ANALYSIS OF CHEROKEE GROUP CUTTINGS SAMPLES FOR GAS CONTENT --COLT ENERGY #1 HONEYCUTT WELL (sec. 6-T.31S.-R.17E.), MONTGOMERY COUNTY, KANSAS

By K. David Newell

Kansas Geological Survey The University of Kansas 1930 Constant Avenue Lawrence, KS 66047

December, 2002

Disclaimer

The Kansas Geological Survey does not guarantee this document to be free from errors or inaccuracies and disclaims any responsibility or liability for interpretations based on data used in the production of this document or decisions based thereon. This report is intended to make results of research available at the earliest possible date, but is not intended to constitute final or formal publication.

BACKGROUND

The Colt Energy #1 Honeycutt well in E2 NE SE sec. 6-T.31S.-R17E. (Montgomery County, KS) was selected for cuttings desorption tests in association with an on-going coalbed gas research project at the Kansas Geological Survey. The samples were gathered October 22, 2002 by K. David Newell of the Kansas Geological Survey, with well site collection aided by Jim Stegeman of Colt Energy. Samples were obtained during normal drilling of the well, with no cessation of drilling before zones of interest (i.e., coals in the Cherokee and Marmaton Group) were penetrated. The well was drilled using an air rotary rig operated by McPherson Drilling. Lag times for samples to reach the surface (important for assessing lost gas) were determined by noting the time delay for cuttings to reach the surface after resumption of drilling after new pipe was added to the drill string. This delay time was added to the time noted for the samples reaching the surface in order to determine the time the samples were off bottom.

Three cuttings samples from the Pennsylvanian Marmaton and Cherokee Groups were collected: Summit coal at 718-720', Rowe(?) coal at 1085-1086', and Riverton coal at 1144-1147'. These samples weighed 957, 566, and 809 grams, respectively.

The cuttings samples were caught in a kitchen strainer at the air stream exit at the mud pit. The samples were briefly rinsed in water, then placed in desorption canisters for testing. A temperature bath for the desorption canisters was on site, with temperature at approximately at 77 degrees F. The canistered samples were later that day transported to the laboratory at the Kansas Geological Survey and desorption measurements were continued at 80 degrees F ambient temperature for the Rowe(?) and the Riverton samples. The Summit was desorbed at 75 degrees F. Desorption measurements were periodically made until the canisters produced no more gas upon testing for at least two successive days. All cuttings were depleted of gas within about two weeks following collection.

DESORPTION MEASUREMENTS

Desorption volumes were measured by displacement of water in dual connected graduated glass cylinders, which enabled compensation for pressure necessary for displacement of water columns by the desorbed gas. Barometric pressures were recorded using a field barometer whose readings were correlated to a master barometer back at the Kansas Geological Survey. Gas volumes were converted in a spreadsheet to gas volumes at standard temperature and pressure.

LITHOLOGIC ANALYSIS

Upon removal of the cuttings from the canisters, the cuttings were washed of drilling mud, and then dried overnight in an oven at 150 degrees C. After drying the cuttings were weighed and then dry sieved into 5 size fractions: >0.0930, >0.0661, >0.0460, >0.0331, and <0.0331 inches. In case of large sample sizes, the cuttings were ran

through a sample splitter and a lesser portion of them were sieved and weighed. The majority of cuttings – about 75% by weight – were caught in the largest sieve size, with usually successively less percentages caught in the smaller sieve sizes.

The size fractions were then inspected and sorted by had under a dissecting microscope. Three major lithologic categories were differentiated: coal, dark shales (generally GSA rock colors N3 (dark gray), N2 (grayish black), and N1 (black) on dry surface), and lighter-colored lithologies and/or dark and light-colored carbonates. After sorting, and for each size class, each of these three lithologic categories were weighed. Dividing the sample into size fractions aided in confidence and consistency of the lithologic sorting. Similarly sized cuttings were more easily compared to each other, and the weight-percentage results for the size classes also could be compared. The total weight of each of the lithologic categories in the entire cuttings sample was determined. In all cases the percentages of coal, dark shale and lighter-colored lithologies varied little (generally <10%) for each size category.

DATA PRESENTATION

Data and analyses accompanying this report are presented in the following order: 1) lag time to surface for the well cuttings, 2) data tables for the desorption analyses, 3) lost-gas graphs, 4) "lithologic component sensitivity analyses" showing the interdependence of gas evolved from dark shale versus coal in each sample, 5) a summary component analysis for all samples showing relative reliability of the data from all the samples, and 6) a desorption graph for all the samples.

Graph of Lag-time to Surface

Lag time to surface varied, but there is a general trend of longer lag times for greater depth. The lag times accepted for cuttings were taken to be a visual average of the trend (defined by the scatter of data points on this graph) at the depth at which the samples were taken.

Data Tables of the Desorption Analyses

These are the basic data used for lost-gas analysis and determination of total gas desorbed from the cuttings samples. Basic temperature, volume, and barometric measurements are listed at left. Farther to the right, these are converted to standard temperature, pressure and volumes. The volumes are cumulatively summed, and converted to scf/ton based on the total weight of coal *and* dark shale in the sample. At the right of the table, the time of the measurements are listed and converted to hours (and square root of hours) since the sample was drilled.

Lost-Gas Graphs

Gas lost prior to the canistering of the sample was estimated by extrapolation of the first few data points after the sample was canistered. The linear characteristic of the initial desorption measurements was usually lost within the first hour after canistering, thus data are presented in the lost-gas graphs for only up to 1 hour after canistering. Lost-gas volumes derived from this analysis are incorporated in the data tables described above.

"Lithologic Component Sensitivity Analyses"

The rapidity of penetration of an air-drilled well makes collection of pure lithologies rather difficult and problematic. Mixed lithologies are more the norm rather than the exception. Some of this mixing is due to cavings from strata farther up hole. The mixing may also be due to collection of two or more successively drilled lithologies in the kitchen sieve at the exit line, or differential lifting of relatively less-dense coal compared to other lithologies, all of which are more dense than coal.

The total gas evolved from the sample is due to gas being desorbed from both the coal and dark shale. Both lithologies are capable of generating gas, albeit the coal will be richer in gas content than the dark-colored shale. Although dark-colored shale is less rich in sorbed gas than coal, if a sample has a large proportion of dark, organic-rich shale and only a minor amount of coal, the total volume of gas evolved from the dark-shale component may be considerable. The total amount of gas evolved from a cuttings sample can be expressed by the following equation:

Total gas $(cm^3) = [weight_{coal} (grams) X gas content_{coal} (cm^3/gram)] + [weight_{dark shale} (grams) X gas content_{dark shale} (cm^3/gram)]$

A unique solution for *gas content_{coal}* in this equation is not possible because *gas content_{dark shale}* is similarly not known. An answer can only be expressed as a linear solution to the above equation. The richer in gas the dark shales are, the poorer in gas the admixed coal has to be, and visa versa. If there is little dark shale in a sample, a relatively well constrained answer for *gas content_{coal}* can be obtained. Conversely, if considerable dark shale is in a sample, the gas content of a coal will be hard to precisely determine.

The "lithologic component sensitivity analyses" therefore expresses the bivariant nature inherent in the analysis of gas content in mixed cuttings. The gas content of dark shales in Kansas can vary greatly. Proprietary desorption analyses of dark shales in cores from southeastern Kansas have registered as much as 50 scf/ton, but can be as low as 2-4 scf/ton. For general understanding of the "lithologic component sensitivity analyses" diagrams, the calculated *gas content_{coal}* is given for assumed *gas content_{dark shale}* at 30 scf/ton and 50 scf/ton. In some cases, the resultant *gas content_{coal}* is a negative number for 30 scf/ton and 50 scf/ton. In some cases, the resultant *gas content_{dark shale}* has to be lower than 30-50 scf/ton. Conversely though, to assume that all the gas evolved from a cuttings sample is derived solely from the coal would result in an erroneously high gas content for the coal.

In all the "lithologic component sensitivity analyses" diagrams, a "break-even" point also is noted where the gas content of the coal is equal to that of the dark shale. This "breakeven" point is likely the minimum gas content assignable to the coal and likely the

3

maximum gas content assignable to the dark shale. It can also be thought of the scf/ton gas content of the cuttings sample minus the weight of any of the lighter-colored lithologies, which are assumed to have no inherent gas content.

Summary Component Analysis for all Samples

This diagram is a summary of the individual "lithologic component sensitivity analyses" for each sample, all set at a common scale. The steeper the angle of the line for a sample, the more uncertainty is attached to the results (i.e., *gas content_{coal}*) for that sample. If the coal content is miniscule (i.e., < approximately 5%), the results are a better reflection of the *gas content_{dark shale}*.

Desorption Graph

This is a desorption graph (gas content per weight vs. square root of time) for all the samples. The rate at which gas is evolved from the samples is thus comparable at a common scale.

RESULTS and DISCUSSION

According to the summary component analysis, the most tightly constrained results were obtained for the Riverton coal. The percentage of dark shale in this sample was 76%, whereas coal was 21%. If this amount of dark shale has a relatively rich gas capacity of 50 scf/ton, the Riverton coal gas content assays to just 12 scf/ton. If the dark shale carries 30 scf/ton, the coal will assay at 84 scf/ton, and commensurately more gas content if the dark shale has less gas content. If the dark shale has no gas capacity at all (i.e., 0 scf/ton), the Riverton coal will hold 192 scf/ton. The "break-even point" at which the gas capacity of the shale is equal to that of the coal is 42 scf/ton. This point can also be thought of as the absolute minimum gas capacity for the coal and the absolute maximum gas capacity for the dark shale. If a nearby well has a gas content for dark shale near the Riverton coal, this value for gas content_{dark shale}.could be inserted into the equation for a reasonable estimate for gas content_{coal}.

Conversely, the Summit and Rowe(?) samples had only 8% and 13% coal content, respectively. Dark shale in these samples registered 67% and 65%, respectively. In both cases, the resultant gas content for the coals can vary greatly with only minor variation in the gas capacity for the associated dark shale.

In case of the Summit coal sample, its value may be better for estimating the gas content of the dark shale near the Summit coal, for no good coal was actually detected in the sample. What coal that was present could at best be described as a smutty coal that was difficult to distinguish from dark shale. In this case, 13 scf/ton should considered as perhaps an accurate measure of the sample. The Summit sample may be either a very poorly developed coal or perhaps the actual Summit coal was simply missed entirely during sample collection.

OPPORTUNITY FOR FURTHER STUDY

The samples obtained for this study were gathered during normal drilling, and no special provisions during drilling were made to high-grade the sample quality. Nevertheless, reasonable results were obtained for some of the samples. Better results likely can be obtained by ceasing drilling just above the coal and circulating up cuttings in the annulus so as to clean the hole before collecting the coal sample. Slow drilling ahead, about one foot at a time until a good coal sample is obtained, will also do much to high-grade the cuttings sample. However, these sampling tactics may be a difficult proposition if the driller is paid by the foot.

Sieving and separating cuttings by density at the drill site may also be a tactic by which more coal could be concentrated in a cuttings sample. A calcium chloride solution at 1.2 grams/cc density (in which some shales would sink more readily than the coal) may be adequate to concentrate coal in the cuttings sample.

In any case, data may also be obtained that can provide a solution to the problem posed by the respective gas contents of the dark shale vs. coal. If a reasonable proxy for the relative gas content of a dark shale stratigraphically adjacent to a coal could be found, this relationship could provide a unique solution to the equations expressed in "lithologic component sensitivity analyses". An inverse ratio of the density, total organic carbon, or ash content of the coals vs. shales may mimic that of their gas contents. Such data need to be tested from cores before it can reliably applied to cuttings, however.

The utility of cuttings for a relatively rapid gas analysis of coals in a well could be realized with employment of a sample splitter on site at the well. A portion of the cuttings collected could be saved separately from the portion that is canistered. While the canistered cuttings are desorbing, lithologic analysis of the uncanistered cuttings split could be proceeding. Upon completion of their outgassing, the canistered cuttings need only be washed and weighed. The lithologic weight ratios derived from the concurrent study of the uncanistered cuttings could then be applied to the canistered cuttings for a rapid gas analysis which could be available as soon as the desorption process is finished, likely within a couple of weeks of drilling.

Colt Energy Honeycutt #1; E2 NE SE sec. 6-T.31S.-R.17E., Montgomery County, KS lag-time to surface for well cuttings

measured lag time of cuttings to surface after pipe connections

SAMPLE 716' to 720' (Summit Coal) in canister Stegeman 6																				
DENSITIES:	COAL (2.34 g	rama/co	c), DARK SI	HALE (2.41 g	rama/cc)															
sample oven	dried at 150 de	grees l	F for 1 day																	
DRY WEIGHT		Ibs	8.	grama									est. lost gas (cc) =			TIME OF:				elapsed time (off bottom to canistering)
sample weig	ht:		2.1093	958.	77								65			off bottom	1	in caniater		6.4 minutea
CONVERSION	OF VOLUMES T	OSIP														10/22/02	12:27	10/22/02	12:34	0.106 hours
PIG MEASUREMENTS			CONVERSIO	N OF FIG N	MEASUREMENT	S TO STP	(cubic ft; @60 degn	ees; @14.7 r	CUMULATIVE VOL	UMES	SCF/TON (approx)	SCF/TON (approx)			TIME SINCE				0.325320355 SQRT (hrs)	
measured cc	measured T	(F) m	easured P	cubic ft (@r	ig) ABS. 1	T (F) (Orig) psi	a (Orig)	cubic ft (@STP)	cc (@STP)	cubic ft (@STP)	cc (@STP)	without lost gas	with lost gas	TIME OF ME	ASURE	off bottom	1	in canister		SQRT hrs. (since off bottom)
	6	75	1090	0.000211	89	535	14.148	0.000198211	5.61268	0.000198211	5.61268	0.187938339	2.36443657	10/22/02	12:35		0:07:33		0:01:12	0.354729944
	4	75	1090	0.000141	28	535	14.148	0.00013214	3.74179	0.000330351	9.35447	0.313230565	2.489728796	10/22/02	12:36		0:08:17		0:01:56	0.37155828
	4	75	1090	0.000141	28	535	14.146	0.00013214	3.74179	0.000462492	13.0963	0.438522791	2.615021022	10/22/02	12:36		0:09:02		0:02:41	0.386014891
	5	75	1090	0.000178	57	535	14.146	0.000185176	4.67723	0.000627667	17,7735	0.595138073	2.771636304	10/22/02	12:38		0:10:03		0:03:42	0.409267639
	8	75	1090	0.000211	89	535	14.148	0.000198211	5.61268	0.000825878	23.3862	0.783076412	2.959574643	10/22/02	12:39		0:11:33		0:05:12	0.43874822
	9	75	1090	0.000317	83	535	14.146	0.000297316	8.41902	0.001123194	31.8052	1.06498392	3.241482151	10/22/02	12:41		0:13:42		0:07:21	0.477842373
	5	75	1090	0.000178	57	535	14.148	0.000165176	4.67723	0.00126637	36.4824	1.221599203	3.398097434	10/22/02	12:43		0:15:16		0:08:55	0.504424865
	4	75	1090	0.000141	28	535	14.148	0.00013214	3.74179	0.00142051	40.2242	1.346891428	3.52338988	10/22/02	12:44		0:16:33		0:10:12	0.525198375
	5	75	1090	0.000178	57	535	14.146	0.000185176	4.67723	0.001585686	44.9015	1.503506711	3.680004942	10/22/02	12:46		0:18:06		0:11:47	0.549747417
	5	75	1090	0.000178	57	535	14.148	0.000165176	4.67723	0.001750861	49.5787	1.660121993	3.836620224	10/22/02	12:47		0:19:53		0:13:32	0.575663868
1	4	75	1090	0.000494	41	535	14.148	0.000462492	13.0963	0.002213353	62.6749	2.098644784	4.275143015	10/22/02	12:52		0:24:03		0:17:42	0.633113997
	5	75	1090	0.000178	57	535	14,148	0.000165176	4.67723	0.002378529	67.3522	2.255260066	4.431758297	10/22/02	12:54		0:26:03		0:19:42	0.656913247
	3	75	1090	0.000105	94	535	14.148	9.91054E-05	2.80634	0.002477634	70.1585	2.349229236	4.525727467	10/22/02	12:56		0:28:03		0:21:42	0.663739717
	2	75	1089	0.000423	78	535	14,135	0.000396056	11.2151	0.002873692	81.3736	2.724761072	4.901259304	10/22/02	13:06		0:38:03		0:31:42	0.796345821
	2	75	1089	0.000423	78	535	14.135	0.000396058	11.2151	0.00326975	92.5887	3.100292909	5.27679114	10/22/02	13:14		0:46:03		0:39:42	0.876070773
	4	75	1089	0.000141	28	535	14,135	0.000132019	3,73836	0.003401769	96.327	3.225470188	5.401968419	10/22/02	13:17		0:49:33		0:43:12	0.906753725
	0	75	1089	0.000317	83	535	14,135	0.000297043	8.4113	0.003698812	104.738	3.507119085	5.663617297	10/22/02	13:27		0:59:46		0:53:27	0.996331942
	B	75	1089	0.000282	52	535	14,135	0.000264039	7.47671	0.003962851	112,215	3.757473623	5.933971855	10/22/02	13:34		1:06:33		1:00:12	1.053169819
	9	75	1089	0 000105	94	535	14,135	9.90144E-05	2.80377	0.004061865	115.019	3.851358582	6.027854814	10/22/02	13:41		1:13:54		1:07:33	1.109804788
1	8	76	1089	0.000635	67	536	14,135	0.000592978	16,7912	0.004654844	131.81	4.413603409	6.59010164	10/22/02	13:54		1:26:03		1:19:42	1.197566978
	2	76	1089	0 000423	78	536	14,135	0.000395319	11,1941	0.005050162	143.004	4.788434627	6.964932858	10/22/02	14:07		1:39:03		1:32:42	1.284847591 estimate
	5	76	1089	0.000178	57	538	14,135	0.000164716	4.66423	0.005214879	147.668	4.944814301	7.121112532	10/22/02	14:14		1:46:03		1:39:42	1.32947358
	5	76	1089	0 000176	57	536	14,135	0.000164716	4.66423	0.005379595	152.333	5.100793975	7.277292208	10/22/02	14:19		1:51:03		1:44:42	1.360453356
1	5	76	1089	0.000529	72	536	14,135	0.000494149	13.9927	0.005873743	186.325	5.569332997	7.745631228	10/22/02	14:37		2:09:03		2:02:42	1.466571967
	1	78	1089	0 000388	46	536	14,135	0.000362378	10.2613	0.006236119	176,567	5,912928279	8.089426511	10/22/02	14:54		2:26:03		2:19:42	1.560181613
	9	77	1088	0.000105	94	537	14,122	9.85551E-05	2.79076	0.006334674	179.377	6.006375692	6.182873923	10/22/02	15:19		2:51:03		2:44:42	1.688441096
	8	77	1088	0.000282	52	537	14,122	0.000262614	7.44202	0.006597488	186.819	6.255568793	8.432067024	10/22/02	15:42		3:14:03		3:07:42	1.7983769
	4	77	1088	0.000141	26	537	14,122	0.000131407	3.72101	0.006728895	190.54	6.380165343	8.556663575	10/22/02	16:03		3:35:03		3:28:42	1.893189549
	2	77	1088	-7.063E-0	05	537	14.122	-8.5703E-05	-1.8605	0.006663191	188.66	6.317867088	8.494365299	10/22/02	16:28		4:00:03		3:53:42	2.000206323
	£ 6	77	1088	0.000211	39	537	14.122	0.00019711	5.58152	0.006860301	194,261	6.504761694	8.681260125	10/22/02	17:39		5:11:03		5:04:42	2.276876515
	4	77	1088	0.000141	26	537	14.122	0.000131407	3,72101	0.006991708	197,982	6.629356444	8,805856676	10/22/02	16:12		5:44:03		5:37:42	2.394612008
	•	75	1094	0.000423	78	535	14 200	0.000397876	11 2666	0 007389584	209.249	7.006614486	9,183112717	10/22/02	22:20		9:52:03		9:45:42	3.14125771
	8	75	1093	0.0026839	92	535	14.187	0.002517579	71.2898	0.009907164	280.539	9.393718757	11.57021699	10/23/02	16:05	2	7:37:03	2	7:30:42	5.255235485
	6	75	1088	0.001238	02	535	14.122	0.001154106	32.6806	0.011061272	313.219	10.48801416	12.68451239	10/24/02	16:48	5	2:20:03	5	2:13:42	7.234235735
3	0	75	1089	7 063E-	05	535	14.135	8.80096E-05	1.86918	0.011127281	315,088	10,5508028	12.72710103	10/26/02	22:58	10	6:30:03	10	6:23:42	10.3199241
	<u>د</u>	75	1000	0.000105	4	535	14 135	9 90144E-05	2 80377	0 011228298	317,892	10.64446576	12.82098399	10/27/02	22:19	12	9:51:03	12	9:44:42	11.39521098
	3		1008	9.0001001		000		0.001442.00	2.00077	0.011220200										

DECANISTERED 10/30/02

SAMPLE: 1085' to 1086' (Rowe Coal?) in caniater 11 DENSITIES: COAL (1.77 grams/cc), DARK SHALE (2.58 grams/cc) sample oven dried at 150 degrees F for 1 day

DRY WEIGHT		II.	08.	grame						lbs.	grama	· · · · · · · · · · · · · · · · · · ·	moisture v	veight	est. lost gas (cc) =			TIME OF:				elapsed time (off bottom to canistering)
sample weigh	t:		1.2479	5	68.02		wet sa	mple we	eight:	1.247	9	566.02	0.0%		42			off bottom		in canister		5.3 minutes
CONVERSION	OF VOLUMES	TOSTP																10/22/02	16:27	10/22/02	16:32	0.088 hours
RIGMEASURE	MENTS			CONVER	RSION C	F RIG MEASURE	MENTS T	O STP (cubic ft; @60 degi	ees; @14.1	CUMU	LATIVE VOL	UMES	SCF/TON (approx)	SCF/TON (approx)			TIME SINCE				0.295603989 SQRT (hrs)
measured or	measured T	(F) n	neasured P	cubic ft	(Orig)	ABSOLUTE T (F) (psia (Orig) c	ubic ft (@STP)	cc (OSTI) cubic	ft (OSTP)	cc (@STP)	without lost gas	with lost gas	TIME OF ME	ASURE	off bottom		in caniater		SQRT hrs. (since off bottom)
		77	1086	0.000	14126	53	7 14	1.122	0.000131407	3.7210	1 0.00	00131407	3.72101	0.210611359	2.587834913	10/22/02	16:33	0	:06:22	(:01:07	0.325747005
		77	1086	0.000	14128	53	7 14	1.122	0.000131407	3.7210	1 0.00	0262814	7.44202	0.421222716	2.798446272	10/22/02	16:34	0	:07:20		:02:05	0.349602949
		77	1088	0.000	14126	53	7 14	1.122	0.000131407	3.7210	1 0.0	00039422	11.163	0.631834078	3.009057631	10/22/02	16:35	0	:08:20		:03:05	0.372677996
		77	1088	0.000	10594	53	7 14	1.122	9.85551E-05	2.7907	6 0.00	0492775	13.9538	0.789792597	3.187016151	10/22/02	16:36	0	:09:20		:04:05	0.394405319
		77	1088	0.000	14128	53	17 14	1.122	0.000131407	3.7210	1 0.00	0624182	17.6748	1.000403956	3.37762751	10/22/02	16:38	0	:10:40		:05:25	0.421637021
		77	1088	0.00	02472	53	17 14	1.122	0.000229962	6.5117	7 0.00	0854144	24.1866	1.368973835	3.746197389	10/22/02	16:41	0	:14:00		:08:45	0.483045891
		77	1088	0.000	10594	53	17 14	1.122	9.65551E-05	2.7907	8 0.00	0952699	26.9773	1.526932354	3.904155908	10/22/02	16:42	0	:15:14		:09:59	0.503873882
5		77	1088	0.000	28252	53	37 14	1.122	0.000262814	7.4420	2 0.00	01215513	34.4194	1.948155073	4.325376626	10/22/02	16:47	0	:20:02):14:47	0.577631194
		77	1086	0.000	17657	53	17 14	1.122	0.000164258	4.6512	6 0.00	01379771	39.0706	2.211419272	4.588842825	10/22/02	16:51	0	:23:30):18:15	0.625832778
		77	1088	0.000	14128	53	17 14	1.122	0.000131407	3.7210	1 0.00	01511178	42.7916	2.422030631	4.799254185	10/22/02	16:54	0	:26:30):21:15	0.664580068
1		77	1088	0.000	80035	53	37 14	1.122	0.000558479	15.814	3 0.00	2069657	58.6059	3.317128907	5.694352461	10/22/02	17:03	0	:36:10		30:55	0.776387647
2		77	1088	0.00	09535	53	37 14	1.122	0.000886996	25.116	8 0.00	2956653	83.7228	4.736755582	7.115979138	10/22/02	17:37	1	:09:30		1:04:15	1.076258953
21	0	77	1088	0.00	07083	50	17 14	1.122	0.000657034	18.605	1 0.00	03613687	102.328	5.791812378	8.169035932	10/22/02	18:12	1	:44:30		:39:15	1.319722193

48	70	1085	0.00182448	530	14.083	0.001528915	43.2373	0.005140802	145.585	8.239085494	10.61628905	10/22/02	22:28	5:58:30	5:53:15	2.444381312
9.0	70	1085	0.00317833	530	14.083	0.002987443	84.5948	0.008128045	230.18	13.02718942	15.40439297	10/23/02	16:10	23:42:30	23:37:15	4.889120386
80	85	10.85	0.00314302	545	14.083	0.002872939	81.3523	0.011000984	311.512	17.83175378	20.00897731	10/24/02	18:47	48:19:30	46:14:15	8.951818517
00	00	1086	0	540	14 083	0	0	0.011000984	311 512	17.83175378	20.00897731	10/28/02	15:24	94:56:30	94:51:15	9.743801448
0	80	1005	7 0635-05	540	14.083	8 51582E-05	1 84507	0.011088142	313 357	17 73818588	20,11340921	10/27/02	22:22	125:54:30	125:49:15	11.22088826
2	80	1005	0.00030848	540	14.100	0.010022.00	10 1888	0.011425173	323 524	18 31181984	20 8888434	10/29/02	22:31	174:03:30	173:58:15	13,19311889
11	80	1087	0.00030040	540	14.108	0.000358031	10.1000	0.011420170	020.024	10.01101004	20.0000404	TOTEOTOE				

DECANISTERED 10/30/02

SAMPLE: 1144' to 1147' (Riverton Coal) in canister 1 DENSITIES: COAL (1.48 grama/cc), DARK SHALE (2.59 grams/cc) earrole roven dried at 150 degrees F for 1 day

sample oven drie	ed at 150 degree	ss F for 1 day												THE OF				alanced time (off bottom to conjetaring)
DRY WEIGHT		lbs.	grame				lbs.	grama	moisture v	veight	est. lost gas (cc) =			TIME OF:				elapsed time (on obtion to canatering)
sample weight:		1.7827	808.61	1	wet sample	weight:	1.7827	808.81	0.0%		90			on pottom		in canister	47.00	0.6 Institutes
CONVERSION OF	VOLUMES TO ST	P												10/22/02	18:55	10/22/02	17:02	0.114 nours
RIG MEASUREME	INTS		CONVERSION (OF RIG MEASUREMEI	NTS TO STP	(cubic ft; @60 degr	ees; @14.7 (CUMULATIVE VO	LUMES	SCF/TON (approx)	SCF/TON (approx)			TIME SINCE				0.337474279 SQHT (INS)
measured cc m	easured T (F)	measured P	cubic ft (@rig)	ABSOLUTE T (F) (p	osia (Orig)	cubic ft (@STP)	cc (@STP)	cubic ft (OSTP)	cc (@STP)	without lost gas	with lost gas	TIME OF MEA	ASURE	off bottom		in canister		SURT Mrs. (BINCE OIL DOTTOM)
10	77	1088	0.00035315	537	14.122	0.000328517	9.30253	0.000328517	9.30253	0.388585321	3.934356553	10/22/02	17:04	0:	08:48		0:01:58	0.382970843
8	77	1088	0.00021189	537	14.122	0.00019711	5.58152	0.000525827	14.864	0.589704513	4.155495745	10/22/02	17:05	0:	09:30		0:02:40	0.397911213
9	77	1088	0.00031783	537	14.122	0.000295865	8.37228	0.000821292	23.2583	0.921413301	4.487204534	10/22/02	17:06	0:	10:47		0:03:57	0.423936578
5	77	1088	0.00017857	537	14.122	0.000184258	4.65126	0.000985551	27.9078	1.105695962	4.871487194	10/22/02	17:07	0:	11:44		0:04:54	0.442216839
5	77	1088	0.00017657	537	14.122	0.000164258	4.65126	0.001149809	32.5569	1.289978822	4.855789854	10/22/02	17:08	0:	12:42		0:05:52	0.460072458
5	77	1088	0.00017657	537	14.122	0.000184258	4.65126	0.001314086	37.2101	1.474281282	5.040052515	10/22/02	17:10	0:	14:05		0:07:15	0.484461395
4	77	1088	0.00014128	537	14.122	0.000131407	3.72101	0.001445475	6 40.9311	1.82188741	5.187478843	10/22/02	17:10	0:	14:47	(0:07:57	0.498375754
6	77	1088	0.00021189	537	14.122	0.00019711	5.58152	0.001642585	48.5128	1.842826803	5.408617835	10/22/02	17:12	0:	16:19		0:09:29	0.521482928
10	77	1088	0.00035315	537	14.122	0.000328517	9.30253	0.001971102	55.8152	2.211391923	5.777183156	10/22/02	17:15	0:	19:05		0:12:15	0.583964144
8	77	1088	0.00028252	537	14.122	0.000262814	7.44202	0.002233915	6 83.2572	2.50624418	6.072035412	10/22/02	17:17	0:	21:20		0:14:30	0.596284794
5	77	1088	0.00017657	537	14.122	0.000184258	4.65128	0.002398174	87.9085	2.69052684	6.256318072	10/22/02	17:19	0:	23:20		0:16:30	0.623809564
6	77	1088	0.00021189	537	14.122	0.00019711	5.58152	0.002595284	73.49	2.911666032	6.477457265	10/22/02	17:21	0:	25:23		0:18:33	0.65042721
9	77	1088	0.00031783	537	14.122	0.000295865	8.37228	0.002890949	81.8623	3.243374821	6.809166053	10/22/02	17:24	0:	28:50		0:22:00	0.893221145
8	77	1088	0.00021189	537	14,122	0.00019711	5.58152	0.00308808	87.4438	3.484514013	7.030305245	10/22/02	17:28	0:	30:50		0:24:00	0.716860439
10	77	1088	0.00035315	537	14.122	0.000328517	9.30253	0.003418577	98.7463	3.833079334	7.398870588	10/22/02	17:34	0:	36:05		0:31:15	0.79889456
8	77	1088	0.00021189	537	14.122	0.00019711	5.58152	0.003813687	102.328	4.054218528	7.620009758	10/22/02	17:38	0:	40:05		0:33:15	0.817346656
14	77	1068	0.00049441	537	14.122	0.000459924	13.0235	0.004073611	115.351	4.570209975	8.136001207	10/22/02	17:43	0:	47:05		0:40:15	0.865845484
11	77	1088	0.00038848	537	14.122	0.000381369	10.2328	0.004434979	125.584	4.975831827	8.54142306	10/22/02	17:49	0:	53:35):48:45	0.945016167
15	77	1088	0.00052972	537	14.122	0.000492775	13.9538	0.004927755	5 139.538	5.528479808	9.09427104	10/22/02	17:59	1:	03:05		0:56:15	1.025372561
20	77	1088	0.0007083	537	14.122	0.000857034	18.8051	0.005584788	158.143	8.265610449	9.831401882	10/22/02	18:13	1:	17:05		1:10:15	1.133455876
155	70	1094	0.00547379	530	14.200	0.005187718	148.899	0.010772507	305.042	12.0857448	15.65153803	10/22/02	22:30	5:	34:05		5:27:15	2.359672764
108	70	1093	0.0069217	530	14.187	0.006553957	185.587	0.017326463	490.629	19.43867128	23.00446249	10/23/02	16:12	23:	18:05	2:	3:09:15	4.823897291
170	85	1088	0.00800352	545	14,122	0.00550281	155.822	0.022829273	8 848.451	25.61230945	29.17810068	10/24/02	16:49	47:	53:05	4	7:46:15	6.919678772
95	80	1089	0.00335491	540	14.135	0.003106425	87.9838	0.025935699	734.414	29.09742823	32.66321946	10/26/02	15:27	94:	31:05	9.	1:24:15	9.722039681
110	80	1082	0.00388483	540	14.044	0.003573793	101.198	0.029509492	835.613	33.1068897	38,87268094	10/29/02	22:34	173:	38:05	17:	3:31:15	13.17705287
19	80	1087	0.00045909	540	14,109	0.000424309	12.0151	0.029933801	847.828	33.56292462	37.14871606	10/30/02	14:07	189:	11:05	18	9:04:15	13.75444373
10	80	1081	0.00014126	540	14.031	0.000129838	3,87853	0.030083837	851.304	33.72858887	37.29437991	10/31/02	10:53	209:	57:05	20	9:50:15	14.48969941
10	80	1097	0 00067098	540	14.239	0.000625849	17.722	0.030889488	889.028	34.4307329	37.99852413	11/1/02	18:23	241:	27:05	24	1:20:15	15.53870615
51	80	1081	0.00180105	540	14.031	0.001655409	48.8758	0.032344895	5 915.902	36.28794899	39.85373822	11/4/02	21:49	318:	53:05	31	8:48:15	17.8012562
18	80	1087	0 00063567	540	14,109	0.000587505	18.8382	0.0329324	932.538	36.94707254	40.51286377	11/8/02	13:45	356:	49:05	35	8:42:15	18.68962825
10	80	1081	0 00049441	540	14.031	0.000454426	12.8879	0.033388828	945,408	37.45689801	41.02268725	11/7/02	12:58	380:	02:05	37	9:55:15	19.49447928
20	00	1081	0.0007083	540	14.031	0.00084918	18.3827	0.034038006	963.789	38.18521526	41.7510085	11/9/02	19:00	434:	04:05	43	3:57:15	20.83429998 estimate
20	00	1001	0.000.000	540			days unders											

DECANISTERED 11/07 (slightly early due to need for canister), so estimate of final gas is made on prior desorption rates

square root of hours since cuttings were off bottom

LITHOLOGIC COMPONENT SENSITIVITY ANALYSIS for calculation of gas content of Summit coal from 718-720'

ASSUMED GAS CONTENT (dark shale) scf/ton

LITHOLOGIC COMPONENT SENSITIVITY ANALYSIS for calculation of gas content of Rowe(?) coal from 1085-1086'

LITHOLOGIC COMPONENT SENSITIVITY ANALYSIS for calculation of gas content of Riverton coal from 1144-1147'

ASSUMED GAS CONTENT (dark shale) scf/ton

surface

LITHOLOGIC COMPONENT SENSITIVITY ANALYSIS for all samples

