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The Theis equation has played an important role in groundwater
hydrology since its introduction. Comparison of field pumping-test
data with this theoretical curve by graphical means has been a standard
method of determining aquifer transmissivity and storage. The purpose
of this paper is to present a technique to evaluate the sensitivity of
the Theis equation with respect to transmissivity and storage and to
automatically fit aquifer pumping-test data to the Theis equation. After
the Theis equation has been evaluated, the sensitivity coefficients can
be obtained with little additional work. These sensitivity coefficients
are used with a least squares fitting technique to develop an algorithm
for fitting the Theis equation to the aquifer test data. The automated
fit for pumping-test data developed in this work should be a useful tool
for the groundwater hydrologist. We have used it on many aquifer tests
with excellent results. It is easy to use, quick, and inexpensive,
The computer automated fit has the advantage that it is always objective.
As a measure of the error in fitting, the standard deviation in drawdown
is calculated for the "best" transmissivity and storage. For the
aquifer tests we have analyzed, the standard deviation in drawdown
was no more than a few tenths of a foot. If it is much larger than this,
one has either poor data or a hydrologic situation which can not be
represented by the Théis equation. The algorithm for fitting has good
convergence properties. It will converge for a wide range of initial
guesses for storage and transmissivity. This work deals only with the
Theis equation. However, sensitivity analysis and least squares fitting
could be applied to more hydrologically complicated situations.



INTRODUCTION

Comparison of experimental pumptest data with the Theis curve by
graphical means has been a standard method of determining aquifer trans-—
missivity and storage. The purpose of this paper is to present a
technique to automatically fit experimental pumptest data to the Theis
equation obtaining the "best" transmissivity and storage in the least

squares sense.

THE THELS EQUATION

The Theis equation describes radial confined groundwater flow in a
uniformly thick horizontal, homogeneous, isotropic aquifer of infinite
areal extent. (Slide #1) In the Theis equation script s is drawdown, Q is
the discharge, capital T is the transmissivity, small t is the time,
capital S is the dimensionless storage coefficient. and r is the radial ob-

servation distance from the pumped well,

SENSITIVITY ANALYSIS

In the mathematical treatment of groundwater flow it is permissible
to speak of the precise values of the physical parameters. However,
in the practical simulation of a real aquifer we are immediately
faced with uncertainty as to the exact physical parameters. The investi-
gator must establish tolerances within which the parameters of the physical
system may vary without appreciably affecting the model results, These
tolerances are often obtained by introducing‘parameter perturbations

in the system and observing the changes in the system's performance.



However, the application of sensitivity analysis makes it possible to
obtain these tolerances more efficiently (Slide #2). The solution of

the flow equation for the hydraulic head may be written as a function of
x, v, t, T, S, and Q. Consider the variation of one of the aquifer
parameters, T for example. Varying this parameter by a small amount,
delta T, the perturbed hydraulic head is given by h*. The quantity &h/AT
gives one an indication of the stability of the system. If Ah /AT has

oh

aT

O or Up will be called the sensitivity coefficient for variations in

a limiting value as delta T approaches zero, it may be written as

transmissivity. By applying similar arguments for a variation in storage
coefficient one obtains Ug. Ug is the sensitivity coefficient for variations
in the storage coefficient. (Slide #3) Now consider a perturhation of the
transmissivity, delta T. The function h* may be expanded into a Taylor
series. 1If delta T is small the second and higher order terms may be
neglected. Thus, the new head produced by a perturbation in transmissivity
may be calculated from this expansion if the sensitivity coefficient and
the unperturbed head are known. Similarly, if a small perturbation in
storage coefficient occurs the perturbed head is also given by a Taylor
expansion to first order in delta S.

These results show that it would be desirablé to calculate UT and US
for a given model, if possible, Then the response of the model to various
perturbations could be calculated simply from the Taylor expansions without
actually evaluating the model equations again.

The sensitivity coefficients(Slide #4) may be obtainéd from the Theis
equation by differentiating with respect to T or 5. After afplying
Leibnitz's rule for differentiating an integral, one obtains these expressions

e and U ..
for UT and JS



PROPERTIES OF THE SENSITIVITY COEFFICIENTS

The radial dependence of UT is shown in this slide (Slide #5). UT

diverges logarithmically at the well. UT changes sign at some value of

r, as it must in order for the cones of depression to have the same volume
for differing transmissivities.
The next slide (Slide #6) shows the time dependence for positive

values of U Notice that for large time the dependence of UT on time is

T
fairly weak. The curves labeled +20 percent T show how UT at a radius of
one foot changes when the transmissivity is perturbed by +20 percent. In
this region UT is inversely proportional to traﬁsmissivity. The two
curves for r = 1 foot and 1,000 feet, have an identical shape but are
displaced from one another along the time axis.

The Gaussian radial dependenceycf US is shown in the next slide
(Slide #7). Ug does not diverge at the well. Also, Ug does not change
sign because an increase or decrease in S results in a general raising
or lowering, respectively, of the cone of depression. The dashed lines

in this slide show Ug when S is changed by 420 percent. US is inversely

proportional to 5.

The time dependence of U, is illustrated in the next slide (slide

S

#8) for three different r values. As time increases US approaches a

constant value. FEven for r = 1,000 feet U, is nearly constant after

S

about one day.



LEAST SQUARES FIT

The objective is to use the sensitivity formalism to obtain a least
squares fit of experimental pump test data to the Theis equation and
thus obtain the "best" estimate for $ and T (8lide #9). The new draw~
down, s*, after changing T and S by delta T and delta S respectively,
is given by a Taylof expansion.

Let script 8 represent the experimentally measured drawdowns. Sup=-
pose it is possible to guess a reasonable S and T and let script s
denote the drawdowns calculated from the Theis equation with these para-
meters. One would like to change the original guess by delta S and
delta T in such a way that a better fit of the experimental data results.
This is done by minimizing E, the errvor function. The ti represents a
discrete time at which an experimental measurement is made for the draw-
down. The error is defined as the sum over all measurements of the
squared difference in script g and script s.

The ervor is minimized by taking the first derivatives with respect
to delta T and delta S, setting them equal to zero, and solving the re-
sulting equations for delta T and delta § (Slide #10). For conciseness
we have defined the variables shown at the bottom of this slide. Notice
that all these quantities are known from experimental data or can be
calculated from previously derived equations.

These values for délta T andadelta S can be used to update the first
guess for T and S (Slide #11). This better estimate for T and § is then
used in the least squares procedure again to obtain new values of delta
T and delta S. In general this can be continued until delta T and delta
S become so small as to be insignificant, at which time the iteration is
terminated. The "best'" fit after fhe ith iteration is obtained by using

the equations in step 5. The procedure may not converge if the initial



guess for T and S is especially bad. However, numerical experiments
indicate that good convergence may be obtained even if the initial guess
is off considerably. These numerical experiments show that the initial
guesses for T and S must not be larger than about twice their actual
value; however, T and S may be underestimated by about three orders of

magnitude without preventing convergence.

APPLICATION TO A TYPICAL PUMPING - TEST

This slide (S8lide #12) shows data, taken from Walton, for a typical
pumping test. The drawdown was measured to the nearest tenth of a foot
over a maximum pumping time of 500 minutes. Ehe‘well was pumped at 220
gpm and the data was obtained from an observation well 824 feet away.
Initial guesses for T and S were chosen as shown on the slide., The pro-
gram converged to the "best fit'" values in six iterations. The conver-
gence criteria requires the change in storage and transmissivity since
the last iteration to be less than or equal to .1%. The "best fit"
values are T = 9,909 gpd/ft and S = 2.095 x lOmS. These compare very
well with those found graphically by Walton. The "best fit" drawdowns
are shown at the right of the table. The standard deviation in drawdown
is .09 ft.. This is a measure of the magnitude of error at an "average"
data point. It compares very closely with the field accuracy of the

pumping ~ test data., These results are typical for the many pumping tests

we have analyzed with these techniques.



SUMMARY

The automated fit for pumptest data developed in this work should
be a useful tool for the<groundwater hydrologist. 1t is simple to use,
quick, and inexpensive. The automated fit has the advantage that it
is always objective. As a measure of the error in fitting, the standard
deviation in drawdown is calculated for the "best" T and §. Usually the
standard deviation in drawdown is no more than a few tenths of a foot.
1f it is much larger than this one has either poor data or a hydrologic

situation which cannot be represented by the Theis equation.

The algorithm for £itting has good convergence properties. It
will converge provided the initial guess for storage and transmissivity
is less than about twice their actual values. Convergence is generally
achieved even if the initial guess is too small by three orders of magnitude.
This work deals only with the Theils equation. However, gsensitivity

analysis and least squares fitting could be applied to more hydrologically

complicated situations.



Slide #1

The Theis Equation

O

j% "ﬁ‘ T ﬁj

T is the transmissivity (L7 T)
toisthetime (7))
;

he @%%a"s‘“zé?;z“zfg%smh 55 storage coefficient
' servation distance (L)



Slide # 2

Sensitivity Coefficients

Let hix,y,t:T,5,0Q ) be a solution to the flow equation.
It T ischangedby ATwe have h (xy, LT +AT,S,Q)

Ah  h (xy,ET+AT,S0)-h{xy,t1,50)
AT AT

Define the sensitivity coefficient as

Up (Y 6T,8, Q0 == 7 =

similarly w

oh lim Ah
Ug LTS, Q) =55 = A s 0 as



Taylor Series Expansion

T AT or AS issmall we have approxima ely

h (Y, BT+ AT,S,0)2 h (4 y,41,5,Q) + U AT

W (K, ETS T AS,Q)2h (4t1,5,0) + U AS
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CQlide #8
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S 3@ # 4

The new drawdown produced by a change in T and S s

¢ =gt UT AT+ U g JAR

The squared error in ¢ compared {o the experimentally
measured drawdown, ¢ s :
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