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For certain of the figures in this paper, stereo-pairs have been pro-
duced; they are stored in the back pocket. Each stereo-pair is suit-
able for use with a mirror stereoscope.

Figure No. Stereo-pair
9(a) 3-left, 3-right
9(b) 4-left, 4-right
9(c) 1-left, 1-right
9(d) 2-left, 2-right

15(a) 7-left, 7-right
15(b) 8-left, 8-right
15(c) 5-left, 5-right
15(d) 6-left, 6-right
21(a) 11-Teft, 11-right
21(b) 12-Teft, 12-right
21(c) 9-left, 9-right
21(d) 10-Teft, 10-right
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INTRODUCTION

SHAPE ANALYSIS IN GEOLOGY

In recent years, statistical and mathematical techniques have been increasingly adopted
within the geosciences. Geologists have originated few, if any, of the techniques; instead
they have borrowed, adapted and used (or misused) them. In earlier papers (Tipper, 1977;
Tipper, 1978) I attempted to introduce geologists to a number of additional techniques,
chiefly from the field of Computer-Aided Design (CAD), which promise to be valuable in one
of geology's most widespread problem areas--the study of complex three-dimensional shapes.
This paper provides more comprehensive description and evaluation of these techniques, and
attempts to develop a coherent framework to unite them with other techniques of shape analysis
with which geologists are already familiar, e.g. trend surface analysis.

Studying the shape of three-dimensional objects and surfaces forms a major part of much
geological work, and applications of shape analysis can be found in most branches of geology.
Examples include delineation of subsurface mineral deposits, mapping of stratigraphical and
structural surfaces, and investigation of the morphology of fossils. Because shape is so
general a theme, it is essential that any methods developed for its study should be as effi-
cient as possible. Furthermore, they should be independent of both the origin and geological
meaning of the objects concerned.

We may classify methods of shape analysis into two major groups: methods of formal nu-
merical analysis, and methods of mathematical (or statistical) surface representation. In
the numerical methods, shapes are considered as points in a multi-dimensional space, the
coordinate axes of which represent either variables or combinations of variables measured on
the shape. In contrast, surface representation methods define an object by specifying its
bounding surfaces, either by surface equations or, less commonly, by using statistical esti-
mation techniques. These surface represéntation methods do no more than produce mathematical
(and necessarily computerized) models of the objects: in consequence I refer to this approach
by the general name "Computerized Modelling."

Most shape studies within geology have used the numerical approach. Methods used have
included multivariate analysis (Gould, 1967, 1969; Blackith and Reyment, 1971; Brower, 1973;
Demirmen, 1973), Fourier analysis (Ehrlich and Weinberg, 1970; Kaesler and Waters, 1972;
Christopher and Waters, 1974; Delmet and Anstey, 1974; Gevirtz, 1976; Waters, 1977), and
ad hoc descriptive methods such as have been developed for terrain analysis (Greysukh, 1966;
Speight, 1968; Demirmen, 1973; Prelat, 1974). The great attraction of numerical methods is
their operational simplicity, and this advantage is only lost on complex objects. (Here we
consider an object to be complex if it has no obvious regularity of shape. Although a simple
process may create a complex shape, we are interested more in the final shape than in the
process by which it arose.) In practice the surface representation approach is the more
efficient for objects with relatively complex curved surfaces, because it is much easier to
specify surface equations than to define complex objects by such secondary measures as dia-
meters or point-to-point distances. As the objects with which we shall be concerned in this
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paper are quite complex in form, only the surface representation approach is considered
further here.

A GEoLoGICAL PROBLEM IN SURFACE REPRESENTATION

In describing the surface representation techniques, we shall attempt to indicate
ways in which they can be compared one with another, both in theory and practice. The theo-
retical comparisons will be facilitated by maintaining consistent notation (Appendix 1), the
practical comparisons by introducing an actual geological data set to which many of the
methods will be applied. Before proceeding further we introduce this data set; in the rest
of this study it is referred to as the Cherokee data set.

In southeastern Kansas, oil is produced from sandstones of the middle Pennsylvanian
Cherokee Group. The reservoir sands form a complex subsurface meshwork; individual sands
are impersistent laterally, "migrate" vertically, and frequently merge with one another. The
sands in some areas are thought to have been laid down as channel deposits (McQuillan, 1968;
Van Dyke, 1975), in other areas as offshore bars (Bass, 1936). Because of the history of
its development, the oilfield studied (Fig. 1) provides an unusual volume of high-quality
subsurface data. Each well has an associated gamma-ray log and, in most cases, has been
cored through the producing interval.

0 50
T Allen Co., E
Scale in miles Kansas

FIGURE 1. Location map showing area from which the Cherokee data set was obtained. Study
area in Allen County, Kansas, is shaded.

The actual data were obtained in the following manner. A set of 130 wells was selected,
spaced on average at 100-metre intervals, and arranged on a (13-by-10) mesh (Fig. 2). The
only restriction placed on the shape of the mesh cells was that they should be convex in plan
view (cf. Hessing, et al., 1972). The top and base of each of four sands were picked from
the gamma-ray log of each well, verified against the core descriptions where available, and
a tentative correlation made for the entire well network. Where individual sand bodies could
not be distinguished, as for instance when two superimposed sands had coalesced, arbitrary
dividing horizons were chosen. In practice this introduces no problems provided that con-
sistency is maintained. For simplicity in this present work only the two surfaces bounding
one sand were retained. Thus the raw data consist of two sets of 130 height values (z) above
sea-level datum, each value associated with position coordinates (x, y). These are given in
Appendix 2.






The reason for selecting this data set to illustrate a paper on shape analysis is that
the three-dimensional form of the sands is of importance as a guide to additional drilling
for tertiary recovery purposes. In the study area chosen, the subsurface is sufficiently
complex that each sand unit must be studied independently. The problem is thus to develop
ways to represent mathematically the bounding surfaces of each individual sand, and then to
use these representations as bases for subsequent geological work.

Of the two steps involved here, the first is one of modelling, the second one of manipu-
lating the models. In the remaining parts of this paper each step is considered in turn.
Neither the treatment of the modelling process nor that of the manipulations which follow it
pretends to be exhaustive. The methods described are a broad cross-section of those currently
in use. References are given to the original sources (where known), and to important subse-
quent developments. So fast, however, is the field developing that any paper of this type
must inevitably be incomplete. Realizing this, I have tried for balance at the expense of
completeness.

PART I -- METHODS OF COMPUTERIZED MODELLING

THE GENERAL PROBLEM oF SURFACE REPRESENTATION

The problem with which we are concerned may be generalized in the following way: Given
the rectangular Cartesian coordinates of each of a set of points assumed to lie on one simply
comnected surface, describe that surface in such a way that it can be manipulated simply and
precisely.

However we choose to describe the surface, we are ultimately involved in defining an
interpolating function which will predict the location of points on the surface away from the
data points. Argument about how a surface is to be represented thus resolves into argument
about the form of this function: this is determined not only by the nature of the surface
itself, but also by the purpose for which the description is being made.

The first part of this paper is devoted to systematic description of surface representa-
tion techniques (Fig. 3). Consideration is given first to the approach with which geologists
will be most familiar, the methods which have together become known as trend surface analysis.
Both main techniques are outlined--surface fitting methods (including the method of least-
squares), and point-by-point estimation using Regionalized Variable Theory. The idea of using
blending functions is then introduced, and a method from geodesy used for illustration (the
surface averaging method of Junkins, Miller, and Jancaitis).

By studying in this way the performance of methods already in use in geology, we are able
to define more clearly the requirements which a surface representation method must satisfy in
order to be suited to our problem. Surface representation methods are shown to be no more
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FIGURE 3. Characteristice and interrelationships of the surface modelling techniques described
in this paper.

than conventional bivariate interpolation or approximation methods, and the CAD methods are

used in illustration. Two approximation methods are described first--Bézier and B-spline

curves and surfaces. Interpolation methods are then introduced--bicubic splines and Coons

surfaces.

TREND SURFACE ANALYSIS

In the two decades of its use in geology, trend surface analysis has generated both an
extensive literature and considerable controversy. The literature is best approached through
reviews such as Harbaugh and Merriam (1968) and Whitten (1975). The controversy has centered
on the absolute and relative merits, both theoretical and practical, of the surface fitting
and regionalized variable techniques. Heat output from this controversy has generally ex-
ceeded that of 1ight [see, for example, Whitten (in Krige, 1966); Matheron, 1967; Watson,
1972; Delfiner and Delhomme, 1975], and it is not the purpose of this paper to stoke the fires
further. What is more important is to see how each of the techniques might be applied in the
solution of our surface representation problem.

1. Surface fitting methods -- Introduction
Perhaps the most obvious way of describing a surface mathematically is to use some equa-
tion of the form

z=7f(x,y) L. [1]

where z is the height of the surface at a point having base-plane coordinates (x, y). The
parameters of the function f are determined by solving the equation for known (x, y, z)
triples; clearly if there are k parameters, k of these equations (and hence k distinct data
points) are necessary for a unique solution. When all the parameters are known, the value of
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z can be obtained for all x and y. The surface, of course, passes through all the data points.

The approach is aptly described as one of surface fitting; it is so straightforward that an ex-
ample of its use is superfluous.

The parameters of the function f are simply combinations of the data point triples from
which they were calculated. Each value of z is thus just a weighted average, albeit a compli-
cated one, of the original k data points. This argument can be extended further by noticing
that it is hardly necessary to use just weighted averages of points. We can, for instance,
construct a system whereby the z-value at a point is a weighted average of k independent func-
tions, each itself of the form [1]. The equation is now

=~

zZ= JE] gj : fj(x’ y)
where the gj are weights to be applied to each of the k independent functions, f&.

An example of this approach is the method of multiquadric surfaces developed by Hardy
(1971) for the description of topographic and other irregular surfaces. In essence, the ap-
proach he took was to describe a surface as the summation of a set of independent quadrics,
most commonly cones or circular hyperboloids. The general multiquadric surface may be written

k
z= % ej[q(xj, Yis X y)]

3=

where
q(xj, Yis %o y) is a quadric with its vertical axis of symmetry passing through (Xj’ Y 0),
ej is a coefficient describing the sign and "flatness" of the quadric, and
k is the number of quadrics used.

For the case of cones the surface is
k
z= I 0.[(x;-x)%+ (y: - y)z]% ..... [2]
j=1 40 J
A unique representation for the surface may be obtained if the coordinates of k points
lying on it are known. Let such points be (Xi’ Yis Zi)’ i=1,2, ..., k. Then equation [2]
may be rewritten as
1
y;)?1% =

. = Z.
1

9-[(Xj - X.i)z + ('yJ - i

1 J

no~Mx

J
This is a series of k simultaneous linear equations in k unknowns, the ej, and can be
easily solved. A matrix formulation for this is

where § is a column vector of order k and general term 6.,
X is a (k x k) coefficient matrix with general term [(x - x5)2 4 (yj - yi)z]%,
Z is a column vector of order k and general term z;
Substitution of the coefficients, 6 32 into equation [2] defines the surface for all x and y.



The advantages and disadvantages of the multiquadric surface approach are as follows:
(1) It is computationally simple.
(2) The functions it defines are well-behaved interpolants.
(3) The method is completely empirical, and has no claims to optimality in any sense.

2. Surface fitting methods -- The method of least-squares
The type of approach just described is applicable only when the number of degrees of free-
dom, k, in the surface equation is exactly equal to the number of data points available. When

the number of data points exceeds k, another approach can be used--the method of least-squares.
In this method the values of the k unknown parameters are calculated so that the sum of squared
deviations between the function and the data points is minimized.

The form of function is not circumscribed by the method; its selection is entirely arbi-
trary. Linear functions are more usual for reasons which we discuss later, but the methods
can also be used for fitting non-linear functions (James, 1968, 1970). Whitten (1975) has
tabulated many of the linear functions which have been used to represent surfaces: that most
widely used is the simple polynomial series with non-orthogonal coefficients (Krumbein, 1959),
although orthogonal polynomial series (Grant, 1957; Whitten, 1970) and double Fourier series
(Harbaugh and Preston, 1965; James, 1966) have also found favor for some applications. It is
worth remarking that Hardy (1971) has indicated that a least-squares solution can be employed
in the method of multiquadric surfaces if the system of equations [3] is overdetermined.

The reason for preferring linear to non-linear functions is that, in some cases at least,
the estimgtes of their parameters given by the least-squares method have certain optimal pro-
perties. This is never true for non-linear functions.

The mathematics of the least-squares method can most easily be demonstrated for what is
termed the General Linear Model. This has the form:

7=-%X06+¢
where Z is a column vector of order n containing the values of the dependent variable (in this
case the height, z, of the surface),
is an (n x k) matrix containing coefficients derived from the independent variables
[the (x, y) coordinates of the surface],
3 is a column vector of order k containing the parameters to be estimated,

ta g

is a column vector of order n containing error terms,

S oy

is the number of data points, and
is the number of parameters of the model (n > k).

=~

The basis of the method is that the sum of squares of the errors be minimized, i.e. &' &
is to have a minimum value. The necessary condition for minimization is that the derivative
with respect to 8 is zero, i.e.

dE' 8) _ d(Z-X8) [Z-X8D . 53 . 3 3)
& dd

>, . . . -> +I—)_]—>I->-
The parameter vector, ©, is obtained from this by rearranging the terms: o = (X' X)™' X' Z .

=0




When the error terms, Z, are uncorrelated, have zero mean, and have the same variance,
it can be proved (see for example Kendall and Stuart, 1967) that the least-squares estimator,
8, gives the best Tinear unbiased estimates of the parameters. If, in addition, the error
terms are normally distributed, then it is also the maximum-1likelihood estimator.

The 1inear model may be summarized by the following equation (Watson, 1972):

Value at any point = Value of the deterministic

function + Random error

It is important to stress that the least-squares estimators are optimal only when the
error terms are truly random. If there is sufficient evidence that they are spatially auto-
correlated (and this will generally be true unless the number of degrees of freedom used in
the function is almost as great as the number of data points), then the assumptions of the
least-squares method are violated, and the estimated parameters are neither unbiased nor of
minimum variance. It is thus essential that the error terms from any application of least-
squares be tested for spatial autocorrelation, for instance in the manner suggested by Cliff
and Ord (1973). Failure to appreciate this point has caused most of the misuse of the least-
squares method in surface fitting: sadly this includes much of the earlier geological work
using trend surfaces.

If equation [4] is rewritten as

Value at any point = Deterministic function

("regional component'") + Local residual

where the residuals represent local phenomena and are spatially autocorrelated, then the
estimates of the parameters of the function are totally arbitrary. What are often mislead-
ingly called "trends" may be no more than artifacts (Matheron, 1971).
It is instructive to consider the extent to which surface functions determined by least-
squares satisfy the criterion of being good interpolants, as required here. As noted above,
a complex function must be used for any but the smallest data set, in order to remove spatial
autocorrelation. It has, however, been found in practice, especially for polynomial series,
that such functions tend to fluctuate very erratically between data points (Matheron, 1967);
even when a perfect fit is obtained at every data point (n = k), the function is rarely ac-
ceptable as an interpolant.
In summary, the advantages and disadvantages of the least-squares method are as follows:
(1) It is based on a precise probabilistic model and can, under certain conditions, define
surfaces having some optimal properties.

(2) It is computationally straightforward.

(3) Surfaces estimated without regard for spatially autocorrelated error terms are just as
arbitrary as surfaces fitted by eye.

(4) Complex surfaces tend to perform poorly as interpolants.

(5) The form of the surfaces is greatly influenced by the spatial distribution of the data
points (Doveton and Parsiey, 1970).



3. Interpolation using Regionalized Variable Theory

Regionalized Variable Theory was developed by Matheron to describe functions which vary
in space with some continuity, yet which are mathematically intractable (Matheron, 1967). Com-
prehensive descriptions of the theory have been given by Matheron (1965, 1971) and, most re-
cently, by Olea (1975). The theory is extensible to the N-dimensional case; here we consider
Just surface functions with the form of equation [1].

Matheron's approach is to consider the function at any point as a random variate, the value
of which depends on its position. If the statistics of the variate are known, its value at any
given location can be estimated. In principle then this approach is ideally suited to the type
of surface representation in which we are interested. A more detailed look at the theory, how-
ever, results in a more pessimistic judgment.

The random variate, Z(?), is described by its mean and covariance, and by certain assump-
tions about its behavior. Under what are termed conditions of weak stationarity, the expected
value of the variate, E[Z(X)], is constant and its covariance is independent of absolute loca-
tion. In some circumstances these assumptions are too strong and what is termed the intrinsic
hypothesis is preferred. Under this, it is not the variate which is weakly stationary, but
rather its increments [Z(Xx + R) - Z(X)]. The second moment of these increments, expressed as
a function of the increment size, is termed the semivariogram, y(h), where

v(R) = E{[Z(x + B) - Z(X)1?}/2,
Z(X) is the value of the variate at X, and
Z(x + h) is the value at a distance B from X .

In spme cases even the intrinsic hypothesis is too restrictive, as for example when the
expected value of the variate, E[Z(X)], is not constant. The variate is then a function having
a trend in value across the area under study: this trend is called the drift. Under this, the
weakest of the three hypotheses, the residuals obtained by removing the drift are assumed to
obey the intrinsic hypothesis, i.e. to have a semivariogram of intrinsic form.

For our purposes it is the third of the hypotheses which is the most relevant, as it is
the most general: estimation of point values under this hypothesis is termed Universal Kriging.
The estimate, 2(?), of the variate X is defined as a linear combination of the known values of
Z(X) which are within a neighborhood of radius r around X. Thus

k

(x) = jE] Aj Z(xj) ..... [5]

where Aj are unknown weights which can be calculated, and
k is the number of points in the neighborhood.

The estimates produced by this procedure are optimal in the sense of being unbiased and
of having minimum estimation variance. It is, however, a prerequisite that either the covari-
ance of the residuals or the semivariogram of the residuals be known (these have been generical-
ly termed correlograms). If that is not the case, the drift must first be determined in order
that the residuals (and hence their correlograms) can be calculated. The drift, m(X), at a
point X within a radius r of a fixed point ;0 is defined in a manner analogous to the Unijver-
sal Kriging equation [5]. Thus
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m(x) = L g f(x)

where f](g) are arbitrary functions of x,
g; are unknown weights to be calculated, and
n is the number of points within the r-radius neighborhood of ;o’

It is at this stage that one of the major drawbacks to the regionalized variable approach
is found, for it is necessary to know one of the correlograms of the residuals in order to
determine the drift. An jterative solution to the problem is usually suggested (Olea, 1975),
whereby a theoretical correlogram and expression for the drift are assumed, the coefficients in
the drift expression calculated, and an experimental correlogram for the residuals then produced.
Unless this is a sufficiently good fit to the theoretical correlogram, it is itself used as an
initial approximation in another iteration. There is no guarantee that trial solutions using
different initial configurations of correlogram and drift expression will converge, and in
consequence the method is, at least in its initial stages, substantially arbitrary.

The advantages and disadvantages of the regionalized variable approach under the third
hypothesis are as follows:

(1) The method is optimal in the sense of producing the best linear unbiased estimators, if
the following features are known beforehand: a form for the drift, a theoretical correlo-
gram for the residuals, a value for the neighborhood radius.

(2) Because in general these features will not be known, the estimates given by the method will
usually be quite arbitrary.

(3) The method is essentially a point-by-point estimation procedure. Thus a surface is never
described in a form in which it can easily be manipulated. This above all renders the meth-
od unsuitable for our surface representation problem.

(4) The method is computationally expensive and time-consuming.

BLENDING FuncTION METHODS

In each of the methods so far considered, we have come across the idea that a surface can
be constructed by some kind of weighted averaging procedure. For some methods this is stated
explicitly; for others it is inherent in their structure. A surface is thus a blend of the
original data, with the relative importance of each data item varying continuously from place
to place.

The idea of a blended surface may be expressed formally in the following way:

k
z(u) = 2 g;(u) - £50x y)
j=1
where gj(u) are blending functions which vary in value according to the parameter u,
fj are functions of position (the original data items),
u is a parameter varying continuously across the surface, and
k is the number of data items to be blended.
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The purpose of a blending function is simply to ensure that adjacent parts of the final
surface merge smoothly into one another. It is the mathematical form of the blending function
which determines the continuity of the surface (this is discussed in a later section). As
noted earlier, it is not just point coordinates which can be blended together; space curves
and surfaces can be treated in the same way. As a result, the blending function approach is
widely used in surface representation methods; it is especially important in some of the CAD
methods described later. For now, however, a simpler method will be described which illustrates
well the blending function approach. This is the surface averaging method, developed by Junkins,
et al. (1973) for the mathematical modelling of irregular topographic surfaces.

The object of the surface averaging method is to fit a surface over a regular grid of data
points. It does this by considering the surface as a set of individual sub-surfaces, each valid
over a single grid cell, and each defined as a blend of several preliminary surfaces calculated
for some of the surrounding cells. Consider an (m by n) network of points, Pi,j’ on the x-y
plane, with each cell rectangular in plan view (Fig. 4). As notation, define Ci,j as the cell

n
n-1
i+2 : Y
ci-1,j+1 Ci,j+1 Ci+1,j+1
j+1 — 1‘__\
Poin |G| G |Siai|  Pinie X
J _____—v" ——
P..~ IC...4C..4[C P
1 ij i-1,j-1 Ti,j-1|"i4,j-1 i+, j
j-
2
1
1 2 3 i-1 i i1 i+2 m-1 m

FIGURE 4. Mesh of (m by n) data points, with each ecell rectangular in plan view. The nota-
tion given for points (P, see abscissa and ordinate indices) and cells (c) is that
used in the surface averaging method.
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with corner points P

is then

., P

i, P The sub-surface, S j? valid over c.

1° and Pi+1,j' i3

ISEERSENE

4
* _ )
51’j(xs Y) = E gk(x’ Y) Sk(x, Y)
where g, are blending functions,
Sk are preliminary surfaces:
S] is valid over cells c; Nt c; FIE it FRE c1+]’J
2 is valid over cells c1 1 3+1’ C. i,j+1° ¢; e Ci. 1.
i-1,3° 1,3 %i,3-10 G- 1,3-1

i,j-1° C1+1,3 1° c1+1,3 i,j
and y. i, <y \.y FRE

S

Sé is valid over cells c.
S4 is valid over cells c.
X

i, <x<x1.+],j

Thus each S* . is a weighted average of four preliminary surfaces, each of which is valid
over four ne19hbor1ng cells. In their original description of the method (Junkins, et al.,
1973), the authors used least-squares approximation for the preliminary surfaces. Their mathe-
matical form can, however, be any tractable function. It is important to note that the func-
tions must be chosen with care if the final surface, S i,j° is to interpolate the data points.

The blending functions, gk(x y), are determined by the smoothness with which adjacent
sub-surfaces are required to blend. For continuity of position and slope along each cell boun-
dary the blending functions are

g (s ¥) - (x - x5 )%y -y 4)° - 6(x - x; ;) ] 6y - ¥y 5) . (x - x; )y y1,J)]

AxZ Ay? AX Ay AX Ay

9p(%s ¥) = g7(1 - x, y)
93(Xs y) = g](] - X, 1 - Y)
94(Xs Y) = g](X, 1 - Y)
i+1,3 7 L)

Y = Yq50 7 Y4,

where AX = X

The advantages and disadvantages of the method are as follows:

(1) It is computationally efficient, and applicable to large data sets.

(2) It is flexible; any suitable function can be used for the preliminary surfaces.

(3) Although the authors state that "if one least squares approximation is good, the average
of four must be better" (Junkins, et al., 1973, p. 1800), this claim ignores the unique-
ness of the optimal least-squares solution. One cannot pretend that the method is other
than highly empirical.

(4) When preliminary surfaces are used which have been fitted by the method of least-squares,
the final surface does not interpolate the data points.
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REQUIREMENTS FOR PRACTICAL SURFACE DESCRIPTION

Clearly none of the methods so far described is the ideal for our surface representation
problem. Those which claim optimality (the least-squares method; Regionalized Variable Theory)
are demonstrably non-optimal except under particular and usually unrealistic assumptions; the
others produce results which are acceptable for many applications, but rely entirely on the
combination of sets of functions whose form is totally arbitrary. Yet each method has some
advantages which should be retained, or drawbacks which should be avoided. With this in mind
a set of minimum requirements can be specified which a surface representation method should
meet, and against which other methods can be assessed. Because the methods are to be of prac-
tical use, utility is emphasized rather than strict statistical or mathematical optimality.

1. Foremost among these requirements is continuity, or local smoothness. Most surfaces
in geology are continuous, both in a physical and a mathematical sense. Physical continuity
usually results from some areally operative geologic process, as in the formation of geomorphic
features by erosion. In cases Tike this, the surface possesses some degree of smoothness, at
least 1oca11}, and the mathematical surface representing it can reasonably be required to be
continuous both in its value and first derivative. Higher order derivative continuity may of
course also be required, and it is common to ask for curvature continuity as well.

2. The requirement of Tocal smoothness is valid for many applications. Other similar
requirements include suppression of surface undulations (Akima, 1970, 1974), linear additivity,
and invariance under some coordinate transforms (Akima, 1975).

3. More troublesome is the requirement that the surface pass through particular data
points, either all the points on which it is based or a pre-defined subset of these. This
must depend entirely on the use to which the surface will be put, and on the quality of the
data. In some cases it may be sufficient to approximate the data points within pre-specified
tolerances; for other work a surface fitting method may have to be chosen whose fidelity de-
pends solely on the accuracy of computation. Sparsely or irregularly distributed data impose
only weak constraints on the surface; in such cases only approximations are warranted.

4. Probably the most important requirement is that the surface should, if necessary, be
capable of being multiple-valued in any coordinate direction, and that its description should
be independent of its orientation. Most methods used for surface representation in geology,
such as those described earlier, have used representations with the form of equation [1].

The inadequacy of this representation for other than simple surfaces may be illustrated as
follows. For convenience only a two-dimensional example is given--the two-dimensional ana-
logue of equation [1] is

z=fFfx) . [6]

Figure 5 shows a lenticular channel sand in cross-section. Its lower surface is formed
by the truncated edges of underlying beds; the upper surface is defined by the bases of over-
lying deposits, usually with slight angular unconformity. In the original orientation (Fig.
5a) each surface can be represented by equations of the form [6]. Figure 5b shows the sand
body after tectonic rotation: use of equations of this form will now result in extreme dis-

tortion because of the concentration of values of the independent variable within X Xy
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FIGURE 5. C(Cross - sections through a braided
channel sandstone. The underlying
beds are shown in the coarser stip-
ple, the overlying beds in the finer
stipple. (a) Original orientation.
(b) After rotation , equidistant
points on the surfaces of the sand
are inevitably over - concentrated
within x, »x, and x, > & . (e)
After further rotation wuntil the

major axis of the sand is almost ‘ .Channel sand
vertical. I

and X3 > Xg- After further rotation the major axis of the sand is almost vertical (Fig. 5c)
and both surfaces are multiple-valued in z for most values of x. No equation of the form [6]
is applicable to either surface.

The restrictions evident in this example may be overcome in two ways: (a) Use of coordi-
nate transforms, such as rotation to restore the sand to approximately its original orientation.
Other transforms include those used by Thompson (1961) for comparison of organic shapes. The
generalized approach to coordinate transformation is described by Morse and Feshbach (1953).
(b) Subdivision of the surface into parts, each simple enough to be represented in the form
given by equation [6].

Both approaches have the drawback that the model is dependent less on the actual form of
the object than on the position and orientation in which it is presented. Because this is
clearly undesirable, neither approach demands more than passing consideration here. A third
approach using curvilinear coordinates is more useful, and is outlined in the next section.

CURVILINEAR COORDINATE SYSTEMS

In rectangular Cartesian coordinates, a point on the plane z = 0 can be expressed in terms
of the axes x and y, which are orthogonal and coplanar. If the latter restriction is removed,
the x-y surface can be deformed without breaking to give any simply connected surface. Any
point on this surface can still be expressed in terms of the two axes (relabelled u and v),
which remain orthogonal (Fig. 6). If a point on the surface has coordinates (x, y, z) with
respect to the original Cartesian system, then its curvilinear representation is a vector
having components:

x = flus v)s oy = folus v), 2= falu, v)
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u-27 “~u-3

FIGURE 6. A curvilinear coordinate system. Points are described in terms of the parameters
u and v, which are defined only on the surface. The surface is completely speci-
fied by the function: flu, v) = [fz(u, v), fg(u, v), fg(u, v)].

The surface is thus completely defined by the functions f]_3 and, provided that suitable
functions are specified, surfaces of extreme complexity may be represented. In practice the
range of available functions is restricted by the necessity of incorporating into them some
of the other requirements described earlier, e.g. continuity of a prescribed degree.

GLOBAL AND LocAL REPRESENTATIONS

Either of two alternative strategies can be applied at this stage. A single triplet of
functions valid for all u and v gives what is termed a global representation. This is analo-
gous to the surface fitting approach described- earlier, in which a single function was fitted
to all the data points. The second strategy is to partition the surface into local u-v domains,
and then to define a set of functions for each. These are valid only in that domain. Each of
the Tocal sub-surfaces is called a surface patch. This Tocal approach (often termed piecewise)
is identical to that used in the surface averaging method of Junkins, et aZ. (1973).

Both global and Tocal strategies have inherent advantages and disadvantages:

(1) A global representation needs only one set of functions for the whole surface, giving
savings in computational time and storage.
(2) Global representation of surfaces of even moderate complexity requires extremely complex
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functions, even if the tolerance allowed in the model is high.

(3) Any global representation is unreliable at its extremes. Furthermore, if it is at all com-
plex, it will often behave erratically as an interpolant.

(4) Local representation is computationally less efficient in terms of storage required, as one
set of functions must be stored for each patch.

(5) Each set of local functions can, however, be relatively simple and yet still give a good
representation. The simplicity of the functions and the fact that they are locally based
imply that a local representation is often highly efficient for large data sets. This was
found to be the case for the surface averaging method (Junkins, et al., 1973).

(6) A global representation is continuous to the same degree everywhere. To achieve this result
using local patches, the form of the functions is severely restricted and the number of
patches may have to be increased.

(7) It is often impracticable to use a global representation for multiple-valued or concave
surfaces. There is no such restriction to the piecewise approach.

CompuTER-AIDED DESieN METHODS

Up to now we have dealt only with methods which have an obvious relevance to our surface
representation problem. Each method has been applied in geology or geodesy, and there would
be 1little point in implementing them for the Cherokee data set. There is, however, another
class of methods developed in an entirely unrelated field whose relevance to the problem is
not nearly as peripheral as one might initially expect; they have in fact been used for con-
touring subsurface horizons (Hessing, et al., 1972). These methods were mostly devised as
computer-aided design tools in the aircraft, motor, and shipbuilding industries. Two excellent
reviews of work in this field have been given by Forrest (1972a, 1974). The theoretical basis
of many of the individual methods is covered in the next sections of this paper: for now it
is sufficient to regard them as methods which generally use sets of local surface patches
which, when "sewn" together, create complex surface forms (Fig. 7).

The problem of computer-aided design is not identical to our surface representation
problem, although both share many theoretical ideas and practical difficulties (Ahlberg, 1974;
Barnhill, 1977; Wu, et al., 1977). The CAD problem is essentially one of ab initio shape
design. The designer has no model, except for his own conception of how the finished object
should appear. His approach is simply to build up the object from scratch, either by amalga-
mating simple solid forms (see for example Braid, 1975) or by defining the object by its bound-
ing surfaces (Coons, 1967; Bézier, 1972), until it satisfies certain aesthetic or functional
constraints.

In contrast, our surface representation problem involves developing a mathematical model
which conforms, however approximately, to a specific object. Most, if not all, of the surface
design methods are in theory applicable: the main difficulty in using them is the practical
one of devising a suitable interface between the model being built and the object which it is
to represent. Given particular data on the shape of the object (usually the coordinates of
points on its surface, as for the Cherokee data set), how are they to be incorporated into the
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FIGURE 7. The use of simple surface patches to construct a complex three-dimensional figure.

model, and how are discrepancies between model and object to be measured and corrected? One
elegant and practical solution to the problem is offered by Wu, et aZ. (1977).

One way to overcome the difficulty is to organize the data points into some form of net-
work, and to use it as an approximation to the surface being modelled. This approach contrasts
markedly with the surface representation methods considered earlier which, with the exception
of the surface averaging method, put relatively Tittle stress on the topological configuration
of points controlling surface shape in any local area.

The most commonly used type of network (Fig. 8) is one where the cells are quadrilateral
in plan view: the connections between data points imply that the network is topologically
equivalent to a planar rectangular grid. Triangular networks (Go&l, 1968; Sabin, 1968b, 1969a,
1971a; Barnhill, 1974, 1977; Birkhoff and Mansfield, 1974; Lawson, 1977) and networks having
some pentagonal cells (Sabin, 1968b) can also be used. The networks need not be regular, al-
though this is usually the case. Practical applications of irregular network representation
of complex objects have used combinations of twisted quadrilateral and triangular cells (Tipper,
1976, 1977). From now on, however, it will be assumed that the data are available as coordi-
nates of the nodes of a network of quadrilaterals: this conforms to the Cherokee data set
(Fig. 9).
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FIGURE 8. A (5 by 4) mesh of points which is
topologically equivalent to a planar
rectangular grid.

There are two advantages to this network approach: (1) It is compatible with most CAD
methods--each cell is used simply as the base for a single surface patch; (2) It reduces the
surface representation problem to a standard one of bivariate interpolation or approximation
over a quasi-planar grid. In the next section some of the fundamental features of univariate
and bivariate interpolation are introduced.

FIGURE 9. Perspective projections of the Cherokee data set: center of projection located at
z = =50. See Figure 29 for identification of viewing angles ¢ and 8. (a) Top sur-
face, ¢ = -100°, © = -50°. (b) Top surface, ¢ = -160°, 6 = -50°. (c) Bottom sur-
face, ¢ = -100°, 6 = -50°. (d) Bottom surface, ¢ = -160°, 6 = -50°,
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UNIVARIATE AND BIVARIATE INTERPOLATION

The mathematical theory of interpolation and approximation is treated at length by Davis
(1963); here we are concerned only with some of its more practical aspects. For simplicity's
sake only polynomials of restricted degree are here considered as interpolants. The notation
refers to rectangular Cartesian coordinates (x, y, z), but the approach applies also in a
curvilinear coordinate system.

Univariate interpolation

In the univariate case, an interpolant is simply a function whose form is constrained by
an ordered set of data points. It is usually required to pass through each point, but may in
addition have to conform to some specified conditions on its derivatives. For polynomials the
following theorem may be proved (Walsh, 1935, p. 49):

Let values w?) be given at each of (m + 1) distinect points, T
where © = 0, 1, ..., mand § = 0, 1, ..., n,. In general n; # 2

for i # k. Then there exists a unique polynomial P(x) of degree

m
N=-1+ % (ni + 1), whose derivatives satisfy the conditions
=0

P(J)(xi) =w7(:‘7) for g =0, 1, ..., n; and 1 =0, 1, vov, m.

The general case of this theorem (arbitrary values of nys polynomial of degree N) leads
to what is known as Full Hermite interpolation (Davis, 1963). A less elaborate system is ob-
tained when n; = 1, for all i. This system, termed Simple Hermite (or osculatory) interpola-
tion, gives only positional and first-degree interpolation at each data point. The interpolant
is of degree (2m + 1); its form is given by Hildebrand (1956, p. 316).

The simplest interpolation system is one where positional interpolation alone is required
(ni = 0, for all i). This is the commonest situation because in practice it is very unusual
to find a data set containing anything save the crudest estimates of derivatives (cf. Birkhoff,

(m-])] and is, of course, unique.

1969). The interpolating polynomial is of degree m [class C
When m is small, the coefficients of the polynomial can be simply obtained by substitution of
the wgo) into the polynomial equation, followed by solution of (m + 1) simultaneous linear
equations. When m is large, it is more convenient to express the interpolant differently, and
numerous such schemes have been developed (see for example the descriptions in Whittaker and

Robinson, 1944). One of the most useful of these is Lagrange's formula:

P(x) = g wgo) . Li(x)
i=0

m m
where Li(x) =[n (x- xj)]/[ il (Xi - xk)]
j=0 k=0
j#i k#1
Each of the alternative schemes can be rearranged algebraically and shown to be equivalent
to the Lagrange formula. For this reason the interpolation of point values alone is often
termed Lagrangian interpolation.



22
Bivariate interpolation

By analogy with univariate interpolation, a bivariate interpolant is a function which re-
produces pos.itional and derivative information at points in a three-dimensional space. Two
other features also carry over from the univariate case; the uniqueness theorem, and the con-
cepts of Lagrangian and Hermitian interpolation. Here the points to be interpolated are re-
stricted to be the nodes of a planar rectangular grid. In general, however, an interpolation
polynomial will exist if the points form either a rectangular or triangular mesh (cf. Davis,
1963, p. 27).

The most obvious way of obtaining a bivariate interpolant is to generalize a univariate
one. We can develop this idea by considering interpolation over a single cell (Fig. 10), in
which B, and By are univariate interpolation operators acting in the x and y directions respec-
tively. Once their mathematical form is specified, these operators become the interpolating
functions we discussed earlier: they may be Hermitian or Lagrangian. If approximation is
required rather than interpolation, By and By are simply approximation operators. Whereas in
the univariate case one can only interpolate (or approximate) between points on a line, in
the bivariate case two alternatives are possible: (1) interpolation to points in space, e.g.
to the corner points of the cell [P(0,0), P(0,1), P(1,0), P(1,1)]; (2) interpolation to lines
in space (space curves), e.g. to the sides of the cell [P(x,0), P(0,y), P(x,1), P(1,y)]. Note
that either alternative can itself be Lagrangian or Hermitian, depending on whether derivative
values are specified at the points and on the space curves.

There are four possible ways in which the operators Bx and By can be combined (Gordon,
1971). These are:

(1) use of B, to interpolate between P(0,y) and P(1,y),

(2) use of By to interpolate between P(x,0) and P(x,1),

(3) the Cartesian product BxBy (= ByBx)’ giving interpolation between P(0,0), P(0,1),
P(1,0) and P(1,1),

(4) the Boolean sum B, * By - BxBy’ giving interpolation between P(0,y), P(1,y), P(x,0),

P(x,1) and, by implication, also between P(0,0), P(0,1), P(1,0) and P(1,1).

P01 P(x,1) P(11)

POyl B, P(1y)

X

By

P0,0) P(x,0) P(1,0)

FIGURE 10. Bivariate interpolation over a single rectangular cell. B, and B, are generalized
univariate interpolation operators acting in the x and y directions respectively.
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The first and second alternatives produce what are termed lofted (ruled) surfaces; each
surface can be regarded as a set of isoparametric curves parallel to either the x or y axis.
The third alternative is also known as the tensor product (or cross product) representation,
and is the most commonly used, both for approximation and interpolation. A bivariate Carte-
sian product generalization of Hermitian interpolation is given by Ahlin (1964). The fourth
alternative is the most general, and of substantial theoretical interest. Despite this, it
is in practice unused (Forrest, 1972a, p. 351). It will be discussed further during the de-
scription of Coons surfaces.

We are now in a position to consider specific schemes of approximation and interpolation
over a network of quadrilaterals. In the succeeding sections individual CAD methods will be
described which implement some of these schemes.

BERNSTEIN-BEZIER CURVES AND SURFACES

One of the earliest practical CAD systems was that devised and implemented by Bézier
(1972, 1974) at Renault. We select it as the first CAD method to be described because it is
a straightforward application of the idea of networks. In Bézier's system, termed UNISURF,
surfaces are described in a particularly elegant manner. Subsequently Forrest (1972b) and
Gordon and Riesenfeld (1974a) have shown that the method is simply an application of classical
Bernstein polynomial approximation (Davis, 1963) in a curvilinear coordinate framework.

Fundamentals of the Bézier method

The mathematics of Bézier's method is quite straightforward; for simplicity it is developed
first for curve fitting and then generalized for surfaces. Consider a string of points, fi,
where i = 0, 1, ..., m. Vector notatign is used in accordance with the curvilinear coordinate
system outlined earlier. The Bernstein polynomial approximant to the polygon [31] is

m
Buw =1 g% L [71
i=0
where the wi(u) are the Bernstein basis functions, and u is a parameter constrained to lie in
the range 0 +~ 1. The basis functions are in fact the discrete binomial probability density
functions, i.e.

=My - 8]

The functions for m = 3 are plotted in Figure 11.

Three properties of the Bernstein approximant are especially important:

(1) It interpolates the first and last points, FO and 3&, of the polygon;

(2) It is a convex combination of the polygon vertices, and hence ﬁ(u) lies within the
convex hull of the polygon (Fig. 12). The polygon [31] is known as the control polygon, and
each of its individual points is known as a control point.

(3) It provides variation diminishing approximation (Schoenberg, 1967), i.e. the approxi-
mant is always less undulatory than the function being approximated. In practice this means
that no straight line can cut the approximant more times than it cuts the function itself.
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FIGURE 11. Bermstein basis functions for m = 3.
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FIGURE 12. Bézier curve, m = 8. Control poly-
gon is indicated by unbroken heavy
line, interpolated curve by Llight
line. The convex hull of the con- P
trol polygon ig shaded. 5

Another interesting property (Bézier, 1972, p. 121-122) is the geometric interpretation
of equation [7]. This is illustrated in Figure 13 for a three-sided polygon (m = 3). To
determine the value of the approximant at u = Ug> find on each side of the polygon the point
3%, where ?% - ﬁi = uo(§1+1 - ?1), i=0,1, ..., (m=-1). These points 3% now define an (m - 1)-
sided polygon, and can be treated in the same way as the original points 31. After m applica-
tions of this procedure a single point is left. This is the value of ﬁ(uo).

The generalization of the Bernstein-Bézier method to surface approximation is via the
Cartesian product of the univariate basis functions. Thus the approximant is
n

P (u) v.(v) P.o. [9]

B(u, v) =
0 j=0 1 J 1,J

i

o3

where qﬁ(u) and wj(v) are defined in equation [8].
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FIGURE 13. The geometric interpretation of a Po
Bézier curve, for m = 3, U, = 0.75.
The original control polygon <s
2 2 2 2 d the inter
P0+P1+P2»P3+an nter-
polated point is B(uo).

This approximant interpolates the four corner points of the network (30 0 fO n’ fm 0° fm n)

(see Fig. 14), and Ties within its convex hull. These properties are useful in practice because
(1) they enable the surface to be "tied down" at its four corners, and (2) they give a polyhedral
box which bounds the surface very closely.

Interpolation and inversion

As an interpolant to the set of points, Ei,j’ the Bernstein-Bézier surface is far from satis-
factory. This is hardly surprising because Bernstein polynomials are known to have poor conver-
gence properties (Davis, 1963). Where a Bernstein-Bézier surface must interpolate every data

' point in a network, it is necessary to generate first of all a network of control points which,
when used as the ﬁi,j in equation [9], will force the surface through the data points.

Determination of this control point network (the control polyhedron) is in principle a
straightforward inversion problem. A total of (m x n + m + n - 3) versions of equation [9] are
set up, with B(u, v) being in each case a node of the data point network and the 3i,j the con-
trol points to be calculated. Arbitrary values are used for the parameters u and v, albeit ones
which appear reasonable. Inversion of the square coefficient matrix then gives the values of
the control points. It is obviously unnecessary to calculate the corner points of the control
polyhedron, because they are identical to the corners of the data point network.

The solution of these equations is clearly not unique--an unlimited number of control poly-
hedra can be constructed which produce Bézier surfaces satisfying the data point constraints.
The dilemma thus exists of finding an adequate parametrization for the surface. There appears
to be no obvious solution other than trial-and-error.

Much of the inversion problem can be eased if an interactive computer graphics system is
available. A set of control points can then be defined initially, and its shape modified at
will until the controlled Bézier surface is adequate. The formal inversion stage is done away
with, and consequently the explicit selection of parameter values rendered unnecessary. This
is the approach taken at Renault (Forrest, 1972b).
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FIGURE 14.

AR RS SOCTCOSIOS
N t\\\\\\““

Bézier surface (a) gemerated from (4 by 4) control polyhedron (b). The surface
interpolates the four corner points of the polyhedron [shown by solid circles in
(b)], but for the sake cf clarity has been shown separately.
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Alternative formulations

The formulation given here is equivalent (but not identical) to Bézier's original form
(Bézier, 1972). This used the relative vectors between adjacent nodes of the network, rather
than the absolute point vectors, 31 or Fi,j' The reasons for abandoning the original formu-
lation are that it is less elegant, and in practice more susceptible to rounding error prob-
lTems in computation (Forrest, 1972b). In Bézier's own words (1974, p. 134), it is "compli-
cated and useless."

One special case is of great interest, that for m = n = 3. The basis functions (Fig. 11)

are
Yolu) = (1 - u)?
¥y (u) = 3u(l - u)?
Po(u) = 3u2(1 - u) = v, (1 - u)
Ya(u) = u? = y(1 - u)

The y(v) are similarly defined. Equation [9] is thus a bicubic in u and v. In matrix
form it is

Pl?0,0 Fo,1 Po,2 -1;0,3— [vo(¥)]
B(u, v) (u) ¥y (u) wy(u) a(u) Fo T e sl [10]
u, v) = u u u U] .....
[wo ARG 2,0 P21 P22 Faal|0atv)
P30 P30 Pap Paz|[vstv)

It is instructive to see how the control points, Fi,j’ relate in this case to other fea-
tures of the surface, particularly to the derivative conditions at the four corners of the
network--we know, of course, that each corner is interpolated in position. The square matrix
of equation [10] can be re-expressed solely in terms of position vectors and partial deriva-
tives at the corner points (cf. Sabin, 1969b). To ensure homogeneity of notation with later
parts of this paper, the corners are referred to by their parametric coordinates for a unit-
square cell, i.e., 30,0 is $(0,0), ?0’3 is 2(0,1), §3,0 is P(1,0), and F3,3 is B(1,1).

The matrix is:
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— > > =)
B 0,00 -3_(0,1)
$(0,0) = + $(0,0) v + B(0,1) 3(0,1)
> > > > > >
B (0,0) B 00 P00 F00 -F,(0,1) P (0,1) PO PO,
u 5— + B(0,0) 5 +—5—+ ——5— + (0,0 5 g m —— + P(0:1) + P(0,1)
B0 3,00 Fa0n a0 . P B Ban Fan
— + $(1,0) 5 -t T R0 5 -t - Io—+ P T+ D
N ? (1,00 £ an .
i P(1,0) ~. 3+ 2(1,0) + P(1,1) B(1,1)
> . . .
where P(h,k) is the position vector at u = h, v = k,

3-‘)‘
3 (h,k) is & '
u
B, (h,K) is &

> . B
Puv(h,k) is ————;———

Example

Control polyhedra were generated for the Cherokee data set (Appendix 3). The values for

u and v for each control point were selected by either of two methods:

(1) for control point (i, j), Ui 5~ i/m and Vig© j/m s

- (J) (3)
j d / d and Vi,j

4(i)

(i )
0+J / d

(2) for control point (i, j), us

k-1
(J)
Z dz 9+

measured a]ong the indexing line j [d( ) is similarly defined for the indexing line i].

where d( ) [= ] is the Euclidean distance from data point fh i to data point ﬁk,j

No attempt was made at any type of optimization; furthermore, the inversion was carried
out non-interactively. Neither parametrization is entirely satisfactory, although the former
is better, at least for this data set. The Bézier surfaces generated from these polyhedra
behave wildly at their edges, although elsewhere they are quite acceptable. The central areas
of the former surfaces (0.17 <u <0.83, and 0.22 <v < 0.78) are shown in Figure 15. It is
evident that Bézier surfaces, when implemented in this manner, are not particularly usable.

FIGURE 15. Bézier surface representations of

center of projection at z = -60.

the Cherokee data set, shown in perspective view:
Only the central areas of each surface are shown

(0.17 < u < 0.83, 0.22 < v < 0.78). (a) Top surface, ¢ = -100°, 6 = -50°. (b) Top
surface, ¢ = -160°, 6 = -50°. (ec) Bottom surface, ¢ = -100°, 6 = -50°. (d) Bottom
surface, ¢ = -160°, 6 = -50°.



29

&
.io.....h.”,
SR
AN
OO0
\“.00000“ )

.,...."...ww"““““““““.. W
Nasehe i,
(S

\
N
N

i

"

WD

)
h

)
j
)

ﬂ“‘ 00 (X

4\ ORSS A
l/f"‘ “
oo

QRO
R,
....%..“.“%%&.................&
RS
Wi
SN
RSSO
| g\.............wmm%um%«w

...... OSSR
........ %&oﬂoﬂ% ) i
N }’o o%',%%%«né

=04

=N

Sy

=T

<=

=

<2

(ay b)),

FIGURE 15.



30

NN
RRORRN
NRRRA
ANNAN
AN
AR

\
) \

SO
-,
S
N
R $9000111000es®
RO AA
RO AN
(OSSN S
Wit
SR
XSS TARBEOONI A
O IR
N RSSO
RITIISERR
O e e
e
. . a8
il S
AN
| ﬂ#&#&vlll &nw:o

NG
\...,,zﬂm”.”___
...zz..
. g

(e, d).

FIGURE 16.



31
Summar

Bézier surfaces have now been used for long enough that most of their advantages and dis-
advantages are known. In particular, the original Renault system has operated successfully for
several years. Features which should be stressed about the method are:

(1) The surfaces are based on a mathematical formulation which is both simple to understand and
computationally efficient.

(2) Once the inversion problem is overcome, the surfaces are tractable, well-behaved interpo-
lants. Non-interactive inversion, however, may prove troublesome.

(3) The method is global, i.e. moving one control point alters the whole surface.

(4) The degree of the approximant is controlled by the dimensions of the control polyhedron,
and thus the continuity of the surface changes with the number of points defining it, much
as in the simpler surface-fitting methods described earlier. This inability to maintain a

~ Prescribed continuity is one of the principal drawbacks to Bézier's method.

(5) Although the control polyhedron does bound the surface closely, the surface shape is often
only a poor representation of that of the polyhedron (Gordon and Riesenfeld, 1974a). Ex-
tensions of the method have been developed to counter this, for example by re-parametriza-
tion of the surface, or by use of conditional probability density functions instead of the
true Bernstein basis (Gordon and Riesenfeld, 1974a). Even with these added features, how-
ever, the Bézier surface is not flexible enough for many purposes. A better surface can
be devised, based on the appropriate locally based extension of the Bernstein basis. This
is the B-spline basis (Gordon and Riesenfeld, 1974b, p. 103), and underlies the next method
to be described.

B-SpLINE CURVES AND SURFACES

Mathematical splines are a versatile class of functions originally developed for use in
data smoothing (Schoenberg, 1946). Subsequently they have found wide application in interpo-
lation and approximation. For practical purposes we can regard a mathematical spline as a set
of functions of constant degree which reproduces certain of the properties of a physical spline--
a thin elastic strip used by draftsmen to draw smooth curves through sets of coplanar points.
Each function is valid only between one pair of adjacent data points, and neighboring functions
are constructed so that they merge together with some specified degree of continuity. (In the
spline of degree three, which most closely resembles the physical analogue, the functions are
cubic polynomials and give second derivative continuity.) The functions can be constructed
using either global or local bases. We return to the global type of spline function later in
this paper, and for the present concentrate on how to construct locally based spline approxi-
mants which can be used both for curve and surface design. These are termed B-splines.

B-splines were first introduced into the field of computer-aided design by Riesenfeld

(1973); see also Gordon and Riesenfeld (1974b). A closely related treatment is due to Clark
(1974, 1976a).
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Fundamentals of B-spline approximation

It was pointed out earlier that B-spline approximation is the appropriate locally based
extension of Bernstein approximation. For simplicity we introduce B-splines not from the
strictly mathematical viewpoint (see for example de Boor, 1972; Gordon and Riesenfeld, 1974b),
but use instead an approach similar to our treatment of the Bernstein-Bézier method. Again
the curve-fitting case is considered first, and later generalized to cover surfaces.

Consider, as before, a string of points, Fi’ where i = 0, 1, ..., m. It is required to
approximate this by a piecewise curve having specified continuity between its segments. By
analogy with equation [7], each segment is written as

T (u) =

>
r gi(W) - Pryig

I ™M x

i=0
forr=1,2, ..., (m-k+1)
where gi(u) are the B-spline basis functions,
u is a parameter constrained to 1ie in the range 0 - 1, and
k is the degree of the basis functions.

The curve is composed of (m-k+1) segments, and the points at which adjacent segments join
are termed the knots of the spline function. Because the knots have uniform separation in the
u-parameter space throughout the whole curve, the approximant is known as a uniform B-spline.

The basis functions are polynomials in u, and their coefficients can be simply determined.
As an example, consider the cubic B-spline (k = 3) and let Pi_g be the required coefficients.

Then, go(u) = p](] -u)d+ pz(.l -u)?+ 93(] -u) + 94
E](U)

95(] - U)3 + 96(] - u)z + 97(] - U) + 98
By symmetry

]

£o(u)
&3(u)

In this case adjacent segments are required to join with continuity up to the second deri-
vative. Hence for the join between segments r and (r + 1),

3 2
Pl ¥ pgl™ + p7U ¥ og

3 2
PUT T ppUT * gl oy

-

Tyq(0) = T.(1)
f,,(0) = T.(1)
T, (0) = T(1)

These stipulations require that the basis functions satisfy the following conditions
(Clark, 1974):

Ei(o) = €1+](])

£1(0) = £1,4(1) for 1= 0, 1, ooy (k = 1)
£2(0) = €2,,(1)

and £5(1) = £5(1) = £5(1) = 0
£,(0) = £.(0) = £4(0) = 0
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Furthermore, the basis functions must be normalized:

k
T gi(u) =1 for all u .
i=0

These conditions lead to the following equations:

PPt ooyt P3 + g - pg = 0

3p5 + 2p6 + Py = 0

300+ 20p * 03 - py =0

307 * 0 -0 =0

Pp =Pz =P =0

Py * oyt o3t 20 ¥ o5t pg t g+ 205 =1

Solution of these equations gives values for the coefficients, and the basis functions
are found to be

Eglu) = (1 -u)® / 6
Eq(u) = [-3(0 - u)® +3(1 -u)2+3(1-u)+1]1/6
..... f12]
Ez(u) =[-3u® +3u2+3u+1]/6
gg(u) = u® /6

These are illustrated in Figure 16. If only positional and tangent continuity are required
between segments, the cubic basis functions are replaced by quadratics (k = 2). In this case
the functions (Fig. 17) are

Eglu) = (1 - u)? /2
E](u) = (-2u2+2u+1)/2
Ep(u) = u? /2

Examples of cubic and quadratic B-spline curves are given in Figure 18 for two control
polygons: the curves are respectively of class C2 and C! everywhere along their length.

B-spline approximation shares with Bernstein approximation the variation diminishing and
convex hull properties mentioned earlier. It is clear though that the B-spline approximant
will not, in general, interpolate any of its control points. The only way to achieve interpo-
lation is to use repeated control points. Coons (1974) has described some of the interesting
features which can be produced in a B-spline curve by this technique.

As an example of the use of repeated control points, consider a single cubic B-spline
segment, with control points F], fz, 33, 54 (Fig. 19). When 31 # 32 = FS = 34, i.e. when
three adjacent control points are coincident

(1) =?>2
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FIGURE 17. Quadratic B-spline basis functions.
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FIGURE 18.

FIGURE 19. Cubic B-spline with repeated control F%
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d

Examples of B-spline curves. The control polygons (heavy lines) join the control
points (cirecled). The light lines are the interpolated B-spline curves. (a) Quad-
ratic B-spline, open polygon. (b) Cubic B-spline, open polygon. (c) Quadratic B-
spline, closed polygon. (d) Cubic B-spline, closed polygon.

points. Light line is the control
polygon, heavy line is the B-spline
curve.
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Thus the curve passes through the repeated control point, in this case for the parameter
u=T1. (The corresponding condition for a quadratic B-spline segment occurs when two adjacent
control points are coincident.) If another segment is adjoined at the repeated control point,
C? continuity is maintained throughout, although it is clear that the curve has a distinct cusp
and hence is discontinuous in slope (Fig. 19). This paradox occurs because the tangent vector
vanishes at the repeated control point. Interpolation in a B-spline curve is thus obtained at
the price of slope discontinuity. It is worth noting that the ability to produce slope discon-
tinuities at specified points is especially important in a practical CAD system, although per-
haps less valuable for our purposes.

B-spline surfaces

Generalization from curves to surfaces is via the Cartesian product, as for the Bézier
method. Each surface patch is

=~

k

-> >
T, (u, v) = = T g.(u) &:(v) P . .
r,s i=0 j=0 i J r+i-1,s+j-1

forr=1,2, ..., (m-k+1) and s =1, 2, ..., (n-k+1)

where gi(u) and gj(v) are the B-spline basis functions (see equation [12] for the bicubic case),
u and v are parameters lying between 0 and 1,
(m+1byn+1)is the size of the control polyhedron, and
k is the degree of the basis functions.

For a bicubic patch (k = 3), a total of 16 points control its shape; for a biquadra-
tic patch (k = 2), only nine (Fig. 20). Surface shape at any point is therefore complete-
1y insensitive to movement of control points outside a given range (in the parametric
space). The movement of single points never, of course, affects the degree of continuity

Bicubic _|

surface

Biquadratic
surface

FIGURE 20. Network of control points for B-spline surfaces. The bicubic surface is controlled
by 16 points (small circles); the biquadratic surface is controlled by 9 points
(large circles).
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between adjacent patches. These characteristics make B-spline surfaces very attractive both
for surface design and surface representation applications, and numerous systems have been
designed which use this approach (see for example Clark, 1974, 1976a).

Perhaps the greatest drawback to the use of B-spline surfaces is that, even more than in
the Bézier system, the final surface owes its shape to control points which it does not inter-
polate. Although the concept of a control polyhedron is simple, and the modification of a sur-
face by movement of individual control points is straightforward, it has been found in practice
that interpolation would be a most desirable condition (Clark, 1976a). A second drawback is
that, at least for the Cartesian product formulation, B-spline surfaces cannot be blended into
arbitrarily shaped boundaries. We shall see in a later section how the use of B-spline space
curves in a Coons surface formulation can remove both of these disadvantages.

The inversion problem

Because in general the B-spline approximant is not a satisfactory interpolant, an inver-
sion procedure is required, as was the case for Bézier curves and surfaces. The problem is
much simpler for B-spline curves, however, for two reasons. Firstly, they are piecewise curves
of relatively Tow degree and hence the order of equations to be solved is correspondingly lower.
Secondly, because only uniform B-splines are being considered, the computation is drastically
reduced in complexity.

The inversion procedure for B-spline curves is carried out as follows (a more detailed
description is furnished by Wu, et al., 1977): A total of (m-k+1) versions of equation [11]
are set up, one for each segment of the curve. The ?(u) are the data points and the P are
the control points to be calculated. In each case the parameter u is set to zero. An addi-
tional version of equation [11] is also set up for the (m-k+1)'th segment, using u = 1. To
account for the remaining (k - 1) degrees of freedom, it is necessary to make some stipulations
about the form of the two end segments. Several approaches are available, and we shall con-
sider some of them at greater length in the description of global-basis spline interpolation.
For now, two approaches are of use. The first is to generate artificial control points, 3_
and 3h+], at the ends of the curve in such a way as to ensure that the curvature at points
T](O) and %h-k+1(]) is zero (Wu, et al., 1977). The second approach is to use repeated con-
trol points at the ends, thus tying the curve down in a similar manner to a Bézier curve.

1

The inversion procedure for B-spline surfaces can be derived in a similar way. As was
the case for Bézier curves, the inversion problem is greatly eased if it can be carried out
on an interactive computer graphics system.

Example
Control polyhedra were generated for bicubic B-spline representations of the Cherokee

data set: the control point coordinates are given in Appendix 4. The actual B-spline surfaces
are shown in Figure 21, and they are clearly acceptable representations of the data.

FIGURE 21. B-spline surface representations of the Cherokee data set, shown in perspective
view: center of projection at z = -50. (a) Top surface, ¢ = -100°, B = -50°.
(b) Top surface, ¢ = ~160°, 6 = -50°. (c) Bottom surface, ¢ = -100°, 6 = -50°.
(d) Bottom surface, ¢ = -160°, 0 = -50°.
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Summary
The advantages and disadvantages of the B-spline approach to surface representation are

as follows:

(1) It uses a local basis formulation.

(2) It is computationally efficient. Clark (1976a) demonstrates how the method can be coded
for efficient real-time display.

(3) Pre-specified continuity is always maintained over all the surface. This is an intrinsic
feature of the B-spline method.

(4) Control points are not interpolated and hence inversion is necessary. In practice, in-
terpolation would be desirable.

(5) Matching to arbitrarily shaped boundaries is not always possible.
Overall, the B-spline approach has much to recommend it, and it.forms the basis of a geo-

logical surface modelling systemimplemented by the author, and used to produce the examples

of manipulation given in the second part of this paper. For now, however, another related ap-

proach will be examined--the use of globally based spline surfaces.

GLoBAL-BAs1S SPLINE INTERPOLATION

In the last section we dealt with a class of locally based approximating splines (B-
splines). Interpolation by splines is also possible, using either local or global bases. The
use of global splines (Schoenberg, 1946) has long been common for surface representation. Some
of the earliest work is that of Birkhoff and Garabedian (1960) and de Boor (1962). Spline sur-
faces have been used for surface fitting in geology (Anderson, 1971; Whitten and Koelling, 1973,
1975), and in geophysics (Bhattacharyya, 1969; Holroyd and Bhattacharyya, 1970).

Many descriptions of global-basis spline interpolation have successfully obscured its
essential simplicity, both in theory and in application. There has been, furthermore, an un-
fortunate tendency to segregate it from many of the other CAD techniques, to which it is close-
1y related: for a noteworthy exception, see Ahlberg (1974).

Some fundamentals of spline interpolation

Much of this treatment follows de Boor (1962), although the notation is in many cases
reversed. Once again the curve fitting problem is studied before the generalization to sur-
faces. Consider the set of points, Pi’ where i = 0, 1, ..., m. It is required to define a
piecewise curve which interpolates each of these points (termed knots), and which is of class
C? (continuity is maintained up to second derivative). For the curve fitting problem we write
each point as (ui, xi), and stipulate that the values of the uy be distinct and monotonically
increasing with i. Thus the technique is restricted initially to the univariate Hermitian
interpolation of a single-valued function.

In order to maintain C? continuity, each of the functions must be at least a cubic poly-
nomial. Let the function valid between P and L be

3 i
x(u) = iEO ai(u - ur) ..... [13]
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This may be rewritten in terms of the values of the function and its tangent at the
end-points of the interval. Equation [13] is then

(Xpyy = %) _ (xpyq *+ 2x7)

x(u) = x_ + x;(u - ur) + |3

- 2 4
, (u-u.)

(ur+1 - ur)z (ur+1 - ur)

Oy = %) gy + %) W-u) [14]
(ur+1 - ur)3 (ur+1 b ur)2

-2

where X, and Xp41 are the function values at P, and Pl respectively, and
1 1
X, and Xp4 are the tangents.

Now Xy, and X4q are known for all r, and so x(u) can be calculated if the derivatives at
each of the (m + 1) points can first of all be found. This is done by equating second deriva-
tives at each of the (m - 1) interior knots for the pairs of functions which join there. For
knot P, these are the r'th and (r+1)'th functions. A set of (m - 1) simultaneous linear equa-
tions is obtained:

Auy ;g Au,,
Au X g ¥ 2 (Aur * Aur—l)xr AUy Xpyp =3 Au,, (xr+1 b Xr) * Auy._ (Xr - Xr-l)

where Aur =u - u,. , and

r+1 r

Au =u

r-1 " Y T Uy

If the tangents at the two end-points are known (xb and xﬁ), then the equations can be
simply solved. The coefficient matrix is tridiagonal and strictly diagonally dominant, and
consequently non-singular. The equations are therefore independent and the solution for x;
unique (de Boor, 1962). There is thus but one piecewise cubic of class C2 which interpolates
the data points.

In a substantial number of cases the end-point tangents are not known, and other end-
conditions must be used. This is the same problem discussed earlier in the context of B-
spline inversion. One common end-condition is to stipulate that the end-point curvatures be
zero, i.e.

n
5><=

n
o

The two equations which follow from this are

2 Aug x6 + Aug xi = 3(x] - xo)
and

) .

Au 4 x&_] + 2 Au 4 xé = 3(xm - X

These can be added to equations [15] to give a set of (m + 1) simultaneous linear equations
in (m + 1) unknowns, which can then be solved. The solution is unique for the same reasons
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as before. Another end-condition is to require that the end functions be parabolic in form,
i.e., that the coefficient of the cubic term in equation [14] be identically zero. The equa-
tions consequent on this are:

Auy xb + Aug xi = 2(x] - xo)
and

1
Aum—] Xm-1 * Aum-] m

The solution proceeds as before. The final end-condition to be considered is for a periodic
spline of period (um - uo). In this case Xm = Xgs Xn T Xo° and Xp = Xg» 1-€s there are only m
distinct points in the system. To use up the remaining degree of freedom, a version of equation
[15] is set up for Py

Spline surfaces

The extension of spline interpolation from curves to surfaces is particularly simple. We
define a rectangular mesh in the space (u,v,x) (Fig. 22), and for each of the (m-by-n) cells

construct a bicubic polynomial which satisfies the following conditions: (1) it interpolates

each corner point in value, x; (2) its corner tangents, gﬁ-and %é

, and cross-derivatives,
2

3%x 5 . . : X X

A scribed es. F W ite — SR

TR have presc values or notational convenience we write m as ux, o as v and
32x .

ou-ov as qu'

.
>

O
I
j

FIGURE 22. Configuration of mesh for fitting
spline surfaces; m = 7, n = 6.
Coordinate system is (u,v,x), with
the x-axis perpendicular to the
plane of the paper. The point
P, s shown 18 for r = 6, s = 4,

3

Points at which the derivative iy

is supplied are shown by solid
ecircles; points at which & 18 sup-

plied are shown by open circles.
The cross-derivative w® 18 sup-

plied at the four corner points of
the mesh.

®
0O 1 2 3 4 5 6 7
r

By analogy with the univariate case, boundary conditions must be prescribed. It is most
convenient to use the following set:
(1) X is known at r = 0, m; s =0, 1, ..., n

(2) WX is known at r = 0, 1, ..., m;y s =0, n

(3)

Thus the tangents are supplied on opposite sides of the mesh, and the cross-derivatives

- is known at r = 0, m;y s = 0, n .

at the four corner points. The remaining values of S are calculated by univariate spline in-
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terpolation along each line v = constant, for v = 0, 1, ..., n. In the same way, the remaining
values of Jare calculated by univariate spline interpolation along each line u = constant,
foru =0, 1, ..., m. The unknown values of the cross-derivative are calculated in a two-step
univariate spline interpolation procedure: (1) values for points along v = 0 and v = n are
calculated from the four corner values; (2) remaining values are calculated along each line
u = constant, foru=20, 1, ..., m.

It is clear that the bicubic polynomial for each cell is simply a Cartesian product Her-
mitian interpolant. In a manner similar to the treatment of the univariate case, it can be
proved that the piecewise bicubic polynomial comprising all the individual cells is the unique
one which gives C? continuity (de Boor, 1962).

The bicubic polynomial for the cell with its origin at P is
3 3

Sr’s(u,v) = iEO jEO % 5 (u - ur’s)(v - Vr,s) ..... [16]

where P is (u

r.s ), and the 04 5 are 16 coefficients.

r,s’ vr,s’ Xr,s
The coefficients, “ij’ can be determined from the corner values, tangents and cross-
derivatives (these may be termed the corner point conditions) after some straightforward al-
though Taboricus algebraic manipulation (see for example Whitten and Koelling, 1973). It is
more convenient, however, to rewrite equation [16] in matrix form and to arrange the coeffi-

cients into a (4 by 4) matrix V. Then

(v-ve o)

Sr’s(u,v) =[1 (u- ur,s) (u - ur’s)2 (u - ur,s)al v (v Vr,s)2 ..... [17]
(v - vr’s)3

where i )

%0 “01 %2 %03
“0 *11 %12 %13
%20 %21 %22 %23
%30 %31 %32 %33
The matrix v can itself be more conveniently expressed as the product of a matrix, B, con-
taining the cell corner point conditions, and a standard matrix, A(h), whjch incorporates infor-
mation on the cell side, h, and which blends together the terms in matrix B. We shall discuss
this blending function matrix again when describing Coons surfaces: its form is

1 0 0 0

0 0 1 0
-3/h? 3/h%  -2/h -1/h
2/h®  -2/h? 1/h? 1/h?

Matrix Vv in equation [17] 1is thus

vV = A(Aur) -B - A'(Avs) .....[18]
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where Aup = Upyq o = Up o % Upyq obq T Upose] o
BVs = Viostl 7 Vs T Ve#l,s+l T Vedl,s

1 0 0 0

ay =| © 0 1 0

-3/h? 3/h%  -2/h -1/h
2/h% -2/h® 1/h? 1/h?
A' is the transpose of A , and

B : i
r,s Xp,s+1 : vir,s Vi, s+l

r+l,s xr+1,s+1 : vxr+1,s vxr+1,s+1
B = |eeeecercreceneneens veevens eeereteeestenesenssnsesnaressnssnsenncenn

Wros uBrstl s utrshl

ur+l,s  u¥r+1,s+] : uvxr+1,s uvxr+1,s+1

L

The boundary matrix B is clearly divisible into four similar partitions. The formulation
used here for equation [18] is functionally identical to equation (10) of de Boor (1962), but
has been rearranged to conform to standard Coons patch usage.

Equations [17] and [18] can be consolidated into one equation, which can be regarded as
the basic equation for a bicubic spline surface. It is

1

(v - Ves)
Sr’s(u,v) =[1 (u - ur,s) (u - ur,s)2 (u - ur,s)S] . A(Aur) B - A'(Avs) (v - vr,s)2 .....
(v -v. )’

Special cases
Two versions of equation [19] are of special interest: the case where the cell is square,

and the extension to a curvilinear coordinate system. In the first case
Aur = AvS =1,
and hence 1 0 0 0
Abu) =A@v) =| % O T 0o,
-3 3 -2 -l
2 -2 1 1

In addition, we can simplify matters further by setting Up s to zero. This simply makes

Pr s the origin of the coordinate system for the cell. Equation [19] then reduces to
1

Sy S(u,v) =[1 u u2 u¥]J-A-B-A" - vy ... [20]
3 v3
The row and column vectors are both simply the cubic polynomial basis functions.

The extension to a curvilinear coordinate system (see Ahlberg, 1974, for a discussion
of some problems) just involves making the Sr s into a three-component vector, §r s? and using
L] t]
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a boundary matrix B in which each entry is also vector-valued. Matrix B thus contains (4 x
4 x 3 = 48) boundary conditions. The basis functions and the matrix A are the same for each
component. Equation [20] becomes

3

1
v

>

S, s(u,v) =[1 u u? uw¥l-A-B-a v} . [21]
v

Example
Global-basis splines cannot be applied directly to the Kansas data set because its cells

are not rectangular when projected onto the base-plane of a rectangular Cartesian coordinate
system. The vector-valued extension (equation [21]) can, however, be used provided that suit-
able boundary conditions are specified. As neither the tangent vectors at the edge-points nor
the cross-derivatives at the corner points have been supplied, these must first be estimated.
Suitable procedures for doing this are discussed in the following section on Coons surfaces,
and so illustration of spline surfaces will be deferred until then.

Summary
Global-basis splines have been used successfully for surface representation for many years.

Their advantages and disadvantages are as follows:

(1) The representation which they give is global, because it is necessary to specify tangents
and cross-derivatives at the mesh boundary.

(2) It is usually highly inconvenient to have to specify derivatives of any kind anywhere in
a network. This is especially true for cross-derivatives. Hence surface representation
using global-basis splines may well be a good solution to an unrealistic problem.

(3) The surface produced is a Hermitian interpolant at every data point.

(4) The method is naturally related to both of the most important CAD methods--B-splines and
Coons patches.

CooNs SURFACES

We now proceed to the class of CAD surfaces about which more has probably been written
than any other. These are known as Coons surfaces, and were developed in the earliest days of
computer-aided design. The original work was carried out by Ferguson (1964) and Coons (1967),
but perhaps the clearest and most comprehensive description of the method is that given in
Forrest's (1972a) survey. This also provides a substantial bibliography of both published and
unpublished material.

In previous sections we discussed surfaces which are either local or global, and which
either interpolate data or approximate it. Thus Bézier surfaces were found to be global ap-
proximants, B-spline surfaces to be Tocal approximants, and de Boor's spline surfaces to be
global interpolants. At the end of the last section, however, it was shown that each of the
surface patches given by the bicubic spline representation could be defined explicitly in
terms of its boundary conditions (equation [19]). The representation can thus be a local
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Hermitian interpolant provided that the boundary conditions for each cell are known indepen-
dently. Because the representation is in Cartesian product form, the boundary conditions
refer only to the corner points of each cell, i.e. to the nodal points of the network. Coons
surfaces are simply a generalization of this approach to include positional and derivative
information from the cell edges in addition to that from its corners. The whole theory is
developed for a curvilinear coordinate system.

Coons' original description of his method (1967) uses a somewhat confusing mathematical
representation. Here we follow substantially his later work (Coons, 1974), and that of Forrest
(1972a). Forrest has also pointed out (1972a, p. 351) that there is now considerable laxness
in the usage of the term "Coons surface." In its strict sense it should be reserved for sur-
faces which are blends of space curves. In its widest sense it includes as well the Cartesian
product spline surfaces of equation t19].

Fundamentals of Coons surfaces

To obtain the most general interpolant, a Boolean sum representation is used instead of
the familiar Cartesian product. Consider initially a surface which is to be defined over the
domain 0 <u<1and 0<v<1 (Fig. 23). Use of a unit square domain is simply a mathematical
convenience; the results can be generalized to any domain which maps one-to-one onto it. The
surface, 6(u,v), is to be constructed such that it is a linear blend of the corner points
[%(0,0), P(1,0), P(0,1), B(1,1)] and of the edge curves [F(0,v), P(1,v), P(u,0), P(u,1)].

The surface will be a Lagrangian interpolant: it will match in position with each of its
four neighbors.

The Boolean sum surface is §u + ﬁv - §u§v, where §u and §V are the Tinear operators which
interpolate in the u and v directions respectively. Each can be defined as a Tinear blend of
pairs of corner points on opposfte edges of the cell. Thus

P(0,v) Fo(v)
B, = [folw)  f(wI | and B, = [F(u,0)  B(u,1)]
P(1,v) f1(v)

where fo and f] are blending functions.
The Cartesian product is

P(0,0) B(0,1)] [fo(v)

BB, = [fpw)  f(w)]

! B(1,0) P(1,1) f,(v)

Hence the bilinear Boolean sum surface (termed the bilinear Coons surface) is
>
P(0,v) fh(v)
> > > 0
Qu,v) = [folu)  fi(u)] + [P(u,0)  P(u,1)]
->
P(1,v) fl(v)
P(0,0)  P(0,1)] [fo(v)

- [fylu) f1(u)]
B(1,0) P(1,1J] LW



P(0,0) !

FIGURE 23. Coons surface, §(u,v), defined over a unit-square u-v domain. Partial deriva-
tives are indicated only at the corner points: the single partial derivatives

> > . . . >
P, and P are shown by solid arrows, the cross-derivatives Puv by open arrows.

The selection of blending functions is controlled by three factors:
(1) for interpolation it is necessary that

fo(0) =1, (1) =0, f(0) =0, f(1)=1,
(2) for axis-independence the u and v functions must be normalized, i.e.
fo(u) + f](u) =1 and fO(v) + f](v) =1,

(3) the functions are usually chosen to be continuous.
The simplest functions satisfying these conditions and giving a linear blend are

fO(U) = (1 -u) f](u) =u
folv) = (1 - v) fi(v) = v
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It is instructive now to consider some specializations of the bilinear Coons surface.
Consider first the case when the space curve 3(u,0) is a linear blend of the points 3(0,0) and
> >
B(1,0), and P(u,1) is a Tinear blend of P(0,1) and P(1,1), i.e.

77(0,0)
P(u,0) = [fplu)  fy)] |
LP(1,0).
and
"P(0,1)7
Plu,1) = [fo(w)  fwl |
_P(]’])_
Equation [22] then reduces to
'3(0,v)7
Qu,v) = [fg(w)  Fl |
LP(1,v) ]

This is simply the linear lofted surface obtained by using the operator B We can ob-
tain the other linear lofted surface by making analogous restrictions on P(O v) and P(] v).
If both sets of restrictions are made simultaneously, equation [22] reduces to

P(0,0) B(0,1)] [fo(v)
Qu,v) = [Folu)  Fy(u)]
p(1,00 POL] LE(v)

This is just the Cartesian product surface, giving bilinear interpolation between the
four corners of the patch. Thus the Boolean sum (Coons) representation can be regarded as
more general than either the lofted or Cartesian product surfaces. Intuitively what we are
doing when constructing a Coons surface is to add together the u and v Tofted surfaces, and
then to subtract a Cartesian product surface to nullify the effect of having considered each
corner point twice.

The Coons representation can now be developed even further to give simple Hermitian
rather than Lagrangian interpolation.

The bicubic Coons surface

It was noted earlier in this paper that most practical surface representation methods
must give surfaces having at least class C! continuity. To achieve this with a Coons surface,
tangent and cross-derivative vectors must be specified at each corner point, and also the
components of the tangent vectors across each of the edges (these components are referred to
here as the "normal vectors"). These normal vectors are univariate functions of u or v,
just as the edges themselves, and so each must be known for all values of its parameter
For conven1ence, the norma] vectors are wr1tten as fo]]ows that across P(u 0) is P (u 0),
that across P(u 1) is P (u 1), that across P(O v) is P (0 v), and that across P(] v)

(I v). Interpolation of the tangent vector components along each edge is, of course, im-
p]1c1t in the interpolation of the edge itself.
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folv)']
f1(v)

go(V)
g7 (v)_]

oYy Oy oy oy
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r

(1)

where fO’ f], 9g» 9y are blending functions.

The blending functions are in this case the product of the matrix A in equation [20] and
the cubic basis functions, i.e.

[fglu)  fu)  gplu)  gy(u)] = [T uu® u?]

= [1 - 3u? + 2u® § 3u? - 2u® § u - 2u? +ut § -u? + u?]
The method for calculating higher order basis functions is given by Forrest (1972a).

It is possible to obtain the Tofted and Cartesian product surfaces from equation [23]
in the same way as for the bilinear Coons surface. The Cartesian product surface is iden-
tical to equation [21], and is generally known as the Coons bicubic patch (Peters, 1974). It
is the surface most used in practical CAD systems (see for example Craidon, 1975).

In a typical CAD system, the surface to be modelled is formed into a network of quadri-
lateral cells, and a bicubic patch defined for each cell. In few cases are the tangent and
cross-derivative vectors known at each node of the network--usually they must be estimated.
It is in this estimation that the main weakness of the Coons bicubic patch lies.

To estimate the tangent vectors one can use two approaches, one global and one local.
The global approach is that outlined earlier in the description of globally based interpolat-
ing splines. Data is provided at the edge of the network, and a univariate spline interpola-

tion technique used to calculate the tangent vectors at each interior node. The resulting
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surface is termed "spline-blended." An approach of this type was used by Ferguson (1964) in
one of the earliest bicubic patch systems.
The alternative approach is to use some local estimation procedure. We may illustrate
this by the estimation of the u-partial derivative (Fu) at the point (j,k) in Figure 24.
This cor~resE()nds to EU(O,O) for patch (j,k), 3u(0,]) for patch (j,k-1), Eu(1,0) for patch
(j-1,k) and Pu(1,1) for patch (j-1,k-1). The simplest estimator is the divided-difference

P =[P 3 ,
u- : jHl,k ” Pj—],k] / (uj+1 - uj_]) ..... [24]
k+1
Cell Cell
Point i-1k ik
k —0
indices Cell Cell

j-1k-1] i, k-1
k-1

i-1 J i+
Point indices
FIGURE 24. Local estimation of derivatives. The points used to estimate the u-partial at

point (J,k) are shown by open circles, those used to estimate the cross-derivative
by solid circles.

For unit square u and v domains the divisor of equation [24] reduces to 2, and the esti-
mator is simply the straight-line slope between mesh points on either side of the one being
estimated. Similar approaches have been used by Hessing et al. (1972) and Akima (1974). The
advantages of this estimation method are that it is local, and computationally simple. It
may, however, produce results which are definitely sub-optimal (see for instance Tipper, 1977,
p. 606). It is well suited to be a "first attempt" strategy in modelling a surface.

Whereas it is relatively straightforward to estimate the tangent vectors, the estimation
of cross-derivatives is considerably trickier. It is quite appropriate to consider these vec-
tors as describing the twist of the surface at a point (Coons, 1974), and for this reason they
are often termed the "twist vectors" of the point. VYet it is not readily apparent (even to
the mathematically sophisticated user) how to obtain a required twist by specifying a vector
of particular magnitude and direction (Forrest, 1972a, 1972b). There appear to be three solu-
tions to the problem: (1) Values can be assigned by trial-and-error when operating in an
interactive computational environment. Adjustments are then made until a surface is obtained
which is visually acceptable to the user. (2) A Tocal estimation procedure can be used
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(Birkhoff and de Boor, 1965). In this case the cross-derivative, [ , at point (j,k) (Fig.

24) is defined by

v
> > N > > u
A N A NS I RIS Il RSL.
(Ugeq = u50) (Vi = Vi)

uv

(3) A11 cross-derivatives can be set to zero, a practice apparently originated by Ferguson
(1964). This results in the generation of what are termed "pseudoflats" at the corners of
each patch. These features may in many cases be neither aesthetically pleasing nor mathe-
matically acceptable, but it is this solution which has been used by most authors.

An alternative solution to the twist vector problem has been devised by Inaba (see
Bézier, 1972), and used as the basis for a working CAD system (termed F-mesh). Clearly the
necessity of specifying the four cross-derivatives for each patch arises because the Cartesian
product bicubic patch (equation [21]) has 16 degrees of freedom, of which only twelve are used
up by positional and tangent vector information (see also Ahlin, 1964). 1Inaba's approach is
to devise alternative ways of using up the four remaining degrees of freedom, thus by-passing
twist vectors entirely. Some of his methods are described by Bézier (1972, p. 152-161).

Further developments of the Coons method

One apparent weakness of the pure Coons formulation (the Boolean sum surface) is that
both the space curves defining the cell edges and the normal vectors must be supplied as unj-
variate functions. In most practical applications this is not possible, but in cases where
it can be done the Coons method is probably the ideal.

Consider the problem of blending a surface into a boundary curve of known form. In a
geological context this might, for instance, be the trace of a subsurface horizon as it inter-
sects the face of a quarry. Only interpolation of position along the curve is required, and
so a bilinear surface is appropriate. Without exception, the Cartesian product methods de-
scribed earlier are unable to give satisfactory results--indeed this was one of the criticisms
levelled at (Cartesian product) B-spline surfaces by Clark (1976a). The bilinear Coons sur-
face (equation [22]) is the ideal solution here, because nowhere does it circumscribe the
form of the boundary curves [$(0,v), 3(1,9), E(U,O), 3(u,1)].

It is profitable then to examine how Coons' method can be used to "represent with
curves" rather than just to "represent with points." The approach is to approximate an ob-
ject's shape by a network of curves, and then to blend them together by Coons' method. For
convenience the form of network used up to now is retained, although Coons (1974) has indi-
cated that this approach can use cells with more than four edges. The boundary curves can be
defined in three ways: (1) B-splines, (2) Overhauser curves, (3) Catmull-Rom splines. The
definition of B-spline curves in a network is a straightforward application of the theory
presented in an earlier section of this paper. The reader should refer to Coons (1974) for
more detailed discussion of this approach. Here we consider in greater detail the use of
Overhauser curves and Catmull-Rom splines.

1. Overhauser curves

In 1968 Overhauser developed a parabolic blending method for surface design of car bodies.
The technique has been much neglected, although interest has recently been revived by Rogers
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and Adams (1976) and Brewer and Anderson (1977). In describing Overhauser's method we follow
to some extent Brewer and Anderson (1977), but attempt to develop it in a manner not dissimi-
lar to that used earlier for Bézier and B-spline curves.

Consider a set of points, Ei’ i=0,1, 2, 3 (Fig. 25). The curve required, ﬁ(u), is a
blend of these points and passes through 3] and 32. It is a cubic in the parameter u, and has
the form 3
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R(u)

._>

by B (u) P S e [25]
i=0

where the Bi are basis functions; each is a cubic in u.

It is clearly possible to adjoin curves of this form at their ends, thus creating a piece-
wise Overhauser curve. Because it is known from Walsh's theorem that only global-basis inter-
polating splines give C? continuity between adjacent segments, the piecewise Overhauser curve
is restricted to class C!.

The Overhauser curve is formed as a 11near blend of two parametric quadratics. One, para-
metr1zed by r, passes through PO’ P] and P ; the other, parametrized by s, passes through F],

P2 and P3 By analogy with equation [25] these curves are defined as
2 2
> B > > _ >
p(r) = 120 u;(r) Py and q(s) = iEO n;(s) Piq

where the Uy and n; are basis functions, quadratic functions of r and s respectively. The

FIGURE 25. Set of points used for constructing -the Overhausgr curve, R(u), shqun by the
solid line. The blended parabolas are p(r*) and q(s). The points Pl and P, cor-
respond to values 0 and 1 respectively of the parameter u.

Overhauser curve itself is parametrized by u. It is written as
>

R(u) = (1-u) p(r) +ud(s) ... [26]

The basis functions for the quadrat1cs can be determined provided that values for r and s
are specified for each of the points P1 By convention the following parametrization is used:

= 0, s is undefined,

:'],S=

Ny

3

r

tr=Y%, 5=0,
r
r

o) vy Oy Oy
w N = O

is undefined, s = 1.
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The basis functions may then be shown to be

2 -4 2

lug wy ol = [r2 r 17 |-3 4 -1
(1 0 o
[2 -4 2]

and [ngnynpl=0s>s11[-3 4 -
1 0 ol

The relationship between the parameters r, s, and u is linear. In fact r = (u+1)/2 and
s = u/2. Equation [26] can thus be written as

2 -4 2][F, 2 -4 2][F
> >

R(u) = (1-u)[r2 r 1] |-3 4 -1 Pyl + ufs2s1] (-3 4 -1 32

1 0 oll?, 10 oll?,

- 2 -4 2] [P, ] 2 -4 2][ P

= (ut1) ut+l) > u® u >
= (l-u)E——jT—— = 11 (-3 4 -1 E] + u[4 > 111-3 4 -1 52
10 o] P, 10 o] L

On consolidation of this equation, the basis functions, B;» are determined to be

/2 32 =32 172

1 52 2 -172

[Bg By By Bal = [w? v w1l 10 o 12 o
o 1 0 o0

The combination of Overhauser curves with a Coons surface formulation (equation [22])
provides a powerful and flexible method of surface representation. Consider the definition
of a surface patch over the mesh of points shown in Figure 26. The patch is to interpolate

> > > > > > > >
the points P(0,0), P(0,1), P(1,0) and P(1,1), and the edges P(u,0), P(u,1), P(0,v) and P(1,v).
->
The Overhauser method is first used to define the edge curves--P(u,0), for instance, is de-
fined as the Overhauser curve E(u,o) by using F_] 0° 30 0° 3]_0, and 52 0 for 30+F3 in equa-
tion [25]. The Overhauser-Coons patch (Brewer and Anderson, 1977) is then

R(0,v)
R(u,v) = [fp(w) ()] |
R(1,v)
N . folv) P(0,0)  B(0,1)] [F,(v)
+ [R(u,0)  R(u,1)] - [fglw)  Fl | o e [27]
£(v) (1,00 Pa,md Le(v)

2. Catmull-Rom splines
Catmull and Rom (1974) have described a class of local-basis spline functions which can
be used both for curve and surface representation. Consider the points, 3., in Figure 27.

i
The interpolant, B(u), is to be a cubic in the parameter u (0 <u <1), and is to interpolate
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FIGURE 26. An Overhauser-Coons patch (shaded) defbned by 12 data pownts In terms of the
>
parameters u and v, the points indexed as PO 0 0 D P] 0 and P , are P(0,0),
3 3 3 .’
P(O,Z), P(Z,O) and P(l,l) respectively.

-> - >
FIGURE 27. Univariate Catmull-Rom spline, D(u), interpolates points Pl and P2. Additionally,
>

> > >
points PO and PS are used to estimate the slopes at P, and P, respectively.
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>

> ->
F] and P2. The slopes at P] and P2 are to be estimated respectively by

D' (0) = w(Fz - 30) and  D'(1) = w(33 - B])

The parameter w controls the slope magnitude. When w =%, the estimates are simply the
divided-differences. The Catmull-Rom spline is then
3

Bu) = = c;(u) B,
i=0

where Ci(“) are basis functions. These may be determined to be
~w (2-w)  (w-2) w
20 (w-3) (3-2w) -w
[eo(u) zyuw) zp(u) gg(u)]= [u* w2 ull| = © 0
0 1 0 0

Incorporation of Catmull-Rom splines into a Coons surface formulation proceeds in exactly
the same way as for the Overhauser-Coons patch (see the previous section, equation [27]).
Catmull-Rom splines are of class C!, and it has been suggested that they might be used as the
univariate basis for a Cartesian product surface, much in the way of B-splines. Clark (1974)
has, however, pointed out that, despite having the desirable property of interpolation, such
a surface would not possess the convex hull property which renders B-spline surfaces so usable.
It is probably best to reserve Catmull-Rom splines for use in the Coons formulation.

Example
Bicubic Cartesian product surfaces (equation [21]) were fitted to each of the cells in

the Cherokee data set. The single partial derivatives at each data point were estimated by
the divided-difference method (equation [24]); for data points on the edge of the network they
were estimated by the corresponding values from the nearest interior mesh point. The cross-
derivatives were all set to zero. It is interesting to note here that had dip-meter readings
been available at each well, the surface slopes could have been obtained directly, rendering
estimation of the partial derivatives unnecessary. This is one of the rare instances where a
data set might comprise both values and partial derivatives at each mesh point.

Figure 28 shows the sand body of the Cherokee data set as it would appear when viewed
from three different directions. Hidden lines have been removed to produce a conventional
fence diagram. The rippled appearance of parts of the upper and lower surfaces is the pseudo-
flat effect which was referred to earlier, and results from having set the cross-derivatives
to zero. There are also some places where the lower surface of the sand apparently overlies
the upper one. This results from using divided-differences to estimate the partial deriva-
tives; it would probably not have occurred had spline-blending been used. In extreme cases,
none of which occur in the examples shown, individual patches may bend back under themselves
to create artificial multiple z-valued surfaces. This also results from estimation of deri-
vatives, and will not happen in areas with good data control.
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Summar

Coons surfaces have formed the basis of many practical CAD systems. Their advantages

and disadvantages are as follows:

(1)

(2)

(3)

(4)

A Coons surface is a local interpolant, either Lagrangian or Hermitian. The generaliza-
tion to class C" is given by Forrest (1972a).

In its strict sense (the Boolean sum surface), the Coons surface is a blend of space
curves. Because in this case the edge curves of each cell and their slopes must be
specified analytically, the pure Coons surface is of limited use for many applications.
The pure Coons surface may be decomposed into lofted and Cartesian product surfaces. The
commonest Cartesian product surface is the bicubic patch, which can be constructed pro-
vided that values and derivatives are supplied at its corner points.

For the bicubic patch, two types of derivative must be estimated for each corner point.
The tangent vectors can be estimated locally from divided-differences, or globally by
spline interpolation. The cross-derivatives (twist vectors) are troublesome to estimate.
They may be estimated locally, adjusted interactively, or arbitrarily set to zero.

Coons' approach may be used to combine space curves defined in a variety of ways, to give
surfaces which interpolate edges and corner points. Methods used to define the curves in-
clude B-splines, Overhauser curves, and Catmull-Rom interpolating splines.
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PART II -- MANIPULATIONS OF THE COMPUTERIZED MODEL

INTRODUCTION -- MANIPULATION METHODS

Part I of this paper attempted to show how computerized models can be constructed, and
examples were given of the use of several modelling methods. Creation of a model cannot, how-
ever, be an end in itself. If computerized models are to be of practical use to the geologist,
it is essential that he be able to retrieve from them answers to questions of interest. In
Sabin's words (1971b), it is essential that the geologist can "interrogate" the model. In
this part of the paper we focus on the interrogation problem--the methods used to solve it are
termed "manipulation methods."

Surprisingly, this aspect of computerized modelling has received scant attention, and
there is 1ittle published literature on the subject. Undoubtedly, the most important contri-
bution has been made by Sabin, in a series of technical memoranda issued from the British Air-
craft Corporation (Sabin, 1968a, 1968c-e; see also Sabin, 1971b). 1In his 1971 paper, Sabin
Tisted more than two dozen interrogation facilities used in the BAC Numerical Master Geometry
system. These included sectioning (both by planar and by non-planar surfaces), offsetting,
intersection by 1ines, measurement of areas and volumes, and generation of perspective views.
Naturally the interrogations were biased heavily towards those most valuable in an aeronauti-
cal CAD system. Here we are interested in different and more general facilities, ones which
the geologist can use. It is to indicate this greater generality that the methods are termed
"manipulations" rather than "interrogations": Sabin's interrogations, however, form an impor-
tant subset of the manipulation methods.

CATEGORIES OF MANIPULATION

The variety of manipulations possible on an object modelled in computerized form is 1limited
only by the imagination of the user and by the availability of suitable computer programs. For
our purposes five categories may be identified: transformation, visualization, reduction, simu-
lation, and mensuration. Inevitably in such an arbitrary classification there is overlap be-
tween categories.

In the sections which follow, each category will be considered in turn, emphasizing manip-
ulations which are important from the geologist's standpoint. In some cases examples will be
given which illustrate the practical use of particular manipulation methods. The data used is
the Cherokee data set from southeastern Kansas.
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TRANSFORMATION

Inherent in much of geology is the idea of continuous shape change, whether it be tec-
tonic deformation through time, modification of fossil shape during ontogeny, or land form
alteration by surface processes. When such changes are considered in a descriptive sense
alone, divorced from their causal processes, each can be described simply as an example of co-
ordinate transformation. Because the computerized model is a precise mathematical shape
specification, application of this type of transform presents no difficulty.

In any reference coordinate system the transformation is

X'=X-T ., . [28]

where ?' and Y are homologous point vectors, post- and pre-transformation respectively, and
? is some transformation operator. Rigid-body rotation, scaling and shearing are examples of
transformations which can be produced.

This simple general formulation can only be used when the point vectors are expressed
in homogeneous coordinates. The many advantages of this form of representation are outlined
by Ahuja and Coons (1968): basically, a point (xo, Yo Zo) is expressed as a vector (x, y,
z, h), where Xg = x/h, Yo = y/h, z, = z/h. Equation [28] is then written

[ : ]
o1 %2 Y13 & B
%1 %2 %23 i B
[x"'y' 2" h'] =[xy zh] Ugp Ogp OGg3 P B3| ... [29]

The square matrix, T, can be regarded as made up of four partitions. The a-partition pro-
duces relative scaling of the x-, y-, and z-components, reflection, shearing, and rigid-body
rotation; the B-partition produces perspective transformations; the y-partition produces trans-
lation; the &-partition produces absolute scaling. Each transformation is discussed in detail
by Rogers and Adams (1976), who also provide algorithms. An important feature is that individ-
ual transformations can be concatenated. Rotation about an arbitrary axis, for instance, is
produced by

(1) translation of the object so that the rotation
axis passes through the origin of the coordinate
system, followed by

(2) rotation through the required angle, followed by

(3) translation of the object back to its initial
position [the reverse of (1)]; symbolically this
is

X' =X - [Trans] - [Rotat] : [-Trans]

Equation [28] represents the simplest type of coordinate transformation, and it is immedi-
ately relevant in fields such as structural geology (Ramsay, 1967). More sophisticated trans-
forms can be developed, however, such as those involving mappings into non-Euclidean coordinate
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systems (Morse and Feshbach, 1953). In particular, it is possible to devise purpose-oriented
transforms in which the type and degree of transformation of any part of an object are made a
function of its position within the object; in structural geology this would correspond to the
case of inhomogeneous strain. By combining general- and special-purpose transforms, complex
manipulations can be achieved. Processes such as the classic deformation grids of Thompson
(1961; see also Bookstein, 1977) can be given a precise mathematical formulation.

VISUALIZATION

In a paper which has so strongly advocated modern mathematical techniques, it may seem
strange to read that one of the most important manipulations is the production of pictures of
an object. Yet the importance of the geologist being able to visualize effectively an object
he has modelled can hardly be overstated. The apparent paradox is rooted in the way in which
geology has developed.

From its earliest days geology has been a visually-oriented science (Rudwick, 1976). Re-
Tiance on the eye of an experienced geologist is the traditional geological approach. This
paragon solves three-dimensional problems by looking at as much as is exposed, and then by
following his practiced judgment in filling in the gaps. There is considerable justification
for this, because the human visual perception system is probably the best pattern discriminator
for all but the simplest of data sets. Yet this most efficient of systems is extremely prone
to illusion and, in certain circumstances, may be unable to break away from preconceptions
generated when objects are seen initially from unrepresentative viewpoints. [The definitive
work on visual perception of form, its strengths and its weaknesses, is by Zusne (1970).1]
Elias (1972) (see also Tipper, 1978) has quoted a case of visual deception in stereology;
Chadwick (1975, 1976) has demonstrated convincingly that geologists, despite their claims to
the contrary, are as prone to visual illusion (and delusion) as anyone.

Realization that the purely visual approach to geology has these substantial drawbacks
produced the inevitable backlash. In recent years for example, especially in the many uncrit-
ical applications of multivariate analysis to morphometric work, it has become commonplace to
relegate visual judgment of shape to a relatively lowly role. Fortunately it is possible to
steer a middle course between the extreme views. By using computerized modelling techniques
to represent three-dimensional objects in an easily manipulated form, we provide ourselves
with a most effective aid. For the first time, the geologist has an efficient way of con-
structing trial configurations of objects, of viewing the results, and hence of removing
sources of potential deception. The computerized modelling system becomes part of an experi-
mental laboratory.

The general problem of visualization is to produce pictures of an object as it would be
seen from different viewpoints. The pictures may be either Tine-drawings, or half- or full-
tone shaded representations. Three factors are involved in their creation: the projection
of the three-dimensional object onto the appropriate two-dimensional viewing plane, the elimi-
nation of hidden lines and surfaces to enhance the realism of the image, and the provision of
shading to simulate natural lighting effects.
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Projection algorithms

Projection of an object onto a viewing plane is a relatively simple example of the trans-
formations discussed in the previous section, and is considered in detail by Newman and Sproull
(1973). Probably the most useful simple transformation for our purposes is illustrated in
Figure 29. The line of sight along which the object is to be viewed (this is the normal to
the viewing plane) is defined by two rotations about the origin of the coordinate system. The
first is a rotation through ¢-degrees about the z-axis; the second is a rotation through 6-
degrees about the rotated x-axis. This transformation ensures that Tines which are originally
vertical appear vertical after projection. The transformed coordinates of a point on the ob-
ject are

—_— P

—_cos¢ sing 0 O 1 0 0 0
-sing cos¢ O O 0 «cosb sine O
[x"y'"z'h']=[xyzl]
0 0 1 0 0 -sing cos6 O

0 0 0 1 0 0 0 1

— - = -
The actual projection onto the viewing plane may be either axonometric or perspective:
Rogers and Adams (1976) discuss these at length. The simplest axonometric projection (the

Line 4
of
sight

FIGURE 29. Simple viewing transformation. Object is rotated through ¢ degrees about the Z
axis, and then through © degrees about the rotated X axis (X').
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trimetric projection along the z-axis) is

[xll yll ZII hll]

The perspective projection is obtained by using non-zero elements in the g-partition of equa-

tion [29].

Perspective projection along the z-axis is given by

[X" yll le hu]

where the center of projection is located at z = -k.

A comparison of the trimetric and perspective projections is given in Figure 30 for the

surface shown initially in Figure 15.

Comparison of (a) trimetric and (b) perspective projections of the same surface.

The perspective projection is considerably more natural.

FIGURE 30.



FIGURE 30. (b).

Elimination of hidden 1ines and surfaces

In contrast to projection, the hidden-line and hidden-surface problem is distinctly non-
trivial, and still forms one of the major research areas in computer graphics. In hidden-line
elimination, the outlines of objects are only drawn when not obscured by objects closer to the
viewer; the final picture is composed of sets of abutting line segments. In hidden-surface
elimination the object outlines are ignored, and each object is considered instead to be
formed of opaque surfaces. Areas of the final picture are shaded (or colored) according to
the surface to which they are closest. )

Although conceptually straightforward, the problem is difficult to formulate for effi-
cient computer solution, especially for complex multivalued surfaces and for real-time opera-
tion. Sutherland et aZ. (1974) have provided a valuable analysis of a representative selection
of the available algorithms, and Clark (1976b) has considered some of the theoretical questions
which may lTead to more efficient solutions. It is worth pointing out here that for many simple
one-off applications it may be most efficient to "paint-out" hidden lines at the production
stage (Sprunt, 1975).

In two cases the hidden-1ine problem may be bypassed entirely. The first of these is
when stereo-pairs of an object are used to give an illusion of depth (Rogers and Adams, 1976).
The second case is when pictures are viewed in rapid succession. Then any slight rotation of
the object will provide the eye with a depth-illusion. It is, of course, immaterial whether
the pictures were actually produced in real-time; animated sequences of "still" pictures pro-
duce the same effect.
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Shading algorithms

Shading of computer-produced pictures has often been attempted, using both single and
multiple point illumination schemes. Some of the most successful early results were those
of Gouraud (1971). Recently, Phong (1975) and Blinn (1977) have proposed more realistic
1ighting models, and the latter author has produced some very impressive shaded full-color
pictures. Catmull (1975) and Blinn and Newell (1976) have shown how surfaces of computerized
models may be given textures. The problem of introducing shadows into computer-synthesized
images is analyzed by Crow (1977).

Examples
The bicubic patch model of the Kansas data set (Fig. 28) can also serve to illustrate

projection and hidden-line removal. The views of the model were produced by trimetric pro-
jection onto specified viewing planes, followed by manual removal of hidden Tines to give the
i1lusion of opaque fences. A set of stereo-pairs for the bicubic B-spline model of the Kansas
data set is shown in Figure 31.

FIGURE 31. Stereo-pair of bicubic B-spline surface, the top surface of the Cherokee data set
(Fig. 2la): ¢ = -100°, 8 = -50°. This figure is for use with a standard pocket
stereo-viewer.

REDUCTION

Up to now we have been concerned solely with manipulations of an entire model. There
are, however, occasions when just part of a model must be studied. The modelled object must
literally be taken apart. I have termed this type of manipulation "reduction" (Tipper, 1978).
Included within it are processes such as cutting, exfoliation, and dissection. The implemen-
tation of each of these is as convenient on a computerized modelling system as it is incon-
venient by any other approach.

Thé cutting process forms the basis of any use of sectioning. As examples may be quoted
the synthesis of serial sections of a modelled fossil (Tipper, 1977), or the generation of
artificial outcrop patterns by intersection of a modelled landform with a modelled body of
rock. Exfoliation is the process of stripping material layer-by-layer from all or part of a
model. Geological examples of this process are landform erosion, and the phenomenon of sphe-
roidal weathering. Cutting processes break a model into parts, once and for all, whereas
exfoliation processes involve removal of material in piecemeal fashion.

Dissection refers to the breaking up of a model into its constituent parts, much as in
the anatomical usage of the term. Cutting and exfoliation processes take no account of the
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internal structure of a model--sections, for instance, will commonly cut completely across
patch boundaries. In contrast, the dissection process is controlled totally by the model's
structure; a model constructed of surface patches can only be dissected into sub-assemblies
of those patches.

The cutting process

Assume that the model to be cut apart is described by a mesh of surface patches (Fig. 32).
The mathematical form of each patch, e.g. Coons or B-spline, is at this stage immaterial. Ini-
tially we consider just the problem of plane sectioning, because it is computationally less
taxing than the general case of curved surface cutting curved surface. For the simplest of
computerized models, those constructed only of bilinear patches, an efficient algorithm for
plane sectioning has been developed by Cottafava and Le Moli (1969). This has been used for
geological work (Tipper, 1977) but will not be considered further here.

Trace of sectioning plane

FIGURE 32. Plane sectioning through an object modelled as a mesh of bicubic patches. The
sectioning plane is shown shaded, and its traces with the patches and with their
associated vertical fences are shown by the heavy line.

The object of any sectioning algorithm is to calculate the space curve defined by the
intersection of the surface of the object and the sectioning plane. In practice this curve
can be approximated by a sequence of points ordered in space. Sabin (1968c, 1971b) has noted
that this sequence can be generated in either of two ways. The first is to calculate the
intersection points of the plane with selected isoparametric Tines on the object's surface
(these are the lines of constant u or v). These intersection points are sorted into order
once all have been calculated. The advantages of this method are that it is computationally
quite simple, and that it will work for every attitude of plane relative to surface. The dis-
advantages are that it is difficult to control the spacing between adjacent points on the
resultant curve, and that in extreme cases it may be all but impossible to determine the cor-
rect way to order the points.

The second approach to sectioning is to determine initially the intersections of the
plane with the boundaries of each patch, and then to use these as starting points for a
"marching" process across the patch interior (Sabin, 1971b). Given a starting point, an esti-
mate is made of the position of a point on the plane a given distance away within the patch.
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This estimate is continually refined by an iterative minimization technique until some pre-
specified conditions are met. The estimated point is then used as another starting point.
The disadvantages of this method are that it is computationally more complex (with a certain
number of special cases which must be given careful treatment), and that it is difficult to
ensure that intersection curves will be calculated when the sectioning plane does not cut a
patch boundary, even though it does cut the patch interior. Sabin (1968c) reported that this
was not found to be a difficulty in practice. The main advantage of the "marching" approach
is that the spacing of points can be easily controlled. This is especially important in areas
of high curvature, and for applications where high precision is important.

Sabin (1971b) has pointed out that most working systems have used the former alternative
(for example Payne, 1968). Here, however, we follow him in regarding point spacing on the in-
~ tersection curve as of paramount importance, and so describe the "marching" algorithm in greater
detail.

The "marching" method
The section plane is defined as the locus of a point 3, where
> > >
=[P-Q] - N-=
6 is a point known to 1ie on the plane, and ﬁ is the plane normal. For points not on the
plane, f is their perpendicular distance to the plane. Because the sign of f is positive or
negative depending on the side of the plane on which 3 lies, the intersection of a space
curve, F(U), with the plane can be identified simply by looking for changes in the sign of f
as u is varied.

To determine the intersection of the plane with the boundaries of a patch, each of the
patch edges is treated in turn as the space curve, ﬁ(u). As an example, consider 3(u,0). By
->

testing successive points along the edge from u = 0 in steps of Au, points P] and 32 are
determined which span f = 0. Let these have parametric coordinates (u],O) and (u2,0) respec-
tively: Uy - Uy = Au. Then

1% fz < 0.

The divided-difference method is now used to define a point 30 between 31 and 32 which
>
is a close approximation to f = 0. Let Py have parametric coordinates (uo,O). By Tinear in-
terpolation in the u-parameter space

(u x f Uy X f]) / (f2 - f])

The distance fo (= [30 - Q] . N) is then calculated. If it is sufficiently small, P0 is
taken as a starting point; otherwise Ug is used to replace either uy or u, (depending on the
sign of fo) and the process repeated. When the starting point has been found, the actual
"marching" process begins.

It is first necessary to calculate the surface normal vector, NO’ at 30, and the unit
vector which is tangential to the intersection, <TO> . These are



> > > > > > >
N0 = [Pu x Pv] and <T0> = [N0 x N] / ][N0 xN]| [30]
where Eu and Ev are the partial derivatives of 3 with respect to the parameters u and v

respectively.

We assume now that the distance between points (the step length) a]ong T0 is required to
be 2. Let a first approximation to the required point 2 units away from P0 be P] This has
the coordinates (u Uy v]) = (u0 +8u, vg + sv), where the increments Su and Sv are

> > > > > > > > > >
Su = 1([<T0> x PV] * Ng) / (N0 . NO) and &v = 2([<T0> x Pu] . NO) / (N0 NO) .
A second approximation (3 ) to the required point is now made. Its coordinates are
(u] + Su, Vi + 8v), where the 1ncrements Su and Sv are determined by the two- var1ab1e form
of Newton's method (Whittaker and Robinson, 1944, p. 90). First the actual step 1ength at

3], Q], and the distance, f], from the sectioning plane are calculated. These are

= B - Bl - [P - PD) and f =[P -Q0 N L [31]
Differentiating,
> > > -> -> >

2u = Pu <P] - P0> s zv = Pv <P] - P0> s

and
_ = > -> >

fu = Pu N, fv = Pv - N,

where z lv, fu’ and f are the components of £ and f in the u and v directions respectively.

The first-order terms of a two-variable Taylor series about P], for £ and f, are then:

2 = 2] + Qu Su + Rv Sv

and
f = f] + fu Su + fv v =0
Thus,

Su = [-f] L, - fv(sz-sa])] / (fu Ly - fv xu) and 8v = [f] 2yt fu(z-z])] / (1’u zv - fV zu) .

The point 32 and the values of the distance, f2’ and the actual step length, 12, are now cal-
culated. The lengths |f,| and [2-2,| are tested against zero. If they are both less than a
prescribed to]Erance, the iteration ends and P2 is output as an intersection point of plane
and surface. P2 is then used to rep]ace Po, and the "marching" process begins again (equa-
tion [30]). If not, P2 replaces P] as the starting point for the Newton's method (equation
[31]).

The "marching" process is repeated until a boundary of the patch is encountered. At that
stage the complete intersection of patch with plane will have been determined. For a multi-
patch surface, the method is simply applied to each patch in turn.

Non-planar cutting

The general case of cutting occurs when two curved surfaces are to intersect. The problem
of determining the space curve of the intersection is considerably more complex than for plane
sectioning. Unless the surfaces are modelled in a very simple way, a direct analytic solution
to the problem is impossible because of the order of equations involved. Recourse to iterative



techniques is generally inevitable. One such approach has been suggested by Sabin (1968e) as

a generalization of his plane sectioning algorithm.

Others are no doubt possible.

One of the chief difficulties in devising an algorithm which will work in the general
case is to ensure that all branches of the intersection curve are obtained. Figure 33 illus-
trates this problem: two surfaces, each modelled as a set of bicubic patches, cut at very
low angles, and the intersection curve has three branches.

Multi-patch

surface

), 3
Single patch

FIGURE 33. Non-planar intersection. One surface, the single bicubic patch defined by the
heavier lines, intersects the multi-patch surface shown by the lighter lines.
The angles of intersection are Llow, and the intersection space curve has three

branches.

The exfoliation process

In the exfoliation process a surface must be defined which is offset to some extent from
an initial surface. The amount of offset is usually measured perpendicular to the initial
surface. The offset may either be constant over the whole surface (Fig. 34a), or it may vary
as a function of position (Fig. 34b). Offsetting is routinely used in engineering design,

Original
surface

Derived
surface

Original *h
1
surface %
% Derived
surface

FIGURE 34. Exfoliation. (a) The offset, h, between the original and derived surfaces is con-
stant over the whole surface. (b) The offset is dependent on position:

h] # h2 # hs # h4.
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and Sabin (1968d) has outlined an efficient algorithm. In a geological context, exfoliation
is best viewed as a process for removal of a layer of material from an object's surface, e.g.
land-form erosion. There is, however, no reason to restrict it just to removal of material;
the method is entirely reversible and may, for instance, be simply applied to the modelling of
sediment depositional systems (Tipper, 1978).

Sabin' s algorithm for the exfoliation process is as follows. Assume that the initial
surface is P(u,v). The surface which is offset from it by a distance h is F (u,v), where

3* =P +h <N> ..... [32]
. > > > > > .
N (= x P ) 1s the surface normal at P. (Pu’ Pv’ Puv) and (Nu, Nv’ Nuv) are the partial

der1vat1ves of P and N respectively.

In order that the offset surface can be utilized in further man1pu1at1ons, it 1s neces-
sary to develop expressions for its der1vat1ves, these are denoted by P +:, and P v and
are calculated by differentiation of equation [32]. Sabin (1968d) g1ves the comp]ete deriva-
tion of P: and P:. We find that

Bre B+ dotn, - (- R)/E - B3+ /R

Br= B+ <oth, - (i - R/ )Y+ AR/ (T

N U ST (I VIR D IS I RYICIR IR (R WO VIR
AR B VG I T I PYCIR RVICIR D6 N UM N/ (- W)

/R +R T, - - N/ - T3[R+ R/

When the offset is constant, the derivatives h u’ hv’ and h are zero. Equations [33]
are consequently greatly simplified. In the genera] case, however, h is a function of P, i.e.
>
= h(P). The derivatives of h are

>
hu = grad(h) - P

>
hV = grad(h) - Py

E -> - =
huv = grad(h) - aw grad(hv) . Pu = grad(h) - Puv + grad(hu) . Pv

These are inserted into equations [33]. Sabin (1968d) has pointed out that in the general
case the offset is no longer along the surface normal, ﬁ, because the normals for P and P* are
no longer identical. For strict accuracy it is necessary to make preliminary calculations

of P: and P:, and then to use [P: X P:] instead of N. The reader is referred to Sabin (1968d)
for more detailed consideration of these aspects.
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The dissection process

Of all the facets of reduction, the dissection process emphasizes most clearly the prac-
tical advantages of computerized modelling. Consider as an example of its use a project in-
volving precise determination of feeding currents produced within a brachiopod shell by valve
closure, e.g. the work on Richthofenia by Rudwick and Cowen (1967). One of the first tasks
in the project must be to study the action of the hinge structure so that the precise way in
which the valves articulate can be determined. A1l that is required here is detailed study
of one small part of the shell--but a part which is notoriously difficult to examine by
conventional means because by its very nature it is obscured by the valve exterior. Were,
however, the brachiopod to have been modelled first in computerized form, such obscuring fea-
tures could be removed from view, together with other irrelevant structures. This type of com-
puterized dissection has been used very effectively by Westbroek in his work on the structures
of the rhynchonellid commissure (Westbroek, et al., 1976).

The mechanics of dissection of a patch-based computerized model are quite straightforward.
A11 that is necessary is that the user be able to specify which parts of the model he wishes
to remove, and which parts he wishes to retain. Perhaps the simplest way of doing this is to
refer to each patch by its coordinates in the mesh. In more complex systems (for example the
NMG system, Sabin, 1968a), models are built up of individual parts which have alphanumeric
names assigned to them by the user.
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Example

Examples of plane sectioning through the bicubic B-spline model of the Cherokee data set

are shown in Figure 35.

In Figure 35f and 35g, the sectioning plane has been used as a fault

plane, along which an offset has been specified in magnitude and direction.

FIGURE 36.

Manipulations of the bicubic B-spline model of the Cherokee data set. (a), (D)
Trimetric projections of the top surface, with intersections of two vertical
sectioning planes superimposed. The first plane [shown in elevation in (c)] has
normal (1, 0, 0, -12); the second plane [shown in elevation in (d)] has normal

(0, 1, 0, -12). (a) ¢ = -100°, 6 = =30°. (b) ¢ = -160°, 6 = -50°. (e), (d)
Elevations of the sections shown in (a) and (b): 1in each case the viewing direc-
tion is given by the arrows in (b). (e) Block diagram showing fault movement to
be produced in the model: the fault plane normal is (1, 0, 1, -8). (f) Trimetric
projection of top surface, after faulting [ef. (e)]. ¢ = -100°, & = -30°. (g)
Trimetric projection of top surface, after faulting. ¢ = -160°, 6 = -50°.
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FIGURE 35.
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SIMULATION

Geology s hardly an experimental science. On the contrary, we observe today in the geo-
logical record the results of "experiments" performed millions of years -ago under conditions
of which we have 1ittle knowledge and over which we have no control. In trying to work out
what actually happened in the geologic past, we must seek to identify processes which can pro-
duce results analogous to those found in our geological observations. This is the classic
uniformitarian approach of Hutton and Lyell.

For phenomena at the smallest scale we can attempt to duplicate the field and Taboratory
observations by running the process under controlled conditions--the obvious example here is
the use of a flume tank to imitate aspects of clastic sedimentation. When the phenomena are
at a Targer scale, either in their temporal or spatial dimension, the experimental aspect can
be retained by developing computer simulations of the process. Harbaugh and Bonham-Carter
(1970) have documented some elegant examples of this approach, and Raup's work on the simula-
tion of shell coiling in molluscs is also noteworthy (Raup, 1966, 1967).

The relevance of the simulation approach to the field of computerized modelling is clear--
here, of course, we refer exclusively to simulations of morphology. Examples might include
the changing form of a shingle spit (McCullagh and King, 1970), the development of land forms
by glacial erosion, or the growth of porphyroblasts during metamorphism (P. K. Harvey, 1973,
unpublished report, Kansas Geological Survey). Whereas a computerized model describes an ob-
ject by its final shape, a morphological simulation defines instead an initial condition and
a set of rules for growth. Given these, the final shape is always to some degree predictable.
A corollary of this is that specification of the initial and final shapes inevitably circum-
scribes the growth rules. Thus a computerized model is a logical result of a simulation of
morphology, just as the model itself may act as a guide to the ground rules for the simula-
tion. Simulation and computerized modelling are in this respect no more than alternative for-
mulations of the same basic idea.

Clearly the field of simulation is so wide and its methods so varied that it is unreason-
able to devote more than a passing reference to the practical interface between computerized
mode11ing and simulation. The important feature to note is that the two methods tend in prac-
tice to dovetail neatly together. This indeed is to be expected because a morphological simu-
lation (whether stochastic or deterministic) is of necessity a regular process. In consequence,
its results can in most cases be translated logically into the regularity of a model.

MENSURATION

Throughout this paper we have made one tacit assumption, namely that the models discussed
are not ad hoe representations of shape. They are complete mathematical descriptions, and as
such can be measured with an ease and precision limited only by the sophistication of the com-
puter system. The importance of being able to make measurements hardly needs elaboration;
methods used for numerical classification and analysis of shape (for instance those referred
to in the Introduction to this paper) can utilize measurements made from models just as easily
as those made from real objects. Models can thus be compared with their real-world counterparts.
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An example of the use of measurements derived from a computerized model has been given by
Tipper (1977). 1In that case it was desired to study the variability of the dip and strike of
individual cross-strata exposed in a single well core. Each cross-stratum was modelled by a sin-
gle bicubic patch, the form of which was determined by the trace of the stratum on the periphery
of the core. Because the mathematical form of each patch was known, it was possible to predict
its attitude at any point. Thus the dip and strike of each stratum could be determined pre-
cisely at points within the core, where the stratum was of course unexposed. In this instance,
the computerized modelling system provided a measurement facility unobtainable in any other way.

In making punctual or linear measurements on a model, one problem continually recurs.

This is the problem of identifying particular points on a surface when their parametric coordi-
nates are unknown. Clearly, if the maximum projected width of a model is to be measured, the
coordinates of the leftmost and rightmost points on its surface must first be found. These
will not in general be known in parametric terms. In the same way, if the thickness of a
modelled sand body which will be penetrated by an almost perpendicular well of known position
and attitude is to be determined, the parametric coordinates of the top and bottom points
through which the well will pass must be found.

Fortunately most of these specific cases can be resolved by using a few basic techniques.
These can be combined in various ways to give more complex manipulations. Two of the most use-
ful techniques are the determination of the nearest point on a surface to a given point, 6,
and the determination of the point(s) of intersection of a straight line with a surface. Each
of these can in fact be closely related to part of Sabin's “marching" method for plane sectioning.

The nearest point algorithm
Sabin (1968c) developed the procedure known as the nearest point algorithm. Let the sur-

face be F(U,V), and the fixed point be 6. The distance between 6 and a point on the surface
is

- > > -
f=[P-Q]-[P-Q]
The function f is to be minimized. This implies that its derivatives must be zero, i.e. that

> > >
f, = 2P - Q1 - B,

0

and

n
o

> > >
fv = 2[P - Q] - Pv
These expressions may be written in general form as

a= Eu . [F - 6] and b= Ev . [F -5]

Their derivatives are

> > > > > -> > - S >
=Py Pyt Py s P -0 ay =Py Py Py - [P-0T,

> > > > > > -> > > >
by =P, P tPy,c[P-0 (=a), b, =P, - P, P, - [P-0].

Assume now that an initial approximation can be given to the required point, say P(uo,vo).
The values of 'a' and 'b' at this point are a, and b0 respectively. A second approximation
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to the point, P(u0+6u, v0+6v), may then be obtained by using Newton's method as before. Thus
-1
8v bu bv b0
The minimization process continues until the change in f becomes sufficiently small. It
is clear that the latter part of the sectioning algorithm is identical to this process. In

that case the function 'a' was the discrepancy in step length from the ideal, and the function
'b' was the distance of the point from the sectioning plane.

The intersection of a straight line with a surface

Following the development by Sabin (1968e), let the surface be 3(u,v), and the line be
[3 - 6] x T = 0. The line is a vector passing through 6 with direction numbers T. The per-
pendicular distance of a point F from the line is

F={F-81xTr - (F-QxT

As before, f is to be minimized. This implies that its derivatives must be zero, i.e. that

fo= P, x Tl {[P-QxT}=0
and
f,= [P, xT1-{F-8xTr=0

Again these are written in the general form as
a = [Eu x ?] . {[3 - 6] X ?} and

Their derivatives are

T -8« D

o
"
—
=24
X

a, = B, xT1- [P, xT1+ BB, xT1 - 4P -U Ty .

a, = [F xT1- B, xT1+ [P, xT1- {(F-AxTt (=b) ,

o
]
—
oV
X
—¥
—
—
O
X

T+ P, xT1 - (F-8xT

The solution proceeds in the same way as that for the nearest point algorithm.
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SUMMARY

(1) Studying the shape of complex three-dimensional objects and surfaces forms a major part
of much geological work. Two approaches can be used: formal numerical analysis, and methods
of surface representation. The latter methods involve the construction of mathematical (and
necessarily computerized) models of the objects being studied; this approach is the more ef-
ficient when the objects have relatively complex curved surfaces.

(2) The general problem of surface representation is, given the coordinates of points assumed
to Tie on one simply connected surface, to describe that surface in such a way that it can be

manipulated easily and precisely. Two steps are involved: the first is one of modelling, the
second one of manipulating the models.

(3) The process of modelling involves defining some interpolation or approximation function
that will predict the location of points on the surface away from the data points. The form
of this function (the surface model) is determined both by the intrinsic nature of the surface,
and by the purpose for which the model is being made.

(4) The modelling method most widely used in geology is trend surface analysis, the fitting
of a certain class of surface model to sets of scattered data points. If the number of data
points exactly equals the number of degrees of freedom in the model, an exact fit can be ob-
tained. If not, then the method of least-squares can be used to give a model that is optimal
under certain conditions. Because these conditions are rarely fulfilled in practice, most
least-squares models are just as arbitrary as surfaces fitted by eye.

(5) Regionalized Variable Theory can also be used to generate surface models that have some
optimal properties. In this approach, the interpolation function at any point is taken to be

a random variate, the value of which depends on its position. If the statistics of the variate
are known, its value at any given location can be estimated; if they are not (as is often the
case in practice), the estimates will be quite arbitrary.

(6) For a modelling method to be generally applicable, certain minimum requirements can be
prescribed. (a) It should produce surfaces that are locally smooth, i.e. that are continuous
both in value and first derivative. (b) These surfaces should, if necessary, be capable of
being multiple-valued in any coordinate direction. (c) The form of the model should be inde-
pendent of its orientation. These requirements are best satisfied by developing models in a
curvilinear coordinate system.

(7) Modelling methods can have either a global or a local basis. Global-basis methods use
the same interpolation (or approximation) function throughout the model, whereas local-basis



(piecewise) methods partition the model into local domains and define separate functions (termed
"surface patches") for each of these.

(8) The most convenient curvilinear coordinate representation (and one that is usable both

for global- and local-basis models) organizes the data points into some form of network, usual-
1y the topological equivalent of a planar rectangular grid. Each cell in the network is quad-
rilateral in plan view, and its edges form the axes of a two-parameter curvilinear coordinate
system. Each cell can also, if required, be used as the domain for a single surface patch.

(9) Use of this network approach reduces the surface representation problem to a standard one
of bivariate interpolation (or approximation) over a quasi-planar grid. With a network of
rectangular cells, four modes of interpolation are possible; each may be either Lagrangian or
Hermitian, depending on the smoothness required in the final model. The most general mode,
the Boolean sum, interpolates both the corner points and the edge curves of each cell. With
certain restrictions made on the edge curves, either of two other modes are obtained, the
lofted surfaces that interpolate only opposing edge curves, or the most restricted mode, the
Cartesian product, which interpolates only the cell corner points.

(10) Modelling methods developed for the purpose of computer-aided design (CAD) can also be
used for surface representation. They may be either interpolation or approximation methods,
and may have either a global or a local basis. They are generally of Cartesian product
(rarely Boolean sum) form.

(11) Bézier surfaces are a Cartesian product implementation of Bernstein polynomial approxi-
mation in a curvilinear coordinate system. Their global basis renders them too inflexible for
many surface representation purposes.

(12) The B-spline basis can be used as an appropriate local-basis equivalent of the Bernstein
basis. Cartesian product B-spline surfaces are local-basis approximants. They are computa-
tionally efficient, and very suitable for surface representation unless matching to arbitrarily
shaped boundaries is required.

(13) Global-basis spline interpolation can also be used as a modelling method, and can be
implemented either in a rectangular Cartesian or a curvilinear coordinate system. The use
of bicubic splines requires that derivatives be specified at the network boundary; this is
usually inconvenient. )

(14) Coons surfaces are the most widely used CAD method. In their strict sense they are
local-basis Boolean sum interpolants. The Coons bicubic patch is a particular specialization,
a Cartesian product surface that can be derived from global-basis bicubic spline interpola-
tion. A substantial advantage of the Coons formulation, and one that makes it ideal for use
in surface representation, is that it can be used to blend surfaces into boundary curves of
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known form. These space curves can themselves be represented by B-splines, by parabolic blended
curves (Overhauser curves), or by local-basis interpolating splines (Catmull-Rom splines).

(15) Constructing surface models is not an end in itself. It is essential also that they
can be manipulated in such a way as to supply answers to questions of interest. But, in con-
trast to the construction of models, this manipulation process has received relatively little
attention.

(16) Five categories of manipulation can be identified: transformation, visualization, reduc-
tion, simulation, and mensuration.

(17) Transformation refers simply to the implementation of standard coordinate transforms,
both in Euclidean and non-Euclidean coordinate systems.

(18) Visualization is the production of pictures of a model as it would be seen from different
viewpoints. Three steps are involved: projection of the three-dimensional model onto the ap-
propriate two-dimensional viewing plane, elimination of hidden lines and surfaces to enhance
the realism of the image, and provision of shading to simulate natural lighting effects.

(19) Reduction includes the processes of cutting (both plane sectioning and the intersection
of two curved surfaces), exfoliation, and dissection. Exfoliation is the process of stripping
material layer-by-layer from all or part of a model. Dissection refers to the breaking up of
a model into its constituent parts.

(20) Any morphological simulation operates by applying a set of growth rules to an initially
defined shape. The final shape is always to some degree predictable. A surface model, on the
other hand, by describing that final shape in detail, reflects the set of rules by which it
was obtained. Simulation and modelling are little more than alternative formulations of the
same basic idea.

(21) Mensuration refers to the processes of obtaining measurements from models, for example
lengths, areas, and volumes.
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APPENDIX 1

SPECIALIZED NOTATION USED IN MORE THAN ONE SECTION OF THE TEXT

PART 1
Notation

->

X
A or A(h)

A' or A'(h)
-
B, B

B(u), B(u,v)

Bx’ By or Ex, §y

cn
B(u)

fo(u), fo(v)
fi(u), fi(v)

90(”)’ go(v)
g7 (u), gq(v)

m, n

Definition

Vector

Blending function matrix for
global-basis spline

Transpose of A(h)

Boundary matrix for global-
basis spline

Univariate and bivariate
Bézier approximant

Generalized interpolation or
approximation operators,
acting in the x and y (or
u and v) directions
respectively

Continuity class

Univariate Catmull-Rom in-
terpolant

Blending functions for Coons
surface

General notation for dimensions

of quadrilateral mesh

General notation for point,
referred to its position

on a line or a quadrilateral
mesh. Indexing is usually

0<i<m and 0< j<n

Text Page(s)

6 ff
43, 44, 45, 49

43, 44, 45
43, 44, 45

23, 24, 25, 27

22, 46, 48

21, 33, 36, 40, 41, 43,
48, 52, 55, 58

53, 54. 55

46, 47, 48, 49, 53

11, 23, 24, 25, 27, 28,
32, 36, 37, 40, 41,
42, 43

1, 12, 23, 24, 25, 27,
28, 32, 33, 35, 36,
37, 40, 41, 42, 43,
44, 50, 51, 52, 53,
54, 55
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Notation

P(0,0), P(0,1), P(1,0),

P(1,1)

P(x,0), P(x,1), P(0,y),

P(1,y)

$(0,0), P(0,1), P(1,0),

B(1,1)

P(u,0), P(u,1), P(0,v),

P(1,v)

> >
P, (usv)s P (u,v)

uv

Q(u,v)

R(u), R(u,0), R(u,1)
R(0,v), R(1,v)

E(u,v)

Sr’s(u,v)

N
Sr’s(u,v)

Definition

Corner points of unit-square
mesh cell, referred to
rectangular Cartesian
coordinates

Sides of unit-square mesh cell,
referred to rectangular
Cartesian coordinates

Corner points of unit-square
mesh cell, referred to
parametric coordinates (u,v)

Sides of unit-square mesh cell
referred to parametric co-
ordinates (u,v)

Partial derivatives with respect
to u and v (the u- and v-
partials), calculated at
point F(U,V)

Cross-partial derivative (twist
vector), calculated at
point F(u,v)

Coons surface

Univariate Overhauser inter-

polant

Overhauser-Coons surface inter-
polant

Global-basis spline interpolant,
referred to rectangular
Cartesian coordinates (u,v),
for cell with origin at Pr,s

Global-basis spline interpolant,
referred to parametric co-
ordinates (u,v), for cell
with origin at 3r,s

Text Page(s)

22

22

27, 28, 46, 47, 48, 49,

53, 54

46, 47, 48, 49, 51, 53

28, 47, 49, 50

28, 47, 49, 51

46, 47, 48, 49

52, 53, 54

53

43, 44

44, 45
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Notation Definition Text Page(s)

To(u), T, (u,v) Univariate and bivariate B- 32, 33, 36, 37
spline approximant, defined

in intervals r and r,s

respectively
U, v Parameters, usually in range 10, 14, 15, 23, 24, 25,
0-~>1 27, 28, 32, 33, 34,

36, 37, 44, 45, 46,
47, 48, 49, 50, 51,
52, 53, 54, 55

Vector cross-product

WX X Partial derivatives of x with 42, 43, 44
respect to u and v, in
rectangular Cartesian co-
ordinate system (u,v,x)
uv™ Cross-partial derivative of x, 42, 44
in rectangular Cartesian
coordinate system (u,v,x)
Os “ij Coefficients of global-basis 40, 43
interpolating spline. For
bicubic spline, 0 < i < 3
and 0<j<3
B(u) Overhauser basis function 52, 53
z(u) Catmull-Rom basis function 55
8 Viewing transformation angle 18, 28, 37, 57
g(u), £(v) B-spline basis functions 32, 33, 34, 36
¢ Viewing transformation angle 18, 28, 37, 57
y(u), v(v) Bernstein basis functions 23, 24, 27
PArRT II
Notation Definition Text Page(s)
->
X Vector 60 ff
€§> Unit vector in direction Y 67, 68, 70

68, 70, 78
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Notation

¥

u, v

Definition
Vector dot-product
Magnitude of X or f

Normal vector to plane or
surface

General notation for point

Partial derivatives of 3 .

Fixed point

Tangent vector to intersection

Parameters, usually in range
0-~>1

Viewing transformation angle

Viewing transformation angle

67,
68,

67,

67,

68,

67,

67,

66,

62,

62,

Text Page(s)

68,
70

68,

68,

70,

68,

68

67,

65,

65,

70, 77, 78

70

70, 77, 78

77, 78

77, 78

68, 70, 77, 78

72

72
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APPENDIX 2

DATA POINT COORDINATES

The 130 data points, each given a unique identifying number, are arranged on a 13-by-10
quadrilateral mesh as shown below. The coordinates of each point (in arbitrary units) are
then tabulated for both the lower and upper surfaces.

179 178 4 8 9 183 16 17 96 97 99 105 106
177 1 7 12 182 18 19 93 185 94 102 103 104
186 3 6 11 21 4o 41 42 184 107 108 109 110

5 10 22 39 38 43 4y 50 59 86 87 111 113
23 28 31 36 46 48 49 58 84 89 88 112 138
25 27 30 35 52 55 57 61 83 82 91 137 176
29 32 33 53 54 62 63 81 80 135 136 175 173
65 67 75 76 78 119 125 130 139 141 171 172 162
66 68 116 118 122 124 128 129 140 169 168 166 160
69 T4 115 121 123 126 127 143 144 149 150 151 152

Point
no. X Y Z-base Z-top
179 10.940 29.077 2.500 2.500
178 9.300 27.297 2.500 2.500
y 9.885 26.125 2.500 2.500
8 10.148 25.648 2.563 2.563
9 10.742 25.239 2.438 2.438
183 12.620 25.317 2.563 2.563
16 12.397 23.496 2.625 2.625
17 13.240 22.600 2.500 2.500
96 14.100 21.583 2.375 2.375
97 14.981 20.827 2.500 2.500
99 15.994 19.717 2.750 2.750
105 16.872 18.807 2.563 2.563
106 17.479 17.987 2.813 2.813
177 7.420 27.497 2.631 2.881
1 7.800 26.477 2.287 2.662
7 8.293 25.473 2.369 2.744
12 9.082 24.658 2.325 2.575
182 10.220 23.677 2.262 2.887
18 10.764 22.911 2.194 3.069
19 11.698 21.983 2.563 2.563
93 12.440 21.185 2.137 2.637
185 12.640 20.577 2.425 3.113
94 13.289 20.597 2.381 2.631
102 14,341 19.240 2.525 3.213
103 15.180 18.268 2.206 2.956
104 16.017 17.445 2.563 3.125
186 5.060 26.697 2.525 2.838
3 5.646 26.050 1.850 2.600
6 6.564 25.126 2.231 2.669
11 7.245 24,243 2.363 2.988
21 8.295 23.176 2.281 2.781
40 9.213 22.229 1.963 2.463
41 10.091 21.312 2.275 2.775
y2 11.038 20.374 2.594 2.719
184 11.830 19.617 2.575 2.825
107 13.663 17.661 2.244 2.806



Point

no.

108
109
110

10
22
39
38
33
4y
50
59
86
87
111
113

28
31
36
46
48
49
58
84
89
88
112
138
25
27
30
35
52
55
57
61
83
82
91
137
176
29
32
33
53

62
63
81
80
135
136
175
173
65
67
75
76
78

PO G Y —_ - s
WO~V EWUIEWN—=,0WooIoOWU &0V &

P N Y

FLWN 2,0 —200WVWTIJOVMTFWN= =200V EWN =

-

.529
.225
. 109
.0u8
. 884
.668
.607
.621
. 494
426
.319
.052
. 105
. 045
.052
. 120
. 409
.233
. 135
.028
.920
. 807
.676
.556
10.
.350
.2u6
.765
112
LThY
.44
.536
. 435
.324
.21
. 128
.003
.909
.874
. 826
.630
.452
.034
.919
. 817
.665
.582
<397
<377
.299
. 720
. 231
. 151
.961
.300
.952
417
.328
.215
. 110

455

. T37
. 026
. 119
.300
. 455
.597
.625
.606
.662
.T40
.786
.706
-991
. 051
.028
.952
.923
.878
.942
.054
. 116
.228
. 301
.372
. 450
574
.631
. 054
.033
176
.261
375
Luuy
.513
571
.652
.758
.829
.837
.870
.786
.529
. 648
. 705
.815
.851
.914
.967
. 120
. 176
-591
.232
.261
.090
.583
.304
. 605
.708
<791
.899

Z-base

N—*NNNNN«—\NNNI\)NNI\)NMl\)l\)l\)l\)l\)l\)l\)l\)—l—‘l\)l\)l\)f\)l\)[\)l\)l\)l\)I\)I\)NI\)I\)—\—‘NI\)I\)I\)I\JNNNN—J—‘—‘NI\)NI\)N

. 350
.313
. 306
. 181
. 162
.988
.662
.906
. 475
.706
.575
. 4yy
.563
.300
<331
.363
. 031
.906
.781
. 156
.537
.500
. 450
.319
.625
.813
.625
. 344
.250
.269
.088
. 106
. 106
.794
.869
. 456
.262
.625
. 750
.363
.625
.063
.338
.088
<137
.250
412
. 150
. o4y
. o4y
.269
. 344
.881
.213
. 125
.294
.600
.500
.875
.075

NOMANWWMNDMNLNWMNMNDNNRANDND NN WRDWNDNNDRDWNRDMIDNDNLNDRDNPDWNNWWWN N NN MWND NN NDWN NN NN N NN
e o s s e e o o o s o ¢« o

.969
<975
.063
.075
. 006
.625
.813
.125
.781
.875
.769
.650
<731
L7948
. 606
.619
.019
.950
.625
. 750
.925
.063
.813
.025
.838
.825
. 750
.662
.838
.856
.7T94
.894
.8ul
. 006
LT75
.813
.669
. 037
. 125
.563
. 825



Point

no. X Y Z-base
119 4.920 13.110 2.213
125 5.583 12.4117 2.313
130 6.756 11.250 2.438
139 7.625 10.300 2.213
141 8.239 8.797 2.125
171 9.439 8.u472 2.500
172 10.314 7.589 2.281
162 11.392 5.297 2.188
66 0.521 17.516 2.012
68 1.043 16.124 2.750
116 1.151 13.377 2.000
118 2.475 13.287 2.219
122 3.302 12.464 2.438
124 4,285 11.478 2.313
128 5.307 10.354 2.188
129 6.134 9.520 2.006
140 7.034 8.630 2.000
169 7.873 7.731 2.094
168 8.673 6.974 2.281
166 9.475 6.140 1.894
160 11.216 4.370 2.231
69 -0.235 16.447 2.450
T4 -0.403 14.007 1.981
115 0.363 13.204 2.150
121 1.855 11.697 2.438
123 2.754 10.726 2.438
126 3.563 9.352 2.375
127 4.562 8.703 2.313
143 5.417 7.999 2.000
14y 6.318 7.111 2.313
149 6.380 4,799 2.162
150 7.071 4.077 1.956
151 7.985 3.323 2.369
152 8.510 2.587 2.162

PN MNP N NN NN NN N NW NN NN NN NN NN NN D NDW N NN N

Z-top

. 400
.313
.438
.900
.188
.500
.656
.500
. 450
. 750
.625
. 781
. 438
.313
.188
. 381
.688
.656
. 031
.581
419
.075
. 731
.713
. 438
. 438
375
-313
.625
.313
U475
. 706
. T4y
.537

97






APPENDIX 3

BEZIER CONTROL POLYHEDRA

The two sets of 130 control points, for the lower and upper surfaces respectively, are
arranged on identical 13-by-10 meshes:

1 2 3 y 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23 24 25 26
27 28 29 30 31 32 33 34 35 36 37 38 39
4o 41 42 43 Ly 45 46 y7 48 49 50 51 52
53 54 55 56 57 58 59 60 61 62 63 64 65
66 67 68 69 70 71 T2 73 T4 75 76 7 78
79 80 81 82 83 84 85 86 87 88 89 90 91
92 93 94 95 96 97 98 99 100 101 102 103 104

105 106 107 108 109 110 111 112 113 114 115 116 117
118 119 1200 121 122 123 124 125 126 127 128 129 130

Lower surface

Point
no. X Y YA
1 10.94 29.08 2.50
2 170.29 173.21 11.65
3 -702.91 -609.46 -34.49
y 1855.58 1659.65 87.04
5 -3379.68 -2988.36 -129.40
6 4701.60 4248.06 154,82
7 -5005.99 -4579.75 -136.88
8 4230.22 3978.69 109.69
9 -2772.34 -2659.61 -64.67
10 1435.17 1423.78 32.01
11 -510.86 -512.87 -4.51
12 134.97 139.73 3.07
13 17.48 17.99 2.81
14 -4.59 25.79 5.00
15 -1043.00 717.24 -284.17
16 4724.09 -3243.59 1487.76
17 -12740.93 9399. 39 -4296.91
18 24613.13 -19625.71 9656.67
19 -36395.34 32046.50 -17335.17
20 42688.51 -41532.00 22806.92
21 -40267.65 42844, 37 -21609.69
22 30416.90 -34313.90 14983.81
23 -17766.85 20482.12 -7588.00
24 7414.35 -8311.53 2690. 44
25 -1871.05 1932.44 -549,42
26 9.88 71.94 2.93
27 49.44 29.21 -6.62
28 2766.42 -2479.07 284.86
29 -12465.71 11853.09 -2047.55
30 34483.58 -33798.09 6801.92
31 -68216.28 70484,5Y -18372.38
32 104196.06 -113832.88 38682.23
33 -126445,22 146131.31 -54849, 38
34 123637.55 ~-148758.17 53020.08

35 -96150.29 117822.98 -36352.89



o4

57541.
-24326.
6310.
32.
-100.
-4717.
21247.
-59332.
118889.
-184773.
228773.
-228172.
180430.
.95
46694,
-12170.
-15.
156.
5959.
-26655.
75070.
-152203.
240805,
-304070.
309216.
-248126.
151700.
-65195.
17054,
69.
~14k,
-5594.
24984,
-70797.
145471,
-234443,
302343,
-313565.
255446,
-157470.
67949.
-17654.

-109241

-61
A
3741

76
79
54
39
20
03
53
u7
93
21
10
69
52

82
39
21
05
38
19
80
89
67
88
58
68
40
39
56
25
00
70
79
92
17
79
31
33
u7
84
72
30

.48
.98
.22
-16628.
47387.
-98709.
162305.
-214179.
227120.
-188257.
117305.
-50830.
13168.
67.

-37.
-1599.
7027.

86
4o
02
58
87
90
83
39
oy
07
25
12
11
40

-69333.
27978.
-6335.
-178.
23.
4457,
-21028.
60605.
-126566.
204805.
-262621.
266877.
-210372.
123094.
-49307.
11101.
398.
35.
-5200.
25207.
-73154,
153903,
-249869.
321220.
-326508.
257043,
-149793.
59936.
-13411.
-1490.
-13.
4373.
-21638.
63814.
-135555.
221546.
-286179.
291943,
-230223.
134222,
-53950.
12224,
¥63.
80.
-2214.
12112.
-36843.
80496 .
-133747.
175443,
-181045.

144160,

-8UL6Y,
34398.
-7903.

-288.
-27.
241,

-2406.

z

17839.
-5980.
1117.
2.

25.
-806.
5060.
-16047.
41692,
-84868.
117916.
-112962.
77636.
-38526.
13146.
-2477.

-2.
-35.
2241,
-11815.
34925.
-82373.
153752.

-204287.
193311.
-134214,
68476.
-24379-
4873.

15.

U1,
-3419.
16906.

-48222.
107727.
-190495.
245881.

-231043.

161884.
-8U4357.
31018.
-6449.
-15.
-25.
2760.
-13292.
37193.
-81399.
141616.
-181335.
170427.
-120430.
63799.
-24001.
5109.
15.

16.
-1372.
6446.



101

Point

no. X Y Z
95 -20011.92 9178.05 -17521.07
96 42196.75 -22812.15 37630.10
97 -T70843.17 41097.53 -64954,99
98 96031.83 -57310.69- 82963.35
99 -104635.40 61948.03 -78029.20
100 88769.25 -50917.72 55501.57
101 -56183.49 30334.69 -29765.48
102 24583.91 -12560.65 11388.98
103 -6352.24 2940.13 -2446.97
104 -17.20 134.65 -4.58
105 10.12 32.45 -2.72
106 434,32 325.24 381.92
107 -1841.77 -808.35 -1703.59
108 5122.50 1111.60 4503.77
109 -10677.40 -218.52 -9544, 83
110 17975.03 -2053.89 16492.16
11 -24630.97 5298.04 -21121.26
112 27275.25 -T7481.55 19940. 34
113 -23463.83 7120.60 -14259.,43
114 15024.21 -4507.53 7702.55
115 -6593.17 1968. 41 -2958.68
116 1717.01 -456.23 636.34
17 21.45 -27.42 4.1y
118 -0.24 16.45 2.45
119 -20.01 -71.86 -29.74
120 90.82 372.47 142.62
121 -266.87 -892.05 -381.89
122 573.94 1661.82 770.28
123 -908.28 -2329.72 -1175.45
124 1136.15 2656.08 1418.34
125 -1102.70 -2420.12 -1331.66
126 856.97 1798. 21 971.06
127 -486.08 -1014.84 -524.20
128 206.39 416.59 202.83
129 -38.65 -94 .26 -42.53

130 8.51 2.59 2.16



102

Point
no.

[N
FLWN -0 WONOWUEFWN =

15
16
17
18
19
20

X

10.

171

94

.03
-706.
1865.

-3399.
4735,
-5053.
4285.
-2827.
1480.
-543.
153.
17.
-5.
-1126.
5101,
-13732.
26425.
-38843.
45202.
-42263.
31671.
-18408.
7675.
-1957.
28.
56.
3423.
-15458.
42645,
-83960.
127277.
-153014,
148111,
-114213.
67984,
-28688.
THT6.

1

-140.
-6912,
31222,

-87018.
173454,
-267288.
327392.
-322856.
252910.
-152245,
64906.
-16993.
23.

265.
10630.
47771,
134288.
-270572.
423594,
-527967.

32
19

Upper surface

Y

29.

196.
-646.
1706.
-3033.
277,
-u582.
3954.
-2618.
1379.
=477,
17.

17.

51.

718.
-3374.
9863.
-20665.
33824,
-43929.
45407.
-36454.
21830.
-8899.
2097.
50.

-16.
-3104.
14893.
42424,
88223.
-142263.
.91
-185573.
147008.
-86649.
35013.
-7985.
.54
93.
6908.
-32500.
92997.
-193124.
311313.
-398068.
4o3761.
-318105.
186332.
-TU4697.
16878.
519.
-55.

182391

-181

-10461

08
67
85
82
95
42
4o
35
24
T4
50
38
99
12
31
87
56
71

o7 .

20
67
9Y
84
42
51
86
73
11
64
79
1
40

54
96
20
96
ou

13
68
71
45
92
07
71
18
1
79
59
36
24
35

.23
49674,
-142431,
296574,
-478430.
611853,

60
18
96
63
80

2.

16.

-38.

8u.
-111.
113.
-70.

26.

21.

-42.

48.

-28.

2.

-5.
-656.
2876.
-7022.
12579.
-18520.
22406.
-21728.
16426.
-9207.
3463.
-667.
=24,

5T7.
3500.
-15445,
38541.
-69653.
100578.
-116462.
107049.
-76671.
41060.
-14910.
2901.
4y,
-148.
-10794.
47804,
-120742.
219611,
-313221.
353324.
-314272.
217575.
-112999.
4o0182.
-7824.
-63.
272.
21584,
-95432.
242031.
-439972.
620343.
-686151.
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X Y VA

529741.49 -619783.85 596004.98
-420522.64 487032.37 -402282.64
255434.32 -284009.00 203886.33
-109502.66 113521.50 -71036.62
28771.29 -25454 .12 13717.6M4
40.71 -839.72 97.49
-328.66 65.93 -347.82
-12688.77 12071.63 -30573.40
56923. 14 -57627.10 134693.19
-161096.36 166059.66 -341084.61
328344.41 -346738.98 616946.81
-522264.24 560307.02 -859047.00
662662.64 -717205.63 933146.90
-676187.65 726692.80 -793308.60
543730.23 -570573.73 522968.32
-332685.35 332218.04 -258637.26
143148.54 -132957.68 88004.40
=-37447.37 29962.19 -16649.06
-73.79 1031.65 -111.32
290. 47 53.34 342.34
11542.34 -10223.88 31944, 81
-51678.25 50089.24 -139963.76
T47141.93 -145229.45 352810.45
-303348.04 305346.63 -633296.36
490225.66 -495198.02 870491.77
-633219.91 636248.86 -929826.39
657245.19 -646401.72 T752u48.47
-535478.20 508716.05 -499894.55
330177.77 =296473.80 241223.33
-142502. 81 119371.25 -79902. 40
37139.96 -27137.88 14715, 36

1M7.74 -919.66 112.77
-175.60 -65.55 -233.97
-7514.18 5719.62 -24145.96

33509.63  -29173.82 105228.77
-95774.78 86404.84 -263679.61
199483.80 -184667.92  L469450.65

-327208.04  302933.70 -637637.45
430181.53 -393218.19  671400.70
-454309.24  402920.29 -550702..43
375454,96 -319201.65  348400.99
-233628.64 186713.50 -164333.38
101331.37  =75691.22 53007.93

-26334.38 17378.94 =947T7.11
-72.00 613.93 -76.27
59.16 79.06 103.73
3096.52 -1656.06 11176.65
-13635.64 9434.32 -48447.58

38866.56 -29316.23 120749.92
-81322.12 65059.54 -213427.27
134792.31 -109363.73 287094.39

-179676.14 144955.10 -298857.34
192546.99 -150947.73 241935.52
-161080.13 121064.89 -150642.70
101093.83 -71265.95 69653.00
-44028.02 29128.34 -21901.70
11446.60 -6726.14 3804.00
52.92 -248.68 36.92
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APPENDIX 4

B-SPLINE CONTROL POINTS

The two sets of 180 control points, for the lower and upper surfaces respectively, are
arranged on identical 15-by-12 meshes. Note that, in contrast to the Bézier control polyhedra,
the X and Y coordinates are the same for equivalent B-spline control points.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 41 42 43 4y 45
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70 71 72 73 T4 75
76 77 78 79 80 81 82 83 84 8 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

Point
no. X Y Z-base Z-top
1 20.260 33.744 1.972 1.642
2 14,688 30.906 2.324 2.033
3 9.115 28.067 2.676 2.424
4 12.049 26.634 2.485 1.802
5 11.054 27.007 3.189 3.255
6 9.307 26.581 2.u484 1.668
7 16.538 29.620 3.214 1.330
8 11.567 24.418 2.128 3.146
9 13.927 24,491 3.632 2.573
10 15.729 23.006 2.009 0.615
11 17.600 19.561 2.602 3.039
12 18.187 19.659 3.072 1.763
13 19.317 18.819 3.045 1.791
14 19.416 17.902 3.036 2.158
15 19.514 16.984 3.027 2.524
16 13.196 30.966 2.491 2.491
17 10.940 29.077 2.500 2.500
18 8.684 27.188 2.509 2.509
19 10.123 25.952 2.462 2.462
20 10.134 25.753 2.642 2.642
21 10.231 24,925 2.349 2.349
22 13.396 25.981 2.591 2.591
23 11.905 23.055 2.664 2.664
24 13.366 22.77T7 2.502 2.502
25 14.071 21.437 2.327 2.327
26 14,949 20.974 2.440 2.440
27 16.021 19.631 2.912 2.912
28 16.933 18.806 2.413 2.413
29 17.479 17.987 2.813 2.813
30 18.025 17.168 3.213 3.213
31 6.132 28.187 3.009 3.340
32 7.192 27.248 2.676 2.967
33 8.253 26.309 2.343 2.595
34 8.197 25.270 2.440 3.122
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Point

no. X Y Z-base Z-top
9y 3.218 21.580 2.357 2.697
95 4.170 20.522 2.063 2.700
96 5.041 19.631 0.931 2.437
a7 5.948 18.666 1.302 2.074
98 6.852 17.737 3.169 3.250
99 7.612 16.944 2.089 3.021
100 8.997 15.678 2.825 2.347
101 9.333 14.833 3.021 2.859
102 10.683 14,233 2.130 2.458
103 11.120 12.058 3.313 3.662
104 11.068 8.948 1.991 2.762
105 11.016 5.839 0.668 1.863
106 -0.176 22.803 2.817 3.787
107 0.928 22.302 2.319 3.246
108 2.032 21.801 1.821 2.704
109 2.763 20. 44y 1.814 2.625
110 3.601 19.706 2.497 3.051
111 4.617 18.739 3.148 2.357
112 5.264 17.673 2.243 3.344
113 6.534 16.837 1.663 2.949
114 7.687 15.674 1.722 2.763
115 6.691 16.038 2.120 3.186
116 10.052 13.864 2.629 2.334
17 10.034 14.029 1.053 3.797
118 11.318 8.059 2.147 2.313
119 11.364 6.335 2.145 2.923
120 11.409 4.610 2.143 3.534
121 1.112 20.227 2.224 2.091
122 1.052 17.429 2.411 2.630
123 0.991 14.631 2.597 3.168
124 2.771 15.705 3.308 3.894
125 3.207 13.649 1.145 1.706
126 4,256 13.016 1.775 3.603
127 5.112 12.137 2.178 1.907
128 5.080 12.149 2.483 2.227
129 6.830 10.251 2.938 2.291
130 8.178 9.712 2.308 2.767
131 7.435 6.929 1.778 4.200
132 9.650 7.582 3.171 1.304
133 10.191 8.157 2.451 3.104
134 11.278 5.210 2.181 2.422
135 12.365 2.264 1.910 1.740
136 -0.622 17.607 -0.114 1.602
137 0.577 17.805 1.803 2.249
138 1.777 18.003 3.719 2.895
139 0.359 11.373 1.071 2.024
140 2.780 14,317 2.529 3.450
141 3.048 12.568 2.713 1.966
142 u.277 12.035 2.299 2.u64
143 5.618 10.136 2.103 2.067
144 6.105 9.806 1.750 2.213
145 6.897 8.606 1.816 3.032
146 8.391 8.767 2.028 1.990
147 8.934 7.454 2.528 3.981
148 9.266 6.715 1.229 2.177
149 11.877 4.606 2.261 2.389
150 14.488 2.496 3.293 2.600
151 0.121 19.390 3.076 3.530
152 -0.235 16.447 2.450 3.075
153 -0.591 13.504 1.824 2.620
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o

e
== <
“z

Stereo-pair 5-left



TS

<>
ST

Stereo-pair 5-right



W

\

\

\

Wi

N

\

N

N

W\

\

N\

N

N
N\
N

N
Q

N
1Y

N

N
\

N

N

Ny

N

MY

Stereo-pair 6-left



Stereo-pair 6-right



CRER

e
.. ‘“‘.«M.......w%....:. “.“..
9
\ N
AN
'. %;964«%%%%@//”//
SOV
. fff%%%ﬂ“““’”ﬂ//
AR s
=S S
N o
{4 >

Stereo-pair 7-left



oo
g

... .%%oﬂ&%ﬂ"&é“ooo
o

i
s .“a
S
I"'%u%”%zﬂl&

v
W

ht

-rig

\;
N

\

|

Stereo-pair 7



Stereo-pair 8-left



[/
Neet el

Stereo-pair 8-right



S5
s
W
W=
. A
OIS ScS
I ess=hylyl eses
e
7 ‘-IOO
g

\ 2258

N ::

I «“““s&‘tﬂn‘\éi\

RS

s
il fege

Stereo-pair 9-left



\

(S

....mmw.w‘»& X
3.““... 2 i,
\g\“ﬁmmw«.« i “\m«“.w.“.%ﬁ
S %
{ SN
BN
S
i
Il el
a.‘:g\\\\\%.... sl
o T
A
Lo
g
&“@““..‘“.“.“.&W\&\““\
\....“".# ,
ol
U
i

ht

-rig

Stereo-pair 9



W 22
/,

N\ Ny,
A2

Stereo-pair 10-left



Stereo-pair 10-right



s "““
ey
& OO
S e

O
Sesiety
S

! “‘Q
8

RS
e
.".,?‘

Ko
5
DO

X ..w“““g.
@%mm_wm&.".&ﬁ.
] so

RS

S &

s:‘

..a.

‘

,

i

:
)
\“s\\‘-ﬂe

17 \\\
\.m“mﬂ@nﬂ/l

\

4

=

-left

Stereo-pair 11



i
i

ik
SO
SO
3vﬂmﬁa%§mmxv'
q@iﬂp@.&:.};@:
PSSR
OISO
)
YR
s

ESECAD

f

T

Stereo-pair 11-right



Ny,
NN

Stereo-pair 12-left



Stereo-pair 12-right



Number Four

Series on Spatial Analysis
Kansas Geological Survey

1930 Avenue A - Campus West
Lawrence, Kansas U.SA. 66044




	img000
	img001
	img002
	img003
	img004
	img101
	img102
	img103
	img104
	img105
	img106
	img107
	img108
	img109
	img110
	img111
	img112
	img113
	img114
	img115
	img116
	img117
	img118
	img119
	img120
	img121
	img122
	img123
	img124
	img125
	img126
	img127
	img128
	img129
	img130
	img131
	img132
	img133
	img134
	img135
	img136
	img137
	img138
	img139
	img140
	img141
	img142
	img143
	img144
	img145
	img146
	img147
	img148
	img149
	img150
	img151
	img152
	img153
	img154
	img155
	img156
	img157
	img158
	img159
	img160
	img161
	img162
	img163
	img164
	img165
	img166
	img167
	img168
	img169
	img170
	img171
	img172
	img173
	img174
	img175
	img176
	img177
	img178
	img179
	img180
	img181
	img182
	img183
	img184
	img185
	img186
	img187
	img188
	img189
	img190
	img191
	img192
	img193
	img194
	img195
	img196
	img197
	img198
	img199
	img200
	img201
	img202
	img203
	img204
	img205
	img206
	img207
	img208
	img301
	img302
	img303
	img304
	img305
	img306
	img307
	img308
	img309
	img310
	img311
	img312
	img313
	img314
	img315
	img316
	img317
	img318
	img319
	img320
	img321
	img322
	img323
	img324
	img999

