Regionalized Classification and its
Application to the Dakota Aquifer,
Hodgeman County, Kansas

Ricardo A. Olea and Geoffrey C. Bohling

Report to the Dakota Aquifer Program

Kansas Geological Survey

Open File Report 96-22
June 1996



Regionalized Classification and its Application to
the Dakota Aquifer, Hodgeman County, Kansas

Ricardo A. Olea and Geoffrey C. Bohling

ABSTRACT

Regionalized classification is a numerical technique for the partition
of a portion of the planet into volumes that are as internally
homogeneous as possible and as different as possible from each
other. The method works at its best when there are measurements
of the same attributes at all control points evenly scattered around
the area of interest. ’

Application of the procedure employing four cumulative
thickness measurements in 231 wells in south-central Hodgeman
county leads to the following findings concerning the heterogeneity
of the amount of shale in the Dakota aquifer:

1. Delineation of thick basal sand deposits in the Dakota
Formation suggest sedimentation along fluvial system draining the
area to the northwest.

2. A thicker than normal and elongated accumulation of sand
suggests the existence of a WNW channel during Cheyenne time.

3. Most favorable deposition of sands in mid-Dakota Formation
was erratic and concentrated in the flanks of flood plains.

4. There is an extensive northwest-southeast band where
deposition of sands was never favorable.

5. Continuous favorable condition throughout the entire genesis of
the Dakota aquifer is haphazard and sporadic.

All findings are in agreement with previous general notions
about the geology of the aquifer in Hodgeman county in particular
and the state in general.

INTRODUCTION

An important task for earth scientists is to solve inverse problems by measuring
regionalized attributes that then can be used to postulate natural processes that
may have generated the phenomena that one can observe today. Considering
that natural processes are fairly complex and that samplings are rarely large
enough, simplification of reality imposing a man-made order commonly play an
important part in inverse modeling.



Classification of specimens into groups is one of these simplifying models. In
our context we will be dealing with sites instead of specimens or objects. In a
regionalized classification the sampling domain is a multidimensional
geographic space, usually a portion of planet Earth with dimension three. If one
surveys a coregionalization by making several measurements per site, the survey
defines another multidimensional space, a space with as many dimensions as the
attributes considered in the sampling, commonly four or larger. In such a space
one can depict each site as a point whose coordinates are the value of the
attributes at such site. The assumption of regionalized classification is that the
points in the attribute space are not uniformly and regularly distributed. Instead,
as illustrated in Figure 1, there are zones with few or no points at all and other
places with high concentrations of points. Notice that it is not possible to model
such a relationship through regression.

The aim of regionalized classification is to explore the assumption that
observations form distinct clusters in atribute space and to take advantage of it in
case one finds grounds to support it. If that is the case, regionalized classification
breaks the observations into groups that are as internally homogeneous as
possible and as different as possible among them. Proximity in attribute space
does not guarantee proximity in geographical space, yet in practice one finds that
observations in the same attribute space cluster tend to stay close in the geo-
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Figure 1. Idealized coregionalized sampling: (a) location of
sampling sites in a two-dimensional space in a survey comprising
measurement of two attributes per site; (b) mapping of the
observations in the attribute space showing three clusters.



graphical space in various degrees. If one assigns contrasting colors to each
group, the resulting group map in the geographic space resembles a geologic
map, which is a type of regionalized classification map.

Another way to view regionalized classification is as a tool to condense maps.
One can map all attributes of a coregionalization separately and inspect them to
find relationships among features in the different maps. The task is simplified by
the use of a light table, but becomes progressively difficult as the number of
attributes in the survey increases. Regionalized classification is a convenient
replacement of the light table to produce a single objective and accurate
summary map, regardless of the number of attributes.

Conceptually nothing is new in regionalized classification. What is novel is
the joint application of several standard techniques. Harff and Davis (1990)
published the first complete formulation of the method combining geostatistical
elements with some inspirational ideas of soviet geologists (Voronin, 1967;
Rodionov, 1981; Kogan, 1986).

TYPIFICATION

In a nutshell, regionalized classification is the probabilistic assigment of sites
to groups employing discriminant analysis. Discriminant analysis requires a
training set that in regionalized classification ordinarily is prepared using cluster
analysis. Preparation of maps may require the interpolation of group
probabilities that may be done by kriging.

In classical applications of discriminant analysis, one employs a training set
including direct indicators of group membership. Medical science provides good
examples. In certain instances, a group of sick patients is carefully examined to
prepare a clinical record relating internal conditions to their external symptoms
and laboratory analyses, a costly and lengthy classification only possible after
performing surgery or autopsy. In this context, based only on external
symptoms and laboratory analyses, the task of discriminant analysis is to
determine the probability that other patients suffer the internal conditions
considered in the training set.

In earth sciences what prevails is the equivalent of knowing only the external
symptoms and never knowing the group assignments. Even worse, the nature
and number of the groups is seldom known. Determining the groups is as
important in such studies as the assignments themselves. In such a situation one
replaces the training set assignments by a typification using another method able
to decide both the number and characteristics of the groups. The best alternative
is cluster analysis, which aside from any prior information not contained in the
data, solves the following problem: given a coregionalization sampling of size n
comprising p attributes, is there any evidence for clustering the sites into groups
scattered around centroids, as against the alternative hypothesis that they are an
unstructured coregionalization?

There are several ways to define and find the clusters depending partly on the
metric used to determine proximity among the sites in the p dimensional
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attribute space, the Euclidean distance being the most common and the only one
considered here. The geographical distance is completely ignored both in cluster
analysis and in discriminant analysis and is only considered at the final mapping
stage of regionalized classification.

There have been many studies comparing various methods of cluster analysis
using artificial data sets containing known clusters produced by Monte Carlo
methods. In most of these studies the Ward's minimum variance method has
been the one with the best overall performance on reproducing the known
clusters (SAS, 1990, p. 56).

WARD'S METHOD

Given n sites, this heuristic method progresses by reducing the number of
clusters one at a time starting from the trivial extreme case of one cluster per site
and ending at the other trivial extreme case in which one cluster comprises all the
sites. At each cluster reduction, the method merges the two clusters resulting in
the smallest increase in the total sum of squares of the distances of each point to
its cluster centroid. Sites clustered at a previous clustering step are never
unmerged.

Definition 1
Let z; be vector of attribute values at site i assigned to cluster k whose size is
1y and mean is Z. Then the error sum of squares for cluster k is

1 2
B =2 e %] D
i=1

Definition 2
Let E; be the error sum of squares in Definition 1 and let g be the total
number of clusters. The total within group error sum of squares is

g
E=) E 0
k=1

Table 1 and Figure 2 illustrate the method for a simple case involving a single
attribute. At the beginning each measurement coincides with its centroid and
both the error per cluster and consequently the total error are zero. In the first
round of mergers, only the merging sites contribute to the total sum, so E = Ej.

For large numbers of clusters, instead of computing the new total sum of
errors directly as the sum of all clusters in Definition 2, there are savings in the
calculations by computing the new total sum of errors as the lowest sum from the
previous round, plus the new error for the new merging clusters, minus the
individual cluster errors for the merging clusters. Even larger savings arise by
working directly with the square distances between centroids instead of the
within square distances E; (Anderberg, 1973, p. 142-145; Kendall, 1986, p. 37).
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Table 1. Example illustrating the application of the Ward's method
showing the error sum of squares and the total within group error
sum of squares only for the underlined, new partitions plus the
mean for the best mergers.

Number Possible partitions Ey E Zx
_ ofclusters  of the measurements

6 0.1) (1) 3) () (8) (10)

5 0.1.1) B) @) (8) (10) 0.405 0405 0.55
0.1.3) (1) (7) (8) (10) 4.205 4.205
©.L.7) (1) (3) (8) (10) 23.805  23.805
0.1.8) (1) (3) (7) (10) 31205  31.205
0.1.10) (1) 3) (7) (8) 49.005  49.005
0.1) (1L3) (7) (8) (10) 2 2
0.1) (1L7) (3) (8) (10) ~ 1 18
0.1) (1.8) (3) (7) (10) 245 24.5
0.1) (1.10) 3) ) (8) 40.5 405
(0.1) (1) 3.7) (8) (10) 8 8
0.1) (1) (3.8) (7) (10) 125 125
0.1) (1) (3.10) (7) (8) 245 245
0.1) (1) (3) (Z.8) (10) 0.5 0.5
.1) (1) (3) (Z.10) (8) 45 45
0.1 (1) @) @) 8.10) 2 2

4 0.1.1.3) (7) (8) (10) 4407 4407
0117 (3) (8) (10) 28.14 28.14
0.1.1.8) (3) (7) (10) 37407  37.407
(0.1,1,10) 3) (7) (8) 59.94 59.94
0.1,1) 3.7) (8) (10) 8 8.405
(0.1,1) (3.8) (7) (10) 12.5 12.905
0.1,1) 3.10) (7) (8) 245 24.905
(0.1,1) (3) (7.8) (10) 0.5 0905 7.5
(0.1,1) (3) (Z.10) (8) 45 4905
(0.1,1) (3) (7) (8.10) 2 2.405

3 (0.1.1,3) (7,8) (10) 4407 4907 1367
(0.1.1.7.8) (3) (10) 49208  49.208
(0.1.1.10) (3) (7,8) 59.94 60.44
0.1,1) (3.7.8) (10) 14 14.405
(0.1,1) (3.10) (7,8) 245 24.905
(0.1,1) (3) (7.8.10) 4.667 5.077

2 (0.1.1.3.7.8) (10) 50.048  50.048
0.1.1.3.10) (7,8) 60.308  60.808
0.1,1,3) (7.8.10) 4.667 9.074 8.333

1 (01.1,3,7.8,10) 81.875 81.875 4.85
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Figure 2. The Ward's method tree for the example in Table 1.

Algorithm 1

This is an algorithm to perform cluster analysis using the Ward's method.

1. Start with as many clusters as sites, each cluster consisting of exactly one
site. At this stage the value of E in Definition 2 is zero.

2. Reduce the number of clusters by one by merging those two that minimize
the increase of the total error E.

3. If the sites are in more than one cluster, go back to step 2.

4. Display the results in the form of an inverted tree showing at each stage
which two clusters were merged and its corresponding total error E or total
number of clusters g. Q

Most statistical packages include implementations of several methods for
cluster analysis, including Ward's (IMSL, 1987; SAS Institute, 1990). Among the
properties of Ward's method one has:

(a) The method is biased toward finding clusters with the same number of
sites in each cluster (SAS, 1990, p. 56).

(b) Because sites clustered at a previous clustering step are never unmerged,
the calculations are relatively simple, but they often result in suboptimal
partitions conditioned to the previous steps. For example, at the three cluster
level the method produces the clusters (1, 2), (4, 6), (9, 10) for this univariate
sampling of size 6. In the next stage the method produces the clusters (1, 2, 4, 6)
and (9, 10) with total error E =15.25, which is larger than the smallest total error



E =13.333 associated with clusters (1, 2, 4) and (6, 9, 10), an unfeasible partition
after selecting (1, 2), (4, 6), (9, 10) in the previous stage.

Despite its suboptimality, the method has been quite successful reproducing
clusters in blind tests.

(c¢) Ward's method is unable to avoid calculations for the partitions involving
small clusters when they are of no interest. For example for a sampling of size
1,000, if the interest is restricted to partitions with 5 to 20 clusters, it is possible to
stop the calculations after completing the partition into 5 clusters, but it is not
possible to avoid the more numerous calculations for partitioning the sampling
from 999 to 21 clusters.

(d) The total sum of errors increases monotonically as the number of clusters
decreases.

(e) The method is not robust with respect to survey errors and outliers
(Mojena, 1988).

DISCRIMINANT ANALYSIS

In practice the answer to the question of how to group vectorial observations
z is never straightforward. First there is the problem of deciding how many
groups, which to a large extent one can settle in terms of external information or
rules based on the total sum of errors that one can obtain running cluster
analysis.

A second and more difficult problem is the group assignment for
observations that are not like any of the typical observations in a group and at the
same time poorly resemble more than one group. Cluster analysis assignment
for such problematic observations is unstable and varies depending on the
measure of similarity and the clustering method.

If the quality of group assignments is a concern, cluster analysis does not offer
easy answers. That is the realm of discriminant analysis, which decides the
assignment of any vector z based on allocation probabilities. Discriminant
analysis, however, requires a training classification, which in regionalized
classification is the one generally produced by cluster analysis.

The basis of discriminant analysis for assigning observations to one of a given
number of groups is the minimization of the total misallocation cost. The
procedure assumes that it is possible to partition the attribute space in as many
mutually exclusive and exhaustive regions R; as there are groups. A site is said
to belong to group i when the vector z of attributes associated with the site falls
in R;.

Theorem 1
Let Z be a vectorial random function with probability density function f(z)

and let z(x) be a realization of Z at site x, z for short. Let x; be the proportional
share of observations in the ith group whose probability density function is f;(z).



Then the probability p;(z) that the site characterized by z belongs to the ith
group is
mifi ()
pi(z)==2-5
T f)
Proof
The proof directly follows from Bayes' Theorem. If one considers that %; can

be regarded as the a priori probability of sampling group i, then p;(z) is the

posterior probability that z belongs to group i. a

The optimality in terms of the misallocation cost is assured by assigning z to
the group with the highest probability (McLachlan, 1992, p. 7).

The kernel of discriminant analysis is the calculation of the probabilities in
Theorem 1. As is always the case in statistics, there are non-parametric and
parametric methods. By far, multivariate normal methods prevail among the
latter and overall.

Definition 3 -
Let z(x) be a realization of a vectorial random function at site x, z for short.
Let Z; be the vectorial mean and X; the covariance matrix of group i. Then the

Mahalanobis distance from z to the centroid of group i is the squared weighted
distance

8 (2)=(2-% )27 (z-%) 0O

Theorem 2

Let Z be a normal vectorial random function with heteroscedastic normal
group distributions. If x; is the a priori probability of group i and 87(z) is the
Mahalanobis distance in Definition 3, then the probability p;(z) that the site
characterized by z belongs to the ith group is

_8(z)
miE % 2
pi(z)= 2
g 1/2 _81 (z)
2 e 2
i=1
Proof
From Theorem 1
mifi(z)
pilz)=TLZL
T f)
If the probability distribution for the ith group is normal,
8 (z)

fitz)=@ny P22 2



where p is the dimension of the attribute space. Considering that in addition

g
f(z) =Y mifi(z) (McLachlan, 1992, p. 5), then

i=1
2 8 (z)
—n/2 -
pi(z) = (2m) P2 mifE e 2
' g 12 CHON
—n/2 — s
Y eny PP e 2
i=1
Cancellation of the (21t) 7 /2 terms proves the theorem. Q
Theorem 3

Let Z be a normal vectorial random function with homoscedastic normal
group distributions. If x; is the a priori probability of group i and 5,-2(2) is the
Mahalanobis distance in Definition 3 computed using the common covariance
matrix Z, then the probability p;(z) that the site characterized by z belongs to the
ith group is

e]n(n,.)—o.ss,?(z)

ri(z)=—
¥ (n(:)-0587(z)
i=1

Proof
From Theorem 2, considering that all covariance matrices are the same
_8%(=)
( _ “ilzl——l/ze 2
Pi z) - g _5:'2 ()
]ZYI/ 2V me 2 A
i=1

Proof follows by the cancellation of the covariance matrix determinant term

and consolidation of exponents after the trivial transformation x; = en(m), Q

Use of the model in Theorem 3 results in hyperplanes for the boundaries of
the group regions R;, thus the term of linear discriminant analysis, while
quadratic discriminant analysis deals with different covariance matrices and
second order surfaces arising from the heteroscedastic model.

Whatever the model of discriminant analysis used for regionalized
classification, the model requires a training set to determine the number of
groups and for the assignment of realizations to the different groups in order to
have some data for estimating the centroid and the covariance matrix of such

groups.



Algorithm 2
This is a procedure for the calculation of group probabilities for vectorial

measurements. The method employs a normal model of discriminant analysis.

1. Run Algorithm 1 using the whole sampling of the coregionalization.

2. Break the sampling into groups based on the total sum of errors, some
external criteria, or both.

3. Use the vectorial measurements to estimate all group centroids, covariance
matrices, and make a decision about the a priori group probabilities. The
alternatives are:

(a) If the sampling properly represents the true group sizes, the best
estimate of the a priori probabilities are the relative proportions of the #; sites

per group
g
mi=n/ YN
i=1

(b) If the proportions of sites per group are regarded as not being
indicative of the a priori group probabilities and the user believes that he or
she has some better external information to assess the probabilities, the user
may employ such external assessment.

(c) If the proportions of sites per group are regarded as not being
indicative of the a priori group probabilities and the user lacks ways to assess
them, they can be made equal to 1/ g, in which case they are ignored in the
calculations.

4. Compare the group covariance matrices and decide whether they are
sufficiently similar to assume homoscedasticity.

5. Calculate the Mahalanobis distance in Definition 3 for measurement z.
Use the average of all group covariances if the assumption is that the covariance
is homoscedastic.

6. Compute for measurement z the probability p;(z) of belonging to each of
the groups

e—o.sv}(z)
pile)=————
2 ¢~05D} (2)
i=1
where, if

D?(z) = 8?(z), the discriminant analysis is linear with unknown or equal a

priori group probabilities;

D?(z) = 8%(z) - 2In(r;), the discriminant analysis is linear with known and

different a priori group probabilities;

D(z)=InS;|+ 8?(z), the discriminant analysis is quadratic with unknown

or equal a priori group probabilities;

D?(z) = In|S;|+ 8?(z) - 2In(x;), the discriminant analysis is quadratic with

known and different a priori group probabilities.
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The choice of D,-Z(z) must be consistent with the decision of homoscedasticity

made in step 4. The term §7(z) is the Mahalanobis distance in Definition 3; and
S; is the estimate of the covariance matrix for group i;

7. Go back to step 7 until assigning group probabilities for all sites in the
training set. O

Major statistical computer packages such as IMSL(1987) and SAS (1990) have
implementations of Algorithm 2 among several other procedures.

Statisticians concur that quadratic discriminant analysis indeed provides
superior results if the group covariances are considerably different and the group
sizes are large. Quadratic discriminant analysis, however, is more sensitive to
deviations from multinormality and assignment errors in the training set
(Lachenbruch, 1982).

ALLOCATION BY EXTENSION

The use that regionalized classification makes of discriminant analysis is to a
certain degree analogous to the use of crossvalidation in kriging and different
from the classical use of discriminant analysis. Classical use of discriminant
analysis employs the training set for calibration and then proceeds to classify
vectorial measurements without assigments.

In regionalized classification the interest is in the calculation of the
probabilities p;(z) for the same realizations in the training set already classified

by the prior cluster analysis. Once one has all the probabilities p;(z), reallocation
of the sites to the group with the highest probability is a trivial endeavor. This
reallocation offers an opportunity to check results and compare methods in case
the user wants to consider more than one type of cluster analysis or discriminant
analysis. Results from cluster and discriminant analysis should be comparable
only with minor variations that one should employ to select methods and
parameters yielding the most consistent results.

The final step in regionalized classification is the mapping of groups, which
one can accomplish by arbitrarily assigning colors or black and white patterns to
the groups. As arbitrary as the color or pattern selection may be, it always helps
to select a combination of alternatives that maximizes contrast to the eye, which
customarily requires some experimentation by trial and error.

Most mapping procedures require a collection of values regularly spaced at
short intervals, which is rarely the case of training sets. In addition,
interpolation presumes that the variable is continuous. In those circumstances
Harff and Davis (1990) recommend mapping the group probabilities p;(z) by
treating them as regionalized variables and then use the allocation rule to
produce the discontinuous group map. Remember that z is a shorthand for z(x),
where x is the location of the site. Then the probabilities are actually

regionalized variables p(z(x)) or p(x) that depend on location. One does group
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allocation node by node performing a grid-to-grid operation in which one
assigns each node to the group with the highest probability.

Considering that each site must be fully sampled to allow for the cluster and
discriminant analysis, there is no advantage on using cokriging for the
estimations. Although the probabilities sum to a constant, use of alr
transformation is not feasible due to the numerous zeros both in the numerator
resulting in a null argument for the logarithm, or in the denominator producing
unacceptable ratios.

Ordinary or universal kriging, the default geostatistical options of choice,
suffer from the inability to restrict the estimates to an interval—0-1 in this
instance—let alone to force the probabilities to sum to one. Estimates outside the
0-1 interval, however, are rare and never far away from the interval. A common
solution to force a vector in a coregionalization to add to one is to rescale the
values. Considering that such correction does not change the ranking of the
membership probabilities, the allocation is insensitive to the rescaling.

Alternative strategies involving the interpolation of the coregionalization
itself or of the generalized distances instead of.the membership probabilities are
deceptive choices. Although the probabilities end up honoring all constraints,
the use of estimates instead of true values results in unaccounted propagation of
errors.

Allocation in regionalized classification remains open to improvements.

Algorithm 3

This is a procedure for the regionalized classification of fully sampled
coregionalizations involving p attributes.

1. Assign the sites to one and only one of g groups either by using Algorithm
1 or any other cluster analysis procedure, or on the basis of external information

2. For each site calculate the group probabilities either by Algorithm 2 or any
other discriminant analysis procedure deemed appropriate.

3. If the mapping procedure does not require a regular grid of values, go to
step 4. Otherwise, use some form of kriging to produce grids of estimated values
for every group probability.

4. For every site or node, assign the site or node to the group with the largest
probability.

5. Prepare a map showing the group assignment. This is the regionalized
classification of the area under study, conditional to the values and attributes in
the sampling.

6. Prepare a map of the highest probability per node. This is the probability
that the site in the regionalized classification indeed belongs to the group in the
regionalized classification.

7. Prepare a censored map eliminating nodes or sites likely to be
misclassified, which are more likely to occur when the highest probability is only
marginally larger than the second highest probability. a
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THE DAKOTA AQUIFER CASE STUDY

The Dakota aquifer is a complex unit schematically shown in Figure 3. Spatial
fluctuations as basic as the variation in the amount of shale are important for the
understanding of the geology and the modeling of fluid flow. Perennial lack of
information at close spacing is responsible for the poor understanding of
heterogeneity across the aquifer.

The sampling in the appendix is a first attempt to overcome lack of data at
least at the county scale. Data in the appendix is a by-product of well logging by
the petroleum industry exploiting fields beneath the aquifer. As shown in Figure ) 8%
4, the study area is a 3 by 3 township square in south central Hodgeman county. / ey’

Experimentation showed us that the Dakota Formation is too thick a unit for o\ 009{/ A
the purpose of characterizing its heterogeneity. In addition the uppermost part -
of the formation is missing due to fluvial erosion in the eastern side of the study
area. Following the practice in neighboring Colorado, we divided the formation
into the upper "D" and the lower "J" sandstones, discarding the partly missing
"D" and subdividing the thicker "J" sandstone into the basal 120 ft and the
remainder of the deposits above. When present, the "D" sandstone in the area
ranges from 20-90 ft. 331 gamma ray logs were digitized and entered into a data , 4, /l/
base that was then accessed by a computer program.

Combined laboratory and field work has demonstrated that groundwater KT l OQ
flow occurs at those levels where the natural gamma ray radiation in cased wells ,_\ rec™<
is below 60 API units (P. A. MacFarlane, 1995, personal communication). Hence (re«\ 8‘1—64‘—\:5)
we considered as sandstone any sediment below that radiation threshold in cased = :
wells and below a 55 API threshold in uncased wells. Further experimentation to
find the most revealing attributes found that cumulative sandstone thickness was
the best choice. The computer program automatically accounted the cumulative = Mere
amount of sandstone per unit. The appendix includes only those 215 wells with jhswk-ﬁ.ﬁ*
all four units fully logged—a requirement of regionalized classification—plus onrall
additional 16 wells not included in the well log data base for which we measured —
the amount of cumulative sandstone manually. Figure 5 contains maps for the
cumulative sandstone thicknesses in all four units using all information per unit,
which tends to be more abundant with depth due to the fact that logging of
surface units tends to be skipped because of their irrelevance for the oil industry.

Well clustering by the Ward's method

For any real multivariate sampling it is not possible to prepare as detailed a
tree as the one in Figure 2. Figure 6 is a possible alternative rendition restricting
the attention to the final stages of the clustering, which customarily are the ones
with the partitions of interest. A bar diagram with the mean value of the
attributes per cluster is one way to reduce the dimensionality of the data. In
Figure 6, the vertical axis goes from 0-150 ft and the thickness sequence from left
to right is upper "I", lower "J", Kiowa, and Cheyenne cumulative sandstone
thickness. The numerical value denotes the number of wells in the cluster.

a;?. <3 ""5'
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Somol&m

Figure 5. Cumulative,thickness maps for units comprising the
Dakota aquifer, southcentral Hodgeman County, Kansas: (a) upper
"I", sample size 231; (b) lower "J", sample size 294; (c) Kiowa,
sample size 324; (d) Cheyenne, sample size 344.

Naming clusters for easy reference in the text is another challenge in the
display of results. Here we decided to take advantage of the uniqueness of
cluster size and label each cluster by its size.

Remember that Ward's method progresses from largest to smallest number of
clusters. Traveling the tree in inverse direction from its generation one can
observe that:

i. The topmost bar diagram provides a pictorial representation of the mean
value per attribute for the whole sampling whose size is 231 in this case. The last
merger is between a group of 49 wells with the rest of the 182 wells. The smaller
cluster has the wells with the most sandstone, especially for the Kiowa.

s g,)i\\.
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231
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Figure 6. Final portion of the Ward's method tree for the training
set of the case study. The horizontal axis does not have a scale and
the boxes are bar diagrams for the coordinates of the centroids in a

vertical scale 0-150 ft.
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ii. Cluster 49 results from the merging of clusters 23 and 26 that mostly share
large amounts of sandstone for the Cheyenne.

iii. At the three-cluster level Ward's method merges cluster 81 and 101 that
basically share all average values except for the second attribute from the left—
cumulative sandstone thickness for the lower "T".

iv. The previous four-cluster stage merges clusters 36 and 65, which differ
only in the amount of upper "T" sandstone.

v. The five-cluster stage merges clusters 8 and 15 whose main discrepancy is
the amount of cumulative sandstone in the Cheyenne.

vi. So far all breaking clusters relate to interesting characteristics on which to
base the discriminant analysis in the next step. The six-cluster stage is no
exception but the partition contains two clusters that are too small for a
regionalized classification, thus bringing to a halt the interest on continuing
analyzing the declustering of the tree.

The training set for discriminant analysis should be the partition into five
clusters that have the sizes and means given in Table 2.

Table 2. Size, proportion, and means for the partition into five clusters

Group size Proportion Attribute Mean
23 0.10 Upper "T" cum. ss 90.4
Lower "J" cum. ss 92.8

Kiowa cum. ss 102.9

Cheyenne cum. ss 83.4

26 0.11 Upper "J" cum. ss 22.3
Lower "J" cum. ss 28.1

Kiowa cum. ss 29.0

Cheyenne cum. ss 141.6

36 0.16 Upper "J" cum. ss 70.2
Lower "J" cum. ss 65.0

Kiowa cum. ss 23.6

Cheyenne cum. ss 55.0

65 0.28 Upper "T" cum. ss 17.6
Lower "T" cum. ss 69.6

Kiowa cum. ss 94

Cheyenne cum. ss 43.0

81 0.35 Upper "T" cum. ss 12.0
Lower "T" cum. ss 123

Kiowa cum. ss 7.5

Cheyenne cum. ss 35.6

17



Discriminant analysis
According to the testing performed by the SAS (1990) program used in the

processing, the within group covariance matrices in Table 3 are sufficiently
different to make the quadratic discriminant analysis the model of choice.

Table 4 shows a 97% agreement between Ward's method clusters'and the
groups based on the posterior probabilities of membership. The group sizes are
in the bottom line. Although they are slightly different than the corresponding
cluster sizes, we will keep the cluster labels to avoid cluttering the exposition.

Table 3. Within-group covariance matrices for cumulative

sandstone thickness.
Group U] L] K Ch
23 UJ 15321

L] 3446 6159

K 2243 1863 6927

Ch 6062 1465 59.6 23124
26 U] 3171

Lj 532 4908

K 1273 1405  965.0

Ch 2046  -17.9 4443 1543.1
36 U] 4368

IJ 3176 13364

K 731 2140 3307

Ch 912 -1763 213 5111
65 U] 2549

L] 573 3298

K  -302 424 96.7

Ch 441 1154 796 7654

81 U] 1485
L 296 1558
K 5.7 455 1388

Ch -39.7 29.8 97.1 616.5

Table 4. Resubstitution summary

Group

Cluster 23 26 36 65 81
23 23 0 0 0 0

26 0 25 0 1 0

36 0 0 33 1 2

65 0 0 0 65 0

81 0 2 0 1 78
Total 23 27 33 68 80
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Considering that in this case the relative cluster sizes in the sampling are a
good approximation to the true relative sizes, one should use the relative
proportions in Table 2 as estimates for the a priori group probabilities.

Mapping of group membership probabilities.

Figure 7 shows the continuous variation for all membership probabilities across
the study area. Table 5 contains the semivariogram models and Figure 8 displays
both the models and the experimental semivariograms. To minimize
extrapolation outside the convex hull of the sampling, estimates exceeding
certain kriging variance threshold were ignored. From top to bottom and from
left to right such maximum variance values for the maps in Figure 7 are 0.13,
0.055, 0.16, 0.235, 0.235.

Regionalized classification m

Figure 9 displays the results of the grid allocations node by node. Remember
that to minimize the misclassification error discriminant analysis allocates any
vector of values to the group with the maximum group membership probability.

The group membership probabilities of the allocations are in Figure 10. They
are the highest group membership probability per node.

Considering that the allocation is done for the most part based on estimated
probabilities based on probabilities calculated by Algorithm 2 at the wells,
membership probabilities away from wells may be in error. Hence close
membership probabilities have potential for misclassification. The map in Figure
11 repeats the one in Figure 10 by eliminating those nodes whose difference
between the highest and second highest probabilities is less than 0.1 times the
sum of their kriging variances.

Table 5. Semivariogram models for group membership probabilities

Group  Type Nugget Sill Range
ft
23 Spherical  0.002 0.103 3137
26 Spherical 0.019 0.054 20251
36  Spherical  0.065 0.127 7140

65  Spherical 0.130 0.201 13050
81  Spherical 0.116 0.200 14104
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Figure 7. Membership probability maps for all five groups in the
regionalized classification of the Dakota aquifer, southcentral
Hodgeman County, Kansas.
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Figure 9. Regionalized classification of the Dakota aquifer,
southcentral Hodgeman County, Kansas. Lavender denotes
allocation to group 23, red to 26, yellow to 36, green to 65, and blue
to 81.

CONCLUSIONS

Evaluation of the results of the regionalized classification requires borrowing
from the basic geology of the Dakota aquifer and referring to either Figure 6 or

Table 2 to remember the predominant characteristics of each group.

In the study area the aquifer is really two aquifers, the Cheyenne sandstone

and the Dakota formation, which are separated by the Kiowa shale.

Cheyenne is saturated with salty water coming from the dissolution of
underlying Permian salt beds while the Dakota formation is the unit of economic
interest yielding fresh water. Throughout the area it is then important that the
Cheyenne and the Dakota not be connected. At sites in group 23, a sandy Kiowa
may result in an unavoidable leak in the sealing and one should be cautious with

drilling and completions at sites in group 26 where the Cheyenne is thick.
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Figure 10. Group membership probabilities in the regionalized
classification of the Dakota aquifer, southcentral Hodgeman
County, Kansas.

Some of the group 23 anomalies may not be real, which would reduce the
danger of leaks. There are grounds to believe that the gamma ray log scale
reported in the logs may be incorrect for at least a few of those wells. Under-
reported natural radiation results in units abnormally and incorrectly low in
shale. The errors should not have a bearing upon the results of the classification
of those wells outside group 23 and open another potential application of
regionalized classification: detection of errors.

The third group to avoid is the most predominant group 81, where for some
intriguing geological reason there has never been much deposition of sand. Thus
the reasons to avoid drilling group 81 are economic rather than environmental.

Finally groups 36 and 65 should be primary targets for groundwater supply
in the area. If one believes those geologists who postulate meandering river
flood plains deposited the Dakota Formation, one may suggest that group 65
developed along a drainage system flowing to the northwest. The exceptionally
favorable areas associated with group 36 tend to occur in the flanks of group 65.
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Figure 11. Regionalized classification of the Dakota aquifer,
southcentral Hodgeman County, Kansas, eliminating maximum
uncertainty allocations shown as gray areas. Lavender denotes
allocation to group 23, red to 26, yellow to 36, green to 65, and blue

to 81.
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APPENDIX

Table A.1. Dakota aquifer sampling used in the regionalized
classification. The labels are taken from the original Stratamodel

data base.
Cumulative sandstone thickness
Upper Lower Chey-
ID Easting Northing  "T" "T" Kiowa enne
ft ft ft ft ft ft
5 1631797 546606 0.0 27.0 0.0 54.4

9 1635275 545570 13.0 9.0 2.0 58.3
12 1641860 545503 95.0 1120 83.3 68.1
31 1630041 536362 33.0 96.0 56.3 49.1
32 1631291 535016 28.5 80.0 20.5 14.5
38 1643084 532306 17.9 51.0 8.9 30.5
40 1643137 534940 2.0 42.0 2.0 23.6
42 1648014 533313 73.0 70.0 32.6 60.1
48 1658548 530399 53.7 75.0 8.9 47.2

49 1660208 529439 6.0 34.0 8.9 52.1
50 1657520 526895 22.0 6.0 0.0 19.7
57 1652223 524384 21 58.0 25.8 21.6
59 1619712 547175 0.0 69.5 0.5 38.5
60 1607855 548835 16.0 94.0 0.0 33.0
61 1598543 549051 0.5 96.0 0.0 21.0
64 1611762 544744 38.3 84.0 1.5 70.5
68 1618670 544228 8.5 90.0 39.0 69.5
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39.5
0.0
15.5
124.0
98.5
92.0
147.5
112.8
114.5
165.5
29.0
525
113.5
119.0
80.0
124.0
118.0
73.0
83.5
151.0
149.5
114.5
91.5
136.0
63.5
154.0
89.0
135.0
130.0
176.0
222.0
53.0
34.5
46.0
36.5
12.5
37.0
44.0
33.5
9.0



333
334
340
343
346
348
349
350
351
357
359
360
361
362
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

1586626
1569436
1641496
1638644
1617747
1604307
1613456
1583973
1584794
1654281
1609180
1614522
1615845
1589619
1624500
1591000
1596000
1656000
1638500
1642000
1604000
1628500
1594000
1566000
1573500
1643500
1627000
1596000
1654000
1614500

551754
551821
512402
497928
511484
495921
493020
518425
497789
481877
478592
482411
482374
488188
460500
461500
468000
501000
499000
487500
463000
519000
514000
507000
473500
472000
517000
513500
495500
501500

30

29.5
4.0
8.0
0.0

78.0

58.0
0.0

77.5

108.5
9.5
7.5

75.5

104.0

20.5

59.0
0.0

55.0.

12.0
0.0
0.0

19.0
0.0
5.0

25.0

10.0

42.0
0.0
5.0
7.0

61.0

31.5
1.5
74.5
0.0
109.5
99.0
0.0
102.5
111.5
25.5
29.5
32.5
47.5
22.0
105.0
10.0
66.0
6.0
0.0
48.0
22.0
15.0
15.0
0.0
20.0
10.0
0.0
10.0
35.0
25.0

2.5
3.5
2.0
0.0
112.0
61.5
0.0
86.0
131.0
0.0
5.0
9.0
0.5
14.5
12.0
5.0
9.0
10.0
0.0
18.0
7.0
0.0
15.0
2.0
20.0
4.0
0.0
12.0
18.0
18.0

17.5
29.0
27.0
9.0
72.5
81.5
1.0
82.5
68.0
28.5
33.0
101.5
92.0
127.5
98.0
56.0
157.0
25.0
10.0
35.0
208.0
18.0
80.0
125.0
270.0
60.0
0.0
92.0
45.0
42.0



