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MINIMUM ENTROPY CRITERION FOR ANALYTIC ROTATION

by

Richard B. McCammon

ABSTRACT

Minimum entropy is described as an analytic criterion for rotation to simple structure for both principal
component and factor analysis data matrices. Minimum entropy rotated matrices come closer to achieving
the ideal simple structure than is possible using the varimax method in the sense that a greater proportion of
absolute values of the coefficients in the rotated matrix lie closer to zero. This allows greater ease of
recognition of the underlying structure in the original data array. The concept of rotation is extended to
include rotation of principal components. Numerical examples are given to illustrate the application of
minimum entropy rotation in both principal component analysis and factor analysis.

INTRODUCTION

Factor analysis is recognized as an effective sta=
tistical tool for extracting meaning from large arrays
of multivariate data. The computer programs for
factor analysis that are available have reduced the
necessary calculations to routine operations (Imbrie,
1953; Cooley and Lohnes, 1962; Manson and Imbrie,
1964; Sampson, 1968; Klovan, 1968; IBM, 1968).
This has resulted in an increased use of factor analysis
in geology (for a list of applications, see Harbaugh
and Merriam, 1968). Factor analysis, however, is
not as many would think one single operation, but
rather a sequence of statistical procedures in which
each procedure entering into the calculations is
considered on an individual basis in formulating the
final result. It is with one of these procedures that
the present paper is concerned - analytic rotation.

Analytic rotation has persisted as a challenge to
those engaged in developing factor analytic methods.
The reason stems from the desire for a simple factor
structure which, as a rule, direct factor solutions
do not provide. Although the problem has long been
recognized (Thurstone, 1947), it has only been since
computers became generally available that objective
analytic criteria for rotation to simple structure have
been devised for practical usage. Of the several
analytic criteria proposed, the varimax method due to
Kaiser (1958) is by far the best known and most widely
used procedure for rotating an initial factor matrix
to a position of simple structure. The computer pro-
grams that have been made available have incorpor-
ated this method.

The purpose of this paper is to make available a
computer program for an analytic criterion of factor
rotation proposed earlier (McCammon, 1966), which
approachas more closely the intuitive concept of
simple structure. The method is based on the entropy
concept as it is defined in information theory and is
used to describe the state of a given rotated factor
matrix derived from an initial factor matrix. Al-
though the results are similar to those obtained by

the varimax method, the basic difference is that for
the minimum entropy criterion, a greater proportion
of factor loading values are closer to zero. For large
matrices, this can amount to a significant difference.
The second purpose of the paper is to indicate
how the concept of analytic rotation can be extended
to the method of principal components, a near rel-
ative of factor analysis. Principal component anal-
ysis differs from factor analysis in that the extracted
components explain the total variance of a given
set of variables rather than the intercorrelations.
Principal component analysis finds useful application
in reducing the number of variables in a study and
also in problems of classification. The concept of
simple structure can be utilized to interpret the
principal components of a system of variables in
terms of the individual variables. A given subset
of principal components can be rotated into a
position of simple structure while preserving the
total variance. This is analogous in factor analysis
to the rotation of initial factors to a position of
simple structure while preserving the total correlation.
The minimum entropy concept is applicable to both
types of rotation.
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ROTATION OF PRINCIPAL COMPONENTS

The principal components of a set of observations
which involves n variables are defined as the
eigenvectors of the transformation which reduces
the covariance matrix of the variables to diagonal

form. The diagonal elements in the reduced matrix



are the eigenvalues corresponding to the eigenvectors
and represent the variances of each of the principal
components. It is usual to arrange the eigenvalues in
order of decreasing value along the diagonal. Let C
represent the covariance matrix of n given variables,
and D the diagonal matrix with the eigenvalues ar-
ranged in order of decreasing value. Because C is a
positive definite symmetric matrix, P in the transfor=
mation

D = P'CP )

is an orthogonal matrix (Murdoch, 1957, p. 145) and
contains the set of eigenvectors as column vectors.
The geometrical interpretation of principal compo=
nents is that of a rotation of axes about an origin in

a space defined by the coordinate axes of the n var=
iables to a new position in which axes defined as
linear combinations of the original variables represent
variables which are uncorrelated. The origin is taken
as the point defined by the means of the variables.
Each newly defined variable is termed a principal
component. The vector of principal components is
defined for the ith sample by a nx 1 column vector Z;
expressed in terms of the original variables as

Z;i = P'X; (2)
where Xj is the nx 1 column vector denoting the or-
iginal variables, and P is the matrix containing the
eigenvectors as column vectors. Without loss of
generality, we can assume that the original variables
have been previously adjusted to have zero means.
Thus, combining (1) and (2) and remembering that the
C = XX', the covariance matrix of Z is given by

C,=D (3)

(see Scheffe, 1959, p. 8) where D is the diagonal
matrix containing the eigenvalues of C. The var-
iables defined as principal components, therefore,
are uncorrelated and each has a variance corre -
sponding to the eigenvalue given in the diagonal
matrix.

The point to be made is that the principal compo=
nent having the largest variance, called the first
principal component, represents that linear combina-
tion of the variables with the greatest possible vari-
ance. The first principal component has a variance
at least as large as the greatest variance of anysingle
variable among the original variables. It represents
the best single variable for characterizing the original
data. The second principal component is defined as
the linear combination of variables with the second
largest variance but which, also, is uncorrelated with
the first principal component. This can be viewed
geometrically as choosing an axis which makes a
right angle with the axis defined as the first principal
component. Chosen in this manner, the two principal
component axes represent axes along which the scatter
of points representing the samples is at a minimum.

By chosing the remaining principal components in the
same manner, the result is a set of mutually orthogonal

axes. The coordinates of each principal component
with respect to the original variables are the eigen=
vectors. Because the principal component transfor=
mation is an orthogonal transformation, the total
variance remains unchanged.

Usually, a large part of the total variance is
accounted for by the first few principal components.
This reflects the correlation that exist among the
original variables. Thus the variability contained in
the original samples can be represented by fewer
variables in a lower dimensional space by plotting
samples along the axes defined by the few significant
principal components. In this manner it is possible
to achieve a substantial compression of the data.

For problems involving classification, it is helpful
to be able to assign a physical meaning to each
principal component that is chosen to represent a
group of samples. Ideally, this would mean that
some physical measure could be found which was
highly correlated with each principal component.
More commonly principal components are interpreted
in terms of the variables they represent. The domi-
nant variables of any principal component are found
by examining the coefficient defined for each vari-
able. The coefficients, being elements of a set of
orthonormal eigenvectors, form an orthonormal vector

basis. Thus the cl?efficieni' denoted by p;; for the if
variable of the fh coefficient is bounded in the in-
terval

1< pii <1 ;
moreover,

§:pn2=‘ i=T,....n.

i=1

The principal components of a set of data are asso-
ciated most closely with those variables whose co-
efficient values are close to plus or minus one. With
respect to the geometry, the coordinate axes of the
principal components are aligned or nearly so with
these same variables.

Suppose that for a set of data which involves n
variables the first k(k < n) principal components
account for the greater part of the total variance.
This means that the data can be represented in a
k=dimensional space without much loss of informa=-
tion. Suppose further we wish to interpret the
principal components we have chosen to represent
the n original variables. If we examine the abso-
lute values of the coefficients, we will find usually
that in addition to values close to one and zero,
there will be values intermediate between these
limits making the interpretation more difficult. We
can eliminate this difficulty by rotating the princi-
pal components within the given k=dimensional

subspace to a position where the new axes are
aligned as nearly as possible with the axes represent-

ing the original variables. For k =n, this would be



simply a rotation to the position defined by the origi-

nal variables. For k < n, however, the rotation to

be performed is constrained within a lower dimension=
al space which may or may not contain one or more of

the axes representing the original variables. In matrix
form,

B =PT 4)

where B represents the transformed nxk matrix whose
columns are the new coordinate axes representing the
first k principal components, and T is a k xk orthog=
onal matrix which represents the orthogonal transfor=-
mation. Because P is composed of orthonormal column
vectors and T is an orthogonal matrix, B likewise will
be composed of orthonormal column vectors. The
rotation preserves the total variance contained within
the k=dimensional subspace (McCammon, 1966, p.
728).

Recognizing that components are more readily
interpretable if the absolute values of the coefficients
are close to either one or zero, the entropy function
can be used to characterize the nonuniform distribu=
tion of coefficient values. The entropy expression is
given by

n

H=-Zi

k
bij2Inb;; 2 . 5)
i=1 =1
To achieve a state of absolute minimum en=
tropy requires that the squared coefficient values all
have a value of either one or zero. Because of the
constraints imposed by the dimension of the subspace
and the condition of orthogonality for the column
vectors of B, however, the minimum entropy will be
some greater value. We wish to find a kxk orthog-
onal transformation matrix T such that the coefficients,
b;:, of the transformed components matrix B minimize
thé entropy expression H given by (5). The result is
a set of k components which are more interpretable in
terms of the original variables but yet which will
account for the same total variance as the first k
principal components. The difference will be that
the components will no longer be uncorrelated.
Before considering how to find T, it is of interest
to note that the varimax method due to Kaiser (1958)
can be formulated to fit the present situation. By
imposing the same conditions of orthogonal column
vectors for the transformed matrix B in (4), Kaiser's
"raw" varimax is given by

2
k | n - ( biiz)
Vo= E E O R U N RS
n
i =11]i =
which is the variance one wishes to maximize. How-

ever, because

n
E bi]2 =1 forall j,

i=1
the maximum found for (6) is identical to the maximum
found for

which is the expression used to define the quartimax
method (Harman, 1967, p. 298). Thus, for component
rotation, the varimax and quartimax methods give
identical solutions.

The methods for finding the maximum of expres=
sions as (6) and (7) which involve orthogonal trans-
formations make use of the relation that a rotation
matrix T can be represented as a product of elementary
rotation matrices

T=m Ts

i>i'l

where Tjj has for its elements

drs 1’7-(],57{]

cos O r=i,s=i,orr={,s=j
sin 0 (g r=i,s=j
= sin Oy r=j,s=i

and
- 7T/4<9ii< T/4 .

For each elementary plane rotation, it is necessary
only to solve for that value of 6;; which maximizes
the expression. The rotations ard performed in
cyclic pairs (i, |) for i less than j. The iterative
procedure is continued over successive cycles until
no further improvement in the criterion to be maxi-
mized is obtained. For both the quartimax and the
varimax method, it is possible to obtain a closed
analytic expression for @i at each iteration which
will maximize the expression given in (6) or (7)
(Harman, 1967, p. 300, 307). However, for the
entropy function, this is not possible. Consider an
elementary plane rotation defined by Oii , and (5)
becomes

n
H = ‘Z( Pri cos Bij ~ prsin 0;) 2
r=1

In ( pyj cos B ~ Prj Sin 6jj )2



n
_Z( Prisin Ofj + Py S0 6ij )2

r=1 .
In (pyisin eii + prj cos Gii)z

n k
_ZZ brszln bs2 . (8)

r=1s=1
r,s#i,

To minimize this expression, the partial derivative
with respect to 6;; would be set equal to zero, and
then one would solve for the critical value, @.l ,
which can be done only by solving a nonlinear equa=
tion. Rather than solving for8}; using nonlinear me=
thods, it is more convenient to Hind@;i by direct
search becouse/e\,i is contained within a known inter-
val. Successive frial values of 6jj may be substituted
in (8) until a minimim value is attained. The complete
minimization of (5) using elementary plane rotations
is obtained in the same manner as for the varimax and
quartimax method.

One may ask what advantage there is in the mini=
mum entropy criterion if the varimax method can be
adapted for principal component rotation. The answer
is that the minimum entropy criterion comes closer to
achieving simple structure in the sense that a greater
proportion of coefficient values expressed in absolute
value lie closer to zero following the transformation.
This is illustrated in Figure 1. For large component
matrices, this difference can be significant.

f(x)

o 1
x
Figure 1.- Expected frequency distribution curves for
coefficients of rotated data matrices.
Coefficients are expressed as absolute
values (A) minimum entropy rotation, and
(B) varimax rotation.

FACTOR ANALYTIC ROTATION

In the previous section, we indicated how mini-
mum entropy serves to define an analytic criterion for
rotation of principal components. With some modi-
fication, we can apply the same concept to factor
rotation.,

In factor analysis, an initial factor matrix is
obtained by any one of a number of methods (Har=
man, 1967, Pt. Il, Chaps. 7= 11). For the principal
axis=solution, the initial factor matrix is made up of
column vectors which are the eigenvectors multiplied
by the square root of their associated eigenvalues
derived from the correlation matrix of the original
variables. If communalities rather than unities are
placed in the diagonal elements of the correlation
matrix, the resulting factor matrix is called the
principal factor solution. In either situation, the
initial factor matrix is the starting point for factor
rotation.

In factor analysis, the interest lies in the ob-
served correlations between variables. Each derived
element in the initial factor matrix turns out to be
the correlation coefficient between each variable
and the corresponding factor. The goal of simple
structure is to reduce to near zero as many of the
correlations as possible while retaining a factor
structure which accounts for the same total correla=
tion observed for the original variables. One method
for this is by an appropriate orthogonal transformation
on the initial factor matrix.

The varimax method is designed to achieve simple
structure. Given an initial nxk factor matrix A de-
fined for n variables and the first k principal factors,
a k xk rotation matrix T is found that defines a new
nxk factor matrix B given by

B =AT (9)

in such a manner that the expression

is a maximym (Harman, 1966, p. 306). The commu-=
nality, h; 2, defined for each variable as

k
2 _ .. 2
hi = § : aij
i=1
remains invariant under the transformation.

To develop an analogous minimum entropy cri=
terion, it is necessary to recognize the difference



that exists in the initial matrix to be rotated as com=
pared with the initial matrix to be rotated in princi-
pal component analysis. For the initial factor matrix,
the column vectors are no longer unit vectors, and,
consequently, the length of the vectors will not re=
main invariant under an orthogonal transformation.
Also, for the varimax method, the row vectors are
normalized prior to rotation. The effect of this is to
distribute the lengths of the column vectors of the
rotated matrix as evenly as possible subject to the
constraints imposed by the transformation. An ex-
pression which at its minimum value distributes the
squared coefficient values within a column as un=
evenly as possible and the lengths of the column vec-
tors as evenly as possible following an orthogonal
transformation is given by

n k

k
where Ai=-;. b;iz, cndA=E Aj

i=1 i=1

This expression defines the minimum entropy criter-
ion for factor rotation. It has the property that, if
Ai =1 for all |, the solution in terms of the rotated
matrix B is the same as the rotated matrix obtained
in the situation of principal components. By sub-
stituting Aj = 1 for all jin (11),

H

H* = ——
Ink

(12)

indicating that the derived solutions for both en=
tropy functions give rise to the same minima.

The method for finding the rotation matrix T
which minimizes the entropy expression in (11) is
the same as before, that is, a direct search using
elementary plane rotations. Convergence to the
minimum value is attained in the same manner fol~-
lowing an unspecified number of cyclic rotations.

The resylts obtained using the minimum entropy
criterion may be compared with those obtained by
the varimax method. Again, for the minimum en-
tropy criterion, a higher proportion of absolute co-
efficient values in the transformed matrix lie closer

to zero. It is for this reason that the minimum en-
tropy criterion comes closer to satisfying the ideal
simple structure.

PROGRAM OPERATION
Program Dimensions

The program is dimensioned to rotate twelve com-
ponents or factors for fifty variables. However the
limits may be raised by increasing the dimensions for
the appropriate program variables. No change in the
logic of the program is necessary. To facilitate the
changing of program variables, the main program and
all subroutines have been written so that all double
subscripted arrays are expressed as single vector ar-
rays. In order to change the dimension of any var=
iable, it is only necessary to make the change in the
main program.

Order of Input Cards
1. Program control card

2. Title card

3. Input - output data format card
Data cards

4. Blank card

Program Usage

Card 1
Columns
1=-5  NR = number of rows (variables) in
initial matrix
6-10 NC = number of columns (components
or factors) in initial matrix
11 MODE = 2 analytic factor rotation
1 analytic component ro-
tation
Card 2

Columns 1-72 may be used for a title
Card 3

Columns 1=24 are used to specify the format
to read in the initial data matrix. The data in
the matrix are to be read one column at a time
starting with the first column,

Columns 25-48 are used to specify the format
to write out the data matrix. The data are to
be written one row at a time starting with the
first row.

Data Cards

(if a new set of data is to read, go to Card 1)



Card 4

A blank card follows the last data card.
Subroutines Required

All subroutines required are provided along with
the main program. The user need only check to see
that all subroutine decks are present before program
execution. The subroutines included are:

MINENT subroutine to perform the minimum
entropy rotation.

MINSEK subroutine to find the minimum of
a nonlinear function,

COLENT subroutine to evaluate the partial
entropy for one column of a matrix

SHOOT subroutine to calculate the entropy
function for an elementary plane
rotation.

MINV subroutine to invert a matrix.

GEOLOGIC EXAMPLES

Environmental Classification

In a recent paper, multiple component analysis
was shown to be an effective method for classifying
large numbers of samples taken in environmental
studies (McCammon, 1968). Of the other methods
of classification that were compared, a method
which produced similar results was based on minimum
entropy rotated principal components derived from
the correlation matrix of the original variables.
Listed in Table 1 are the first three principal com=
ponents in this study which accounted for the greater
part of the total variance among the twelve original
variables (Purdy, 1960). The minimum entropy ro=
tated components are given also in Table 1. This
rotation provided a set of components which could be
more readily interpreted in terms of the original var-

iables and produced a classification similar to the
one obtained through multiple component analysis.
In order that this example might serve as a test pro-
blem for the program on a different computer, Table
2 lists the input data for this problem and Table 3
lists the output from which Table 1 was constructed.

Biostratigraphic Correlation

In an earlier paper (McCammon, 1966), princi-
pal component analysis was used as a means for es-
tablishing a regional biostratigraphic marker horizon
over an area in which the relative abundance for a
large number of Foraminifera had been tabulated.
Table 4 lists the first seven principal components of
the covariance matrix obtained for 48 Foraminifera
species. The minimum entropy rotated components
are given in Table 5. After rotation, the number of
coefficients whose absolute values exceeded 0.25
was reduced from 34 to 24, and the number of zero
loadings (rounded to two decimals) was increased
from 43 to 60. Thus the rotated components were
easier to interpret in that fewer variables contributed
to each component. Rotated component |l was used
subsequently to define a subsurface marker horizon
which could be traced over the entire area of study
(McCammon, 1966, fig. 5).

Brine Analysis

As a final example, we consider the minimum
entropy rotfation in factor analysis. In this instance,
we can compare results with those obtained by the
varimax method. Table 6 gives an initial factor
matrix based on data for a large number of brine
analyses (Sampson, 1968). The rotated matrix due
to the varimax method is given in Table 7. The
rotated matrix due to the minimum entropy criterion
is given in Table 8. As can be seen, the results are
almost identical. The minimum entropy criterion,
however, does produce a matrix of coefficients whose
average absolute value is 0.297 which is slightly
less than the average value of 0,298 obtained for
the varimax method. For larger size arrays, it is ex-
pected that the differences between these two methods
will be significantly greater.



Table 1.-First three principal components obtained from correlation matrix of Bahamian sediment data taken
from Purdy (1960) and rotated to position of simple structure using minimum entropy criterion.

Components

Particle Initial Rotated

Constituents (Minimum Entropy)

I 11 ITI I II III
Coralline algae .095 .410 -.391 -.009 .001 -.574
Halimeda .231 .262 -.245 .157 -.041 -.395
Corals .095 401 -.442 -.026 -.039 -.602
Oolite -.321 -.,298 -.342 -.429 -.351 .039
Grapestone -.217 .293 .489 -.035 .587 .161
Cryptocryst. gr. -.141 417 .413 .020 .603 .008
Peneroplidae .372 -.024 .126 <391 -.031 .035
Other foraminifera .34 (177  .160 .391  .138 -.081
Mollusks .333 .216 .041 .341 .090 -.187
Wgt. % < 1/8 mm .428 -,215 .134 .435 -.174  .166
Fecal pellets 300 -.336  .067 .286 -~.269  .231
Mud aggregates .337 ~.125 -.010 .309 -~.183 .021

Table 2.-Input for Bahamian sediment data.

00000000011111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890

12 31
BAHAMIAN SEDIMENTS DATA - FIRST THREE PRINCIPAL COMPONENTS
(12F5.3) (1HO010X3F8. 3)
095 231 095 =321 =217 -141 372 349 333 428 300 337
410 262 401 -298 293 417 -024 177 216 -215 -336 -125

=391 -245 =442 -342 489 413 126 160 041 134 067 -010




Table 3.-Results of minimum entropy rotation
for Bahamian sediments data.

INITIAL COMPONENT MATRIX

0.095 0.410 -0.391
0.231 0.262 -0.245
0.095 0.401 -0.442
-0.321 -0.298 -0.342
-0.217 0.293 0.489
-0.141 0.417 0.413
0.372 -0.024 0.126
0.349 0.177 0.160
0.333 0.216 0.041
0.428 -0.215 0.134
0.300 -0.336 0.067
0.337 -0.125 -0.010

CRITERION VALUES

0.29421E 01
0.26303E 01
0.25414E 01
0.25411E 01
0.25411E 01

LN =

TRANSFORMATION MATRIX

0.947 -0.262 -0.182
0.058 0.698 -0.713
0.315 0.666 0.677

ROTATED MATRIX

-0.009 0.001 -0.574
0.157 -0.041 -0.395
-0.026 -0.039 -0.602
-0.429 -0.351 0.039
-0.035 0.587 0.161
0.020 0.603 0.008
0.391 -0.031 0.035
0.391 0.138 -0.081
0.341 0.090 -0.187
0.435 -0.174 0.166
0.286 -0.269 0.231
0.309 -0.183 0.021




Table 4.-First seven principal components extracted from covariance matrix of Foraminifera data taken from
McCammon (1966). Leading decimal of coefficients has been omitted for convenience. Coefficients
whose absolute value is 0.25 or greater are underlined.

Foram-
inifera
Species 1 11 III IV \4 VI VII
1 09 22 -54 27 14 16 57
2 00 00 0T 00 00 00 0T
3 03 11 04 -05 -03 09 -05
4 32 01 00 -37 -05 08 -07
5 by 32 -38 79 -22 -67 -11
6 02 02 02 04 04 -01 01
7 32 -07 -01 10 02 17 -15
8 12 04 02 -04 -07 27 -19
9 10 42 -20 09 -13 23 -24
10 00 12 01 -03 18 -01 -08
11 00 36 05 -06 42 -03 -31
12 06 00 -22 -03 06 -07 13
13 05 -~17 -13 -14 06 -06 -06
14 24 14 20 -05 03 -15 -01
15 30 -04 04 -29 -18 -17 -30
16 32 04 07 -14 -48 08 05
17 17 -24 -25 03 17 -09 -10
18 02 -03 04 02 03 -05 02
19 04 08 -02 -10 25 -02 -07
20 02 -05 01 -03 00 -02 00
21 04 27 05 -18 05 16 08
22 01 00 -02 -02 -02 -03 00
23 30 -34 -14 19 14 06 -01
24 16 -12 -20 -08 15 07 -22
25 07 -12 -05 06 08 -01 -05
26 24 -07 06 -27 06 -15 11
27 11 23 08 07 08 -05 11
28 02 04 01 00 00 06 -01
29 19 00 32 -02 02 -16 18
30 07 -05 -1T 00 01 -02 04
31 -01 14 00 -04 39 -06 -20
32 24 -28 -10 23 17 00 09
33 05 -04 13 02 00 -10 12
34 07 -04 14 07 -01 -09 15
35 22 12 -04 48 -11 39 -02
36 04 -02 -01 09 04 -01 03
37 02 03 02 -01 -04 02 00
38 09 00 01 -02 00 00 -02
39 03 -02 08 07 -05 -11 09
40 00 01 00 01 05 00 -03
41 01 00 00 02 00 02 -01
42 -01 02 01 00 09 01 -05
43 00 04 -02 -01 02 01 -01
44 00 00 00 00 01 00 -01
45 =02 05 01 00 17 -01 -10
46 26 14 23 07 28 -05 18
47 19 18 21 25 16 00 22
48 00 00 00 0T 01 -02 00




Table 5.-Rotated components using minimum entropy criterion obtained from initial principal components in
Table 4. Coefficients whose absolute value is 0.25 or greater have been underlined.

Foram-
inifera
Species I II ITI v V. VI VII
1 00 00 00 00 -02 -01 89
2 01 00 01 00 00 00 00
3 01 09 -10 -08 04 05 00
4 00 -02 00 -48 03 11 12
5 00 00 -01 00 00 -92 00
6 05 -01 -01 02 03 0T 00
7 05 -26 -25 -18 02 06 -07
8 -09 -01 -26 -17 03 15 -06
9 -14 16 -50 -10 14 -16 08
10 04 03 -01 -01 22 -01 01
11 05 06 -05 -03 57 -01 -07
12 -02 ~-10 06 00 01 -11 23
13 -12 -15 15 -11 05 00 04
14 28 05 01 -21 07 -08 -07
15 -08 -02 06 -52 01 -12 -17
16 05 08 -17 -41 -40 -04 01
17 -13 -37 09 -03 11 -09 04
18 06 -03 04 00 00 -01 -03
19 04 -02 05 -05 27 02 06
20 00 -03 04 -03 -01 02 -01
21 10 22 -11 -11 11 12 19
22 00 -01 03 -02 02 -02 02
23 03 -53 -05 -02 -03 02 00
24 -18 -26 -04 -16 20 03 04
25 -01 -18 02 00 04 00 -03
26 16 -~06 23 -29 00 02 10
27 _26 08 -09 00 07 -08 08
28 00 02 -06 -02 01 03 01
29 _39 02 14 -10 -08 02 -08
30 -02 -10 01 -02 -02 -04 08
31 02 01 01 00 39 -03 -04
32 12 -46 00 07 -04 00 02
33 17 -01 10 00 -08 00 -04
34 21 -02 07 02 -11 -01 -04
35 11 -18 -62 14 -13 02 -02
36 05 -07 -02 05 00 -03 00
37 01 03 -03 -03 -03 00 -01
38 00 00 01 -02 01 00 -01
39 12 -01 06 03 -10 -07 -04
40 00 -01 00 01 06 00 -01
41 00 -01 -03 01 00 01 00
42 00 -01 00 01 10 02 -02
43 -01 01 -02 00 04 00 02
44 00 00 00 00 01 00 00
45 01 -01 00 03 20 01 -03
46 48 -06 -02 -03 16 04 06
47 46 -03 -14 12 03 -01 03
48 01 -01 01 01 00 -01 00
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Table 6.-Initial factor matrix of Arbuckle brine data taken from Sampson (1968).

.8667 -.3192 .0506 -.0655
. 7482 -.3418 -.1126 -.0811
.2827 .4587 .0834 .5449
-.2062 -.0498 -.6663 .4700
.2528 .6907 -.3526 -.0244
.9051 -.0967 -.0543 -.0043
<7919 .2839 .0184 .0244
.8451 -.0578 -.0491 -.0338
-.0369 -.3663 .3888 L7147
-.7214 -.3258 -.3670 -.0862
-.3923 .3040 .5243 -.1116

Table 7.-Varimax rotated factor matrix of Arbuckle brine data taken from Sampson (1968).

L9175 .0233 .0994 .0872
.8303 -.0611 -.0492 .0191
.0498 .7553 -.0721 .1264
-.1639 .0852 -.8214 .0315
.0388 .5408 -.1411 -.5933
.8823 .2235 .0249 -.0501
.6405 L4919 .1326 -.1973
.8158 .2159 .0445 -.0839
-.0167 .1704 -.0705 .8736
-.5241 -.5750 -.4041 .0027
-.5025 .0903 .5205 . 0459

Table 8.-Minimum entropy rotated factor matrix of Arbuckle brine data.

.9143 .0931 .0901 .0850
.8319 .0091 -.0597 .0133
-.0144 L7422 -.0629 .1981
-.1810 .0719 -.8175 .0606
-.0151 .5957 -.1515 -.5365
.8598 .3019 L0145 -.0310
.5959 .5605 .1239 -.1549
L7941 .2917 .0340 -.0657
-.0235 .0868 -.0471 .8872
-.4784 -.6135 -.4023 -.0398

.5010 .0394 .5286 L0416
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Listing of minimum entropy rotation program.

YOO OO OO OO OO OO OO OO0

MINIMUM ENTRCPY RUTATICN PROCRAM

A CCMPUTER PRCGRANM TC FERFCRM AN ANALYTIC RUTATION BASED
ON THE MINIMUM ENTEOPY CRITERICN ON AN INITIAL CATA MATRIX. THE
RUTATICN MAY BE PEKFCRNMED CN EITHER A PRINCIPAL CCMPONENT MATRIX
OR A FACTOR MATRIX. THE PRESENT PROGRAM IS DIMENSIUNED TO ROTATE
UP TU A 50 BY 12 MATRIX. THESE LIMITS CAN BE EXTENCEC BY
INCREASING THE JIMENSICNS CF THE APPRIPRIATE PROGRAM VARITABLES.,

ORDER GF INPLT CARCS
le PROGRAM CUNTRCL CARD
2. TITLE CARD
3. INPUT-OUTPUT FURNMAT CARD
*x DATA CARDS %
4. BLANK CARD

PRUGRAM CUNTRCL PARAMETERS
NR = NUMBER (CF RCWS IN INITIAL MATRIX
NC - NUMBER UF COLUMNS IN INITIAL MATRIX
MCDE — MODE = 1y CCOMPUNINT RCTATICN
MCOE = 249 FACTLCR RUCTATICN
PREGKAM VARIABLES
X — INPUT DATA VECTZK CF LENGTH NRXNC
C - WUORKING VECTCR IF LENGTE NR*NC
UeDl — WORKING VECTCKS CF LENGTH NCx*
S5 = WUORKING VECTOR CF LENGTH NR
Ev = CRITERICN VECTUR (CF LFNCTH 10%NC
AC O AEZLC o MC - WORKING VECTCRS OF LENGTE oC
SURRIGUTING S REQUIRED
MINENT MINI UM ENTREPY ROTATION
MINSEK MINIMUM OF NONLINEAR FUNCT ICN
COLENT COLUMN ENTRCPY CRITERIUN

SHOUT ENTROPY CRITERICN FCR ELEMENTARY PLANE

P
=

CTATION

MI NV MATKIX INVERSICN
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o0

1
1CC

101

102

2C¢C

a
2C3

= AN WD

12

17

2C7

2C¢8

13

% Sk 3k R e koR ek

DIMENSIGN FMT(LB) yFMI(6),FMUL6) 4 X1600),CL600),S(50),D(144),4D11(144)

1oEVIL120) 4LC(12) 4, MCU12),AE(12),AC(12)
READ(5,10C) NR4NC,MODE

FURMAT(2I5,11)

IFINRLEQ.D) ST3P

READ(54101) (FMT(I)yI=1,18)

FORMATI(18A4)

REAU(549102) (FMI(I)4I=1,06) {FMC(1),I=1,6)
FORMAT(12A4)

[2=0

D 10 J=1+NC
[1=12+1
I2=11+NR-1

READ(SFMI) (X{(I),I=11,12)
WRITE(6,200) (FMT(I),I=1,18)

FORMAT(1H1/1H T30, "MINIMUM ENTRCPY ROTATION? //1H 5Xx18A4 / )

G3 TU (8.9) .MODE
WRITE(€&4,203)

FORMAT(LIH INITIAL COCMPCNENT MATRIX! )
G T 11

WRITE(€42C5)

FORMAT(1H ? INTTIAL FACTOR MATRIX! )

12=(HNC=1) %NR

DO 12 I=1sNR

12=12+1

WRITE(APyFME) (X{J) 9yd=T,412,NR)
IF(MUUEL.EQ.1) G0 TO 15

DU 17 T=14AR

K=[—-NR

S{1)=C.

DO 17 J=1,NC

K=K+ NR

S{I)=S(I)+X(K)**2

N 18 I=1,4NR

SCT)=SORTLS(I))

K=I-NR

DD 13 Jd=1,nNC

K=K+ NR

XEK)=X(K)/S(I)

K=C

DO 40 I=1sNR

D0 40 J=1 4NC

K=K+1

C{K)=X(K)

CALL MINENTUNR NUs Xy NITNyEVsaEyAC)
WRITc{642CT7) (I4EVII) oI=14NITN)
FURMAT(1IHO Y CRITERIGON VALUESY //{1H 10XI3,£20.5))
IF(NTITNSLTL(1OXNC) ) GC TC 13
wITeE(6492923) NITN

FORMAT(LIHO! ERRORK MESSAGE: NUMBER OF CYCLES EQUALS
IF 10%NC = *,[3 // )

CIONTINUE

DO 41 I=1,NC

Kl=1-NC

DJ 41 J=1,4NC

K1=K1+MC

D(K1)=C.

K2=(1I-1)%aR

14

SET LIMIT U

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
10
71
12
73
14
75
16
77
18
79
80
81
82
83
84
85
86
87
88
89
90
9l
92
93
94
95
956
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114



41

£2

€4

K3={J=-1)%NR

DO 41 K=1.NR

K2=K2+1

K3=Kk3+1

DKL) =L{KL)+C(K2)*X(K3)
[F{MUDFetwel) G TC 60
DU &2 1=1.NC

Kl=1I-NC

D) 62 J=1 ’I\C

Kl=K1+AC

D1(K1)=C,

KZ2=(I—=1)%NR

K2=(J=-1) %NR

DD 62 K=1,AR

K2=K2+1

K3=K3+1
DI(KL)=C1IKL)I4C(K2)%C(K3)
CALL MINV(DL NCyDETLLCsMC)
DD ¢4 I=1,nC

Kl=1I-NC

DD 64 J=1,NC

Kl=K1+NC

C{K1)=0.

K2=1-NC

K3=(J=-1)*NC

DU €4 K=1NC

K2=K2+NKC

K3=Kk3+1
C(K1I)=C(KLI)+D1(K2)*D{K3)
K=C

DiJ €% I=1.NC

DD €65 J=1,NC

K=K+1

> D(K) =C(K)

DO 28 I=14NR

K=]—-nNR

DO 28 J=1,NC

K=K+NR

X{K)=X{(K)=*S(I)

CONTINUE

WRITE(E,209)

FORMAT(LIAHQ! TRANSFCRNATICN MATRIX!
[2=(NC-1)=%NC

D) 1o I=14NC

12=12+1

WRITE(LFMC) (D(J) yd=1,12,4NC)
WRITz(6,211)

FORMAT(1HO? RCTATEC MATRIX? )

[2=(NC—-1)%NR
DU 14 I=1,NR
[2=12+1
ARTITE (6 9F ML) (X(J)9d=T9129NR)
Gu T 1
END
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115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
133
139
1490
lal
142
143
l44
145
146
147
143
149
159
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
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s Serdle oo ool a3
SLERJLTINE MINENTANR GNCyX o NITN,EVy AE,2C)

S e e e 3 e 2t 2 e ok

%

Stk JUTIN= TL PERFORA MINIMUM ENTRUPY RUTATIUN
DIMENSTON XCL) 2AE(L) 5 £CTLY 2 EVIL) 3 T(4),HI10)
Al=—. 78536

AN2=q 125358

H(1)=A2/19.

D14 J=249
HeJd)=1(Jd-1)/1C.

SA=0.

K=C

D 32 Jd=140nC

XS=0.

ac(d)=0.

D52 I=1,4i/R

K=K+ 1

XC=X({K) ==

XS=XS+XC
[TF{XC)52452 434

AELJ) =l (J)-XC*ALLCG(XC)
CONTLINUE

SA=CSA+XS
AC(J) == XS*ALTG(XS)
CN=(,

Ch=C.

ASA=aLlL{SA)

A SA=3A*ASA

30 33 J=14NC
CHN=CA+AE(J)
C=LD+AC( J)

NI TN=1

FENT=(UN+ASA) /(CD+ASA)
FV{RITN) =FENT

NTOL =1 0xNC

NC1=nC-1
IF{NnTITNSGESNTCL)Y GO TL 50
NI TN=NT TR+ L

ENT=0,

N3 25 11 =1,NC1

[I1=I1

UN=CN=-AEC(L])
CH=CH=-ACC(IT)

[d=I1+1

D3 2¢ Jd=1J+NC

Jd=JdJ

KL=([I-1)=Nr
K2=(JJ=1) &NR
CHN=CAH=-AFE(JJ)
Co=La-AC1JY)

CALL MINSEK(B oH9AL 982 ¢yNRyNCoIIT 9 JJsCNyCDy AS A, X)
T(1)=CusS(iB)

T(4)=T(1)

T(3)=5IN{1B)

T(2)==T(3)

XN=C,

AS5=0.
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169
179
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
163
194
195
196
197
198
199
200
201
202
203
204
205
2066
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228



2

w

2

wn
(o]

C

g s]

S

D0 5 1=1+NR

Kl=K1l+1

K2=K2+1
Y=X{KL)HT(L)+X{K2)*T(2)

X{K2) =X{KL)*T(3)+X{(K2)*T (4)

XC=X(K2) %%2

[FIXC)H3 403,54
XN=XN=XC*ALCG(XC)
XS=X5+XC

X( K1) =Y

AF{JJ)=XN
AC{JJI)==XS*ALLG(XS)
Cin=CH+At(JJ)

CO=Cu+Aal (JJ)

CCNTINUF

XN=C.

xs=0n,

Kl=(II-1)%NR

DO 55 I=14NR

K1=K1+1

XC=X[{ K1) **2

XS=x S+ XC

TF(XC) 55959439
XIN=XN=XC*ALCG (XC)
CUNTINUE

AC(LI)=XN
ACCIT)==XS*ALCG(XS)
CN=CN+AELLT)
CO=CI+AC(I1)

CALL CULENT({TENT oI1 49X ,4NR)
ENT=ENTHTENT

CUNTINLUF

CALL CULENT(TENT ¢NC X 4AR)
INT=tNT+TEANT
ENT=(CN+ASA) /(CD+ASA)
EVINTITN)Y=ENT
TT=(FENT=ENT) /FENT
[FITT=.00G0001)5045C,29
FeNT=sENT

GO T 22

CINTINUE

RETURN

END
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229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
2538
259
260
261
262
263
264
265
266
2617
268
269
270
271



coo

OO0

20

21

[aS)
(8%)

24

25

2¢€

11

12

W
(@]

31

32

lée
4C
41
42

4¢

43
44
45

LR R TS

SUBROUTINE MINSEK (B yHyALyA24NRyNCyIT,JJyCNyCCyASAyX)
e 3 st ol 4 o o ok

SUBROUTINE TOU FIND THE MINIMUM CF A NCNLINEAR FUNCT ION
DIMENSION X{1),H(1)
TM8=0,.
ICY=C
I1=C
MIN=2
CALL SHOCT(TMFTMByIT4JJsNRyNCeXyASA,CN,CC)
B32=TMB
[=1+1
IF(I-5)21,2144C
B1=R2-H{TI)
IF(B81-A1)244+22422
CALL SHOOTH(F 9Bl sI14JJeNRyNCyXyASA,CNyCN)
[F{F=-TMF) 23424424
TMF =F
TM3=31
MIN=1
B3=R2+H( 1)
IF(IB3=-A2)25425,16
CALL SHOOT(F 4834311 4JJ9sNRyNCyXsASA,CN,CN)
IF(F-TMF ) 26416416
T™MF =F
TMR=33
MIN=3
Gu T 16
MIN=2
Bl=THBE-H{1)
IF(EL-AL)LS5,11,11
CALL SHOOGT(F +Bls11 9yJJsNRyNCyXyASA,CN,yCN)
IF(F-TMF)12,16,1¢
TMF =F
TM3 =51
MIN=1
U TU 16
MIN=2
B3=TA3+H{])
IF(B3-A2)31431416
CALL SHUOOT(F 983411 9JJsNRZyNCeX 9 ASAZLN,CN)
IF(F=TMF)32,16,16
TMF =F
TMR=33
MIN=3
GO T(1Ge28430C) 4MIN
IF(ICY)41'41743
IF(ABS(TMBY=A2+4.0C001 )44 444 447
ICYy=1
B3=TMB
[F=TMr
IF{B)4646T7447
T™MB=A2
GO T3 2
TMB=A1
G TY 2
IF{TMF=TF) 44 445,45
3=TM3
REZ TURN
END
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272
273
214
275
2176
2117
278
279
280
281
282
283
284
285
286
2817
288
289
290
291
292
293
294
295
296
297
298
299
300
301

302
303
304
305
306
307
308
309
310
311

312

313
314
315
316
317
3138
319
320
321

322

323

324
325
326
327
328
329
330
331
332
333
334



OO

o g e ok 3 steokok K ok
SUBRIOUTINE CCLENT(E sy JyeXyNR)
e sk o o e ok % ROk

SUBRIOUTINE TO EVALUATE THE

MATRI X

DIMENSICN X(1)
T=0.

£=0,

K={J=1) *NR

NO 4 I=1,KR
K=K+ 1

XC=X{K) *%2
IF(XC)4494,43
E=E-XCXALCG{XC)
T=T+XC

E=C/T+ALUGI(T)
END

ENTRCPY CRITERICN

19

FOR ONE COLUMN OF A

335
336
337
338
339
340
341
342
343
344
345
3406
347
348
349
350
351
352
353
354



OO YO

oD O

o

s sk 92 s o o % %
SUBRIOUTINE SHCOUT(F 4By [1y9Jddy
3ok ek o ook e 3k ok

SUBRUOJTIN: TUO EVALUATE THF
PLANE ROTATION

DIMCNSTIUN X(1) oTH4) ,14(2)
1J4(1)=11

[14(2)=JJ

T(1)=CUS(3)

T(4)=T(1)

T(3)=SIN(B)

T(2)==-T(3)

F=C.

CN1=0.

CDl=¢C.

DY 5 Jd=142

Ce

2u0 7 I=1,NR
Y=0C.
K2={J=-1) %2
DU 6 K=1,2
L=1J(K)
Kl1=I+(L-1) *NR
Kz=K2+1
Y=Y+X(KL)*T(K2)
Y=Yx%2

[F{Y)7,7,8
TE=TE-Y*ALCG(Y)
TUT=T3T+Y
CNL=CN1+TE
COLI=CD1I-TCT*ALCG(TCT)
CONTINUE
F=(CN+UNLI+ASA)/(CP+CN1+ASAH)
RETURN

END

NEyNCy Xy ASA, ONy C1Y)

ENTRCPY CRITERICN FOR AN ELFMENTARY
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355
356
357
358
359
360
361
362
363
364
365
366
367
308
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
3990
391
392
393



OO

OO OO0

OO0

OO

2C

38

ook ok ok K ok %ok % KK
SURKUJUTINE MIKNVIASN,DsL M)
32 o Sl A Ak R

SLBRIUTINE TC INVERT A MATRIX TAKEN FRCM
SUBRJUTINE PACKAGE (360A-CM-03X) VERSION

APPL PRUG H 20-0205-3 L,TECH. PURL.
454 P,

DJIMENSIUON A(L),L(L),NM(1)

d=1.0

NK==N

DO 80 K=1 N

NK=NK+N

LUK} =K

MK) =K

KK=NK+K

3IGA=A(KK)

DD 20 J=KeN

[Z=N*%(J-1)

DO 20 I=K,N

[J=17+1

IF( A3S(BIGA)- ABS(A(IJ))) 15,20,20
BIGA=A(TJ)

L(K)=1

M{K)=J

CONTINUE

INTEKCHANGE ROWS

J=L(K)

[IF(J=K) 325,35425
KI=K=N

D) 30 I=14N
KI=KI+N
HOLL==A{KI)
JI=Kl =K+ J
A(KI)=A(JI])
A{JI) =HCLD

INTERCHANGE CGLUMNS

I=M(K)

IF(1-K) 45,45,33
JP=N*({1-1)

DO 40 J=1,N
JK=NK+

JI=JP+y
HILD=-A{JK)
ALJK)=A(JI)
A(JI) =HUOLD

DIvioe CCLUMN RY MINUS PIVCT {(VALUE CF PIVOT ELEMENT IS

CUNTAINED IN BIGA)

L8 THF(BTIGA) 48,464,448
4¢ D=0 0
RETURN
48 DD 55 1=1,N
IF{I=-K) ED455,5C
50 IK=N<+]

21

36¢0 SCIENTIFIC
111 PROGRAMMER'S MANUAL
DEPT oy WHITE PLAINS,NEW YORK,

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
4164
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
4438
449
450
451
452
453
454
455



OO

leNeNe!

OO0

OO0

[eNeNe!

55

€0
€2

€5

7C
15

ACIK)I=ACIK) /(-BIGA)
CONTINUE

KEOUCE MATRIX

00 65 I=1,N

I K=NK+]
HOLD=A(1K)
TJd=1-N

DO 65 J=1,4N
IJ=1J+N

IF(1-K) 60465,60
IF(J=K) €24654+62
KJd=1J-1+K
A(TJ)=HCLD*A(KJ)+A(1Y)
CONTINUE

DIVIDE RCW BY PIVQT

KJ=K=-N

DO 75 J=1,N
KJ=KJ+N

[F(J-K) 70,75,70
A(KJ)=A(KJ)/BIGA
CONTINUE

PRODUCT CGF PIVOTS
D=D*31GA
REPLACE PIVCT BY RECIPRCCAL

A(KK)=1.0/8IGA
CONTINUE

FINAL R3OW AND COLUMN INTERCHANGE

K=N

K=(K-1)

IF(K) 1504+15G,165
I=L(K)

IF(I-K) 12C,12C,1C8
Ju=N*(K-1)
JR=N*(1-1)

DD 11C J=1,N
JK=Jd+J

HOLD =A( JK)
JI=JR+J
ACJK)==A(JI)
A(JI) =HOLD
J=M(K)

IF(J-K) 1C3C,100,125
KI=K-=N

D93 130 I=1,N
KI=KI+N
HOLD=A(KI)
JI=KI-K+J
ACKI)==-A{JI)
AlJI) =HCLD

GJ TJ 1C0

RETURN

END
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MINIMUM ENTROPY ROTATION
ARBUCKLE BRINE DATA - FIRST FCUR PRINCIPAL FACTGRS
INITIAL FACTOR MATRIX
0.8667 -0.315%2 C. 0506 -0.,0655
C.7482 -C.3418 -C.1126 -0.0811
0.28217 C.4587 0.0834 0.5449
—~0.2C€2 -C.0498 -C.6663 0.4700
0.2528 C.65C7 =0.3526 -0.0244
C.9C51 -0.0967 -0.0543 -0.0043
C.7919 0.2839 . 0184 0.0244
0.8451 -C.0578 -C.0491 -0.0338
-0.0268 -0.3663 C.3888 0.7147
-C.7214 -0.3258 -C.3670 -0.0862
-0.3923 C. 3040 C.5243 -0.1116
CRITERION VALUES
0.25163E Cl
0.22656E Cl
0.22612E Gl
C.22546E Cl
0.22536E C(Cl

C.22539E C1
0.22539€ (1

~N U W N e

TRANSFORMATICN MATRIX
C.9018 C.42C1 C.C855 -0.0543
-0.2984 Ce7557 Cel795 -0.4878
-C.08C9 0.0576 0.8734 0.4768
~C.14€5 (4951 -Co.4445 0.7293
ROTATED MATRIX
C.G143 C.0931 C. 0501 0.0850
C.8319 0.C0S61 -C.C597 0.0133
-0.C144 Ce7422 -C.0629 0.1981
-0.181¢C 0.0719 -0.8175 0. C606

-0.C1%1 C.5657 -0.1515 -0.5365

G.8568 C.3C16 C.Cl45 -0.0310
C.565¢ C.5605 Cel239 -0.1549
Ce7941 0.2917 C.C340 -0.0657
-0.0235 C.C368 -0.0471 0.8872
-0.4784 -C.6135 -C,4C23 -0,0398

-0.501C 0.C364 C.5285 0.0416
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KANSAS GEOLOGICAL SURVEY COMPUTER PROGRAM
THE UNIVERSITY OF KANSAS, LAWRENCE

PROGRAM ABSTRACT

Title (If subroutine state in title):

MINIMUM ENTROPY CRITERION FOR ANALYTIC ROTATION

Date: June, 1969

Author, organization: Richard B, McCammon

Department of Geological Sciences, University of lllinois at Chicago

Direct inquiries to:

Name: Richard B. McCammon Address: Department of Geological Sciences

University of Illinois at Chicago

Purpose /description:  To reduce a factor analytic or principal component data matrix to a state

of minimum entropy using an orthogonal transformation

Mathematical method: A modified Jacobi procedure

Restrictions, range: The program is currently dimensioned to rotate twelve principal factors

or components for fifty variables.

Computer manufacturer: 1BM Model:  360/50

Programming language: FORTRAN |V

Memory required: 3 K Approximate running time:

Special peripheral equipment required:

Remarks (special compilers or operating systems, required word lengths, number of successful runs, other ma-
chine versions, additional information useful for operation or modification of program)
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(continued from inside front cover)

FORTRAN 1V program for vector trend analyses of directional data, by W.T. Fox, 1967

Computer applications in the earth sciences: Colloquium on trend analysis, edited by D.F,
Merriam and N.C, Cocke, 1967 .

FORTRAN |V computer programs for Markov chain experlmenl's in geology, by w. C
Krumbein, 1967 . i .

FORTRAN |V programs to defermme surface roughness in fopogrophy for the CDC 3400
computer, by R.D. Hobson, 1967 .

FORTRAN Il program for progressive linear fit of surfaces on a quadrahc base usmg an 1BM
1620 computer, by A.J. Cole, C. Jordan, and D.F. Merriam, 1967 .

FORTRAN 1V program for the GE 625 to compute the power spectrum of geologlcol surfaces,
by J.E. Esler and F.W. Preston, 1967

FORTRAN IV program for Q-mode cluster analysis of nonquonh’rohve dofc usmg IBM 7090/
7094 computers, by G.F. Bonham- Carfer, 1967 . .

Computer applications in the earth sciences: Colloquium on hme-serles cnclysns, ‘edited by
D.F. Merriam, 1967 . -

FORTRAN Il time-trend package for the IBM 1620 compufer, by i C Davis and R e
Sampson, 1967 . .

Computer programs for multivariate onalysus in geology, edited by D, F Merrucm, 1968

FORTRAN 1V program for computation and dlsploy of principal components, by W.J,
Wahlstedt and J.C. Dcvns, 1968 . -

Computer applications in the earth sciences: Colloqu:um on s:mulahon, edited by
D.F. Merriam and N,C, Cocke, 1968 .

Computer programs for automatic confourmg, by D B. Mclnfyre, D. D Pollard and
R. Smith, 1968

Mathematical model and FORTRAN v program for compufer simulation of deltaic sedlmen-
tation, by G.F. Bonham-Carter and A,J. Sutherland, 1968 .

FORTRAN IV CDC 6400 computer program to analyze subsurfoce fold geomefry, by
E.H.T. Whitten, 1968 . :

FORTRAN 1V computer program for snmulohon of fronsgressnon cnd regressuon with conhnuous-

time Markov models, by W.C. Krumbein, 1968 . .
Stepwise regression and nonpolynomlcll models in trend cnolys:s, by A.T. Miesch and
J.J. Connor, 1968 .
KWIKR8 a FORTRAN [V program for mulhple regressnon cnd geologlc frend oncly5|s, by
J.E. Esler, P.F. Smith, and J,C. Davis, 1968 .
FORTRAN |V program for hormomc trend analysis using double Fourler series cmd regulcrly
gridded data for the GE 625 computer, by J.W. Harbaugh and M.J. Sackin, 1968
Sampling a geological population, by J.C. Griffiths and C.W, Ondrick, 1968 . :
Multivariate procedures and FORTRAN |V program for evaluation and improvement of
classifications, by Ferruh Demirmen, 1969, . .
FORTRAN |V programs for canonical correlation and canonical frend surfcce cmclysns, by
P.J. Lee, 1969 . .
FORTRAN 1V program for construction of Pi duograms with the Univac 1108 compufer, by
Jeffrey Warner, 1969 . S %
FORTRAN 1V program for nonlinear eshmchon, by R B. McCommon, 1969 -
FORTRAN |V computer program for fitting observed count data to discrete dlsfrlbuhon models
of binomial, Poisson and negative binomial, by C.W. Ondrick and J.C, Griffiths, 1969
GRAFPAC, grophuc output subroutines for the "GE 635 computer, by F.J. Rohlf, 1969

. An iterative approach to the fitting of trend surfaces, by A.J, Cole, 1969 . A
FORTRAN Il programs for 8 methods of cluster analysis (CLUSTAN 1), by Dovnd Wlsharf 1969

FORTRAN 1V program for the generalized statistical distance and analysis of covariance
matrices for the CDC 3600 compufer, by R.A. Reyment, Hans-Ake Ramden, and
W.J. Wahlstedt, 1969 . .

. Symposium on computer cppllcahons in pefroleum explorohon, edited by D. F Merrlom, 1969

FORTRAN 1V program for sample normality tests, by D.A. Preston, 1970 .
CORFAN-FORTRAN |V computer program for correlation, factor analysis (R- and Q mode)
and varimax rotation, by C.W. Ondrick and G.S. Srivastava, 1970 : 3

Minimum entropy criterion for analytic rotation, by R.B. McCammon, 1970
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