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Abstract

Geometrical characteristics of xenoliths in the Antioch kimberlite pipe have been
considered in statistical terms. A method of conversion of 2D intersections to 3D
dimensions was used. It has been shown that the Rosin-Rammler distribution of mass
leads to the Weibull distribution of sizes, while a fractal distribution of sizes can be
expressed as the Pareto distribution. Lognormal, Weibull and Pareto distributions
have been tested as model distributions. The Pareto distribution could be the most
appropriate model for the distribution of xenoliths. This conclusion is in agreement
with the general idea that the xenoliths formed as a result of an underground
explosion without additional breakage occurring during magma transport. The final
distribution may be shifted from the initial model due to processes of redistribution
and sorting of xenoliths in liquid-crystalline flows.
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Introduction

Investigating processes of xenoliths formation and transport is useful to better
understand the internal structure and origination of kimberlite bodies. Different
processes of fragmentation lead to different distributions of xenoliths sizes and
shapes. Thus, information about sizes and shapes can be used for reconstruction of
conditions at which xenolithes formed and for recognizing basic fragmentation
processes. Taking into consideration the random character of xenoliths formation we
will use some standard statistical procedures for testing model distributions. This
approach will allow us not only to choose the appropriate model of breakage but also
to estimate the influence of subsequent processes of particles redistribution during
magma transport through the kimberlite body which can affect original distributions.

The Antioch kimberlite was selected for this study because two different phases are
recognized in the core and the core is competent enough to prepare samples that can
be polished for scanning.

The Antioch kimberlite in NWNW section 9, T5S, R8E, Marshall County, is but one
of a cluster of twelve identified kimberlites in northern Riley and southern Marshall
counties in northeast Kansas. The kimberlites are Late Cretceous in age (about 90
m.y.) and occur along the trace of the 1,10 Ga Central North American Rift System.
They intrude into generally flat-lying Permian sedimentary rocks. The top of the
Antioch kimberlite is buried beneath 6.5 meters (21 ft.) of alluvial material. The
bedrock in the area consists of vari-colored shale and thin limestone units in the upper
part of the Council Grove Group, Wolfcampian Series, Lower Permian System
(Rotliegendes). Modeling of detailed groundmagnetic data indicates that the Antioch
kimberlite is a complex occurrence and should be considered to represent two distinct
kimberlite intrusions approximately 150 meters apart (492 ft.). A 95 meter (312 ft.)
continuous core was obtained from the northern intrusion. Two distinct rock types can
be recognized in the core, probably representing different phases or intrusive pulses.
Based on textural and petrographic observations the kimberlite is tentatively classified
as diatreme facies.



Assuming that several igneous pulses may be present, the decision was made to see if
individual pulses could be statistically recognized based upon the characteristics
exhibited by the xenoliths in the core.

Geology

All kimberlites are located in a two-county area in northeast Kansas (Fig. 1) along the
NNE-trending trace of the Proterozoic Midcontinent Rift System, an aborted rift
extending from the Lake Superior region southwesward into Oklahoma. Three new
kimberlites, Antioch, Tuttle, and Baldwin Creek were discovered and drilled in 1999,
as part of a systematic ground follow-up of private aeromagnetic data collected by
Cominco American in the early 1980's and donated to the Kansas Geological Survey
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Figure 1. Kimberlite location map. 1. Bala, 2. Leonardville, 3. Tuttle, 4. Lonetree A
and B, 5. Stockdale, 6. Baldwin Creek, 7. Fancy Creek, 8. Randolph-1, 9. Randolph-2,
10. Winkler, 11. Swede Creek, 12. Antioch.

in 1999 (Berendsen and Weis, 2000). The kimberlites were drilled to a depth of
approximately 92 meters (300 ft.) and continuous core was recovered. The Tuttle and
Baldwin Creek kimberlites are in many respects similar in character. The rock has a



light gray-green color in the upper part of the drill hole, turning darker with depth and
containing numerous angular to rounded xenoliths of Paleozoic rock fragments and
lesser amounts of what are believed to be smaller basement and crustal fragments that
are metasomatized to varying degrees. They are both micaceous kimberlites
containing garnets and ilmenite up to several centimeters in the Tuttle kimberlite.
Secondary gypsum (satin spar), derived from the surrounding Permian redbeds fills
fractures up to 4 centimeters (1.6 inches) wide and also occurs as rounded masses up
to 4 centimeters (1.6 inches) in diameter.

The Antioch kimberlite occurs 21 km (13 miles ) northeast of the cluster of other
known kimberlites and is quite different in nature from the other that were drilled.
Because the core from this drill hole was used in this study, a brief description of the
rock units encountered follows. The kimberlite is overlain by 6.5 meters ( 21 ft.) of
alluvium. Down to 35 meters (115 ft.) the kimberlite is competent, dark-gray-green
rock. The matrix is very fine-grained to aphanitic and contains numerous small clasts
that are to small to be identified in hand specimens. Occasional, slightly larger clast
are to metasomatized to be identified. No garnet, ilmenite, or other minerals can be
recognized in the core. At 35 meters (115 ft.) down to 67 meters (115-220 ft.) the
kimberlite changes abruptly to a lighter, gray-green, less competent rock containing
many larger xenoliths, most of which can be recognized as being pieces of the local
Paleozoic sedimentary section. From 67-71 meters (220-233 ft.) the kimberlite looks
very similar to that in the upper part of the core. At 71 meters (233 ft.) down to 81
meters (266 ft.) another sharp change to lighter-colored and less competent kimberlite
occurs. The last 13 meters (43 ft.) consists again of dark gray, fine grained, and
competent kimberlite. Based on textural and petrograhic observations the kimberlite is
tentatively classified as diatreme facies.

The tectonic setting in northeast Kansas is just right for accommodating the intrusion
of kimberlites. The major structural elements are the regional NNE-trending, deep-
seated, high-angle normal and reverse faults associated with the 1.10 Ga Midcontinent
Rift System and the regional, older, high-angle normal and reverse, NW-SE
striking,crosscutting faults which offset portions of the rift (Berendsen and Blair,
1986). The presence of the rift is identified in regional gravity (Coons et al, 1967) and
magnetic data (King and Zietz, 1971) sets and evidenced in core and cuttings
recovered from drill holes that penetrate the Precambrian basement. In the area where
the kimberlites occur the rift cuts through metamorphic and granitoid rocks of the
Central Plains orogen, ranging in age from 1.63-1.80 Ga (Sims and Peterman, 1986;
Bickford et al, 1981).

Sample processing.

Samples from kimberlite core were cut and polished. Scanned images were processed
using Adobe Photoshop for image enhancement (adjustment of brightness, contrast
and noise removal). The recognition and measurement of xenoliths was conducted
using UTHSCSA ImageTool — a freely distributed image processing and analysis
program. Xenoliths were isolated using thresholding of grayscale images followed by
measuring different features of xenoliths such as length of main axes, elongation,



roundness ((4 x Pi x area) / perimeterz), compactness (sqrt(4 x area / Pi) / major axis
length), Feret diameter of xenoliths (the diameter of a circle having the same area as
the object = sqrt(4 x area) / Pi) etc.

Conversion of 2D intersections to 3D dimensions.

The raw data on xenolith sizes represent only a measurement of intersections of
xenoliths with a plane. Conversion of two-dimensional size to true three-dimensional
size distribution is a stereological problem (see Royet, 1991). There are two main
problems: a so called cut effect and an intersection effect. The cut effect concerns the
reduction in intersection sizes due to the random intersection of the xenolith with the
plane which does not necessarily pass directly through the center of xenolith. For a set
of xenoliths with different sizes, smaller xenoliths are less likely to be intersected by a
plane than larger xenoliths. This is the intersection-probability effect. Review of
possible solutions of these problems can be found in Higgins (2000). In this research,
we used a method proposed by Saltykov (1967), and further developed in Sahagian
and Proussevitch (1998). According to this method, the raw data have to be sorted
into m geometrical size classes. The number of classes was defined as m=lgy(n),
where n is a number of xenoliths in raw data. This is necessary for the correct Chi-
squared statistical testing of the resulting distributions. In our case we used classes
each 10! smaller than the last (bigger xenoliths fall into bigger size classes). The
true number of xenoliths Ny; that fall into the i-th size class can be estimated then as
follows:
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Here N4; is a number of xenoliths from the i-th class of raw data obtained from a
section. H; is the Mean Projected Height which can be defined as the mean height of
the shadow of the xenolith from i-th size class for all possible orientations (Sahagian
and Proussevitch, 1998). H; provide intersection effect correction. Pj; is the probability
that a xenolith with a true size in the class j will have an intersection that falls in the
class i (correction of the cut-section effect). A simple solution for estimation of H;
and Pj; for a set of xenoliths with different sizes and shapes does not exist. Possible
approaches using random simulation of xenoliths with known shapes are discussed in
Higgins (2000) and Sahagian and Proussevitch (1998). In this research we used a
spherical model of xenoliths which allows the simple analytical solution. In this case
H;is simply a mean diameter of xenoliths in class i and P; can be obtained from the

2 2 :
e \/H Pty ), where r;;; and r; are maximum and

. 1 2 Z
equation P, = ;I“(\/Hj —-r -
j
minimum values in the class i. In addition, the resulting values Ny; were renormalized
so as their sum would be equal to the total number of measured xenoliths. The last

step provides the invariance of results relative to units of measurement.

Some theoretical models of breakage.



1. In 1941 Kolmogorov and in 1947 Epstein investigated the breakage process using
the following assumptions: fragmentation can be considered as composed of discrete
steps of breakage events, the probability of breakage of any piece during any step of
process is constant, the distribution of pieces obtained from the application of a single
breakage event to a given piece is independent of the dimension of the piece broken
(Epstein, 1947). It was shown that under these assumptions, any initial fragment
distribution eventually tends toward a log-normal distribution of the form

Pl < x}= F(x) = %(1 + ew%“—“». ®)

P{l < x} is a probability of a xenolith size [ to be less then x.
The density function is
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Estimations of parameters of the distribution can be obtained from a sample as
follows:
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where x, and s are an average sample value and standard deviation respectively.
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2. Commercial crushing and grinding processes generally produce a Rosin-Rammler
distribution of the form

%’Tmzexp(—’;] , 5

N(m) is the number of fragments with a mass greater than m, N is the total number of
fragments, M, Vare free parameters.

This distribution results when comminution is controlled by a Poisson distribution of
initial flaw sizes in the starting material (Gilvarry and Bergstrom, 1961).

Unfortunately, in this form the distribution is not appropriate for statistical testing.
Moreover, this distribution is a function of fragment masses, whereas we need the
distribution of sizes. Let us conduct some simple transformations. In statistical terms

N(m)
NT N,[._)oc

But this is the Weibull distribution with free parameters @ and v.

> P{m > x};x>0. Consequently P{m<x}=Fm(x)=1—exP(—£],
u

Our final interest is a distribution of sizes r. Let us express the mass of a xenolith as
m=r’c, where c=sp. Here p is density of a substance, s is a positive shape constant (for



example s=4/37 for a sphere). r:f(m):(m/c)” Sisa monotonously increasing function
of m. Hence, it is possible to write the distribution function F,(x) as follows:

3 v
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Using substitution B = (u/c)'”’,a =3v we easily obtain the F,(x)=1- CXp(— %) .

This is again the Weibull distribution with some parameters ¢ and f. The density
function is f,(x) =af “x*" exp(—(x/ B)%). Unfortunately, there exists no simple
way for estimation of the parameters from a sample. In this article we use the =1 and

P=x, as a starting approximation with the consequent search of a point in the
parametrical space minimizing the Chi-squared function (see explanations below).

3. One more distribution we will use here is the fractal distribution. As it was shown
in Sammis and Steacy (1995), this distribution law can arise when fracturing has
place in constrained conditions when fragments are not free to change their relative
positions. This conditions can be produced by underground explosions, in some fault
zones etc. (see e.g. Turcotte, 1986). Most often this law is written as follows: N(r)ocr®
where N is the number of xenoliths with size more than r. Again, this form of
distribution allows to test this dependence on qualitative level and estimate D — fractal
dimension, but it does not allow the statistical testing of the distribution. The
necessary transformations are as follows:

N(r)

NT Np—eo
xenolith has a size more than x. Consequently P{r<x}=F (x)=1- Cx™?, where C
is some constant. To define the distribution function entirely we have to choose the C
s0 as the integral of the density function f.(x)=CDx " over the function’s support

> P{r > x}, where P{r > x} is the probability that a randomly chosen

be 1. It is possible to do for the interval [A,ee] where A is any positive number. In this
D
case C=A". So, the resulting distribution function is F,(x) =1 —(A) and the density
X

function is f,(x) = Dx~""'A”. This is nothing else but the Pareto distribution with the
parameter D. The unbiased estimation of D is D=1/2+./1/4+A/x, where A can

be defined as a minimum value from the empirical sample and x, is an average value
of the sample.

Thus, in this article we consider three distribution functions (log-normal, Weibull and
Pareto) as possible models of breakage process. Testing of distributions was
conducted using standard Chi-squared technique. That is to say, the value

S (ni —hp,; (0))2
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empirical distributions. Here, n; is a number of xenoliths in the i-th bin of histogram,

was used as a measure of a difference between theoretical and



m is a number of bins, p(6) defines the probability of random xenolith to fall into i-th
bin:

p,(0)= _[ p(x,0)dx , where p(x,0) is a density function for chosen distribution, x; and
x;,; are margins of i-th bin. At big values of n, y’ converges to the 2 distribution

with m-k-1 degrees of freedom, where k is the number of parameters of model
distribution. The vector of parameters 8 was chosen so as to minimize the Chi-
squared function. This was provided by the substitution of unbiased estimations of
parameters (excluding Weibull distribution, see above) followed by a simple
coordinate descent in the parametrical space.

The use of distance between the theoretical and empiricals distribution allows us not
only to test a distribution (accept or reject a model with chosen reliability) but also to
estimate the measure of influence of additional processes disturbing the original
distribution. In our case, deviations from the supposed theoretical distributions can be
explained by mixing of several kimberlite magmas with different sources of xenoliths
or by redistribution of xenoliths during transport of magma through the kimberlite

pipe.
Discussion of results.
An average length, perimeter, area, Feret diameter reflect the overall size of xenoliths

and, consequently, they are highly correlated. It is possible to note the tendency of
increasing average size with depth (fig. 2).
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Figure 2. An average length of major axis and Feret diameter of xenoliths with depth.

This tendency is sporadically disturbed by sudden changes of average values, which
can be explained by the presence of additional magmatic sources (samples 66-11,
162-8, 220-11). The same tendency has the distribution of elongation, whereas the
compactness and roundness are described by the inverse dependence (fig. 3). This is
expressed also in significant coefficients of correlation between the length of major
axis and elongation (r = 0.87), Feret diameter and elongation (r = 0.83), major axis
and roundness (r = -0.92), major axis and compactness (r = -0.91), Feret diameter and
roundness (r = -0.88), Feret diameter and compactness (r = -0.88).



DEPTH (m)

0 0 : 0
38 38 8
e - o
B - s -
Szm’-ﬂ/ o jﬁi
N —— 66-1 66-11 £6-11
-2 i——_————d)u -20 st -2 T
0] 0w/ D
et 6 4
5 12 —‘éljg;/ 1321 il
© oo, 3210 " 13210 0 0
e ¢ ~u e Ny
e 1628 £ 16208 E 1628
E < z
® o
5 w 186 i i
o a
-60 -60 [ -60
220, |/// \N - \ it
o %0
-80 -80 -80
s , 35/ g5/
100 -100

-100
1.5 16 17 1.8 1.9 20 2.1 22 064 070 0.76 0.82 0.88 0.94 1.00 072 07 08 084 08 092 09
ELONGATION ROUNDNESS COMPACTNESS

Figure 3. Elongation, roundness and compactness versus depth.

Thus, an average isometricity of xenoliths decreases with their size.

Results of testing of corrected distributions of sizes on correspondence with model
laws of distributions are follows:

1.

2.

Logarithmic and Weibull distributions are rejected for all samples with reliability
99%.

The most adequate model, describing empirical distributions, is the fractal
distribution (Pareto distribution in our terminology). This conclusion is in the
agreement with the idea of xenolith formation as a result of rocks exploding
under constrained conditions at depths. Almost one half of the samples does not
statistically contradict to Pareto distribution. The rest of the samples is
characterized by distributions of sizes that are slightly shifted from the model
distribution. Although these shifts are not as large as for lognormal and Weibull
distributions, they are sufficient enough for the Pareto distribution to be rejected.
These shifts can be attributed to the xenoliths redistribution due to mixing of
different magmatic fractions or to the redistribution of xenoliths during transport
of magma through a kimberlite pipe.

Tabl. 1. Estimation of Chi-squared values and critical Chi-squared values for
lognormal, Weibull and Pareto distributions. A distribution is rejected with the
reliability 99% if the estimation exceeds the critical value.

Sample N | Lognormal | Weibull Critical Pareto distr. Critical

distr. distr. values values
38 123 637 18.5 73 20.1
49 18762 54 16.8 1 18.5
55-7 168 713 18.5 58 20.1
60-11 126 526 18.5 26 20.1
66-11 92 381 18.5 10 20.1
72 248 1054 18.5 20 20.1

10




98 143 611 20.1 41 21.7
107-5 52 234 16.8 10 18.5
109-6 176 802 18.5 32 20.1
126 103 467 18.5 8 20.1
127 226 897 18.5 9 20.1
132-10 80 360 18.5 35 20.1
139-6 74 340 16.8 15 18.5
153 120 551 18.5 26 20.1
162-8 42 241 18.5 20 20.1
186 70 300 18.5 32 20.1
220-11 1399 1539 20.1 34 21.7
285 44 266 18.5 34 20.1

This is possible, for example, due to the Bagnold effect, according to which xenoliths
can be sorted by size during transportation of liquid-crystalline flows, even recovering
effects of gravitational layering (Hutter, 1993).

The distribution of Chi-squared estimations are shown in the figure 4.
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Chi-squared values do not correlate with any shape and size characteristics of
xenoliths. This means that processes of redistribution and sorting of xenoliths
occurred independently in different parts of kimberlite body. But it is possible to note
that these processes were developed more intensively in the upper part of the pipe.

Figure 5. Character of typical xenoliths distribution in the Antioch kimberlite pipe: a)
sample 66-11; b) sample 220-11. See discussion in text.

Figure 5 illustrates typical distributions of xenoliths in the pipe. The distribution of
sizes in the sample 66-11 does not contradict to the fractal (Pareto) distribution. For
the sample 220-11 all considered models of distributions are rejected with the
reliability 99%. One can see distinct prevalence of xenoliths with smaller sizes.
Moreover, careful examination allows to see sub-vertical traces of viscous flows of
liquid-crystalline mass. Possibly, these flows were the cause of a distribution shift
from the theoretical model.

Thus, by examining the statistical characteristics of xenoliths it is possible to propose
that the examined section of the Antioch kimberlite pipe consists of a main body with
increase of the mean xenoliths size and decrease of xenoliths isometricity with depth.
This body was disturbed by additional portions of magma with a different source of
xenoliths. Probably, all xenoliths were formed as a result of an underground explosion
without additional processes of fragmentation during the transport stage. All magmas
was slightly influenced by processes of redistribution and sorting of xenoliths during
magma transport through the kimberlite pipe.
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