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ABSTRACT

Traditionally, the Theis equation has played an important role in
groundwater hydrology since its introduction. Comparison of experimental
punptest data with this theoretical curve by graphical means has been a
astandard method of determining aquifer transmissivity and storage. The
purpose of this paper is to present techniques and computer programs
to evaluate the Theis equation, to evaluate the sensitivity with res-
pect to transmissivity and storage, and to automatically fit experimental
pumptest data to the Theis equation obtaining the "best" transmissivity
and storage in the least squares sense. The automated fit for pumptest
data developed in this work should be a useful tool for the ground-
water hydrologist. It is simple to use, Quick, and inexpensive., The
automated fit has the advantage that it is always objective. As a
measure of the error in fitting, the standard deviation in drawdown

is calculated for the "best" transmissivity and storage.



INTRODUCTION

Traditionally, the Theis equation has played an important role in
groundwater hydrology siﬁce its introduction (Theis, 1935). Comparison
of experimental pumptest data with this theoretical curve by graphical
means has been a standard method of determining aquifer transmissivity
and storage (Jacob, 1940). The purpose of this paper is to present
techniques and computer programs to evaluate the Theis equation, to
svaluate the sensitivity with respect to transmissivity and storage,
and to automatically fit experimental pumptest data to the Theis equa-
tion obtaining the "best" transmissivity and storage in the least
squares sense. For a more detailed discussion of sensitivity coeffi-
cients and their uses see McElwee and Yukler (1977).

The Theis equation involves an integral whose upper limit is infinity.
Fvaluation of this integral is considered in the section on numerical
approximation. After the Theis equation has been evaluated, the sensi-
tivity coefficients can be obtained with little additional work. Tﬁese
sensitivity ceocefficients are used in the section on least squares
fitting to develop an algorithm for fitting the Theis equation to
experimental pumptest data. The automated method is simple, quick,
and inexpensive. The automated method has the advantage of always being
objective and always indicating it's error by calculating the standard

deviation in drawdown.
THE THEIS EQUATION

The Theis equation (Theis, 1935) describes radial confined ground-

water flow in a uniformly thick horizontal, homogeneous, isotropic
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aquifer of infinite areal extent.
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The radius of the pumped well is assumed negligible (line source or
sink approximation). The derivation and solution is documented many
places and will not be discussed further here (Jacob, 1940). In the
above equation s is drawdown (L), Q is the discharge (LB/T), T is the
transmissivity (Lz/T), t is the time (T), S is the dimensionless storage
coefficient, and r is the radial observation distance from the pumped
well (L).

Usually, the Theis equation is fitted graphically to experimental
purp test data to obtain approximations for the storage coefficient (8)
and the transmissivity (T). In this paper an algorithm will be presented
for a computer automated least squares fit to the experimental data
yielding approximations for S and T and giving the standard deviation

for drawdown.
NUMERICAL APPROXIMATION

Many times the integral in equation (1) is symbolically represented
by W(u). The drawdown can then be written as
@ Q@ (3
o Oy = L) @
47T ST

W(u) is the exponential integral and is tabulated in many places

(Abramowitz and %egun, 1968) . For specific values of u table interpolation
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may be used to obtain the drawdown.
In order to evaluate equation (2) easily in an algorithm one needs
an explicit expression for W(u) involving only simple arithmetic opera-

,r

tiong. For 0< u < 1 (Abramowitz and %egun, 1968)

W) = ~bou+ @ +QU+Qu s @pu's @si” 4 &) (3)
J &) ] < axiw”’

where ao = - 57721566 a3 = ,05519968
al = ,99999193 a4 = -,00976004
a? = -, 24991055 a5 = ,00107857.

E(u) is the error in the approximation.
For values of u larger than one we use a rational approximation

1-'
(Abramowitz and %egun, 1968) .
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'E(u)‘< 5 x 10"5 for 1 <u < =
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5 1.681534
The maximum error in W(u) occurs for u = 1.
[EW/a | < 1.8%7 x07°
Therefore, we should always have at least four significant digits with

these approximations,
SENSITIVITY ANALYSIS

In the mathematical treatment of dynamic systems it is permissible

to speak of the precise values of the physical parameters. However,



in the practical simulation of real dynamic systems we are immediately
faced with uncertainty as to the exact physical parameters. The investi-
gator must establish tolerances within which the parameters of the physi-
cal system may vary without appreciably affecting the model results.
These tolerances are often obtained by introducing parameter perturba-
tions in the system and observing the changes in the system's performance.
However, the application of sensitivity analysis makes it possible to
obtain these tolerances more efficiently (Tomovig, 1962; Vemuri et al.,
1969; McCuen, 1973; Yukler, 1976).

In studying the sensitivity of a groundwater flow system to param-

eter variations, the following mathematical model is used;

¥ (hxx/hyyvht;' T, S, Q) = 0 (5)
3
- T S ' +

where hxx a X?:m 9 7)/>/ 67;3 3 & dt

h = hydraulic head,

T = transmissivity,

$ = storage Goefficimnt, and

Q = discharge

The solution of equation (5) may be written in the form h = h{x,v,t;T,S$,0).
Consider the variation of one of the parameters, T for example. Varying
this parameter by a small amount, AT, the equation becomes
% * +* )
F(hxx' hyy' ht; T+ AT, 8, Q) = 0, (6)
£
where h is the perturbed head. The solution to equation (6) may be
R * *

written in the form h = h (x,y,t; T + AT,S,Q). Comparing the solutions
of equations (5) and (6), one immediately obtains an indication of the

stability of the system, which is expressed by means of the fraction



1

%
_4{\_11 - h (XIYIt7T+ATISIQ)"'h(XJYIt;TrSrQ) (7)
AT AT

1f expression (7) has a limiting value as AT approaches zero, it may be

written as
) Sh _ dua Ah
U0t T,5,Q) = Jr 7 arae ar @

The function UT (x,y,£:7,5,0) will be called the sensitivity coefficient
(Tomovic, 1962) for variations in the T value of a groundwater flow
system. By applying similar arguments for a variation in storage coeffi-

cient (AS) one obtains,
Ah o Ry kT 1a8,Q) - A0 i T5,9)  eq)
zgé: - AS

and 6§A JZ¢;U ékhm

U———

Uy 048 T5,0) = 55 = ey 25 fi0)

US is the sensitivity coefficient for variations in the storage coeffi~
cient of a groundwater flow system.

It is assumed that the solution of the flow equation (5) depends
analytically upon the parameters T and S; and, that T, 8, and Q are
independent of each other. Now consider a perturbation of the trans-
missivity, AT. Since it has been assumed that the solutions depend

P o - *
analytically on the parameters, the function h (x,y,t;T+AT,S,Q) may

be expanded into a Taylor series (Tomovic, 1962). If AT is small the
second and higher order terms may be neglected,
R%C¥,‘§)E;Tj~éﬁ; 3, Q) = L\(xjsa;{;;ﬁ";S)(Q) + j%k AT
= hivy, 65 7,5,Q)+ AT (1)
Thus, the new head produced by a perturbation in transmigsivity (AT)
may be calcualted from equation (11) if the sensitivity coefficient

and the unperturbed head are known. Similarly, if a perturbation in



storage coefficient (AS) occurs the perturbed head is given by
"‘%(X?;t T,5145,Q) = w(><3 3T, S, Q)“"(;SAS
mfwﬁwyt;ﬁ%3®>+»tgag (12)

to first order in AS.

Equations (11) and (12) show that it would be desirable to calculate
UT and US for a given model, if possible. Then the response of the
model to various perturbations could be calculated simply from equation
(11) or (12) without actually evaluating the model equations again.

The sensitivity coefficients may be obtained from equations (1)
by applying the definitions given in equations (8) and (10). After
applying Leibnitz's rule for differentiating an integral (Hildebrand,
1962) to equation (1) one obtains 2

W:T . C)ﬁL? - Eézwmw ExpP| - Kl;gm <‘5;)

T oT T T L 4TE

and

ig .
S )
- )@,.wﬁiw [~ (14
47
These equatlons for the sensmtxvmty coefficients may be evaluated quite
easily. UT and US calculated from equations (13) and (14) may be used
in equations (11) and (12) to calculate what the drawdown would be if
S and T were changed by AS and AT respectively. Other work (McElwee
and Yukler, 1977) indicates that equations (11) and (12) are valid
for AS and AT less than or roughly equal to twenty percent of § or T

regpectively.
LEAST SQUARES FIT

The objective is to use the sensitivity formalism to obtain a

least squares fit of experimental pump test data to the Theis equation
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and thus obtain the "best" estimate for S and T. For a review of the
least squares technique the reader is referred to Carnahan et al. (1969).
The new drawdown, after changing T and S by AT and AS respectively, is
given by
o = o + U 4T 4 U AS (15)

Bquation {15) is obtained from equations (11) and (12) by observing that
g = hO -~ N, where ho is the original head before pumping starﬁs and is
a constant independent of T and 5.

Let Se(t) represent the experimentally measured drawdowns. Suppose
it is passible to guess a reasonable S and T and let s{(t) denote
the drawdowns calculated from the Theis equation with these parameters.
One would like to change the original guess by AS and AT in such a way
that a better fit of the experimental data results. This is done by

minimizing the following error Funutjan

ERROR = g Lo )~ ) | me o) - U E)AT
~Tg () A9 1
z [@e({s;) w@(f’;;)] _ ;z[g{“z: U‘r({;{)[ae&&;)f,a)(zﬁ;.)]
waas’i U ) )~ 2 &) ]

- z&(g&;msﬂ QU @)U ) AT »U.;.’”&-;mf] (16)

The t. represents a discrete time at which an experimental measurement
is made for the drawdown. The error is defined as the sum over all
measurements of the squared difference in S, and 8. Notice that the

gsensitivity coefficients UT and Us depend upon the time ti
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The error is minimized by taking the first derivatives with res-
pect to AT and AS, setting them equal to zero, and finally by solving

the resulting egquations for AT and AS.

S(ERROR) _ 2 U ) et -0t )] rans ZU ) U b)
" ;;“zaf‘"?U (ﬁ) o (17)

éf:f"@ a U, ) ot —a )] -ha/;\%z; U, &)
> X faaT Y TG = O (i19)

For ease of writing define the variables

SSUS = ) U, ) (/)
SSUT = ?i Djﬁ:;} (20)
SHTUS = ZUS&QQ({?) @)

SUSDIF - ?'U@s lealt) - o) | (a2)

SUTDILF = > U th) [ anthi)= ) | (3)

Notice that all quantities in equations (19) through (23) are known

from experimental data or can be calculated from equations (1), (13),
ok (14). Solving equation (17) for AT yields

[sUTore - QUTUS)AS /3suT (29)
Substituting for AT in equation (18) and solving for AS results in the

following equation.

<%>%EYT>(%U “)IV)M(JUWT]%>< UT DTF)

A% = (SSTSHY(SSUT) ~(3UTUS ) (25)
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Thus the AS which results in the "best" fit can be found from equation
{25) which involves only known ¢quantities. This AS may be substituted
into equation (24) to £ind the "best" fit value for AT.
The values for AT and AS can be used to update the first guess for
T and 8. This better estimate for T and § is then used in the least
squares procedure again to obtain new values of AT and AS. In general
this can be continued until AT and AS become so small as to be insigni-
ficant, at which time the iteration is terminated. The "best" fit after
the ith iteration is obtained by using the following equations.
¢ . -
T = T+ AT' (26)
S}z-ﬂ - %y + An? (G‘Zﬁ/)
The procedure may not converge if the initial guess for T and § is
especially bad. However, numerical experiments indicate that good con-
vergence may be obtained even if the initial gquess is off considerably.
These numerical experiments show that the initial guesses for 7 and S
puerestimated ov }bwo ov
may bgAundereatlmated by aboutAthr@e orders of magnitude while still
obtaining convergence. These experiments covered the normal range of
T and S encountered in groundwater work Cﬂl }2‘3 ziles/)
(I(f)bc‘ai/day/ﬁ =T = /0t‘?‘3//a/a7y/5/{?\é )y
It is possible to obtain an initial guess for T and $ from the
data if reasonable values are not known. The Theis equaﬁion may be

expanded as (Jacob, 1950) | T
(‘Q g A e
Lo = ,_.W( OTT2 - Zﬂ(,_,,.. ( ~~~~~~~ - QQ; 47{ ‘": Y, 4)2’

4TT L 4T+ 4Tt
For large values of t and small values of r such that
\@Z_
YO e d

ATt

-l
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only the constant and 1n terms need to be consldered. Differentiating

the truncated expansion for s with respect to lnt one obtains
gif&wa = Cb (ﬁ»q)
d (4at) arT ¢
Solving for T yvields an estimate for this parameter.
T 2 T (30)
P ri“t_j

Bguation (29) indicates that there is a linear relationship between

2,
g and Int when E%m <<1.
C?/,(L ) Qv»,& - Q (31)
w o A -
A {d(ﬂnﬂi
C and %%T“E) must be determined from the data. At some time to the draw-

down predicted by equation (31) will be zero.

0 [ff’“ulﬂﬂ%o ‘o (52)

Solving for lnto gives

bt = == (33)
o E/{ﬁt)

The definition of tO implies that the first two terms of equation (28)

O = 4'77"/“ 7 2. >] | 34

Solving this equation for § gives the tollowmng regsult,

S = i;‘ QxXp [,.EML»O L0772 "’I

Lo L8
must equal zero when evaluated at L 1f = i <<1

Y = T exp T < 5972 (35)

Equations (30) and (35) show that one can estimate T and S by
fitting equation (31) to the data. In fitting equation (31) to the

ds
. . ‘- u‘ L al f
data one attempts to find the "best" value for d(1int)

and C. The method
of least squares is ideally suited to this problem. Obviously, at least
two drawdown-time pairs are needed to define a straight line. If more
than two pairs are given the least squares technique finds the "best"

fit. In this work the last four drawdown-time pairs are used to make

an estimate of T and § if reasonable values are not known. It is
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2
‘ , : r S ’
assumned that r is swall enough and t is large enough $o0 the AT << 1
for these last four pailrs. If this condition is not met then this
procedure will probably not provide an acceptable guess for T and S.

Let Se(t) represent the experimental data. The squared error in

fitting the last four points is

nf
Ekpor = J | Aaglh) - E;_’/%S, ) ) ]

Z“

= _Z;s\a ({)4({%»—-% >( %) 10 -2a CH‘/‘L )lw{

- a9 O (34
élzﬂ G@ )CL 2 a/(}nt) ! ‘] )

A necessary condition for the error to be minimizwd igs that:

J(ERRORY ZN E;zQu 24,4 )+ 2 Rt ] = O (37)
ey

2 C a/a )
oo (Dads )= 2048 bat; +o b =0 (9

and

N
&)Caﬁfiofi) 7 \a
C}(’dxif e o C{CL«t
& ) M5
Solving these two equatlons simultaneously gives
A

do 9 ;E;‘S%tmm-é au)? R |
c/@w&) N N N = 39)
7 Oty - (mem )

2D

N e

Lode T b+ g LA ) (40)

R

C = 7 a danty T Fep-y

The results expressed by equations (39) and (40) can noWbe used -
in equations (30) and (35) to calculate an initial guess for T and S
when needed. This procedure works well if the restrictions on r and t

are observed.
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PROGRAM THEIS

Appendix I contains a listing of program THEIS. It is a time
sharing fortran program for evaluation of equation (1). In addition to
drawdown (s) one may have the quantity u = r28/4Tt, the well function
W(u), and the sensitivity coefficients given by equations (13) and (14)
printed out. The user may utilize the gal-day-foot system or any
consistent set of units.

Figure 1 contains a printout of a typical run. The user's response
is underlined. The program initiates a series of guestions after the
RUN command is typed and a carriage return is given. A carriage return
is required after each response. The first question asks if the user
wants u, W, and the sensitivity coefficients printed. Any response
other than YES with no leading or imbedded blanks is interpreted as
NO. All other questions requiring a yes or no answer are similar. In
figure 1 the extra printout was requested. The second question defines
the system of units. The user can use the gal-day-foot system or any
consistent set of units. & YES response, as in figure 1, means the
gal-day~foot system is being used.

The units for each parameter the user must specify are statéd as
the program‘asks for the user to type in the value. I is any arbitrary
length unit and T is any arbitrary time Qnit. A storage coefficient
of .00l which is unitless has been used in figure 1. Transmissivity in
units of ga%/aax/%t or L2/T must be specified. A value of 24,000 ga%/ﬁax%%t
has been used in the example. A constant pumpage of 240,000 qa%/aay has
been used in figure 1. In consistent units pumpage must be specified

. . 3
in units of L /T.
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At this point two more yes-no questions are asked. The first
asks if the user wants a constant observation point. In other wordgl
r in equation (1) will be constant for this run. This is the normal
situation when one observation well is used to measure water levels
as a function of time. The next question concerns time. TIs t in equa~-
tion (1) to be held constant for this run? This would be the situation
if one measured the drawdown at the same time in a number of observation
wells. If the answer to both of these questions is yes the program
accepts only one value of r and t, calculates the desired quantities,
and then terminates. If only one of the questions is answered yes the
program continues to ask for updated values of the parameter that is
not constant. In figure 1 time is not constant so the program continually
asks for new times. To terminate the program simply hit the BREAK button.
If both questions are not YES then the program asks for updated valuesg
of both r and t until the BREAK button is pushed. In figure 1 a con-
stant r of 100 feet has been specified while several times have been

given ranging from .00l days to .l days.

SUBROUTINE THEIS

Appendix II contains a listing of subroutine THEIS. It is a
fortran IV subroutine for the evaluation of equations (1), (13), and
(14) that can be incorporated into any user deck and called by the main-
line program. To utilize subroutine THEIS the user simply includes the
following call statement at the appropriate place in the mainline program.'

CALL THEIS(SC, XB, Q, R, T, $, DSDT, DSDSC, UNIT)
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The parameters SC, KB, @, R, T, and UNIT must be assigned a value
or character designation prior to calling THEIS. SC is the storage coeffi-
cient which is unitless. UNIT must be declared a character type of
variable in the mainline program. If the user wishes to use the
gal-day~ft system, UNIT must be set to 3HYES in the mainline. Any
other character string is interpreted as NO and the subroutine assﬁmes
a consistent set of units. KB is the transmissivity (ga%/aa%%%t or
LQ/T), Q is the constant pumpage (galfday or L3/T), R is the distance
of the observation well from the pumped well (feet or L), and T is the
elapsed time since pumping started (day or T). The transmissivity KB
should be declared REAL in the mainiine since it would be implicitly
typed INTEGER,

Upon returning to the mainlinq,parameters 5, DSDT, and DSDSC have
been assigned values by subroutine THEIS. These values represent the
evaluation of equations (1), (13) and (14) respectively. & is the draw-
down in units of feet or L. DSDT is the sensitivit? coefficient with
respect to transmissivity in units of ft2 da¥/%al or T/L. DSDSC is
the sensitivity coefficient with respect to storage in units of feet
or L. Upon returning to the mainline these three parameters are avail-
able to the user éor printout or further computation. This subroutine

is used in the next program to be discussed; so, the reader is referred

there for an example of the usage of subroutine THEIS.
PROGRAM THEISFIT

This program fits the Theis equation to experimental punptest data

to obtain the "best" values for the storage coefficient and the
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transmissivity by using a least squares procedure discussed earlier in
this work. The program exists in two forms: a time sharing fortran
version and a fortran IV batch version. The time sharing version is
listed in Appendix III. Appendix IV contains a listing of the batch
version. The two programs are basically identical except for data input.

The printout of a typical time sharing run is contained in figure 2.
The user's response is underlined. As with program THEIS the program
initiates a series of questions after the RUN command is given with a
carriage return. The first question defines the system of units. YES
allows one to use the gal-day-foot system; any other response is inter-
preted as NO. In figure 2 NO was the response so a consistent set of
units is assumed. The second question asks if the user wishes to make
an initial guess for the storage and transmissivity. In figure 2 NO
was given so no input for these quantities was required. If the res-
ponse had bheen YES the program would have requested the user to type in
the guesses for storage and transmissivity in the two following
questions. Mfigure 2 the pumpage rate is given as 66.07 ft3/min.
Thewobservation well was located 545 feet from the pumped well. The
next question asks how many drawdown-time pairs are to be read into the
program. In this case it is eighteen. At this point the program echo
prints all data typed in thus far. This allows for error checking.
Since guesses for storage and transmissivity were not given they are
printed as zero. SC and KB stand for storage coefficient and trans-
missivity respectively.

The program is now ready to accept drawdown-time pairs. They should

be read in order of increasing time since the last four are used to
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calculate an initial guess for storage and transmissivity. The guess
calculating routine assumes these four are at large values of time. If
the user supplies an initial estiﬁate for storage and transmissivity,
the drawdown~time pairs may be read in any order. Notice that the
drawdown must be typed first and the time second with a separating
comma. The values may be typed with or without a decimal point and may
be in scientific notation (for example 1.3 x 105 would be typed 1.3ES).
After the eighteen pairs have been typed the program echo prints them
for error checking.

From this point on the user may not interact with the program,

One of two things should now happen: the program converges to the
"best" solution or the program does not converge. If it does not con-
verge after twenty iterations the program .terminates. However, if the
initial guess for storage and‘transmiﬁsivity was bad or if the data is
rather poor, unphysical values for storage and transmissivity or error
messages may be generated in the iteration process. If this occurs the
program may be terminated by hitting the BREAK key. In general, the
storage and transmissivity guesses may
overestimated 0  Jup ov

beAunderestimated byAthree orders of magnitude
and still achieve convergence.

In the example shown in figure 2 the calculated guess is printed
first then a series of iterations is started. The current "best" fit
is printed for each iteration. Convergence is achieved in four iterations
in this example. The convergence criteria requires the change in stor-
age and transmissivity since the last iteration to be less than or equal

to .1%. The program proceeds to print the "best" fit drawdown-time
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yms  @rvyoyY
pairs and calculates the in the drawdown.  The

A
vyms @xyov
is a measure of the absolute error at an "average"

A
data point. In this example one would expect the "average" difference
between measured and calculated drawdown to be about .017 feet.

The data set for a typical run of the batch version of THEISFIT
is shown in figure 3. The first card must contain values for the two
character variables GUESS and UNIT. YES or NO are the appropriate res-—
ponses. The first variable is GUESS. Its value must start in column
one. YES means that the user is going to supply the first guess for
storage and transmissivity. The second variable, UNIT, must start in
column seven. YES means the user wants to use the gal-day-foot systen.
Any other response indicates a consistent set of units is being used.

In this particular example an initial guess for $C and KB is given; and,
the gal-day-foot system is used.

The next card contains five variables: storage kSC), transmissivity
(KB}, pumpagé (Q), observation distance (R), and the number of drawdown-
time pairs to be read (N). These variables are read under a (4F10,0,
IlO) format. Each variable field is ten columns wide. The first four
variables may be punched with or without a decimal point; however, if no
decimal is punched it will be assumed to be at the extreme right of the
field. If no decimal is punched the value should be right justified.
The last variable, N, must be right justified (ending in column 50) and
punched without a decimal point. If GUESS is qi&en as NO the program
ignores any values given for SC and XB on ﬁhe second card. In this
example SC is .00001, KB is 2,000 ga%/éax%ft, Q is 316,800 gal/day, R is

824 feet, and N is 22 pairs.
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The drawdown-time pairs are punched on the third and following
cards at a maximum of four pairs per‘card. They are read under an
(8F10.0) format. Each data field is ten columns wide. Decimal consid-~
eration is the same as for SC, KB, @, and R. They should be punched in
order of increasing time if a guess for SC and KB is to be calculated
by the program. In this example drawdowns are given in feet and time in
days.

The output for the data set of figure 3 is shown in figure 4. The
input data is printed out for error checking. Since GUESS was given as
YES, no guess was calculated for SC and KB, The program converged in
six iterations. The convergence criteria is the same as for the time
sharing version. Comments on the convergence properties of the time
sharing version also apply to the batch version. The best fit drawdown-

rms evrvyov
time pairs are printed if convergence is obtained. TheA

for the drawdown is .091 feet for this example. Therefore, the

"average" error in drawdown is .091 feet.
DISCUSSION AND SUMMARY

The automated fit for pumptest data developed in this work should
be a useful tool for the groundwater hydrologist. We have used it on
many more pumptests than the two examples included here. It is simple
to use, quick, and inexpensive. Typically the computer costs for running
a pumptest fit is less than two dollars. The automated f£it has the
advantage that it is always objective. As a measure of the error in

Y'mM3 evvov
fitting, theA . in drawdown is calculated for the "best”
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transmissivity and storage. For the cases we have run the

in drawdown is no more than a few tenths of a foot. If it
is much larger than this one has either poor data or a hydrologic
gsituation which can not be represented by the Theis equation.

The algorithm for fitting has good convergence properties.

Convergence 1s generally
too lavge 0¥  fwo ov
achieved even if the initial guess isdtoo small byAthree orders of
magnitude. The procedure has been tested over a wide range of trans-—
missivigy and storage.

This work deals only with the Theis equation. However, sensitivity
analysis and least squares fitting could be applied to more hydrologically
complicated situations. Automated fitting routines could be developed
for anisotropic flow, partial penetration, leaky agquifers, delayved vield,

and hydrologic boundaries to name some of the more common situations.
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