ANALYSIS OF MARMATON AND CHEROKEE GROUP CUTTINGS SAMPLES FOR GAS CONTENT

-- DART CHEROKEE BASIN OPERATING COMPANY
\#CH-1 HOLDER; SE NE sec. 1-T.30S.-R.14E.; WILSON COUNTY, KANSAS

By
K. David Newell, Troy A. Johnson, and W. Matthew Brown

Kansas Geological Survey
The University of Kansas
1930 Constant Avenue
Lawrence, KS 66047-3726

OCTOBER 30, 2003
(to be held proprietary to August 9, 2005)

Disclaimer

The Kansas Geological Survey does not guarantee this document to be free from errors or inaccuracies and disclaims any responsibility or liability for interpretations based on data used in the production of this document or decisions based thereon. This report is intended to make results of research available at the earliest possible date, but it is not intended to constitute final or formal publication.

SUMMARY

Four cuttings samples from the Pennsylvanian Marmaton Group and Cherokee Group were collected from the Dart Cherokee Basin \#CH-1 Holder; SE NE sec. 1-T.30S.R.14E. in Wilson County, KS. One sample (Little Osage Shale) did not have any coal present. The samples calculate as having the following gas contents:

- Mulberry coal at 718^{\prime} to 720^{\prime} depth 1 ($149.2 \mathrm{scf} /$ ton)
- Little Osage Shale at 808^{\prime} to 810^{\prime} depth ${ }^{2}$
($18.4 \mathrm{scf} / \mathrm{ton}$)
- Mulky coal/Excello Shale at 820^{\prime} to 824^{\prime} depth ${ }^{3}$
- Weir-Pittsburg coal at 1012^{\prime} to 1014^{\prime} depth ${ }^{1}$
(70.7 scf/ton)
(251.4 scf/ton)
${ }^{1}$ assuming accompanying dark shales in sample desorb 3 scf/ton
${ }^{2}$ no coal in sample
${ }^{3}$ reliability of result is unclear due to small amount of coal in the sample; desorption value should be considered a minimum value for the Mulky coal and a maximum value for the accompanying dark shale

BACKGROUND

The Dart Cherokee Basin \#CH-1 Holder well (SE NE sec. 1-T.30S.-R.14E.) in Wilson County, KS was selected for cuttings desorption tests in association with an on-going coalbed gas research project at the Kansas Geological Survey. The samples were gathered August 9, 2003 by K.D. Newell, T.A. Johnson, and W.M. Brown of the Kansas Geological Survey. Samples were obtained during normal drilling of the well, with no cessation of drilling before zones of interest (i.e., coals and dark shales in the Marmaton Group and Cherokee Group) were penetrated. The well was drilled using an air rotary rig owned by McPherson Drilling.

Lag times for samples to reach the surface (important for assessing lost gas) were determined by periodically noting the time it took for cuttings to reach the surface following resumption of drilling after new pipe was added to the drill string.

Four cuttings samples from the Pennsylvanian Marmaton and Cherokee Groups were collected:

- Mulberry coal at 718^{\prime} to 720^{\prime} depth (1899 grams dry wt.)
- Little Osage Shale at 808^{\prime} to 810^{\prime} depth (1936 grams dry wt.)
- Mulky coal/Excello Shale at 820^{\prime} to 824^{\prime} depth (1609 grams dry wt.)
- Weir-Pittsburg coal at 1012 ' to 1014^{\prime} depth (1806 grams dry wt.)

The cuttings were caught in kitchen strainers as they exited the air-stream pipe emptying to the mud pit. The samples were then washed in water while in the kitchen strainers to rid them of as much drilling mud drilling mud as possible before the cuttings were placed in desorption canisters. Temperature baths for the desorption canisters were on site, with temperature kept at approximately $75^{\circ} \mathrm{F}$ for the Mulky/Excello sample and shallower samples, and $80^{\circ} \mathrm{F}$ for the Weir-Pittsburg sample. The canistered samples were later that
day transported to the laboratory at the Kansas Geological Survey in Lawrence, KS and desorption measurements were continued at approximately these respective temperatures. Desorption measurements were periodically made until the canisters produced negligible gas with daily testing for at least two successive days.

DESORPTION MEASUREMENTS

The equipment and method for measuring desorption gas is that prescribed by McLennan and others (1995). The volumetric displacement apparatus is a set of connected dispensing burettes, one of which measures the gas evolved from the desorption canister. The other burette compensates for the compression that occurs when the desorbed gas displaces the water in the measuring burette. This compensation is performed by adjusting the cylinders so that their water levels are identical, then figuring the amount of gas that evolved by reading the difference in water level using the volumetric scale on the side of the burette.

The desorption canisters were made in-house at the Kansas Geological Survey. On average, the canisters were approximately 15 inches long (38.1 cm), 3 inches (7.6 cm) in diameter, and enclosed a volume of approximately 106 cubic inches $\left(1740 \mathrm{~cm}^{3}\right)$.

The desorbed gas that collected in the desorption canisters was periodically released into the volumetric displacement apparatus and measured as a function of time, temperature and atmospheric pressure.

The time and atmospheric pressure were measured in the field using a portable weather station (model BA928) marketed by Oregon Scientific (Tualatin, OR). The atmospheric pressure was displayed in millibars on this instrument, however, this measurement was not the actual barometric pressure, but rather an altitude-compensated barometric pressure automatically converted to a sea-level-equivalent pressure. In order to translate this measurement to actual atmospheric pressure, a regression correlation was determined over several weeks by comparing readings from the Oregon Scientific instrument to that from a pressure transducer in the Petrophysics Laboratory in the Kansas Geological Survey in Lawrence, Kansas (Figure 1). The regression equation shown graphically in Figure 1 was entered into a spreadsheet and was used to automatically convert the millibar measurement to barometric pressure in pounds per square inch (psi).

A spreadsheet program written by K.D. Newell (Kansas Geological Survey) was used to convert all gas volumes at standard temperature and pressure. Conversion of gas volumes to standard temperature and pressure was by application of the perfect-gas equation, obtainable from basic college chemistry texts:
$\mathrm{n}=\mathrm{PV} / \mathrm{RT}$
where n is moles of gas, T is degrees Kelvin (i.e., absolute temperature), V is in liters, and R is the universal gas constant, which has a numerical value depending on the units
in which it is measured (for example, in the metric system $\mathrm{R}=0.0820$ liter atmosphere per degree mole). The number of moles of gas (i.e., the value n) is constant in a volumetric conversion, therefore the conversion equation, derived from the ideal gas equation, is:
$\left(\mathrm{P}_{\text {stp }} \mathrm{V}_{\text {stp }}\right) /\left(\mathrm{RT}_{\text {stp }}\right)=\left(\mathrm{P}_{\text {rig }} \mathrm{V}_{\text {rig }}\right) /\left(\mathrm{RT}_{\text {rig }}\right)$
Customarily, standard temperature and pressure for gas volumetric measurements in the oil industry are $60^{\circ} \mathrm{F}$ and 14.7 psi (see Dake, 1978, p. 13), therefore $\mathrm{P}_{\mathrm{stp}}, \mathrm{V}_{\text {stp }}$, and $\mathrm{T}_{\text {stp }}$, respectively, are pressure, volume and temperature at standard temperature and pressure, where standard temperature is degrees Rankine ($\left.{ }^{\circ} \mathrm{R}=460+{ }^{\circ} \mathrm{F}\right)$. $\mathrm{P}_{\text {rig, }}$, $\mathrm{V}_{\text {rig }}$, and $\mathrm{T}_{\text {rig }}$, respectively, are ambient pressure, volume and temperature measurements taken at the rig site or in the desorption laboratory.

The universal gas constant R drops out as this equation is simplified and the determination of $\mathrm{V}_{\text {stp }}$ becomes:
$\mathrm{V}_{\mathrm{stp}}=\left(\mathrm{T}_{\text {stp }} / \mathrm{T}_{\text {rig }}\right)\left(\mathrm{P}_{\mathrm{rig}} / \mathrm{P}_{\mathrm{stp}}\right) \mathrm{V}_{\text {rig }}$
The conversion calculations in the spreadsheet were carried out in the English metric system, as this is the customary measure system used in American coal and oil industry. V is therefore converted to cubic feet; P is psia; T is ${ }^{\circ} \mathrm{R}$.

The desorbed gas was summed over the time period for which the coal samples evolved all of their gas. In the case of well cuttings from Dart Cherokee Basin \#CH-1 Holder well, the maximum time of desorption was 58 days.

Lost gas (i.e., the gas lost from the sample from the time it was drilled, brought to the surface, to the time it was canistered) was determined using the direct method (Kissel and others, 1975; also see McLennan and others, 1995, p. 6.1-6.14) in which the cumulative gas evolved is plotted against the square root of elapsed time. Time zero is assumed to be the moment that the rock is cut and its cuttings circulated off bottom. Characteristically, the cumulative gas evolved from the sample, when plotted against the square root of time, is linear for a short time period after the sample reaches ambient surface pressure conditions, therefore lost gas is determined by a line projected back to time zero. The period of linearity generally is about an hour for cuttings samples.

LITHOLOGIC ANALYSIS

Upon removal from the canisters, the cuttings were washed of drilling mud, and dried in an oven at $150^{\circ} \mathrm{F}$ for 1 to 3 days. After drying, the cuttings were weighed and then dry sieved into 5 size fractions: $>0.0930^{\prime \prime},>0.0661^{\prime \prime},>0.0460^{\prime \prime},>0.0331^{\prime \prime}$, and $<0.0331^{\prime \prime}$. For large sample sizes, the cuttings were ran through a sample splitter and a lesser portion (approximately 75 grams) were sieved and weighed, and the derived size-fraction ratios were applied to the entire sample.

The size fractions were then inspected and sorted by hand under a dissecting microscope. Three major lithologic categories were differentiated: coal, dark shales (generally Munsell rock colors N3 (dark gray), N2 (grayish black), and N1 (black) on dry surface), and lighter-colored lithologies and/or dark and light-colored carbonates. The lightercolored lithologies are considered to be incapable of generating significant amounts of gas. After sorting, and for every size class, each of these three lithologic categories was weighed and the proportion of coal dark shale and light-colored lithologies were determined for the entire cuttings sample based on the weight percentages.

DATA PRESENTATION

Data and analyses accompanying this report are presented in the following order: 1) lag time to surface for the well cuttings, 2) data tables for the desorption analyses, 3) lost-gas graphs, 4) "lithologic component sensitivity analyses" showing the interdependence of gas evolved from dark shale versus coal in each sample, 5) a summary component analysis for all samples showing relative reliability of the data from all the samples, and 6) a desorption graph for all the samples.

Graph of Lag-time to Surface for Well Cuttings (Figure 2)

Lag time of cuttings to surface varied, but there is a general trend of longer lag times for greater depth. The lag times accepted for cuttings were taken to be a visual average of the trend (defined by the scatter of data points on this graph) at the depth at which the samples were taken.

Data Tables of the Desorption Analyses (Table 1)

These are the basic data used for lost-gas analysis and determination of total gas desorbed from the cuttings samples. Basic temperature, volume, and barometric measurements are listed at left. Farther to the right, these are converted to standard temperature, pressure and volumes. The volumes are cumulatively summed, and converted to scf/ton based on the total weight of coal and dark shale in the sample. At the right of the table, the time of the measurements are listed and converted to hours (and square root of hours) since the sample was drilled.

Lost-Gas Graphs (Figures 3-6)

Gas lost prior to the canistering of the sample was estimated by extrapolation of the first few data points after the sample was canistered. The linear characteristic of the initial desorption measurements is usually lost within the first hour after the cuttings leave the bottom of the hole, thus data are presented in the lost-gas graphs for only up to one hour after cuttings are off bottom. Lost-gas volumes derived from this analysis are incorporated in the data tables described above.

"Lithologic Component Sensitivity Analyses" (Figures 7-10)

The rapidity of penetration of an air-drilled well makes collection of pure lithologies from relatively thin-bedded strata rather difficult. Mixed lithologies are more the norm
rather than the exception. Some of this mixing is due to cavings from strata farther up hole. The mixing may also be due to collection of two or more successively drilled lithologies in the kitchen sieve at the exit line, or differential lifting of relatively lessdense coal compared to other lithologies, all of which are more dense than coal.

The total gas evolved from the sample is due to gas being desorbed from both the coal and dark shale. Both lithologies are capable of generating gas, albeit the coal will be richer in gas than the dark-colored shale. Even though dark-colored shale is less rich in sorbed gas than coal, if a sample has a large proportion of dark, organic-rich shale and only a minor amount of coal, the total volume of gas evolved from the dark-shale component may be considerable. The lighter-colored lithologies are considered to be incapable of generating significant amounts of gas.

The total amount of gas evolved from a cuttings sample can be expressed by the following equation:

Total gas $\left(\mathrm{cm}^{3}\right)=\left[\right.$ weight $_{\text {coal }}($ grams $) \mathrm{X}$ gas content $\mathrm{coal}\left(\mathrm{cm}^{3} /\right.$ gram $\left.)\right]+$ [weight dark shale (grams) X gas content $\mathrm{t}_{\text {dark shale }}\left(\mathrm{cm}^{3} / \mathrm{gram}\right)$]

A unique solution for gas content ${ }_{\text {coal }}$ in this equation is not possible because gas content $_{\text {dark shate }}$ is not known exactly. An answer can only be expressed as a linear solution to the above equation. The richer in gas the dark shales are, the poorer in gas the admixed coal has to be, and visa versa. If there is little dark shale in a sample, a relatively well constrained answer for gas content coal can be obtained. Conversely, if considerable dark shale is in a sample, the gas content of a coal will be hard to precisely determine.

The lithologic-component-sensitivity-analysis diagram therefore expresses the bivariant nature inherent in the determination of gas content in mixed cuttings. The gas content of dark shales in Kansas can vary greatly. Proprietary desorption analyses of dark shales in cores from southeastern Kansas have registered as much as $50 \mathrm{scf} / \mathrm{ton}$, but can be as low as $2-4 \mathrm{scf} /$ ton. For a general understanding of the lithologic-component-sensitivityanalyses diagrams, the calculated gas content ${ }_{\text {coal }}$ is given for assumed gas content dark shale at $30 \mathrm{scf} / \mathrm{ton}$ and $50 \mathrm{scf} / \mathrm{ton}$. For most samples gathered in east-central and northeastern Kansas, the resultant gas content $t_{\text {coal }}$ is a negative number for $30 \mathrm{scf} / \mathrm{ton}$ and $50 \mathrm{scf} /$ ton gas content dark shale. . The only conclusion is that the gas content $d_{\text {dark shale }}$ or most samples taken from this region has to be lower than $30-50 \mathrm{scf} /$ ton. Conversely though, to assume that all the gas evolved from a cuttings sample is derived solely from the coal would result in an erroneously high gas content for the coal.

In all the lithologic-component-sensitivity-analysis diagrams, a "break-even" point is noted where the gas content of the coal is equal to that of the dark shale. This "breakeven" point corresponds to the minimum gas content assignable to the coal and maximum gas content assignable to the dark shale. It can also be thought of the scf/ton gas content of the cuttings sample minus the weight of any of the lighter-colored lithologies, which are assumed to have no inherent gas content.

Summary Component Analysis for all Samples (Figure 11)
This diagram is a summary of the individual "lithologic component sensitivity analyses" for each sample, all set at a common scale. The steeper the angle of the line for a sample, the more uncertainty is attached to the results (i.e., gas content $c_{\text {coal }}$) for that sample. If the coal content is miniscule (i.e., < approximately 5%), the results are a better reflection of the gas content ${ }_{\text {dark shale }}$.

Desorption Graph (Figure 12)

This is a desorption graph (gas content per weight vs. square root of time) for all the samples. The rate at which gas is evolved from the samples is thus comparable at a common scale. The final value represents the standard cubic feet of gas per ton (scf/ton) calculated for the sample, using the combined weight of the coal and dark shale in the sample.

RESULTS and DISCUSSION

The Little Osage Shale sample did not contain any Summit coal. Colors of the shale were gradational between very dark gray (N1) and light gray (N7), thus it was impossible to pick out any single, distinct shale in this sample that could have been representative of the Summit interval. Nearby cores of the Summit are not dominated by coal, but rather this zone is a carbonaceous shale having varying amounts of carbonaceous material, thus the sample is probably reflective of the Summit zone at this locality.

The Mulky/Excello sample contained very little (1.8\%) coal. These samples were dominated by a very dark to black shale (N1, N2), which is identified as Excello Shale. Due to the small amount of coal in the sample, the calculated gas content of the coal varies greatly with any slight variation in gas content assumed for the accompanying shale in the sample. The Excello, however, is very rich in organic matter, and it may have a gas content close to that of the average gas content for the entire sample (i.e., 70.7 scf/ton).

Maximum gas content (gas content calculated assuming no gas contribution by admixed dark shale), minimum gas content (gas content calculated assuming equal gas content for coal and admixed dark shale) and "most likely" gas content (gas content calculated with admixed dark shales desorbing $3 \mathrm{scf} / \mathrm{ton}$) for all the coal samples are presented on Figure 11. According to this diagram, the Mulberry sample has the most tightly constrained results, which corresponds to the highest ratio of coal to dark shale in this sample. The least constrained results are for the Mulky/Excello sample, which contained only 1.8% coal.

The value of $3 \mathrm{scf} /$ ton for average dark shales is based on the assay of the gas content of the dark shales in nearby wells. High-gamma-ray shales (such as the Excello Shale), also colloquially known as "hot shales", however, typically have more organic matter and associated gas content than a normal shale, and thus determination of gas content for a
coal associated with a "hot" shale carries more uncertainty than if the coal were associated with a shale without a high gamma-ray value.

REFERENCES

Dake, L.P., 1978, Fundamentals of Reservoir Engineering, Elsevier Scientific Publishing, New York, NY, 443 p.
Kissel, F.N., McCulloch, C.M., and Elder, C.H., 1975, The direct method of determining methane content of coals for ventilation design: U.S. Bureau of Mines, Report of Investigations, RI7767.
McLennan, J.D., Schafer, P.S., and Pratt, T.J., 1995, A guide to determining coalbed gas content: Gas Research Institute, Chicago, IL, Reference No. GRI-94/0396, 180 p.

FIGURES and TABLES

FIGURE 1. Correlation of field barometer to Petrophysics Lab pressure transducer.
FIGURE 2. Lag-time to surface for well cuttings.
TABLE 1. Desorption measurements for samples.
FIGURE 3. Lost-gas graph for Mulberry coal at 718^{\prime} to 720^{\prime} depth.
FIGURE 4. Lost-gas graph for Little Osage Shale at 808^{\prime} to 810^{\prime} depth.
FIGURE 5. Lost-gas graph for Mulky coal/Excello Shale at 820^{\prime} to 824^{\prime} depth.
FIGURE 6. Lost-gas graph for Weir-Pittsburg coal at 1012^{\prime} to 1014^{\prime} depth.
FIGURE 7. Sensitivity analysis for Mulberry coal at 718^{\prime} to 720^{\prime} depth.
FIGURE 8. Sensitivity analysis for Little Osage Shale at 808^{\prime} to 810^{\prime} depth.
FIGURE 9. Sensitivity analysis for Mulky coal/Excello Shale at 820^{\prime} to 824^{\prime} depth.
FIGURE 10. Sensitivity analysis for Weir-Pittsburg coal at 1012' to 1014' depth.
FIGURE 11. Lithologic component sensitivity analyses for all samples.
FIGURE 12. Desorption graph for all samples.

Correlation of Field Barometer to KGS Petrophysics Lab Barometer

FIGURE 1.

Dart Cherokee Basin \#CH-1 Holder; SE NE sec. 1-T.30S.-R.14E., Wilson County, KS lag-time to surface for well cuttings lag time of cutting to surface (seconds)

FIGURE 2.

TABLE 1 - Desorplion data for DART HOLDER *CH 1; SE NE 1-T.303.-R. 14 E .

DESORPTION TEPMINATED Я15COB DUE TO NO MORE GAS BEING EVOLVED
SAMPLE: $\quad 808^{\circ}$ to 810^{\prime} (IUtle Onage Shale) in canister Brady 27
y sample wight: \quad lis. ${ }^{3.3870}{ }^{\text {grams }}{ }_{1527.24}$
CONVERSION OF VOLUMES TOSTP

718^{\prime} to 720' (Mulberry coal) in canister Brady 24
Dart Cherokee Basin Holder \#CH-1; SE NE sec. 1-T.30S.-R.14E., Wilson County, KS

808' to 810' (Little Osage Shale) in canister Brady 27
Dart Cherokee Basin Holder \#CH-1; SE NE sec. 1-T.30S.-R.14E., Wilson County, KS

820 ' to 824^{\prime} (Mulky coal/Excello Shale) in canister Brady 28 Dart Cherokee Basin Holder \#CH-1; SE NE sec. 1-T.30S.-R.14E., Wilson County, KS

1012' to 1014' (Weir-Pittsburg coal) in canister Brady 31
Dart Cherokee Basin Holder \#CH-1; SE NE sec. 1-T.30S.-R.14E., Wilson County, KS

Desorption Characteristics of Cuttings Samples
 Dart Cherokee Basin Holder \#CH-1, SE NE 1-T.30S.-R.14E., Wilson County, KS

LITHOLOGIC COMPONENT SENSITIVITY ANALYSIS for calculation of gas content of Mulberry coal from 718-720'

FIGURE 7.

Desorption Characteristics of Cuttings Samples
 Dart Cherokee Basin Holder \#CH-1, SE NE 1-T.30S.-R.14E., Wilson County, KS

LITHOLOGIC COMPONENT SENSITIVITY ANALYSIS for calculation of gas content of Little Osage Shale from 808-810'

FIGURE 8.

Desorption Characteristics of Cuttings Samples
 Dart Cherokee Basin Holder \#CH-1, SE NE 1-T.30S.-R.14E., Wilson County, KS

LITHOLOGIC COMPONENT SENSITTIVITY ANALYSIS for calculation of gas content of Mulky coal/ Excello Shale from 820-824'

FIGURE 9.

Desorption Characteristics of Cuttings Samples
 Dart Cherokee Basin Holder \#CH-1, SE NE 1-T.30S.-R.14E., Wilson County, KS

LITHOLOGIC COMPONENT SENSITIVITY ANALYSIS for calculation of gas content of Weir-Pittsburg coal from 1012-1014'

FIGURE 10.

Desorption Characteristics of Cuttings Samples

Dart Cherokee Basin Holder \#CH-1, SE NE 1-T.30S.-R.14E., Wilson County, KS

LITHOLOGIC COMPONENT SENSITIVITY ANALYSIS for all samples

Desorption Characteristics of Cuttings Samples

based on total weight of gas-generating lithologies (i.e., coal and dark shale) in sample Dart Cherokee Basin Holder \#CH-1, SE NE 1-T.30S.-R.14E., Wilson County, KS

