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ABSTRACT

A procedure is presented to minimize the number of samples required to estimate a spatial

function at a specified level of accuracy.

The technique is based on universal kriging, which
is an estimation method derived from the theory of regionalized variables.

Statistical charac-

teristies of spatial functions, such as spatial continuity, statistical dependence among closely
spaced sample elements, and the practical impossibility of making error-free estimates, are

explicitly considered in the method.

Universal kriging is used to compute the average standard

error and maximum standard error of the estimates over the sampling domain; these are used as

indices of sampling efficiency.

The procedure optimally selects the factors controlling the

magnitude of the indices, such as the density and spatial pattern of the sample elements, and
the number of nearest sample elements to be used in estimation. As a demonstration, the network
of observation wells used to monitor the water table in the Equus Beds of Kansas is enhanced.
This example illustrates the ease and convenience of the procedure, which can be used equally
well to design sampling programs for other spatial variables, as the procedure is not limited by

the physical nature of the function.

CHAPTER 1
INTRODUCTION

Over the years, engineers and scientists
in different disciplines have faced the prob-
lem of characterizing n-dimensional functions
which are only partly known at discrete
points. Great emphasis has been given to the
search for different methods to analyze such
data. Some methods have a theoretical basis,
others are justified purely on empirical
grounds, and some have no apparent justifi-
cation (Henley, 1981, p. 10). Although the
selection of an analytical procedure has a
great influence on the results obtained in a
study, the answers also depend on the charac-
teristics of the sample being analyzed, a
fact that has received relatively little
attention.

The nature of the sampling problem varies
widely, ranging from difficulties caused by
having too many sample elements to instances
where nothing can be done because of the lack
of sufficient information. Despite the mas-
sive use of computers, advances in the tech-
nology of data collection are shifting the
analytical bottleneck from data gathering to
data processing. Today it is not uncommon to
have huge amounts of sample data obtained at
high cost in a given area, and to be faced
with the prospect of expending enormous addi-
tional amounts of money and time in order to
see any final results. In these instances,
judicious selection of a subset of the data
may be of significant help in reducing costs
and speeding up the analysis. A final, ex-
haustive processing of the data can be
postponed until preliminary results demon-
strate that more detail is required. The
preliminary study can be used to pinpoint
subareas of interest and to schedule prior-
ities for data processing. The success of a
preliminary study depends greatly on the
selection of an appropriate subset of the
sample.

Rather than too much data, the problem
facing a researcher is more often a partial
or total lack of information. In such cir-
cumstances a careful sampling design is crit-
ical in order to maximize the information
that can be collected within a wusually
limited budget. The designer of the sampling
scheme would like to know, in a short time
and at a minimum cost, the implications of
alternative sample arrangements, and the
effects of varying the number of sample
elements and of adjusting the sampling
uncertainty within specified limits.

Although regionalized variable theory has
been extensively described in the geomathe-
matical and statistical literature, almost
all discussions focus on either the problem
of estimation or on simulation. Only a few
studies have marginally addressed the ques-
tion of the efficient arrangement of sample
elements (Alldredge and Alldredge, 1978;
Ripley, 1981, p. 214-241). This work addres-
ses directly the systematic analysis of
spatial functions from the viewpoint of
sampling. The primary objectives of the
research which led to this report were:

1. To analyze the mathematical nature
of spatial functions and to select

an estimation procedure which
would best describe them.
2. To identify parameters charac-

terizing the quality of a sample
for the purpose of forecasting
unknown values at locations not
considered in the sample.

3. To determine the factors that con-
trol values of the parameters that
characterize sampling quality.

4. To present a methodology for opti-
mizing the quality of a sample by
properly selecting the controlling
parameters.



5. To apply the optimal sampling
methodology to a real case.

6. To generate recommendations lead-
ing to the best use of existing
sampling systems and the optimal
implementation of future data-
gathering networks.

CHAPTER 2
REVIEW OF THEORY AND PRINCIPLES

Certain basic statistical concepts are
necessary in order to understand the meth-
odology used to determine optimal sampling
schemes for spatial functions. These con-
cepts are presented following an original
line, but the theories, equations, and
concepts are derived from the existing lit-
erature. References have been selected on
the bases of scientific accuracy and clarity,
and should provide a greater understanding of
the general topics of sampling theory and
spatial functions.

2.1 SPATIAL FUNCTIONS
2.1.1 Nature

Spatially arranged measurements occur in a
surprisingly wide variety of scientific and
engineering disciplines. Meteorologists study
changes in temperature and barometric pres-
sure recorded at weather stations. Foresters
and agricultural scientists investigate the
lateral variation in soils and in harvest
yields. Geologists and petroleum engineers
estimate variations in formation thickness
and reservoir porosity. Mathematically, a
spatial function is an association of numbers
to a domain of geographical coordinates.
Spatial functions such as the annual amount
of rainfall are time dependent; others, such
as the thickness of a geological formation,
are invariant at the human scale of time.

Typical spatial functions are continuous
and uniquely defined over sizable domains.
Some, such as geothermal gradients, are not
easily measured and are expensive and time-
consuming to characterize accurately. Com-
monly, such functions are only partially
known through a set of scattered observa-
tions. In statistical jargon, the selected
observations are called a sample (James and
James, 1976, p. 339), and each individual
measurement is called a sample element
(Williams, 1978, p. 27).

Even if the observations have been care-
fully taken to avoid measurement error, the
spatial function is known with certainty only
at the sampled locations. The exact value of
the spatial function at unsampled locations

is subject to uncertainty, as no method has
yet been devised which will yield error-free
estimates. Figure 2.1 is a diagrammatic
cross-section based on two sample elements at
locations A and B, where the spatial function
is known. Any surface is a potential de-
scription of the real spatial function at
unsampled locations, such as C. The four
alternatives presented in Figure 2.1 are
simply a small subset of all possible cases.
For some arbitrary location such as C, a
table can be prepared containing all the
estimated values at that location. The min-
imum and maximum values in the table will
provide an interval which encloses all likely
answers to the problem. Based on supplemen-
tary information, there could be a concensus
that solution (a) in Figure 2.1 is less
likely than solution (d). The insight pro-
vided by the table of possible values for the
spatial function at location C can be en-
hanced by incorporating the likelihood that a
specific solution is the correct answer.

2.1.2 Modeling

A tabulation of events and their asso-
ciated probability of occurrence corresponds
to the statistical concept of a probability
density function (Hogg and Craig, 1978,
Section 1.6). Figure 2.2 represents a hypo-
thetical probability density function for all
likely values of the spatial function at some
arbitrary unsampled location C in Figure 2.1.
In statistical terms, a quantity which may
take any of the values of a certain set with
a specified relative frequency is called a
random variable or a variate (Kendall and
Buckland, 1971, p. 162). There will be as
many random variables as unsampled locations.
The set of all random variables associated
with a given spatial function constitutes
what is known as a random function (Matheron,
1971, p. 50). Even though there might be only
one value of the spatial function at location
C, the estimated value of the spatial func-
tion at any location not considered in the
sample is more thoroughly described by a
collection of likely values than by a single
number.

Listing a random function describing a
spatial function is a cumbersome task. It
would be desirable to summarize the random
function in an informative, short description
rather than listing all its possible out-
comes. For this purpose we may invoke the
use of mathematical expectations. The aver-
age of all possible outcomes of a variate
weighted by their probability of occurrence
is the mean and represents a central value of
the population. The weighted average of the
squares of the differences between the out-
comes and the mean is the variance (Hogg and
Craig, 1978, p. 46). The square root of the
variance is the standard deviation. As the
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Spatial Function

(c)

FIGURE 2.1.

Distance

Cross-sectional view of a spatial function.

(d)

The spatial function is known at

locations A and B but is not known at other locations, such as C.

variance becomes larger when the differences
increase, the variance and the standard
deviation are a measure of the dispersion of
the outcomes relative to the mean value. The
standard deviation of Figure 2.2 also can be
interpreted as a measure of the uncertainty
as to the true value of the spatial function
in C. A small standard deviation indicates
the outcomes are clustered tightly around the
central value over a relatively narrow range
of possibilities. Conversely, a large stand-
ard deviation indicates that the actual value
could be any of a larger range of possi-
bilities.

2.2 THE ESTIMATION OF SPATIAL FUNCTIONS

2.2.1 Introduction

The methodology reviewed in this section
was originally developed in France by Prof.
G. Matheron (Matheron, 1965 and 1971) for the
purpose of estimating spatial functions that
arise in mine evaluation. However, Matheron's
estimation methodology is based on a statis-
tical theory which makes the procedure inde-

pendent from the nature of the spatial func-
tion. Spatial functions satisfying the basic

Probability Density Function

Spatial Function InC

FIGURE 2.2. Probability density function of
a spatial function at a location not
considered in the sampling process, such
as location C in Figure 2.1.



assumptions of the theory are called region-
alized variables. These regionalized vari-
ables are assumed to be random functions, as
described in the previous section, and thus
are well suited for accomplishing the abjec-
tives of this study.

The term geostatistics has come to mean
the specialized body of statistical tech-
niques developed by Matheron and his asso-
ciates to treat regionalized variables.
Typical spatial functions amenable to estima-
tion using geostatistics include the ore
content of a mineralized body; the porosity
of sedimentary rocks; the amount of precipi-
tation per square mile; and the elevation of
the tops of subsurface formations. Fluctua-
tions in space- and time-dependent data are
erratic and often unpredictable from one
location to another, but there is an under-
lying trend in the fluctuations which pre-
cludes regarding the data as resulting from a
completely random process. Typically, close-
ly spaced outcomes are statistically auto-
correlated. Sample elements may have a size,
shape, and orientation, as, for instance, do
drill cores used to assay ore grades. The
geometric and spatial characteristics of a
sample element constitute what is called the
support of the sample.

An estimator which minimizes the variance
of the estimate is wusually considered the
best for purposes of statistical inference.
If, in addition, the expected value of the
estimator is equal to the actual value of the
parameter, the estimator is said to be un-
biased (Williams, 1978, p. 59). Classical
statistics provides numerous suggestions for
reducing estimation variance, and for as-
sessing its magnitude (Cochran, 1964; Deming,
1966; Williams, 1978). Unfortunately, clas-
sical statistical theory is seldom applicable
to spatial functions; the basic assumption
that elements in a sample are stochastically
independent is almost always violated. The
geostatistical method for estimating spatial
functions is known as universal kriging.
Basically, the method is the solution to an
operations research problem in which the
objective function is the estimation variance
and the constraint is the condition of un-
biasedness, considering that sample elements
are autocorrelated.

2.2.2 Stationarity constraints

In order to make inferences, it would be
desirable to define the probability density
function that characterizes the regionalized
variable. This is not possible in most real
situations, but fortunately is unnecessary in
any case. The minimum theoretical require-
ments do not go beyond knowledge of the first
two moments of the function. As in conven-
tional statistical inference, the spatial
function can either be described by a mathe-

matical model or given by a relative fre-
quency analysis based on experimentation.
The former approach is not practical because
of the complexity of spatial functions; the
latter is seriously limited by the maximum
size of samples that can be collected. In
fact, at any location it is only possible to
collect a sample of size one, because most
spatial functions are uniquely defined. To
resolve this apparent impasse, geostatistics
invokes a stationarity constraint similar in
concept to the use of ergodicity in time
series. The constraint is called the intrin-
sic hypothesis and is introduced in order to
use outcomes of the regionalized variable for
moment estimation. Under the hypothesis,
outcomes from different locations can be
considered as elements from the same popu-
lation, thus allowing an unlimited increase
in the sample size. -

Let Z(X) and Z(x+Rh) be two of the random
variables comprising the regionalized vari-
able. The arrow (+) over the geographical
coordinate indicates a vectorial property,
implying orientation and magnitude in
n-dimensional space. The differgngce between
two random variables [Z(x) - Z(x+h)] is vyet
another random variable. A regionalized
variable is said to satisfy the intgigsic
hypothesis if the difference [Z(x) - Z(x+h)]
is second-order stationary. In other words,
a regionalized variable satisfies the intrin-
sic hypothesis if, for any displacement h,
the  first ,tyo moments of the difference

[Z(x),- Z(x+h)] are independent of, the loca-
tion x and are a function only of h:

E [Z(X) - Z(x+h)] = M(B) (2.1)
E [{Z(X) - Z(x+R) - M(R)}2] = 2v(R)  (2.2)

In the spegialized Janguage used in geosta-
tisties, M(h) and y(h) are referred to as the
drift and the semivariange, or intrinsic
function. The uynits of M(h) are the sgme as
the units of Z(x), and the unitg of y(h) are
the square of the units of Z(x). Provided
the intrinsic hypothesis is met, both moments
can be estimated.

There are a few important circumstances
under which geostatistics can be applied even
if the intrinsic hypothesis does not hold.
Of special interest is the situation when the
regionalized variable is not first-order sta-
tionary because the drift has a systematic
trend, as shown in Figure 2.3. Removing the
drift from the regionalized variable results
in a difference called the residual. Region-
alized variable theory is still applicable if
the intrinsic hypothesis holds for the
residuals.

The assumption that the regionalized vari-
able itself must be second-order stationary
is stronger than the intrinsic hypothesis.
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FIGURE 2.3. Basic elements in the theory of
regionalized variables. (a) Regionalized
variable and drift. (b) Residual after
removal of drift.

Every regionalized variable which is second-
order stationary satisfies the intrinsic
hypothesis, but the converse is not true.
For second-order stationary regionalized
variables, the following relationship is
true:

o2 = Y(E) + cov(g) (2.3)
Here, 02 is the population variance, cov(ﬁ)
is the autocovariance as used in classical

statistics for a lag E, and y(h) is the semi-
variance.

2.2.3 Structural analysis

The  semivariance Y(h) can, be plotted
against values of the 1lag h to yield the
semivariogram, a graph analogous to the cor-
relogram used in time series analysis. Struc-
tural analysis is the term applied to the
study of semivariograms for the purpose of
extracting information about the nature of
the spatial variation in a regionalized vari-
able. The objective of structural analysis
is two-fold: to make genetic interpretations
about the regionalized variable, and to pro-
vide parameters which are required in its
estimation.

To obtain a semivariogram, it is necessary
to sample the regionalized variable at regu-
lar intervals. Let

2(%0)5 2(X))s wuey 2(X}), wery 2(X)

be n values of either residuals or outcomes
of the regionalized variable. Provided that
the regionalized variable is first-order sta-
tionary and the intrinsic hypothesis holds,
the following is an unbiased estimator of the
semivariance (Olea, 1977, p. 20):

k'+k—p—1 2
* 1 > > >
y (h) = iTE:ET jfk' [Z(Xj+h) - Z(xj)]

(2.4)

Here, E is p times the sampling interval
a; k+ k' <njand p = 0, 1, 2, ..., k-1.
The study may be done along one traverse or,
more desirably, along a series of traverses.
The estimation of a semivariogram for obser-
vations of a regionalized variable is fairly
straightforward, but this is not true for the
semivariogram of the residuals. Before the
residuals can be obtained, it is necessary to
know the semivariogram. The problem is solved
recursively by assuming a semivariogram, com-
puting the drift and residuals, and comparing
the resulting semivariogram to that assumed
(Olﬁa, 1975, p. 90-93; David, 1977, p. 272-
274).

Satisfactory results for moderately
tractable regionalized variables «can be
obtained by assuming drifts of the type

% n .
M(x) = Ia; F1(x) (2.5)
i=0

where the ai are n unknown coefficients to be
the f1(X) are

;, typically monomials of the spatial coor-
dinates up to degree 2. The smooth and slow-

ly varying surfaces represented by M*(;)
accord with the mathematical notion of the
drift being a highly continuous function
incorporating only the low frequency compo-
nent of the regionalized variable and exclud-
ing any local fluctuations. The terms local
and regional are relative and depend upon the
scale of the regionalized variable. A fea-
ture that at the scale of a county could be a
dominant element in the drift might appear as
an anomaly when considering an entire state,
and be completely negligible at a continental
scale. Therefore, there is no single, unique
drift for a given regionalized variable; as
in curve fitting, the user must decide what
should be fitted and what should be regarded
as anomalous.

determined and functions of

Certain major characteristics of the
regionalized variable of interest in this
study can be deduced from the semivario-
gram. These include:



1. Continuity. The shape of the semivario-
gram, and in particular its slope near the
origin, 1is related to the regularity and
smoothness of the regionalized variable. A
parabolic semivariogram which is tangent to
the x-axis at the origin means the variable
is extraordinarily regular relative to the
sampling interval. In contrast, highly erra-
tic sequences will produce a semivariogram
which is almost vertical at the origin.

2. Zone of influence. Figure 2.4 1is a
transitive type of semivariogram, expressing
moderate continuity of the regionalized vari-
able within a local neighborhood, and random
behavior over larger distances. The semivar-
iance steadily increases to a maximum value
and then remains constant at a value called
the sill. In instances where the regiona-
lized variable is second-order stationary,
the asymptote is equal to the sample variance
in Equation 2.3. The arrow at the break in
slope indicates the range, a distance which
divides elements in a sample into two cate-
gories. Sample elements taken at distances
which are smaller than the range are auto-
correlated and are best suited to be used in
common for estimation purposes. Sample ele-
ments spaced farther apart than the range are
statistically independent and behave as inde-
pendent random variables.
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tation. Differences between the semivario-
grams appear mainly in the slopes at the
origin, in the ranges, and in the sills, if
any. The semivariance of a regionalized
variable can be anisotropic and at the same
time the semivariance of the residuals can be
isotropic, if the cause of the anisotropy is
an underlying drift. This situation can be
diagnosed if along the dip of the surface the
semivariogram is highly regular with no sill
and along the strike the semivariogram is
transitive in form. If the regionalized
variable is isotropic, the semivariance
depends, only on the magnitude ~h of the
vector h and not on the direction h.

Although any function that fits the ob-
served semivariance could be used as a model,
sound geostatistical practice recommends the
use of only those functions which are
positive-definite (Journel and Huijbregts,
1978, p. 161-168; Armstrong and Jabin, 1981).
Among the positive-definite models, the
simplest one is linear, with a constant term
equal to zero:

Y(K) = wﬁ (2.6)
The linear model is convenient for represent-
ing a transitive semivariogram provided the
argument h  never becomes larger than the
range. That is, the estimators are restric-
ted to sample subsets inside the zone of
influence.

When the model must incorporate the

presence of a sill, the most commonly used
function is the spherical model

0)°], n <L

C ,h>L

h
Cly T -

N =

y(h) = (2.7)

2.2.4 Linear programming estimation problem

0 5 10 15 20 25
Distance, miles

FIGURE 2.4. Transitive type of semivariogram
with a range of 22.5 miles. The arrow
indicates the left edge of the sill.

3. Anisotropy. Anisotropy is revealed by
differing behavior of semivariograms which
are computed along lines of different orien-

Universal kriging is a linear estimator of
the regionalized variable and has the form:

K
z*(QO) = I AZ(X.)
j=1 4 J

(2.8)

Finding the set of weights which minimizes
the estimation variance under the constraint

that the estimator must be unbiased is a
linear programming problem. After some
algebraic manipulation (Olea, 1975, p. 67-

73), the problem can be reduced to solving
the system of equations
AX=8B (2.9)

where A, B, and X are the matrices given in
Equations 2.10, 2.11, and 2.12.



The Lagrange multipliers u, are additional a distance (;j - ;p) apart. We will restrict
slack variables which are introduced in order our attention to estimated locations having
to solve the problem. Y(;j,;p) is the semi- the same support as the sample elements.

variance between two sample elements located
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(a)

Graphic representation of the results of universal kriging of a two-dimensional

FIGURE 2.5.
spatial function.
cross-section in Figqure 2.1.
Standard error.

The final product of, universal kriging

estimation at 1location XO consists of two

numbers. The first of these is the estimated

value of the function at ;0, given by insert-
ing the values determined for the Aj's into

Equation 2.8. The second is the estimation

variance, given by

02(g) = x'B (2.13)

in which X' is the transpose of matrix X.

The standard deviation of an unbiased
estimator is called the standard error (James
and James, 1976, p. 139). Since the standard
error is given in the same units as the re-
gionalized variable, it is more commonly used
as a measure of uncertainty in the estimate
than is the estimation variance. Universal
kriging is a well established estimation
method, and is essentially the only procedure
that provides a standard error of the esti-
mate for a spatial function. Appendix A
presents a numerical example of standard er-
ror computation.

If universal kriging is repeatedly per-
formed for regularly spaced discrete loca-

Crosses represent locations of sample elements.

A-C-B shows location of

(a) Most likely representation of the spatial function. (b)

tions within the area of interest, the esti-
mates can be passed to a graphical display
package to create spatial representations of
the regionalized variable. Possible forms of
representation include block diagrams, cross-
sections, or contour maps of either the
variable itself or the standard error of the
variable. Figure 2.5(a) 1is a graphical
solution of the original problem in Figure
2.1, a continuous representation of a spatial
function which 1is known only at discrete
points. Locations A, B, and C from Figure
2.1 are also shown on Figure 2.5 to illus-
trate how universal kriging may be used to
quantitatively define the probability density
function mentioned in Part 2.1.2. Studies of
several different regionalized variables have
shown that the probability density functions
for the discrepancies between actual values
and those estimated by wuniversal kriging
closely follow a normal distribution, with
slightly more pronounced mode and tails and a
steeper slope between (Journel and Huij-
bregts, 1978, p. 48-51). For all practical
purposes, a probability density function such
as the one in Figure 2.2 can be regarded as a

*
normal distribution with mean Z (;D) and
standard deviation OE(;O).

By assuming normality, standard statisti-
cal tables can be used to compute confidence



intervals which bound the actual value of the
regionalized variable within certain proba-
bility limits. For instance, the probability
that the true value of a regionalized varia-
ble will be more than the estimate plus twice
the standard error, or smaller than the esti-
mate minus twice the standard error, is 4.5%.
That is, from Fiqure 2.5, with a probability
of 95.5%, the actual value of the regional-
ized variable at location C lies within the
range 1419 +20.

For the remainder of this study, universal
kriging will be accepted as a suitable esti-
mator for spatial functions. The standard
error will be used as an index to quantita-
tively compare the point accuracy of estima-
tions made by universal kriging.

CHAPTER 3
THEORETICAL EXTENSIONS AND DEVELOPMENTS

Universal kriging provides a convenient
way to estimate a spatial function and to
simultaneously assess its reliability by
determining the standard error of the esti-
mates. Because of the definition of the
estimator, universal kriging will result in
an estimate having minimum standard error.
This minimum is conditional upon the sample
from which the estimation is made, as dif-
ferent samples will produce different stand-
ard errors of the same estimator and spatial
function. The dependence of the standard
error of kriging on samplipg is discussed
only in passing in a small number of publi-
cations. The specific problem addressed here
is discussed only marginally in works devoted
primarily to related but different problems
(Quenouille, 1949; Matérn, 1960; Dalenius and
others, 1961; Hannan, 1962; Deming, 1966;
Payandeh, 1970; David, 1978; Delhomme, 1979;
Ripley, 1981), or in situations where the
mathematical assumptions are not valid for
spatial functions (Madow and Madow, 1944;
Madow, 1949; Barret, 1964; Cochran, 1964;
King, 1969; Byth and Ripley, 1980; Diggle and
Matérn, 1980). The potential of geostatis-
tics in the optimal design of spatial
sampling patterns has already been explored
in the area of mining (Newton, 1973; Rendu,
1976), geohydrology (Olea, 1980) and soil
science (McBratney and others, 1981;
McBratney and Webster, 1981), but none of
these studies are general in their analyses
or assumptions.

This chapter presents original contribu-
tions to the optimal design of sampling
patterns for spatial functions. The work is
an extension of the geostatistical techniques
of the previous chapter, used to find global
indices measuring the performance of a spa-
tial sample, and to disclose the nature of
factors influencing the indices.

3.1 SAMPLING EFFICIENCY

3.1.1 Sampling efficiency indices

As shown in Equation 2.13, the magnitude
of the point standard error is controlled by
the individual values of each of the elements
in matrices X and B. From Equation 2.9,
matrix X is a function of matrices A and B.
Consequently, the standard error is a func-
tion of matrices A and B.

From Equation 2.10, matrix A involves:

1. The semivariance of the spatial

function.

2. The relative distance between
every possible pair of sample
elements.

3. Each of the terms of the analy-
tical expression selected to
represent the drift.

4. The location of sample elements.

5. The size of the sample subset used
in the estimation.

In addition, from Equation 2.12, matrix B
contributes:

6. The distance from the estimation
location X to each of the sample
locations xj.

7. The coordinates of the estimation
location.

Note that the standard error does not depend
on the sampled values themselves.

As explained in Part 2.2.3, the selection
of models to represent the semivariance and
the drift is somewhat arbitrary, but the
freedom of choice is more apparent than real
because only those models producing a good
fit to reality are acceptable. In principle,
the drift and semivariance are properties
inherent in the spatial function. However,
these properties may be represented by alter-
native models which describe them equally
well.

For the purpose of this analysis, the
relative arrangement of sample elements will
be broken into two components, pattern and
density. Pattern refers to the geometrical
configuration of sample elements in space.
An example is a sguare pattern, where the
sample elements are in the center of a
reqular lattice of squares. Unfortunately,
pattern is a nominal property possessing
discrete categories which have no implicit
ordering. Density is the degree of compact-
ness of a sample, measured by the number of
elements per space unit, such as the number
of points per square mile. In some instances,
pattern and density completely determine the



relative distance between sample elements, as
in a square pattern with a density of gne
element per square foot (10.8 elements/m%).

In other instances, the nominal nature' of
pattern precludes a deterministic descrip-
tion. There may be an infinite number of

alternative locations which fit the charac-
teristics of the same pattern equally well,
as, for example, in a random pattern. Numer-
ous different configurations can be con-
sidered to be randomly arranged even though
none may have a single point in the same
location. In those circumstances where there
is more than one possible configuration per
pattern, a representative case has been
selected for analysis.

Matrices A and B include terms containing
both the coordinates of samples and the loca-
tion of the estimation. However, the product
is not a function of the arbitrarily chosen
origin of the, coordinate system, because the
product of A1 and B is invariant to changes
in the origin (Journel and Huijbregts, 1978,
p. 335).

There is an infinity of possible relative
arrangements between the sample elements and
the estimation location. Because the per-
formance of a sample pattern cannot be judged
meaningfully by the standard error at specif-
ic points, a better index of the efficiency
of a sample is the average standard error
over the sampling space. To express the
spread around the average, a maximum and
minimum standard error may also be of
interest. The minimum standard error is triv-
ial, as it is always zero at those points
coinciding with sample locations. Therefore,
only the maximum standard error will be
considered in addition to the average stand-
ard error.

3.1.2 Sampling efficiency factors

The performance of samples of a spatial
function will be judged by two indices,
average standard error and the maximum
standard error, which in turn depend on:

1. Unmanageable factors
a. The semivariance
b. The drift

2. Manageable factors
a. The size of the sample subset
considered by the estimate
b. The sample pattern
c. The sample density

The factors which influence the sampling
efficiency indices are not alike; two have
nothing to do with sampling and the third is
only partially related to sampling. The
semivariance and drift are inherent in the
spatial function. The designer of the sam-
pling program is limited to selecting models
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that provide better fits to the true semi-
variance and the drift. Specification of the
size of the universal kriging matrix is pri-
marily a problem in computational efficiency,
with some sampling implications. This leaves
pattern and density as the only two factors
which offer wide flexibility in the design of
the sampling scheme.

Interactions among factors is also an
important concern. Independent variables are
preferred because they can be analyzed one at
a time. The semivariance depends upon the
drift (0lea, 1982b, Appendix A), but all
other factors are independent of one another.
Since the drift relates to the spatial func-
tion itself and not to sampling, the drift is
independent of the sample subset size, dens-
ity, and pattern. Figure 3.1 illustrates the
independence  between the three factors
related to the sampling process. In part
(a), the number of sample elements considered
in an estimation has been varied without
modifying density or pattern. In part (b),
only the density has been changed, and in
part (c), the density as well as the subset
size remains the same but the pattern has
been altered.

The remainder of this chapter presents a
sensitivity analysis of the effects that
changes in sampling efficiency factors have
on the sampling efficiency indices.

3.2 SEMIVARIANCE AND DRIFT

3.2.1 Modeling

The joint study of the semivariance of the
residuals and the drift of a spatial function
is the subject of structural analysis, a
standard procedure in geostatistics.

The residuals are the difference between
the spatial function and a smooth analytical
function on the orthogonal geographic coordi-
nates x and y. In this study, consideration
will be limited to polynomials up to the sec-
ond degree, having the form:

M(x,y) = a + X +ay + 33x2 + 8,Xy + asy2
(3.1)

A semivariogram will tend to be more ir-
regular when computed from noisy and less
regular observations. The practice is to fit
idealized curves to the semivariograms com-
puted from the data and use these ideal
curves in the universal kriging system of
equations rather than the computed semivar-
iograms themselves (Henley, 1981, p. 19-20).
The analysis will be restricted to linear
models of the form

y(h) = uh (3.2)



o o ° o o o ° o o o o o o o o (]
° o o o o o o o ° o o ° o o o o
o o o ° ° o o °
o o o o ° o o o
o o o ° ° o o °
o o o o ° ° o o
o o o o o o o o o o o o o o o o
o o o o o o o o (a) ° o o o o o o o
o o o o ° o o o
o < o o
o o ° ° o o o °
° o o °
o o
o o o o
o o o o
o o
o o o o
o o o o ° o o o
o o o o
o o o o o o o o (b)
o ° o o ° o o o o0 %o,
° & % °
o o o o o o o o
o °
0o 0©)
o o o o
Q o
° o
° °
o o o o
o o o o
% 5 o ©
o °
o ° o o
o °
o o
o o o o o o o o ° °
o ? & °
o o o ° o o o o (C) oo 00

FIGURE 3.1.

Independent sampling efficiency factors.
of sample elements considered in the estimation.

Large circle encloses the actual number
Either (a) actual number of sample

elements considered in the estimation, (b) density, or (c) pattern can be changed while

holding the other two factors constant.

3.2.2 Linear semivariance

This part presents general characteristics
of the standard error of regionalized varia-
bles whose semivariance of the residuals is
linear.

Lemma 3.1

Let the semivariance of the residuals be
isotropic and linear. Let Aj and My be the

weights and slack variables in the universal
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kriging system of equations. Then Aj and
(ui/w) are independent of the slope w of the

semivariogram.

Proof:

As the semivariance is linear and iso-
tropic

> > >
h) = wfx_ - x.| = wh_. 3.3
YR = ufX - % 0y 33
where the bars represent the modulus of the

vector.



The universal kriging system of equations
in Equation 2.9 for this particular case
becomes

A'X' = B' (3.4)
where neither A' nor B' have terms depending
on w. Then, X' is independent of the value
of w. The matrices are shown on the follow-
ing page as Equations 3.5 through 3.7.

Theorem 3.1

Let a regionalized variable have a
semivariance of the residuals which is
isotropic and linear. Then, the estimation

variance is a linear function of the
slope w of the semivariance.

Proof':
From Equations 2.13 and 3.3

n .
1 >
Iuf (XO)

2¢7 y _
e = =1

k
LA, wha.o+ U+
iz d 00

(3.8)

The equation is not changed by multiplying
and dividing each My term by w.

k
2.7 -
OE(xU) = ifllj w h0j+ w{uo/w}

n .
+w T {u, /wket(x)
iz 1 0 (3.9)

Factoring by w

k n

oé(;o) = w[i§1lj h0j+ {uo/w} +i§1{ui/w}fi(;0)]

(3.10)

From Lemma 3.1, neither AJ, {uo/w}, nor

{ui/w} are functions of | w. As h

X 0j
and fl(;o) are likewise not functions of
w, then the semivariance depends directly on

the term w.
Q.E.D.

We may consider two spatial functions
whose factors are the same except that one
has a linear semivariance with a slope k
times larger than the other. Theorem 3.1
indicates that the spatial function with the
steepest semivariance will have standard
errors which are vk larger than the other.

Another  important corollary is that,
although the standard error depends on the
linear semivariance through the terms h .,

the effect of the slope can be analyzed

independently from all other factors. This
means that a general study can be conducted
which is’ valid for all n-dimensional spatial
functions that can be represented by a linear
model with unit slope for the semivariance of
the residuals. The resulting standard error
is constant for all such functions except for
a factor equal to the square root of w.

3.3 PATTERN

3.3.1 Pattern selection

Pattern is a nominal property that refers
to different configurations of objects, which
in this case are the sample elements. A pat-
tern involves distances among the elements in

the set. 1In this study patterns are arranged
in two dimensions. Some patterns have unique
characterizations; for example, there is one

and only one way to arrange elements in a
square pattern. All square patterns are the
result of scaling, rotation, or translation
of one basic type. In contrast, a random
pattern has only a statistical definition, as

there are an infinite number of possible
configurations that fit the description of
randomness.

Utility computer programs were prepared to
generate sample element patterns covering the
entire range of possible patterns (Olea,
1982a, Appendix B). From these, 14 patterns
grouped into 7 categories were selected.

1. Regular (Fig. 3.2)
a. Hexagonal
b. Square
c. Triangular

2. Orthogonal regular traverses (Fig.
3.3)
a. Intersection every 2 points
b. Intersection every 8 points

3. Stratified (Fig. 3.4)
a. Hexagonal
b. Square

4. Random (Fig. 3.5)

5. Bisymmetrical (Fig. 3.6)
a. Random
b. Regular clusters

6. Clustered (Fig. 3.7)
a. One cluster
b. Five clusters

7. Regular clusters (Fig. 3.8)
a. Sixteen points per cluster
b. Four points per cluster

Categories 1 and 2 are uniquely defined.
The remaining patterns are representative
examples from among an infinite set of
possibilities.
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FIGURE 3.2. Regular patterns. (a) Hexagonal. (b) Square. (c) Triangular.
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Bisymmetrical patterns.
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(a) Random.

(b) Regular clusters.




(a)
FIGURE 3.7. Clustered patterns.
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FIGURE 3.8. Regular clusters.

Historically, the same regular pattern has
been called by different names by various
authors. The convention used here is based
upon the idea that each point in a pattern
can be considered to be a centroid of a
Voronoi division. That is, each point can be
surrounded by a mosaic of regular polygons

(Rhynsburger, 1973), as in Figure 3.9. A
hexagonal pattern, for instance, is the
arrangement of the centroids at a set of
reqular hexagons (Abler and others, 1971,
p. 105). Alternatively, patterns can be
classified by joining each point to its
nearest neighbors, as in Figure 3.10. The

resulting polygons are the same only for the
square pattern, but Voronoi hexagons become
equilateral triangles and vice-versa. For
this reason, what is called the hexagonal
pattern in this study is also referred to by
other authors as a face-centered hexagon
(Cole and King, 1968, p. 178) or as a triang-

(a)

(a) Sixteen points per cluster.
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(b) Four points per cluster.

ular network (Matérn, 1960, p. 73-74). This
study will use a terminology based on Voronoi
polygons, as these are more appropriate when
density of pattern must be considered. It
can be proven that the three patterns in
Figure 3.9 are the only regular polygons
which can be formed in a two-dimensional
space (Matérn, 1960, p. 74).

Stratified sampling is a selection pro-
cedure in which the sample space is divided
into mutually exclusive partitions and an
element is then randomly taken from every
partition (Ripley, 1981, p. 19-22). Figure
3,11 illustrates stratified sampling of a
two-dimensional space partitioned into
squares and into hexagons. The randomly
selected points are the same as in Figure
3.4.

Clustered patterns offer the richest vari-
ety for sampling schemes; there are infinite
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FIGURE 3.9.
tioning the plane into Voronoi polygons.

ways to vary the number of clusters, the rel-
ative positions of clusters, and the density
of points inside the clusters. However, only
a small number of these possibilities were
investigated because, as will be shown later,
clustered patterns do not provide acceptable
solutions to the spatial sampling problem.

Geographers have been exceptionally active
in the testing, modeling, and characteriza-
tion of patterns. Clark and Evans (1954)
introduced the distance from a point to its
nearest neighbor as a measure of randomness.
Let us consider a sample of n points. Each
point will have a nearest neighbor which is
some distance r; away. The average distance

to the nearest neighbor, T, is defined as

= | (3.11)
n

n
rr
is

1 1

Voronoi polygons and regular patterns.
(a) Hexagonal.

11

Names given to patterns result from parti-
(b) Square. (c) Triangular.

Clark and Evans (1954) proved that the
expected average distance to the nearest
neighbor in a random pattern is

- 1
Tp = —— (3.12)
2Vp
where p is the density of the pattern ex-

pressed as the number of sample elements per
unit of area.

The distance index R is the observed aver-
age distance to the nearest neighbor divided
by the value corresponding to a random pat-
tern:

R =T/ (3.13)

One parameter is not sufficient to char-
acterize a pattern, as configurations which
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from inside each hexagon.
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have completely different appearances may
have the same distance index. Also, it seems
intuitively reasonable that a two-dimensional
pattern would require at least two parameters
for its characterization. A second parameter
was therefore created to express the entropy
of a pattern. The maximum number of symmetry
axes through any point in the plane was se-
lected as a simple descriptor of order in the
system. The distance index and maximum num-
ber of symmetry axes were calculated for all
14 patterns in Figures 3.2 to 3.8 using a
computer program (Olea, 1982a, Appendix B).
A graphical display of the results is given
in Figure 3.12. Two patterns, one stratified
and the other a regular cluster, are not in-
cluded because they overlap in the diagram.
The spread and spacing of the 14 patterns
indicate that those selected for analysis
cover the spectrum of possibilities.

3.3.2 Sensitivity to pattern

A computer program (Olea, 1972, Appendix
H) was used to calculate the average and
maximum standard error for each of the 14
patterns, assuming that the patterns extend
to infinity with the same relative distance
characteristics. The units of standard error
are the same as the units for the correspond-
ing spatial function. Since the units of the
spatial function vary with the nature of the
phenomenon, so do the units of standard er-
ror. The absence of units for the standard
error in the remainder of this chapter is
intended to emphasize the generality of the
methodology, rather than to imply that the
standard error is a dimensionless variable.
In order to avoid border effects, the analy-
sis considers only the central part of each
window shown in Figures 3.2 to 3.8. The ac-
tual size of the window is 8 by 8 miles (12.9
km) and the point density is held constant at
one point per square mile (0.39 points/kmz).
The number of sample elements considered in
the universal kriging system of equations was
set to 32. The semivariance was assumed to
be linear with unit slope. Table 3.1 is a
condensation of the results. The average and
maximum standard error for the particular in-
stance of a drift of degree 1 is shown graph-
ically in Figure 3.13.

From the analysis we can see that spatial
sampling which is systematically ordered is
superior. In general, the greater the dis-
tance index and the maximum number of sym-
metry axes through a point, the lower will be
the standard error. A hexagonal sampling
pattern produces both the lowest average and
maximum standard errors. This performance is
almost matched by the square pattern. The
worst sampling schemes are those in which any
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form of clustering is present. For the same
sample size, the standard error associated
with clustered patterns may be several orders
of magnitude greater than the standard error
obtained using regular patterns.

If all other factors remain the same, a
regionalized variable having a complex drift
will have a larger standard error than a
regionalized variable with a simple drift.
However, the nature of the drift does not
affect the standard errors of the eight most
efficient patterns.

3.4 NUMBER OF NEAREST NEIGHBORS

3.4.1 Sample subset size

The complete set of data used in an actual
study may consist of several thousand obser-
vations, and distances between the most dis-
tant pairs of points may be hundreds of

miles. Points at such a great distance are
seldom closely related. In addition, there
are considerations of computational effi-

ciency which suggest that the entire sample
set should not be used in each estimation.
Universal kriging requires the solution of a

system of equations of order (n + m) by
(n +m) where n is the number of sample
elements and m is the number of unknown

coefficients in the analytical expression for
the drift. In a large sample, the n terms
become dominant and the order of the coeffi-
cient matrix changes with the square of the
number of elements in the sample. This has a
pronounced effect on computation time and the
cost of estimation. Fortunately, the nature
of the estimation method is such that only
the closest sample elements effectively con-
tribute to the results, because of what is
called the screen effect (Olea, 1975, Ap-
pendix G). Additionally, when a drift is
present, the models selected to represent the
semivariance and drift may not be valid over
neighborhoods which are hundreds of miles in
diameter. For these reasons, it is common
practice to use only a subset of points, con--
sisting of those closest to the estimation
location. In other words, estimates are
based on the nearest neighbors of the loca-
tion being evaluated. :

In some circumstances, an insufficient
number of sample elements may be available
within the neighborhood for which the struc-
tural analysis models are valid. Then, the
number of nearest neighbors that are closest
to the estimation location becomes a sampling
concern; if there are not enough sample ele-
ments, the estimates may be unreliable or
there may be blank areas in the final contour
map.
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TABLE 3.1

SENSITIVITY OF THE SAMPLING EFFICIENCY INDICES TO CHANGES IN PATTERN.

UNIT

DENSITY, UNIT LINEAR SEMIVARIOGRAM SLOPE AND 32 NEAREST NEIGHBORS
(Number in parentheses corresponds to pattern identification number
in Figure 3.12.)

Average Std. Error Maximum Std. Error
Distance Symmetry Drift Drift

Pattern Index Axes 0 1 2 0 1 2
Hexagonal (1) 2.15 6 0.63 0.63  0.63 0.72 0.72  0.72
Square (2) 2.00 4 0.64 0.64 0.64 0.74 0.74 0.74
Triangular (3) 1.75 6 0.66 0.66 0.66 0.80 0.80 0.80
Traverses every

2 points (4) 1.41 4 0.68 0.68 0.68 0.89 0.89 0.89
Hexagonal strati-

fication (5) 1.26 - 0.69 0.69 0.69 0.86 0.86 0.86
Square strati-

fication 1.28 - 0.69 0.69 0.69 0.91 0.91 0.91
Random (6) 0.91 - 0.7 0.71 0.71 1.05 1.05 1.05
Bisymmetrical

random (7) 0.82 2 0.72 0.72 0.72 0.98 0.98 0.98
Traverses every

8 points (8) 0.92 4 0.81 0.81 0.84 1.23 1.23 1.45
Four points per

regular cluster 0.40 4 0.83 0.83 0.84 0.99 0.99 1.00
Five clusters

(9) 0.34 - 0.98 0.99 1.06 1.33 1.49 2.33
Bisymmetrical

clusters (10) 0.33 2 1.03 1.03 1.1 1.22 1.22 1.38
Sixteen points

per regular

cluster (11) 0.40 4 1.13 1.17 1.53 1.51 1.85 5.13
One cluster

(12) 0.13 - 2.19 5.01 61.50 2.94 8.27 148.00

3.4.2. Sensitivity to number of nearest
neighbors

The minimum number of elements required to
solve the universal kriging system of equa-
tions is equal to the number of unknown coef-
ficients in the analytical expression of the
drift. A sensitivity analysis was performed
between the limits of the minimum number and
a maximum of 32 elements, an interval long
enough to study all patterns of practical
interest. The 14 patterns selected in Sec-
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tion 3.3 were analyzed using the assumptions
that the semivariance is linear with slope 1
and the density_is one point per square mile
(0.39 points/kmz). The sensitivity analysis
shows that the screen effect depends upon
drift and pattern. Table 3.2 presents crit-
ical values beyond which no improvement is
made in sampling efficiency indices by adding
extra sample elements. An entry of value 32+
indicates that the critical value is larger
than the maximum tested value of 32. In
general, there is a multiplicative effect on
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FIGURE 3.13. Standard error for the 14 basic
patterns. Open circles indicate maximum
standard error and solid circles average
standard error. Results are valid for a
linear semivariance with slope 1 and a
first-degree polynomial drift, a density
of 1 point per square mile, and solution
of the universal kriging system of equa-
tions using 32 sample elements closest to
the estimated location.

efficiency of a pattern; the smaller the lim-
iting index in Table 3.1, the smaller will be
the number of nearest neighbors required to
achieve the full screen effect. To reach the
limiting average standard error, while all
other factors remain the same, a spatial
function having a second-degree polynomial
drift will require about twice as many
nearest neighbors as a spatial function with
a first-degree drift. If either first-degree

or second-degree polynomial drifts are
acceptable, the greater number of nearest
neighbors required for the second-degree

drift may suggest that the simpler drift is
the more practical choice.

Ideally, the minimum number of sample
elements used to solve the universal kriging
system of equations is equal to the number of
unknown coefficients in the drift model. If
the drift model is a polynomial, the ideal
minimum is 1 for a constant, 3 for a first-
degree drift, and 6 for a second-degree
drift. In practice, unstable systems of
equations will result if the ideal minimum is
used. Rather, a larger number of nearest
neighbors is required, as listed for each of
the 14 patterns in Table 3.3. The increase is
particularly noticeable for second-degree
models, but does not occur when the drift is
a constant.

Figures 3.14-3.28 show changes in standard
error for five selected patterns: hexagonal,
orthogonal regular traverses intersecting
every two points, hexagonal stratification,
random, and five clusters. Although values

TABLE 3.2

MINIMUM NUMBER OF SAMPLE ELEMENTS REQUIRED TO OBTAIN FULL SCREEN EFFECT
AND ASSURE MINIMUM VALUES FOR THE SAMPLING EFFICIENCY INDICES
(Number in parentheses corresponds to pattern
identification number in Figure 3.12.)

Average Std. Error

Maximum Std. Error

Drift Drift

Pattern 0 1 2 0 1 2
Hexagonal (1) 3 5 10 3 5 10
Square (2) 4 5 10 10 10 14
Triangular (3) 8 8 1" 11 12 12
Traverses every two points (4) 12 12 20 14 15 26
Hexagonal stratification (5) 6 6 16 7 8 25
Square stratification 8 8 18 10 11 30
Random (6) 12 12 32+ 12 14 32+
Bisymmetrical random (7) 8 8 32+ 20 28 32+
Traverses every 8 points (8) 28 32+ 32+ 28 32+ 32+
Four points per regular cluster 12 12 32+ 22 28 32+
Five clusters (9) 32+ 32+ 32+ 32+ 32+ 32+
Bisymmetrical clusters (10) 20 20 32+ 26 28 32+
Sixteen points per

reqular cluster (11) 32+ 32+ 32+ 32+ 32+ 32+
One cluster (12) 32+ 32+ 32+ 32+ 32+ 32+
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TABLE 3.3

MINIMUM NUMBER OF NEAREST NEIGHBORS REQUIRED
TO SOLVE THE UNIVERSAL KRIGING
SYSTEM OF EQUATIONS
(Number in parentheses corresponds to pattern

on the abscissa are discrete, the graphs are
shown as continuous lines to facilitate in-
terpretation. Appendix B gives results in
tabular form for all classes analyzed.

The hexagonal pattern manifests the screen

identification number in Figure 3.12) effect to the greatest extent possible.
Because of this, it reaches the point of no
Drift additional return for additional samples
Pattern 0 1 2 sooner than in any other configuration.
Many patterns produce unstable systems of
Hexagonal (1) 1 3 6 equations in the presence of a drift when
Square (2) 1 3 7 only the minimum number of nearest neighbors
Triangular (3) 1 3 7 is considered. In Figure 3.19, for instance,
Profiles every two no values can be estimated if only six,
points (4) 1 3 9 seven, or eight nearest neighbors are con-
Hexagonal stratifica- sidered. In general, larger minimum numbers
tion (5) 1 3 6 of nearest neighbors are required to solve
Square stratification 1 3 6 the system of equations when the drift is
Random (6) 1 3 6 complex and the distance index is low.
Bisymmetrical random (7) 1 3 9
Profiles every eight In summary, a sensitivity analysis on the
points (8) 1 5 9 number of nearest neighbors shows that sig-
Sixteen reqgular clusters 1 3 9 nificant savings in computer processing time
Five cluster (9) 1 3 6 required to solve the universal kriging sys-
Bisymmetrical tem of equations can be achieved. No spatial
clusters (10) 1 5 12 pattern is more efficient than a hexagonal
Four reqular clusters (11) 1 5 9 pattern, because if all other factors are the
One cluster (12) 1 3 7 same, the hexagonal pattern requires the
fewest number of nearest neighbors to calcu-
late the best possible efficiency indices.
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and no drift.
with slope 1.
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Sensitivity analysis of the number of nearest neighbors for a hexagonal pattern
Sampling density is one point per square mile and the semivariance is linear
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and a first-degree polynomial drift.
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Sensitivity analysis of the number of nearest neighbors for a hexagonal pattern
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and a second-degree polynomial drift.

Sensitivity analysis of the number of nearest neighbors for a hexagonal pattern

The sampling density is one point per square mile and

the semivariance is linear with slope 1.
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FIGURE 3.17. Sensitivity analysis of the number of nearest neighbors for orthogonal regular
traverses intersecting every two points and no drift. The sampling density is one point per
square mile and the semivariance is linear with slope 1.
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FIGURE 3.18. Sensitivity analysis of the number of nearest neighbors for orthogonal regular
traverses intersecting every two points and a first-degree polynomial drift. The sampling
density is one point per square mile and the semivariance is linear with slope 1.
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FIGURE 3.19. Sensitivity analysis of the number of nearest neighbors for orthogonal regular
traverses intersecting every two points and a second-degree polynomial drift. The sampling
density is one point per square mile and the semivariance is linear with slope 1.
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FIGURE 3.20. Sensitivity analysis of the number of nearest neighbors for a hexagonal stratified
pattern and no drift. The sampling density is one point per square mile and the
semivariance is linear with slope 1.
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FIGURE 3.21. Sensitivity analysis of the number of nearest neighbors for a hexagonal stratified
pattern and a first-degree polynomial drift. The sampling density is one point per square
mile and the semivariance is linear with slope 1.
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FIGURE 3.22. Sensitivity analysis of the number of nearest neighbors for a hexagonal stratified
pattern and a second-degree polynomial drift. The sampling density is one point per square
mile and the semivariance is linear with slope 1.
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FIGURE 3.23. Sensitivity analysis of the number of nearest neighbors for a random pattern and
no drift. The sampling density is one point per square mile and the semivariance is linear
with slope 1.
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FIGURE 3.24. Sensitivity analysis of the number of nearest neighbors for a random pattern and a
first-degree polynomial drift. The sampling density is one point per square mile and the
semivariance is linear with slope 1.
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FIGURE 3.25. Sensitivity analysis of the number of nearest neighbors for a random pattern and a
second-degree polynomial drift. The sampling density is one point per square mile and the
semivariance is linear with slope 1.
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FIGURE 3.26.
clusters and no drift.
semivariance is linear with slope 1.

Sensitivity analysis of the number of nearest neighbors for a pattern of five
The sampling density is one point per square mile and the
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FIGURE 3.27. Sensitivity analysis of the number
clusters and a first-degree polynomial drift.

of nearest neighbors for a pattern of five
The sampling density is one point per square

mile and the semivariance is linear with slope 1.
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FIGURE 3.28. Sensitivity analysis of the number of nearest neighbors for a pattern of five
clusters and a second-degree polynomial drift. The sampling density is one point per square
mile and the semivariance is linear with slope 1.



3.5 DENSITY

3.5.1 Spacing

If a spatial pattern is held constant, any
modification in density changes the relative
distances between points by a constant fac-
tor. In order to perform a sensitivity anal-
ysis of density, the relative distances
between elements of a sample can be changed
without altering the pattern by scaling the
n-dimensional space.

Lemma 3.2
Let the semivariance of the residuals be
isotropic and linear and 1let the terms
fl(;j) in the drift be distributive. Let
Aj and i represent the weights and slack

variables in the universal kriging system of
equations. Then the vector X" is invariant
under a scaling of the n-dimensional space by
a factor a.

uo/wa (3.14)

u1f1(a)/wa

uzfz(a)/wa

uifi(a)/wa

Lunfi(a)/wa )

Proof:

» The scaling will make every coordinate
xj go to axj. As each of the terms in the

drift is distributive,

fi<a§j) = fi(oofi(:j) (3.15)

Because the semivariance is linear and iso-
tropic,

> > >
h) = o [Xx - X.| = woh_. 3.16
y(eh) = w | o xJI ( )

PJ

where the bars stand for the modulus of the
vector. After scaling, the universal kriging
system of equations in Equation 2.9 becomes
A'xX" = B' (3.17)
where A' and B' are the matrices in Equations
3.5 and 3.7, respectively. Notice that nei-

ther A' nor B' have any terms in a. Hence X"
is independent of a.

Q.E.D.
Theorem 3.2

Let a regionalized variable have a semi-
variance of the residuals which is isotropic

Then if the terms ri(ij) in the

drift are distributive, the estimation vari-
ance changes linearly with scaling by a fac-
tor a of the n-dimensional space.

and linear.

Proof:
From Equations 2.13, 3.15, and 3.16

k n . -
2, > _ i i, >
OE(axO) = 'f ij a h0j+ Mo+ .f uf (a)f (XO)
i=1 i=1
(3.18)
The equation can be algebraically transformed
into
2 (oY ;
oF (axo) = if1xjw a h0j+ w a{uo/w o}
0 i i>
+wa I {uif (a)/w al}f (XU) (3.19)
i=1
Factoring by a and w:
2( o «
oE(axo) = a[w{i§1ljh0j + {uo/w a}
A | i>
+ I {uf(a)/w alf (x.)}]
i=1 1t 0
(3.20)
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From Equations 3.14 and 3.7,

o2(aXy) = a w{x"} B (3.21)

By Lemma 3.2, X" does not depend on the scal-
ing factor o, and since B' is also independ-
ent of a, the estimation variance is a linear
function of the scaling factor a.

Q.E.D.

Notice that scaling does not alter the

fact that the estimation variance varies

linearly with the slope of the 1linear
semivariance.

When o is equal to one in Equation 3.14,
then the product w{X"}TB' is equal to the
variance S%(;O) before

estimation scaling.

Then, Equation 3.21 can be rewritten as

sg(a§0> - a Si(;o) (3.22)

3.5.2 Sensitivity to density

Figure 3.29 illustrates Theorem 3.2 and
Equation 3.22. Here, the spacing has been
scaled by a factor of 4. The reduction in
the spacing results in a scaling of relative
distances among sample elements and isolines
by the same factor. Isoline values do not
remain the same, but are reduced by a factor
of 2, which is the square root of 4.

Figure 3.29 also illustrates the isomor-
phism between distance scaling and insertion
or deletion of sample elements in infinite

patterns. From a scaling viewpoint, points
A, B and C in the original pattern are
brought to P,Q and R in Figure 3.29b. These

new points are assumed to come from sur-
rounding areas originally beyond the edges of
Figure 3.29a. The additional points are new
only within the area selected, but are not
new in the sample. Alternatively, we can
consider that the points A, B and C remain at
exactly the same locations L, M and N in the
second map, and that new sample elements have
been added to the sample. Whatever the mech-
anism used to produce the change from Figure
3.29a to Figure 3.29b, the resulting patterns
are identical and so are the standard errors.
Remember that the universal kriging system of
equations is invariant under a change in the
origin and only depends on the relative dis-
tances between elements, and between the ele-
ments and the estimated location (Journel and
Huijbregts, 1978, p. 335).

The insertion or deletion of sample ele-
ments implies a change in the density equal
to:
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FIGURE 3.29. Spacing and standard error.
Reduction in spacing of pattern (a) by a
factor of 4 results in pattern (b), with
standard error reduced by a factor of 2.



The standard error can be reduced by in-
creasing the density, until a limiting value
of zero is reached. In Figure 3.29, scaling
by a factor of 1/4 increases the density rel-
ative to the original density by 16 times.
Note that 1/16 raised to the 1/4 power is
1/2; the contour values are changed by
exactly 1/2 in the example.

Because there is a one-to-one correspond-
ence between points in the original pattern
and points in the scaled pattern, the average
standard error and the maximum standard error
change in the same way as the individual
points. From Theorem 3.1, Equation 3.24 can
be generalized to

1(1,1)
I{w,p

p = wz[ ]b' (3.25)

where w is the slope of the linear semivari-
ogram; I(1,1) is the efficiency index in
Table 3.1 or Appendix B for the given pattern
at a density of one point per square mile
(0.39 points/km?) and a semivariogram slope
of 1; and I(w,p) is the desired level of the
efficiency index.

In summary, if all other factors are the
same for a spatial function sampled by two
identical patterns which differ only in their
density, the sampling efficiency indices of
the pattern with the higher density °, will

differ from those of the pattern with the

1
lower density p, by a factor (pl/pU &‘.

3.5.3 Sampling frequency

It was shown in Section 3.3 that regular
patterns are the most efficient configura-
tions for sampling. A potential disadvantage
of regular patterns is that a systematic bias
in estimates could occur if the sampling fre-
quency were equal to a dominant low frequency
in the spatial function (Cochran, 1964, bp.
218). Figures 3.30 to 3.32 show that such a
possibility can be avoided easily by examin-
ing a previous structural analysis of the
spatial function.

Three spatial functions were simulated and
their corresponding semivariances estimated.
Figure 3.30 shows a spatial function in pro-
file and its semivariance. The spatial func-
tion has a base value of -1 except for two
perfectly sinusoidal features with a wave-
length of 360 feet (109.7 m). The semivar-
iance for this idealized function intersects
the sample variance at a distance of 140 feet
(42.7 m), which is close to half the wave-
length of the sinusoid. In Figure 3.31 the
same spatial function is shown with the addi-
tion of a linear drift, which has the effect
of tilting the profile. The semivariogram is
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FIGURE 3.30. Semivariance of a spatial func-
tion which includes a sinusoidal feature
with a wavelength of 360 feet and no
drift. (a) Profile. (b) Semivariance.
Dashed line represents the sample vari-
ance. Arrow indicates one-half the wave-
length of features in the profile.

now tangent to the variance of the sample at
240 feet (73.2 m), which is again close to
half the wavelength of the dominant frequen-

cy. Finally, a spatial function composed of
sinusoidal elements with different wave-
lengths is considered in Figure 3.32. Fea-

tures in the profile are wavelengths of 180
feet (54.9 m), 360 feet (109.7 m), and 720
feet (219.5 m).  The semivariance reaches the
sample variance at 260 feet (79.2 m), which
is approximately half the average wavelength
of the features in the profile.

The distance at which the semivariance is
first equal to the population variance is
thus a rough estimate of the average dominant
low frequency of a profile. If the spacing
of samples in a regular pattern is not
allowed to reach the critical half wavelength
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FIGURE 3.31. Semivariance of a spatial func-
tion which includes a sinusoidal feature
and a linear drift. (a) Profile. (b)
Semivariance. Dashed line represents the
sample variance. Arrow indicates one-
half the wavelength of the features in
the profile.

given by the structural analysis, the possi-
bility of a systematic sampling bias can be
avoided.

3.6 OPTIMIZATION

3.6.1 Sensitivity analysis

Because pattern is a nominal variable and
the number of nearest neighbors is an inte-
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ger, the sampling efficiency indices are not
continuously defined. Only the third factor,
sample density, can be expressed as a contin-
uous variable. A function of three variables
is difficult to represent graphically; stand-
ard practice is to set one variable at selec-
ted values and to present the family of sur-
faces defined by the other two variables.
Since pattern is discrete by its nature, it
was selected as the parameter to be held con-
stant. For ease of representation, and fol-
lowing the convention used in Figures 3.14
and 3.28, the number of nearest neighbors is
represented as a continuous variable. Figure
3.33 is a diagrammatic representation of the
average standard error for two patterns.

If maximum value of density is assumed to
be one, then the side S-L-0-T is a graph like
any two of the average standard error curves

shown in Figures 3.14 through 3.28, except
that the wvertical axis now contains the
square of the index. The two surfaces will
intersect, as will all such surfaces, at in-
finite density where the average standard
error becomes zero. As shown by Equation
3.24, for a specified number of nearest

neighbors in any pattern, changes in density
will result in straight lines, such as L-M
and R-S, for the particular axes chosen in
the block diagram. The envelopes through
these families of lines resemble the surfaces
R-S-T and L-M-N-0.

3.6.2 An approach to systematic sampling

Equation 3.25 provides a trivial solution
to the sampling problem, selecting an infi-
nite density of points which insures that
efficiency indices will be equal to zero.
When that alternative is not feasible, find-
ing the best sampling procedure is an opera-
tions research problem: It is necessary to
minimize the sampling requirements for a
given sampling efficiency index level.

Let us assume that the desired average
standard error is D in Figure 3.33. A
horizontal plane through D intersects the
average standard error surfaces along lines
B-C and E-F. Point Q divides line B-C into
two parts: a straight segment from B to Q
that is parallel to A-D, and a curved part
from Q to C. P is an arbitrary point between
Q and C. Points on arc Q-P-C in the lowest
surface are answers to the problem.

A solution such as P requires the minimum
number of nearest neighbors for a given den-
sity. Conversely, given a density, there is
no other pattern which requires fewer nearest
neighbors to produce the specified average
standard error. Should L-M-N-0 be the
surface corresponding to the hexagonal pat-
tern, the optimum found would be an absolute
optimum. Otherwise, the curve Q-P-C is one
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wavelengths. (a) Profile.

Semivariance of a spatial function which includes sinusoidal features of different
(b) Semivariance.

Dashed line represents the sample variance.

Arrow indicates one-half the average wavelength of the features in the profile.

relatively optimum solution among the subset
of feasible patterns.

The graphic solution to the sampling prob-
lem can be organized as a systematic proce-
dure which will yield an optimal solution if
a solution is feasible. Due to the assump-
tions made in this analysis, the procedure is
subject to the following constraints: (a) The

straint is the strongest and excludes certain
special functions which are of interest in
ore reserve estimation. The third constraint
is satisfied in all mapping problems. Even
in studies of three-dimensional space, sam-
ples may be collected in a series of two-
dimensional planes, which helps to satisfy
the second constraint. The semivariance is a

residuals must satisfy the intrinsic hypothe- monotoqiqally incressing funellon close. to
sis. (b) The physical size of the support of the origin. Because even complex functions
the sample elements and the estimated value can e gpprox1mated by lineer plecew1s?
iiusk he Hhe soms. (c) The sampling space interpolation procedures, the problem o

must be two dimensional. (d) The semi-
variogram of the residuals must be isotropic
and linear, with no constant term.

The constraints are sufficiently weak that
the method should be applicable to many other
spatial variables as well. The second con-

3

satisfying the fourth constraint becomes one
of determining how large a portion of the
semivariogram can be approximated by a
straight line. The shape of the semivario-
gram is immaterial if the nearest neighbors
in the subset used in the estimations are all
statistically correlated; that is, if their
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FIGURE 3.33. Average standard error surfaces.

relative distances are never larger than the
range.

Algorithm 3.1

The following is a procedure for finding
the optimal sampling method for a specified
sampling efficiency index.

1. Perform a structural analysis.

2. Decide whether the average standard
error or the maximum standard error
is the index to be minimized.

3. Enter Table 3.1 for the specified
index and appropriate drift. Choose
the pattern with the lowest index
in the table. In case of a tie,
use the pattern with the minimum
alternative index.
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4.

5.

6.

Specify a value for the sampling
efficiency index.

Use Equation 3.25 to compute the
required density using the minimum
index of step 2.

Calculate the number of sample ele-
ments within the neighborhood for
which the models in the structural
analysis are valid.

Compare the number of sample ele-
ments inside the neighborhood with
the minimum number of points neces-
sary to achieve a solution of the
universal kriging system of equa-
tions in Table 3.3. Should the
number of points inside the neigh-
borhood be insufficient, the solu-
tion is unfeasible. In case a
solution is required, go back to



step 1 and redefine parameters.
Otherwise, stop. If there are
enough sample elements inside the
neighborhood, proceed to the next
step.

8. Enter Table 3.2 and determine the
minimum number of sample elements
required to obtain the full screen
effect.

9. Compare the sample elements inside
the neighborhood to the number of
sample elements required to obtain
the full screen effect. In case
the minimum number of sample ele-
ments required to obtain the full
screen effect is smaller than the
number of points that can be placed
inside the neighborhood, wuse a
number of nearest neighbors equal
to the minimum number of points re-
quired for full screen effect and
stop. Otherwise use a number of
nearest neighbors equal to the num-
ber of points inside the neigh-
borhood.

10. Find in Appendix B the table for
the selected index and appropriate
drift. Take the pattern that mini-
mizes the index for number of near-
est neighbors computed in the
previous step.

11. Insert the minimum index selected
on the preceding step into Equation
3.25 to recompute the optimal den-
sity. Stop.

The procedure requires a prior knowledge
of the spatial characteristics of the func-
tion as provided by a structural analysis.
Note, however, that it is not necessary to
actually implement the sampling procedure nor
to calculate universal kriging estimates in
order to determine the optimal pattern. The
algorithm reduces to the use of a few simple
formulae and tables.

CHAPTER 4
PRACTICAL SAMPLING DESIGN

This systematic approach to sampling has
been developed primarily from theoretical
considerations, based on the theory of re-
gionalized variables and the use of synthetic
patterns. The application of the approach to
a practical problem will serve to demonstrate
its general validity. In addition, the ap-
plication will demonstrate the use of the
methodology with real data.

3

4.1 A REAL SAMPLING SYSTEM

4.1.1 The Equus Beds

The spatial function selected to illus-
trate systematic sampling design is the water
table elevation in an area that includes most
of the Equus Beds (Fig. 4.1), a major aquifer
in Kansas. The Equus Beds produce ground-
water through more  than 2,000 industrial,
municipal, and irrigation wells in Harvey,
Sedgwick, McPherson, and Reno counties in the
south-central part of the State. The depos-
its consist of unconsolidated stream-laid
material of the Pliocene Blanco and the
Pleistocene Meade and Sanborn formations
(Stramel, 1956; 1967). These poorly sorted
sediments range in size from silt to gravel,
with abundant clay lenses (Williams and
Lohman, 1949).

The bedrock underlying the Equus Beds
consists predominantly of shales of Permian
and Cretaceous age which crop out to the
north, west, and east (Petri and others,
1964; Albert and Stramel, 1966). Most of the
area is drained by the Little Arkansas River;
the southern part is drained by the Arkansas
River. The Equus Beds range in thickness
from 0 to 280 feet (85.3 m).

4.1.2 Data collection

Depth to water is measured in observation
wells at least once a year in order to record
systematic annual changes in water level. A
small fraction of the observation wells mea-
sured in Kansas are used only for measuring
depth to water, but most observations are
made in producing irrigation wells. To
minimize drawdown cone effects due to recent
pumping in the well itself or in surrounding

wells, measurements are taken during the
winter when irrigation stops for several
months.

Data used in this study were the latest
available, consisting of measurements made
from December 1980 to March 1981. These
observations are called the "January 1981
data" because, except in special circum-
stances, annual measurements are scheduled to
be taken during the first month of every
year. The measurements used here are only a
fraction of a state-wide survey. Details for
individual measurements for the January 1981
data are listed separately (0lea, 1982a;
1982b).

The January 1981 data were used to esti-
mate the form of the water table elevation in
the Equus Beds by universal kriging. Figure
4,2 is the resulting contour map of the water
table, Figure 4.3 is the corresponding stand-
ard error map, and Figure 4.4 is the relative



McPherson
Marion
!
|
Harvey I
|
|
— -
|
|
|
|
|
10
| SediiCk L—Mi?] |

FIGURE 4.1. Location of the Equus Beds in
south-central Kansas. Aquifer boundary
is indicated by bold solid line; shading
indicates the study area.

frequency of the standard error of the water
table elevation in Figure 4.3.

4.1.3 Critical analysis

An analysis based upon the principles es-
tablished in Chapter 3 reveals two major
deficiencies in the present observation well
network in the Equus Beds: First, the sampl-
ing pattern of observation wells is not opti-
mal. The Equus Beds network in the study
area consists of 244 observation wells in an
area of 800 square miles (2071 km“), for an
average well densi%y of 0.305 wells/square
mile (0.12 wells/km“). The average distance
from a well to its nearest neighbor is 0.91
miles (1.46 km). From Equation 3.13, the dis-
tance index is 1.0, meaning that the actual
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well network is indistinguishable from a ran-
dom arrangement of wells. Random patterns
are not as efficient as other patterns, as
indicated in Table 3.1 which ranks patterns
in terms of their sampling efficiency indi-

ces. If other factors are the same, wells
arranged in reqular patterns, stratified
patterns, or along closely spaced profiles

should produce more satisfactory results than
the present network.

Secondly, the well density is not homo-
geneous. About 80% of the observation wells

are located in the southern half of the area,
which causes the estimation accuracy to be
uneven in the contour map.
of wells

This concentra-

tion is responsible for values of
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FIGURE 4.2. Water table elevation in the
Equus Beds as perceived by the present
network of 244 wells. Locations of ob-
servation wells are shown by crosses.
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FIGURE 4.3. Standard error of the water
table elevation in the Equus Beds as
perceived by the present network of 244
wells. Locations of observation wells
are shown by crosses.

the standard error that are mostly below 8
feet (2.4 m) in the southern part of the map
shown in Figure 4.3, while standard errors
higher than 8 feet (2.4 m) predominate in the
northern part of the map. The uneven distri-
bution of wells also is responsible for the
bimodal distribution of standard error in
Figure 4.4.

4.2 AN ALTERNATIVE NETWORK

4.2.1 Design specifications

An alternative observation well network
for the Equus Beds which would eliminate the
inadequacies of the present network has been
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designed to illustrate the potentials of the
systematic approach of Algorithm 3.1. The
water table elevation of the Equus Beds meets
all the constraints implicit in the algori-
thm. The new network is designed to the
following specifications:

a. No new observation wells have been
permitted. The alternative net-
work consists exclusively of
existing observation wells.

b. The accuracy of the estimate of
the water table has been kept uni-
form throughout the Equus Beds.
Because no additional wells have
been allowed, the alternative net-
work cannot be more accurate than
the present network in the portion
with sparse control. The new aver-
age standard error is required to
be within 5% of 12 feet (3.7 m).
For purposes of this example, the
value of 12 feet can be regarded
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FIGURE 4.4. Relative frequency of the stand-
ard error of the water table elevation in
the Equus Beds as perceived by the pres-
ent network of 244 wells. The mean is
9.98 feet and the standard deviation is
4.77 feet.

30



as an arbitrary decision. However,
there are theoretical and economic
reasons which make this choice
reasonable not only for the Equus
Beds but also for the more exten-
sive High Plains aquifer, of which
the Equus Beds are part (Olea,
1982a, 1982b).

c. The number of observation wells
has been reduced to a minimum.

d. The area estimated by the alterna-
tive network comprises at least
99% of the area estimated using
the present network.

Provided the spatial function were iso-
tropic, from Table 3.1, the absolute best
sampling pattern for the new network would be
a regular hexagonal arrangement of observa-
tion wells. Unfortunately, the random loca-
tion of existing observation wells precludes
a hexagonal pattern, or any other reqular

pattern. Therefore, the next most effective
pattern was chosen, a stratified hexagonal
arrangement which is partly irreqular and

sufficiently flexible to allow incorporation
of existing wells.

The alternative network was designed to
have an average standard error somewhat
smaller than 12 feet (3.7 m) in most areas to
compensate for higher-than-average standard
errors which occur in boundary areas where no
wells exist. Appendix C contains details of
a design having a 10% penalty in the 12 feet
(3.7 m) average standard error.

The alternative design requires random
selection of one observation well from inside
each of a set of regular hexagons that cover
the study area. Every hexagon in the pattern
contains 16 square miles. Notice that a pre-
vious knowledge of the structural character-
istics of the spatial function was required,
but no actual sampling or universal kriging
calculation was necessary to improve the
sampling design.

4.2.2 Design verification

Figure 4.5 shows the design for the alter-
native network of observation wells for the
Equus Beds. The new network contains only 47
wells, and represents an 81% reduction from
the original number of observations. Although
a substantial number of observation wells
have been deleted from the network, a compar-

ison of the isolines in the water table
elevation maps in Figures 4.2 and 4.5 shows
that the loss of information is minimal.

Corresponding isolines are almost identical
on the two maps. The similarity between the
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miles

FIGURE 4.5. Water table elevation in the
Equus Beds as perceived using an alter-
native network of 47 wells. Locations of
remaining observation wells are shown by
crosses.

maps is emphasized in Figure 4.6, which shows
that the differences do not exceed 10 feet
(3 m); and in Figure 4.7, which shows that
95% of the values in the original map grids
are within 5 feet (1.5 m) of their corre-
sponding values for the alternative network.

The actual average standard error in-
creased only to 11.74 feet (3.5 m), which is
within 2.2% of the desired level of 12 feet
(0.37 m). The improvement in homogeneity of
accuracy is shown by the more uniform pattern
of isolines in Figure 4.8. The unimodal dis-
tribution of standard error in Figure 4.9
shows that 68.7% of the values are within a
5-foot (1.5 m) interval around 10 feet (3 m).
There is a 35% reduction in the variance of



the standard error, from 22.8 feet? (1.37 mz) TABLE 4.1
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ALTERNATIVE NETWORKS
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of wells 244 47 -80.7
* + Average
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FIGURE 4.6. Map of the difference between
water table elevations estimated using
the alternative network of 47 wells and 0 o
elevations estimated by the present net- -10 -5 0 5 - 10
work of 244 wells. Crosses show loca- .
tions of 197 discarded wells. Difference Between Maps, Ft.

FIGURE 4.7. Relative frequency of difference
between water table elevations estimated
using alternative network of 47 wells and

Table 4.1 summarizes characteristics asso- elevations estimated by present network
ciated with the present and the alternative of 244 wells. The mean is zero and the
networks. standard deviation is 2.6 feet.
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FIGURE 4.8. Standard error of the water
table elevation in the Equus Beds as
perceived using an alternative network of
47 wells. Locations of observation wells
are shown by crosses.

CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS

This report demonstrates a methodology for
systematically sampling spatial functions.
Conclusions and recommendations are grouped
below in terms of the original objectives of
the study. These are concerned with aspects
of minimizing the sampling requirements for
estimation of a mappable spatial function.
Included are considerations of the effects of
sample pattern and density, and the nature of
the spatial wvariability of the mapped
property.

44

5.1 FINDINGS

5.1.1 Sampling and spatial functions

Spatial functions are
and partly deterministic. Over extensive
domains, spatial functions wusually show a
drift, which is a steady trend in mean value
that can be modeled by analytical func-
tions. Over short distances, the exact
variation in a spatial function is unpredict-
able, but the function does possess spatial
continuity. The statistical characteristics
of spatial functions are summarized in the
semivariance, and can be determined by a
structural analysis. Closely spaced sample
elements generally possess statistical
dependence which monotonically deteriorates
as distance between elements increases.

partly stochastic

Incompletely surveyed spatial functions
are characterized by an uncertainty in the
actual value of the function at any location
not contained in the sample. For an
unsampled location it is realistic to assume,
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FIGURE 4.9. Relative frequency of the

standard error of the water table eleva-
tion in the Equus Beds as perceived using
the alternative network of 47 wells. The
mean is 11.74 feet and the standard devi-
ation is 3.85 feet.



rather than a single value, a set of values
with associated probabilities of occurrence.
The assumption leads to the selection of a
collection of random variables as a conven-
jent model for analyzing partially sampled
spatial functions.

5.1.2 Estimation method

The theory of regionalized variables com-
prises a set of statistical principles well
suited to describe all spatial functions and
the sampling of such functions, without re-
gard to the physical nature of the variable
under study. Universal kriging is an esti-
mation method based on regionalized variable
theory. It can provide both unbiased esti-
mates of spatial functions, and standard
errors associated with the estimates.

5.1.3 Sampling efficiency factors

The standard error is a measure of accu-
racy in an estimate; the smaller the standard
error, the narrower the expected discrepancy
between the true value of the spatial func-
tion and the estimate. In this sense, the
point standard error is ideally suited for
locally assessing the reliability of a
sample, and thus can be used to measure the
performance of sampling procedures over spa-
tial domains. At any given location, the
standard error does not depend on the total
number of sample elements nor on the individ-
ual values observed (when the samples are
large), but rather on the spatial continuity

of the function and the geometry of the
sample set. The half-dozen sampling effi-
ciency factors for point values of the

standard error include:

1. Unmanageable factors
a. The global variation of the
function as given by the drift
b. The semivariance of the resid-
uvals, which are the differ-
ences between the drift and
the spatial function
2. Manageable factors

a. The number of nearest sample
elements considered by the
universal kriging method

The relative distances between
sample elements, which can be
collectively summarized by the
notion of pattern

The density of sample elements

The location of the estimated
point relative to the sampling
elements
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The semivariance is conditional on the
drift model, both of which are inherent char-
acteristics of the spatial function. The
number of nearest elements, pattern, and
density are independent variables associated
with the sampling procedure and are under the
control of the designer of the sampling
scheme.

5.1.4 Sampling efficiency indices

By finding the average and maximum values
of the standard error over the sampling
domain, two indices of sampling efficiency
can be generated that depend only upon the
characteristics of the spatial function and
on the sampling procedure, and not on the
location of the estimated point. This re-
duces the number of sampling efficiency
factors to five.

Often the semivariance of a spatial func-
tion can be approximated by a linear model.
In such instances, changes in slope of the
semivariogram will produce variations in
standard error that are directly proportional
to the square root of the ratio of the slopes
of the semivariograms.

One important finding of this study is
that more measurements do not necessarily
achieve a more accurate portrayal of a
regionalized variable. There are significant
differences in the indices obtained using
samples spaced according to a systematic
sampling procedure and those obtained when
sample elements occur haphazardly. A care-
fully designed sampling scheme using a modest
number of samples can outperform an unplanned
procedure that incorporates a much larger
number of samples. Increasingly greater
average and maximum standard errors will be
produced by (1) regular, (2) stratified,
(3) random, and (4) clustered sampling
patterns.

Universal kriging estimates are dominated
by those sample elements nearest to the
location of the estimate. Judicious place-
ment of the control points used in estimation
can eliminate excessive sampling, and crea-
tion of blank areas where estimates cannot be
made. This may significantly reduce computer
time required to map an area.

Theoretically, efficiency indices can be
reduced to a perfect value of zero by using
an infinite density of observations. However,
moderate increases in density of control
points produce only minor improvements in the
indices because the standard error varies
with the fourth power of the inverse of the
density.



5.1.5 Systematic sampling approach

Selection of the best sampling efficiency
factors is an operations research problem.
Pattern, number of nearest neighbors, and
density are determined by minimizing the
sampling requirements for a given index. The
starting approximation for the minimization
algorithm selects the pattern with the best
index at a density of one sa@gle element per
square mile (0.39 elements/km?) and 32 near-
est neighbors. Successive approximations find
the optimal density and number of nearest
neighbors. The algorithm is valid for any
spatial function when (1) the residuals sat-
isfy the intrinsic hypothesis, (2) the sample
elements have the same support among them-
selves and with relation to the estimated
value, (3) the semivariance is isotropic and
linear with no constant term, and (4) the
space domain is two dimensional. The basic
information required is simply the spatial
characteristics of the function to be sam-
pled, expressed as the semivariance and
drift. The algorithm requires only the
computation of simple formulae and the use of
a few tables. It is not necessary to actu-
ally implement the sampling procedure, nor is
it necessary to perform any universal kriging
computations. Optimality is assured.

5.1.6 Case study

The systematic approach was used to re-
design an existing groundwater observation
network in the Equus Beds of Kansas, an area
within the major High Plains aquifer. The
study utilized information gathered during
the period December 1980 to March 1981, con-
sisting of depths to the water table in 244
observation wells. The application of the
systematic sampling approach in Algorithm 3.1
to the Equus Beds observation well data dem-
onstrates that the procedure can be performed
easily and rapidly.

Despite the fact that the design of the
alternative observation well network was
limited to the use of existing wells, the
procedure successfully enhanced the efficacy
of the observation well network and compen-
sated for the uneven density of wells. An
even better network could have been designed
if the study had not been constrained to the
use of existing wells.

5.2 SUGGESTIONS

The present observation well network for
the Equus Beds is a typical example of over-
sampling. The well density far exceeds the
minimum requirements for proper characteriza-
tion of the relevant features of the water
table. Several considerations are necessary
for the design of an optimal sampling scheme.
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Sampling efficiency index levels must be de-
termined according to the economics of data
collection, including a consideration of pos-
sible additional uses for the information to
be gathered. The level of uncertainty accept-
able for the study must be determined. An
optimal sampling design should be devised
following the procedures presented in this
report. Ideally, development of such a
design would take place before any measure-
ments have been made, to ensure freedom in
the selection of the sampling efficiency
factors amenable to optimization: density,
pattern, and number of nearest neighbors.

5.2.1 Design of unconstrained systems

The very best sample plan for a spatial
function is continuous coverage. If this al-
ternative is unfeasible or impractical, the
best discontinuous sampling pattern is regu-
lar hexagonal, regardless of the nature of
the spatial function. If all other factors
remain constant, a regular hexagonal pattern
has the following advantages: (1) The mini-
mum average standard error, (2) The lowest
maximum standard error, (3) The maximum
screen effect, and (4) The minimum number of
nearest neighbors needed to assure a stable
solution to the universal kriging system of
equations.,

Practical considerations may necessitate
the use of a regular square pattern which, in
certain respects, is marginally inferior to
the regular hexagonal pattern. It may, how-
ever, have advantages in terms of ease of
implementation. The regular hexagonal pat-
tern outperforms the regular square pattern
by only 1% in average standard error, and by
only 3% in maximum standard error. However,
as shown in Table 3.2, the regular hexagonal
pattern may require only a third of the num-
ber of nearest neighbors to obtain the full
screen effect and reach the minimum value of
the maximum standard error.

5.2.2 Design of constrained systems

Although regular patterns assure the best
discontinuous sampling, historical, legal,
logistic, or technical considerations may
dictate the selection of less optimal alter-
natives. The designer should at least try to
choose from the category of stratified pat-
terns in order to avoid poor sampling effi-
ciency indices or the necessity for costly
additional sampling to compensate for the
suboptimal location of sample elements. The
placement of sample elements in clusters or
at random should be avoided. A random pat-
tern requires 4.5 times more elements than a
regular hexagonal pattern to assure the same
maximum standard error over the sampling



domain. The additional sample requirements
for clustered patterns can be an order of
magnitude larger.

Geologic samples, whether obtained by hand
at low cost or at great expense through a
drilling program, tend to be collected in an
almost haphazard manner. Given a rudimentary
knowledge of the spatial characteristics of
the property to be described, and considera-
tions derived from the theory of regionalized
variables, a systematic sampling scheme can
be devised. Collecting samples in an opti-
mal, systematic pattern will result in better
estimates of the variable and significantly
reduce the cost of sample collection. Many
geologic sampling schemes, such as observa-
tion well networks, slowly evolved over time
without systematic planning. The inefficien-
cies of these observation networks may be so
great that their continuance cannot be justi-
fied. Superior observation networks can eas-
ily be devised using techniques described in
this report.
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NOMENCLATURE

The following table lists the symbols used
in this publication, giving the name of the
symbol and a brief explanation of its mean-
ing. Also given are the dimensions of the
quantity represented by the symbol.

Symbol Explanation Dimension
cov Autocovariance (same as Z)2
E Mathematical
expectation any
f Monomial of degree .
j on the coordinates Ry
h Distance in an
n-dimensional space L
I Sampling efficiency
index same as Z
M Drift same as Z
R Distance index same as Z
Standard error same as Z
X Location in an
n-dimensional space L
z Regionalized
variable any
z Sample element of
the regionalized
variable same as Z
Y Semivariance (same as Z)2
A Universal kriging
weight
H Universal kriging
slack variable
p Density in
n-dimensional space L-n
2 : 2
o Variance (same as Z)
w Semivariance slope
at the origin (same as Z)2/L
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APPENDIX A

VERIFICATION OF
THE UNIVERSAL KRIGING PROGRAM

A substantial part of this project relies
on results provided by an original version of
a program for solving the universal kriging
system of equations (Olea, 1972) and a modi-
fied version included in SURFACE II (Sampson,
1978). Care was taken to fully test the va-
lidity of the results under all possible cir-
cumstances of interest in this study. The
following is an example of a verification
which also illustrates the computation of
standard error.

Problem:

Compute the standard error, as predicted
by universal kriging, at location P in Figure
A.1. The sample consists of only the four
regularly spaced points shown in Figure A.1.
The drift is a first degree polynomial of the
geographical coordinates and the semivariance
is linear with a slope of 1.

» T

FIGURE A.1. Four sample elements in a square
pattern. Elements identified as 1, 2, 3,
and 4 are used to compute the standard
error of the estimate at location P.



Solution:
As the semivariance is linear with slope

assume that the reference axes are parallel
to the square sides and that the origin is at

1, the semivariance is numerically equal to the estimation location. From Equations 2.9-
the distance between pairs of points. Let us 2.12:
ax, + /75?; + ak, + ¥y - 0.5au; + O.5ap, = 0.5V2a
a\, +  arg 4+ /75?2 + ug + 0.5ap; + 0.5am, = 0.5Y2a
Y2aX; + a), + ax, +uy + 0.5au, - 0.5aw, = 0.5/2a
a\, + /7§TE + Ay + g - 0.5au, - O.5au, = 0.5V2a
X1 + AZ + AB + Aa = 1
a(—0.5>\1 + U.Skz + D.SAB - U.Ska) = 0
a( 0.5>\1 + D.SAZ - D.SA3 - O.SAQ) = 0

The solution for the system of equations is

)\1 = 0.25

)\2 = 0.25

)\3 = 0.25

)\4 = 0.25

ug = (0.25/2 - 0.5)a

g =0

My = 0

From Equation 2.13,

o,_z:(P) (4 x 0.25 x 0.5/Z + 0.25/Z7 - 0.5)a

0.56066a
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The standard error is 0.74877va. For a
square having a side of 1, the standard error
is identical, up to the fifth significant
digit, to the value given by the computer
program. This is the highest value that can
be obtained for any location of P inside the
square. The value 0.74877 corresponds exact-
ly with the value shown in the second column
of the second row of Table B.5.

APPENDIX B
EFFICIENCY INDICES AT UNIT DENSITY

The following tables contain values of
average standard error and maximum standard
error assuming the sample elements and the
estimated value have the same support. The
sampling densi%y is one point per square mile
(0.39 point/km*) and the semivariogram is
linear with no constant term and unit slope.



TABLE B.1

AVERAGE STANDARD ERROR

THE DRIFT IS A CONSTANT

UNIT DENSITY AND UNIT LINEAR SEMIVARIOGRAM SLOPE

Number of nearest neighbors

Pattern 1 2 3 4 6 8 12 16 32
Hexagonal 0.83 0.67 0.63 0.63 0.63 0.63 0.63 0.63 0.63
Square 0.86 0.68 0.65 0.64 0.64 0.64 0.64 0.64 0.64
Triangular 0.88 0.74 0.69 0.68 0.67 0.66 0.66 0.66 0.66
Orthogonal

traverses

every 2 points 0.92 0.78 0.73 0.71 0.70 0.69 0.69 0.68 0.68
Hexagonal

stratification 0.90 0.76 0.72 0.70 0.69 0.69 0.69 0.69 0.69
Square strati-

fication 0.90 0.78 0.72 0.71 0.70 0.69 0.69 0.69 0.69
Random 0.93 0.82 0.78 0.76 0.73 0.72 0.72 0.71 0.71
Bisymmetrical

random 0.95 0.82 0.78 0.75 0.73 0.72 0.72 0.72 0.72
Orthogonal

traverses

every 8 points 1.08 0.99 0.95 0.93 0.88 0.86 0.84 0.83 0.81
Four points

per regular

cluster 1.11 1.03 0.99 0.97 0.87 0.86 0.83 0.83 0.83
Five clusters 1.27 1.21 1.17 1.14 1.12 1.08 1.05 1.03 0.98
Bisymmetrical

clusters 1.37 1.30 1.28 1.27 1.20 1.19 1.06 1.04 1.03
Sixteen points

per regular

cluster 1.49 1.39 1.37 1.36 1.35 1.32 1.27 1.24 1.13
One cluster 2.26 2.25 2.24 2.23 2.22 2.22 2.20 2.20 2.19
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TABLE B.2
AVERAGE STANDARD ERROR
FIRST DEGREE POLYNOMIAL DRIFT
UNIT DENSITY AND UNIT LINEAR SEMIVARIOGRAM SLOPE

Number of nearest neighbors

Pattern 3 4 5 6 8 12 16 32
Hexagonal 0.65 0.64 0.63 0.63 0.63 0.63 0.63 0.63
Square 0.66 0.65 0.64 0.64 0.64 0.64 0.64 0.64
Triaﬁgular 0.80 0.69 0.67 0.67 0.66 0.66 0.66 0.66
Orthogonal

traverses

every 2 points 1.02 0.77 0.72 0.70 0.69 0.69 0.68 0.68

Hexagonal
stratification 1.47 0.74 0.70 0.69 0.69 0.69 0.69 0.69

Square strati-

fication 1.81 0.75 0.71 0.70 0.69 0.69 0.69 0.69
Random 1.91 0.96 0.82 0.77 0.73 0.72 0.71 0.71
Bisymmetrical

random 21.92 0.84 0.77 0.74 0.72 0.72 0.72 0.72
Orthogonal

traverses

every 8 points -- -- 1.24 1.14 1.02 0.88 0.83 0.81

Four points
per regular
cluster 1.99 1.56 1.09 1.01 0.92 0.83 0.83 0.83

Five clusters 3.69 2.7 2.20 1.98 1.60 1.33 1.18 0.99

Bisymmetrical
clusters - -- 2.50 2.24 1.93 1.18 1.07 1.03

Sixteen points
per reqular
cluster - - 2.96 2.75 2.29 1.83 1.62 1.17

One cluster 148.00 33.87 19.74 13.92 9.17 7.15 6.31 5.01
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TABLE B.3

AVERAGE STANDARD ERROR

SECOND DEGREE POLYNOMIAL DRIFT
UNIT DENSITY AND UNIT LINEAR SEMIVARIOGRAM SLOPE

Number of nearest neighbors

Pattern 6 7 8 9 12 16 32
Hexagonal 0.68 0.67 0.66 0.65 0.63 0.63 0.63
Square - 0.67 0.67 0.66 0.64 0.64 0.64
Triangular - 0.77 0.72 0.69 0.66 0.66 0.66
Orthogonal

traverses

every 2 points -- -- - 0.76 0.71 0.69 0.68
Hexagonal

stratification 1.55 0.86 0.77 0.74 0.70 0.69 0.69
Square strati-

fication 3.27 0.90 0.78 0.74 0.71 0.70 0.69
Random 26.71 1.42 1.06 0.88 0.77 0.74 0.71
Bisymmetrical

random - - -- 0.85 0.76 0.73 0.72
Orthogonal

traverses

every 8 points -- - -- 1.69 1.30 1.16 0.84
Four points

per regular

cluster - - - 1.11 1.02 0.95 0.84
Five clusters 88.99 17.76 12.80 9.68 4.90 2.7 1.07
Bisymmetrical

clusters -- - -- -- 9.92 1.62 1.1
Sixteen points

per regular

cluster - - -- 12.94 7.25 4.78 1.53
One cluster - 2214.00 936.00 547.00 275.00 171.00 61.50
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MAXIMUM STANDARD ERROR
THE DRIFT IS A CONSTANT

TABLE B.4

UNIT DENSITY AND UNIT LINEAR SEMIVARIOGRAM SLOPE

Number of nearest neighbors

Pattern 1 2 3 4 6 8 12 16 32
Hexagonal 1.1 0.84 0.72 0.72 0.72 0.72 0.72 0.72 0.72
Square 1.19 0.88 0.80 0.75 0.75 0.75 0.74 0.74 0.74
Triangular 1.32 1.14 0.98 0.88 0.81 0.81 0.80 0.80 0.80
Orthogonal

traverses

every 2 points 1.50 1.27 1.14 1.05 0.93 0.91 0.90 0.89 0.89
Hexagonal

stratification 1.30 1.07 1.02 0.94 0.87 0.86 0.86 0.86 0.86
Square strati-

fication 1.42 1.26 1.06 0.97 0.93 0.92 0.91 0.91 0.91
Random 1.48 1.34 1.34 1.23 1.16 1.06 1.06 1.05 1.05
Bisymmetrical

random 1.60 1.45 1.33 1.32 1.05 1.00 0.99 0.99 0.98
Orthogonal

traverses

every 8 points 2.01 1.94 1.80 1.76 1.31 1.39 1.29 1.24 1.23
Four points

per regular

cluster 1.60 1.50 1.41 1.40 1.17 1.12 1.00 1.00 0.99
Five clusters 1.83 1.82 1.75 1.74 1.70 1.67 1.64 1.46 1.33
Bisymmetrical

clusters 1.92 1.83 1.83 1.83 1.76 1.76 1.40 1.39 1.22
Sixteen points

per regular

cluster 2.19 2.06 2.06 2.05 2.05 1.90 1.90 1.74 1.51
One cluster 2.99 2.98 2.98 2.98 2.97 2.96 2.96 2.95 2.94
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TABLE B.5

MAXIMUM STANDARD ERROR
FIRST DEGREE POLYNOMIAL DRIFT
UNIT DENSITY AND UNIT LINEAR SEMIVARIOGRAM SLOPE

Number of nearest neighbors

Pattern 3 4 5 6 8 12 16 32
Hexagonal 0.73 0.73 0.72 0.72 0.72 0.72 0.72 0.72
Square 0.84 0.75 0.75 0.75 0.75 0.74 0.74 0.74
Triangular 1.47 0.93 0.83 0.81 0.81 0.80 0.80 0.80
Orthogonal

traverses

every 2 points  2.45 1.40 1.02 0.94 0.91 0.90 0.89 0.89
Hexagonal

stratification 15.39 1.30 0.89 0.87 0.86 0.86 0.86 0.86
Square strati-

fication 23.01 1.75 0.99 0.93 0.92 0.91 0.91 0.9
Random 19.74 3.26 1.84 1.58 1.1 1.06 1.05 1.05
Bisymmetrical

random 307.00 3.02 1.36 1.14 1.00 0.99 0.99 0.98
Orthogonal

traverses

every 8 points -- -- 2.58 2.21 1.77 1.45 1.25 1.23
Four points

per regular

cluster 3.94 2.38 2.1 1.87 1.54 1.00 1.00 0.99
Five clusters 12.35 11.76 5.33 5.23 4.24 3.26 2.28 1.49
Bisymmetrical

clusters -- -- 6.04 5.12 4.22 2.26 1.98 1.22
Sixteen points

per reqular

cluster - —-- 5.80 5.48 4.17 3.72 2.90 1.85
One cluster 793.00 118.00 98.19 46.45 18.47 12.55 10.13 8.27
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TABLE B.6
MAXIMUM STANDARD ERROR
SECOND DEGREE POLYNOMIAL DRIFT
UNIT DENSITY AND UNIT LINEAR SEMIVARIOGRAM SLOPE

Number of nearest neighbors

Pattern 6 7 8 9 12 16 32
Hexagonal 0.78 0.76 0.76 0.74 0.72 0.72 0.72
Square - 0.79 0.78 0.77 0.75 0.74 0.74
Triangular - 1.07 0.99 0.87 0.80 0.80 0.80
Orthogonal

traverses

every 2 points -- - -- 1.27 0.97 0.90 0.89
Hexagonal

stratification 39.91 1.57 1.14 1.07 0.90 0.87 0.86
Square strati-

fication 93.17 3.07 1.42 1.12 0.96 0.93 0.91
Random 2690.00 11.60 7.90 2.03 1.32 1.15 1.05
Bisymmetrical

random - -- - 1.96 1.25 1.07 0.98
Orthogonal

traverses

every 8 points -- - -- 8.84 4.48 3.27 1.45

Four points
per regular

cluster - - - 1.67 1.43 1.22 1.00
Five clusters 986.00 142.00 101.00 101.00 32.87 12.30 2.33
Bisymmetrical

clusters - - - - 107.00 10.03 1.38

Sixteen points
per regular

cluster - - - 33.47 23.71 12.10 5.13

One cluster - 10425.00 8763.00 1956.00 815.00 535.00 148.00
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APPENDIX C
SAMPLING DESIGN EXAMPLE
Problem:

Find the best sampling procedure for the
Equus Beds which will produce estimates of
the water table elevation having an average
standard error of 10.8 feet (3.3 m). The
solution must be restricted to the existing
observation wells. Ignore border effects
and possible missing wells in the selected
pattern.

Solution:
From Algorithm 3.1

1. From the structural analysis
(Olea, 1982a, Appendix D; Olea,
1982b, Appendix A), the relevant
results are:

60 feet? per mile

a. Slope, w =

(3.5 mZ/km)
b. The drift model is a first
degree polynomial within a
neighborhood which is 28 miles
(45 km) in diameter.

From the statement of the problem,
the sampling efficiency index is
the average standard error.

From the statement of the problem,
regular patterns are not feas-
ible. From Table 3.1, the irreg-
ular patterns with lowest average
standard error are the stratified
patterns. A hexagonal stratifica-
tion is preferred over a square
stratification as the former
offers a lower maximum standard
error. The value I(1,1) is 0.69
feet (0.21 m).

From the statement of the problem,
I(w,p) is equal to 10.8 feet (3.3
m.

From Equation 3.25 and the steps
above

0.69]“

p = 602[10 8

]

= 0.06 point per fquare mile
(0.023 point/km*)

The number of points inside a 28

mile (45 km) diameter at a density

of 0.06 point_ per square mile

(0.023 point/km?) is

nd?

N=TP

_ 3.14159 x 282 x 0.06
= 4

= 36 points

From Table 3.3, the minimum number
of nearest neighbors required to
solve the universal kriging system
of equations is 3, which is an
order of magnitude smaller than
the number of points that can be
contained inside the neighborhood
for which structural analysis
models are valid.

From Table 3.2, the minimum number
of sample elements to assure a
minimum average standard error is
6.

Since the 36 points that can be
placed inside the structural
analysis neighborhood is a larger
number than the number of points
required to assure the minimum
average standard error, 6 nearest
neighbors should be used in the
solution of the universal kriging
system of equations.

Hence, the best irregular sampling pattern
for the water table elevation in the Equus
Beds is a hexagonal stratified pattern. A
density ?f 0.06 point per square mile (0.023
point/km“) assures an average standard error
of 10.8 feet (3.3 m), missing wells in the
stratification and border effects not in-
cluded. The number of sample elements to be
used in the universal kriging system of equa-
tions should be 6.
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