0:45:47	0:37:00	0.673530512
8	75	1088	0.000211869	535	14.122	0.000197847	5.602383	0.003398708	96.24033	2.018841945	3.634077799	8/9/03	11:19	0:49:32	0:40:45	0.906600678
4	75	1066	0.000141259	535	14.122	0.000131898	3.734922	0.003530808	99.97525	2.09718974	3.712425594	8/9/03	11:22	0:52:32	0:43:45	0.935711257
5	75	1088	0.000178574	535	14.122	0.000184873	4.868853	0.003895479	104.8439	2.195124485	3.810360339	8/9/03	11:28	0:58:32	0:49:45	0.987702159
10	75	1088	0.000353148	535	14.122	0.000329745	9.337306	0.004025224	113.9812	2.390993973	4.006229628	8/9/03	11:35	1:05:32	0:56:45	1.04509438
11	75	1068	0.000368463	535	14.122	0.00036272	10.27104	0.004387943	124.2522	2.806450411	4.221686265	8/9/03	11:45	1:15:02	1:08:15	1.116282413
27	75	1088	0.0009535	535	14.122	0.000890312	25.21072	0.005276255	149.463	3.135298031	4.750533885	8/9/03	12:09	1:38:47	1:30:00	1.263116865
18	75	1088	0.000835886	535	14.122	0.000593541	18.80715	0.005871798	188.2701	3.487863111	5.103096966	8/9/03	12:34	2:03:47	1:55:00	1.436334066
36	75	1068	0.001271333	535	14.122	0.001187082	33.8143	0.007058678	199.8844	4.192993271	5.808229126	8/9/03	13:20	2:49:47	2:41:00	1.662177621
28	75	1068	0.000988814	535	14.122	0.000923288	28.14446	0.007982185	226.0269	4.74142784	8.356663695	8/9/03	4:00	3:29:47	3:21:00	1.869863334
43	75	1074	0.001518536	535	13.940	0.001399659	39.83377	0.009381823	265.8828	5.572829011	7.188084865	8/9/03	5:56	5:25:47	5:17:00	2.330176436 estimate
19	75	1084	0.000870981	535	14.070	0.000824212	17.67566	0.010008036	263.3383	5.943812834	7.558848688	8/9/03	7:34	7:03:47	6:55:00	2.657640976
70	75	1085	0.002472036	535	14.083	0.002301851	65.18091	0.012307887	348.5192	7.310918687	8.926154541	8/9/03 2	23:18	12:47:47	12:39:00	3.57720408
95	75		0.003354908	535	14.098	0.00312682	88.54134	0.015434706	437.0606	9.168256317	10.78349417	8/10/03	2:44	26:13:47	26:05:00	5.121496092
88	75	1088	0.003037073	535	14.096	0.002830595	80.15322	0.018265301	517.2138	10.64963946	12.46487531	8/11/03	9:44	47:13:47	47:05:00	6.872386393
84	75	1089	0.002260147	535	14.135	0.002112308	59.81368	0.020377809	577.0275	12.10435636	13.71959221	8/12/03 1	1:32	73:01:47	72:53:00	8.54574293
45	75	1091	0.001589188	535	14.161	0.001487944		0.021865554	819.1812	12.98819942	14.80343528	8/13/03	3:50	99:19:47	99:11:00	9.986429763
27	75		0.0009535	535	14.187	0.000894403		0.022759957	844.4878	13.51947741	15.13471328	8/14/03	1:21	120:50:47	120:42:00	10.99301548
31	75	1091	0.001094759	535	14.181	0.001025028	29.02548	0.023784985	673.5132	14.12834708	15.74358293	8/15/03	5:40	149:09:47	149:01:00	12.21323261
25	75	1083	0.00088287	535	14.057	0.000820574	23.23599	0.024805559	896.7492	14.61577046	16.23100632	8/18/03	6:10	173:39:47	173:31:00	13.17612792
16	75		0.000565037	535	14.031	0.000524198		0.025129757	711.5928	14.92714534	16.54236119	8/17/03	2:38	194:07:47	193:59:00	13.93304426
21	76		0.000741811	536	14.044	0.000687361	19.48383	0.025817118	731.0566	15.33543976	18.95087561	8/18/03 2	0:28	225:55:47	225:47:00	15.03095679
22	78		0.000776928	538	14.044	0.000720093	20.39088	0.028537211	751.4473	15.78317877	17.37841262	8/20/03 1	0:03	263:32:47	263:24:00	16.23411189
19	78		0.000870981	538	14.031	0.000619014		0.027156225	788.9757	18.13087259	17.74810844	8/21/03 2	0:34	298:03:47	297:55:00	17.28450278
16	78		0.000585037	538	14.057	0.000524188		0.027680412	783.819	18.44224158	18.05747741	8/24/03 2	2:38	372:07:47	371:59:00	19.29066412
15	78		0.000529722	538	14.005	0.000489611		0.028170023	797.8832	18.73307182	18.34830787	8/28/03	8:34	414:03:47	413:55:00	20.3485394
1	80			540	14.044	3.2489E-05		0.028202512	798.8032	16.75237039	18.36760624	8/27/03 1	4:07	435:38:47	435:28:00	20.87134532
3	80	1079	0.000105944	540	14.005	9.71988E-05		0.028299709	801.3555	18.61010558	18.42534144	8/28/03	6:35	482:04:47	461:58:00	21.49603969
-3	79			539	14.070	-9.78264E-05		0.028201881		18.75199524	16.38723109	8/29/03 1		483:38:47	483:28:00	21.99120405
-4	78			538	14.098	-0.000130921		0.028070959		18.87422754	18.2894834	9/1/03 1		558:05:47	555:57:00	23.58169606
-1	77		-3.5315E-05	537	14.070	-3.27309E-05		0.028038226		18.85478529	18.27002114	9/2/03 1		584:08:47	584:00:00	24.18912057
0	77		0	537	14.070	0	0	0.028038228	793.9512	16.65478529	18.27002114	9/3/03 1	7:32	807:01:47	606:53:00	24.63797316
CAMPIE DECAME	RTERED ONOS	MY DIJE TO N	O MORE GAS RE	ING EVOLVED												

SAMPLE DECANISTERED 09/05/03 DUE TO NO MORE GAS BEING EVOLVED

SAMPLE:	820' to 824'	(Excello	Shale) in	canister Brady	28													
DRY WEIGHT		lbs.		grame								est. lost gas (cc) =	TIME OF:					elapsed time (off bottom to canistering)
sample weight	t:		1.1757	533.3								85	off bottom		at surface	in canister		5.0 minutes
CONVERSION	OF VOLUME	8 TO STP											8/9/03 1	0:48	8/9/03 10:48	8/9/03	10:52	0.084 hours
RIG MEASURE	MENTS			CONVERSION	OF RIG MEASUREMENTS	TO STP (cub	ic ft; @ 60 degrees;	@14.7 psi)	CUMULATIVE VOLUM	MES	SCF/TON (approx)	SCF/TON (approx)			TIME SINCE			0.290114920 SQRT (hrs)
measured oc	measured 1	(F) med	asured P	cubic ft (@ rig)	ABSOLUTE T (F) (@rig)	pala (@rlg)	cubic ft (@STP)	cc (@STP)	cubic ft (OSTP) cc	(OSTP)	without lost gas	with lost gas	TIME OF MEASL	JRE (off bottom	in canister		SQRT hrs. (since off bottom)
48		75	1089		535	14.135	0.001584231	44.86026	0.001584231 44	.88026	2.894900397	7.801124288	8/9/03 1	0:58	0:11:18		0:08:15	0.433973886
8		75	1089	0.000282518	535	14.135	0.000264039	7.47871	0.00184827 52	2.33697	3.144050463	8.250274354	8/9/03 1	0:59	0:12:48	(0:07:45	0.481880215
16		75	1089	0.000585037	535	14.135	0.000528077	14.95342	0.002378347 67	7.29039	4.042350595	9.148574487	8/9/03 1	1:03	0:18:03		0:11:00	0.517204022 estimate
18		75		0.000635886			0.000594087	16.8228	0.002970433 84	11299	5.052938244	10.15916214	8/9/03 1	1:08	0:19:18		0:14:15	0.567156651
12		75	1069	0.000423778	535	14.135	0.000398058	11.21507	0.003366491 95	5.32805	5.726883343	10.83288723	8/9/03 1	1:09	0:22:48		0:17:45	0.6164414
15		75	1089	0.000529722	535	14,135	0.000495072	14.01683	0.003861583 10	9.3489	8.566619717	11.87504361	8/9/03 1	1:14	0:27:18		0:22:15	0.874536878
10		75		0.000353148			0.000330048	9.345666	0.004191812 11	8.8928	7.1302573	12.23848119	8/9/03 1	1:17	0:30:03		0:25:00	0.707695791
12		75		0.000423778						29.9078	7.803982399	12.91020829	8/9/03 1	1:20	0:33:48		0:28:45	0.75055535
10		75		0.000353148							6.364904429	13.47112832	8/9/03 1		0:37:33		0:32:30	
5		75		0.000178574							8.645365443	13.75158933	8/9/03 1		0:40:03		0:35:00	
15		75	1088	0.000529722						57.9198	9.466748467	14.59297238	8/9/03 1	1:32	0:45:33		0:40:30	
2		75	1088								9.598932893	14.70515878	8/9/03 1		0:47:48		0:42:45	
18		75		0.000635688							10.60859255	15.71481844	8/9/03 1		0:57:18		0:52:15	
14		75		0.000494407							11.39388339	18.50010728	8/9/03 1		1:04:48		0:59:45	
11		75		0.000386463							12.01089782	17.11712151	8/9/03 1		1:11:48		1:06:45	
14		75		0.000494407							12.79616848	17.90241235	8/9/03 1:		1:24:03		1:19:00	
27		75	1088								14.31087794	19.41690163	8/9/03 1:		1:48:03		1:41:00	
54		74	1088	0.001906999	534	14.122	0.001783958	50.51587	0.01019887 26	88.7385	17.34532914	22.45155303	8/9/03 1	3:17	2:30:03		2:25:00	1.581402331

42	78	1088	0.001483222	538	14.122	0.001377207 36.998	0.011573877 327.7345	19.68806483	24.79428872	8/9/03	13:59	3:12:03	3:07:00	1.789087291
42	75	1074	0.001483222	535	13.940	0.001387109 38.71208	0.012940985 388.4485	22.01362262	27.11984671	8/9/03	15:59	5:12:03	5:07:00	2.280533563
21	75	1084	0.000741611	535	14.070	0.000689919 19.53825	0.013830904 385.9828	23.18722843	28.29345232	8/9/03	17:33	6:46:03	6:41:00	2.601441908
92	75	1085	0.003248982	535	14.083	0.00302529 65.88835	0.016858194 471.6491	28.33348183	33.43970572	8/9/03	23:19	12:32:03	12:27:00	3.540362505
128	75	1088	0.004520294	535	14.122	0.004220737 119.5175	0.020878931 591.1686	35.51328381	40.6195077	8/10/03	12:45	25:58:03	25:53:00	5.09583163
112	75	1086	0.003955258	535	14.096	0.003888356 104.3856	0.024583287 695.5522	41.78406214	46.89028603	8/11/03	9:45	46:58:03	46:53:00	6.853283884
84	75	1089	0.002968443	535	14.135	0.002772404 78.50546	0.027335891 774.0577	46.50013783	51.60636172	8/12/03	11:33	72:48:03	72:41:00	8.530366861
58	75	1091	0.002048258	535	14.161	0.001917795 54.3057	0.029253488 828.3834	49.76245623	54.88888012	8/13/03	13:52	99:05:03	99:00:00	9.954103007
35	75	1093	0.001238018	535	14.187	0.001159412 32.83076	0.030412898 881.1941	51.73470552	58.84092941	8/14/03	11:22	120:35:03	120:30:00	10.96106222
43	75	1091	0.001518538	535	14.181	0.001421813 40.26112	0.031834711 901.4552	54.15332088	59.25954477	8/15/03	15:41	148:54:03	148:49:00	12.20249291
35	75	1083	0.001238018	535	14.057	0.001148804 32.53038	0.032983515 933.9858	58.1075258	61.21374989	8/18/03	18:11	173:24:03	173:19:00	13.16817502
20	75	1081	0.000706296	535	14.031	0.000655247 18.55448	0.033638763 952.5401	57.22215211	62.328378	8/17/03	12:40	193:53:03	193:48:00	13.92422948
29	76	1082	0.001024129	536	14.044	0.000949213 28.87882	0.034587976 979.4187	58.83683727	63.94306118	8/18/03	20:27	225:40:03	225:35:00	15.02223352
32	76	1081	0.001130074	536	14.031	0.001048439 29.83175	0.035634415 1009.05	60.61891212	65.72313602	8/20/03	10:04	263:17:03	263:12:00	18.22603361
28	78	1083	0.000988814	538	14.057	0.000913918 25.87919	0.036548333 1034.93	62.17155842	87.27778231	8/21/03	20:35	297:48:03	297:43:00	17.25690683
22	78	1083	0.000778926	536	14.057	0.000720758 20.40952	0.037269091 1055.339	63.39762408	68.50384797	8/24/03	22:38	371:51:03	371:46:00	19.28343417
25	78	1079	0.00088287	536	14.005	0.000618018 23.10698	0.03808511 1078.448	64.76573461	69.8919585	8/28/03	18:35	413:48:03	413:43:00	20.34209511
5	80	1082	0.000178574	540	14.044	0.000162445 4.599917	0.036247555 1063.046	65.06208642	70.18829031	8/27/03	14:08	435:21:03	435:16:00	20.8650625
10	80	1079	0.000353148	540	14.005	0.000323989 9.174325	0.036571544 1092.22	65.61319771	70.7194216	8/28/03	18:35	481:48:03	461:43:00	21.48955172
-2	79	1084	-7.063E-05	539	14.070	-8.52169E-05 -1.84679	0.038508325 1090.374	85.50225522	70.80847912	8/29/03	14:08	483:21:03	463:16:00	21.98524126
-2	78	1086	-7.083E-05	538	14.098	-8.54607E-05 -1.85363	0.038440865 1088.52	85.39090145	70.49712534	9/1/03		555:49:03	555:44:00	23.57578207
-1	77	1084	-3.5315E-05	537	14.070	-3.27309E-05 -0.92863	0.038408134 1087.593	65.33522361	70.4414475	9/2/03		583:53:03	583:48:00	24.16369522
-1	77	1084	-3.5315E-05	537	14.070	-3.27309E-05 -0.92663	0.038375403 1086.666	65.27954577	70.38576966	9/3/03	17:32	608:45:03	606:40:00	24.63231279

SAMPLE DECANISTERED 09/05/03 DUE TO NO MORIE GAS BEING EVOLVED

MPLE:		lbs.		coal) in caniste grams							est. lost gas (cc) =	TIME OF:		TIME OF:			elapsed time (off bottom to canistering
sample w	eight:		2.0557	932.455							95	off bottom		at surface	in canister		7.9 minutes
	OF VOLUMES											8/9/03			8/9/03	12:31	
MEASURE				CONVERSION	OF RIG MEASUREMEN	ITS TO STP (c	bic ft; 060 degree	; @14.7 pai)	CUMULATIVE VOLUMES	SCF/TON (approx)	SCF/TON (approx)			TIME SINCE			0.384005494 SQRT (hre)
eaured or	measured T	(F) mea	sured P	cubic ft (Orig)	ABSOLUTE T (F) (Or	ig) pela (Orig	cubic ft (OSTP	oc (OSTP)	cubic ft (@STP) cc (@S	TP) without lost gas	with lost gas	TIME OF MEA	SURE	off bottom	in canister		SQRT hrs. (since off bottom)
32		80		0.001130074		40 14.1					4.281068143	8/9/03	12:38	0:13:12		0:05:15	
8		80		0.000211889	5	40 14.1	2 0.00019801	5 5.550509	0.001241429 35.15	1.20778551	4.471771119	8/9/03	12:37	0:14:27		0:06:30	
12		80	1086	0.000423778	5	40 14.1	0.0003920	3 11.10102	0.001833459 48.25	1.58919148	4.853177071	8/9/03	12:40	0:17:12		0:09:15	0.535412613
7		80			5	40 14.13	2 0.00022886	4 6.475594	0.001882144 52.72	1.81167827	5.075663677	8/9/03	12:42	0:19:12		0:11:15	
6		80	1088	0.000211889		40 14.1	0.00019801	5 5.550509	0.002058159 58.28	2.0023812	5.266366853	8/9/03	12:44	0:21:12		0:13:15	
25		80	1088	0.00088287		40 14.1	0.0006187	3 23,12712	0.002874889 81.40	747 2.79897898	8.060962587	8/9/03	12:51	0:28:42		0:20:45	
7		80	1088	0.000247204		40 14.1	0.00022868	4 8.475594	0.003103573 87.88	3.01946378	8.283449392	8/9/03	12:54	0:31:27		0:23:30	
10		80	1088	0.000353148		40 14.1	2 0.00032869	2 9.250849	0.003430265 97.13	3.33730208	8.601267686	8/9/03	12:58	0:34:57		0:27:00	
25		80	1088	0.00088287		40 14.1	0.0008187	3 23.12712	0.004246994 120	4.13189781	7.39588342	8/9/03	13:11	0:48:42		0:40:45	
10		80	1088	0.000353148		40 14.1	0.00032889	2 9.250849	0.004573686 129.5	119 4.4497361	7.713721713	8/9/03	13:16	0:53:12		0:45:15	
12		80	1088	0.000423778		40 14.1	0.0003920	3 11.10102	0.004985717 140.6	4.83114208	8.095127688	8/9/03	13:24	1:00:57		0:53:00	
18		80	1088	0.000635866		40 14.1	0.00058804	5 18.65153	0.005553762 157.2	5.40325099	8.667236594	8/9/03	13:34	1:11:12		1:03:15	
13		80	1088	0.000459092		40 14.1	2 0.00042489	9 12.0261	0.005978461 189.2	5.81644077	9.080426376	8/9/03	13:42	1:19:12		1:11:15	
18		80	1088	0.000585037		40 14.1	2 0.00052270	7 14.80138	0.006501188 184.0	6.32498204	9.586967645	8/9/03	13:58	1:32:57		1:25:00	
88		84	1074	0.003037073		44 13.9	0.00275300	5 77.95613	0.009254174 262	9.00337884	12.26738445	8/9/03	15:56	3:32:57		3:25:00	
30		81	1084	0.001059444		41 14.0	0.00097488	7 27.59941	0.010226841 289.6	9.95163213	13.21561773	8/9/03	17:28	5:04:57		4:57:00	
90		81	1085	0.003178332		41 14.0	0.002926	7 82.8746	0.013155541 372	12.7990163	18.08300191	8/9/03	23:21	10:57:57		0:50:00	
109		81	1088	0.003849313		41 14.0	0.00354782	6 100.4629	0.016703367 472.9	18.2508932	19.51467887	8/10/03	12:48	24:22:57		4:15:00	
88		80	1086	0.003107702		40 14.0	0.00286960	4 81.25762	0.019572971 554.2	19.0425287	4 22.30851435	8/11/03	9:47	45:23:57		5:16:00	
63		80	1089	0.002224832		40 14.1	0.00206005	1 58.33392	0.021633021 812.5	768 21.0467504	24.31073802	8/12/03	11:34	71:10:57		1:03:00	
44		80	1091	0.001553851		40 14.1	0.00144140	8 40.81597	0.023074429 653.3	22.4490950	4 25.71308064	8/13/03	13:53	97:29:57		7:22:00	
27		80	1093	0.0009535	5	40 14.1	0.00088612	2 25.09208	0.023960551 878.4	23.3112021	26.5751878			118:59:57		8:52:00	
30		80	1091	0.001059444		40 14.1	0.00098277	8 27.82907	0.024943329 708.3	137 24.2673462	5 27.53133186	8/15/03	15:42	147:18:57		17:11:00	
24		80	1083	0.000847555		40 14.0	0.00078045	7 22.10001	0.025723786 728.4	136 25.0266525	28.29063819			171:48:57		71:41:00	
15		80	1081	0.000529722	5	40 14.0	0.00048888	5 13.787	0.028210871 742.2	25.5003428				192:17:57		92:10:00	
14		79	1082	0.000494407		39 14.0	0.0004556	9 12.90366	0.026888361 755.1	25.9438833	7 29.20766897	8/18/03	20:27	224:03:57		23:56:00	
24		79	1082	0.000847555		39 14.0	0.00078118	3 22,12056	0.027447544 777	26.7038980	29.98768162			261:41:57		31:34:00	
20)	79	1081	0.000708296		39 14.0	0.00065038	4 18.41677	0.028097929 795.6	417 27.3384545				296:11:57		06:04:00	
18		80	1083	0.000835868		40 14.0	0.00058534	3 16.575	0.028683272 612.2	167 27.905934		8/24/03		370:15:57		70:08:00	
18		80	1079	0.000635868		40 14.0	0.00058318	1 18.51379	0.029266453 628.7	305 28.4733107				412:12:57		2:05:00	
6		83	1082	0.000211889		43 14.0	0.00019385	7 5.489403	0.02946031 634.2	199 28.8819142				433:45:57		33:38:00	
7		85	1079	0.000247204		45 14.0	0.00022471	2 8.38311	0.029685022 840							30:07:00	
0		83	1084	0		14.0	70	0 0								31:38:00	
5		80	1086	0.000176574		40 14.0	98 0.00016304	8 4.816922	0.029846068 8	5.2 29.0391633		9/1/03		554:13:57		54:08:00	
6	3	81	1084	0.000211889		41 14.0	70 0.00019493	3 5.519881	0.030043001 850.7	198 29.22881		9/2/03		582:17:57		32:10:00	
3	1	82	1084	0.000105944		42 14.0	70 9.72889E-0	5 2.754848	0.030140288 853.4	747 29.3234643	7 32.58744997	9/3/03	17:34	605:10:57	8	05:03:00	24.60045731

2	81	1087	7.06296E-05	541	14.109	8.51577E-05 1.845053	0.030205448 855.31	29.38665821	32.65084181	9/4/03	17:49	629:25:57	829:18:00	25.08849338
8	82	1084	0.000282518	542	14.070	0.000259432 7.346262	0.030464878 882.8	29.63925721	32.90324281	9/7/03	17:38	701:14:57	701:07:00	26.46110962
2	83	1084	7.06296E-05	543	14.070	6.47385E-05 1.833183	0.030529618 884.499	29.70224125	32.96622686	9/8/03	14:17	721:53:57	721:46:00	26.86816131
4	82	1082	0.000141259	542	14.044	0.000129477 3.866354	0.030859093 868.18	29.82820891	33.09219451	9/9/03	17:35	749:11:57	749:04:00	27.37150262
5	81	1079	0.000 176574	541	14.005	0.000181895 4.578684	0.030820788 872.74	29.98552215	33.24950775	9/10/03	19:07	774:43:57	774:36:00	27.83401696
8	81	1079	0.000282518	541	14.005	0.000258712 7.325894	0.0310795 880.070	30.23722333	33.50120893	9/12/03	14:07	817:43:57	817:36:00	28.59602245
1	83	1083	3.53148E-05	543	14.057	3.23394E-05 0.915748	0.03111184 880.98	30.2686863	33.5326719	9/13/03	18:07	845:43:57	845:36:00	29.08146036
-3	80	1088	-0.00010594	540	14.122	-9.80078E-05 -2.77525	0.031013832 878.210	30.17333481	33.43732041	9/14/03	19:35	871:11:57	871:04:00	29.51808319
2	80	1085	7.06296E-05	540	14.083	8.51582E-05 1.845068	0.03107899 880.05	30.23872719	33.50071279	9/15/03	15:26	891:02:57	890:55:00	29.85044667
3	80	1079	0.000105944	540	14.005	9.71968E-05 2.752298	0.031178187 882.80	30.33128992	33.59527553	9/17/03	12:10	935:46:57	935:39:00	30.59056227
1	80	1088	3.53148E-05	540	14.096	3.26091E-05 0.923384	0.031208796 883.73	4 30.36301533	33.82700093	9/18/03	16:29	964:05:57	963:56:00	31.04994632
-1	83	1087	-3.5315E-05	543	14.109	-3.24588E-05 -0.91913	0.031176338 882.812	22 30.33143615	33.59542175	9/17/03	17:19	940:55:57	940:48:00	30.67462306
1	81	1082	3.53148E-05	541	14.044	3.2429E-05 0.918283	0.031208767 883.730	30.38298827	33.62697188	9/21/03	13:51	1033:27:57	1033:20:00	32.14756341
9	80	1084	0.000317833	540	14.070	0.000292942 8.295155	0.031501708 892.025	30.64798907	33.91197467	9/23/03	11:02	1078:38:57	1078:31:00	32.84279475
3	82	1081	0.000105944	542	14.031	9.70177E-05 2.747224	0.031598726 894.772	9 30.74237749	34.0083631	9/25/03	19:25	1135:01:57	1134:54:00	33.69024339
0	82	1081	0	542	14.031	0 0	0.031598726 894.772	9 30.74237749	34.0063631	9/27/03	14:16	1177:52:57	1177:45:00	34.32029283
-4	82	1089	-0.00014126	542	14.135	-0.000130314 -3.89007	0.031468412 891.082	30.61559489	33.87958049	9/28/03	19:21	1206:57:57	1206:50:00	34.74141381
4	82	1091	0.000141259	542	14.181	0.000130554 3.696851	0.031598985 894.779	30.74261034	34.00859594	9/29/03	18:38	1230:14:57	1230:07:00	35.07490794
0	80	1096	0	540	14.228	0 0	0.031598985 894.779	7 30.74261034	34.00859594	9/30/03	20:13	1255:49:57	1255:42:00	35.43772707
12	83	1085	0.000423778	543	14.083	0.000388789 11.00925	0.031987755 905.788	31.12086321	34.38484882	10/6/03	12:39	1392:15:57	1392:08:00	37.31307858
-20	83	1084	-0.0007063	543	14.070	-0.000647385 -18.3318	0.03134037 887.457	1 30.49102279	33.75500839	10/14/03	20:13	1591:49:57	1591:42:00	39.89777563

SAMPLE DECANISTERED 10/14/03 DUE TO NO MORIE GAS BEING EVOLVED

718' to 720' (Mulberry coal) in canister Brady 24 Dart Cherokee Basin Holder #CH-1; SE NE sec. 1-T.30S.-R.14E., Wilson County, KS

808' to 810' (Little Osage Shale) in canister Brady 27 Dart Cherokee Basin Holder #CH-1; SE NE sec. 1-T.30S.-R.14E., Wilson County, KS

820' to 824' (Mulky coal/Excello Shale) in canister Brady 28 Dart Cherokee Basin Holder #CH-1; SE NE sec. 1-T.30S.-R.14E., Wilson County, KS

1012' to 1014' (Weir-Pittsburg coal) in canister Brady 31 Dart Cherokee Basin Holder #CH-1; SE NE sec. 1-T.30S.-R.14E., Wilson County, KS

LITHOLOGIC COMPONENT SENSITIVITY ANALYSIS for calculation of gas content of Mulberry coal from 718-720'

LITHOLOGIC COMPONENT SENSITIVITY ANALYSIS for calculation of gas content of Little Osage Shale from 808-810'

GAS CONTENT_{coal} =

total gas desorbed - ((gas content_{dark shale}) * (weight_{dark shale})) weight_{coal}

total gas de	esorbed -	- ((gas content _{dark shale}) * (weight _{dark shale}))	CO
		weight _{coal}	RESULTANT GAS CONTENT (coal) scf/ton
			oal)
) ⊢
			EN
total	gas desc	orbed = 878 ccs	SON
TOTA	L DRY WE	EIGHT OF SAMPLE = 1935.81 grams	AS
		ologies = 408.57 grams (21.1%)	Q
weight	dark shale =	1527.24 grams (78.9%)	F
weight	coal =	0.00 grams (0.0%)	TA
	Cota		5
sieve size	grams	% coal / % dark shale / % light-colored liths	RES
>0.0930"	1610.26	0.00% / 84.91% / 15.09%	
>0.0661"	158.04	0.00% / 53.44% / 46.56%	
>0.0460"	72.85	0.00% / 44.88% / 55.12%	
>0.0331"	33.27	0.00% / 30.17% / 69.83%	
<0.0331"	28.63	0.00% / 53.35% / 46.65%	
	1935.81	TOTAL	

ASSUMED GAS CONTENT (dark shale) scf/ton

FIGURE 8.

LITHOLOGIC COMPONENT SENSITIVITY ANALYSIS for calculation of gas content of Mulky coal/ Excello Shale from 820-824'

LITHOLOGIC COMPONENT SENSITIVITY ANALYSIS for calculation of gas content of Weir-Pittsburg coal from 1012-1014'

FIGURE 10.

LITHOLOGIC COMPONENT SENSITIVITY ANALYSIS for all samples

surface		coal in sample	scf/ton w/ shale @ 3 scf/ton	maximum scf/ton	scf/ton
100'	Mulberry	6%	149.2	150.8	98.4
	Little Osage Sh	. 0%		18.4	18.4
	Mulky/Excello*	2%		70.7	70.7
200'	Weir-Pittsburg	7%	251.4	272.1	34.4
300'	*gas content s the sample and				
400'					
500'					
600'					
700'					
718'-720'	Mulberry				
800'					
808'-810' 820'-824'	Little Osage Shale Mulky/Excello				
900'					
1000'					

Desorption Characteristics of Cuttings Samples

based on total weight of gas-generating lithologies (i.e., coal and dark shale) in sample Dart Cherokee Basin Holder #CH-1, SE NE 1-T.30S.-R.14E., Wilson County, KS

