DANIEL F. MERRIAM, Editor

FORTRAN IV PROGRAM FOR SAMPLE NORMALITY TESTS


By

D. A. PRESTON

Shell Development Company

in cooperation with the American Association of Petroleum Geologists Tulsa, Oklahoma

COMPUTER CONTRIBUTION 41

State Geological Survey
The University of Kansas, Lawrence
1970

EDITORIAL STAFF

D.F. Merriam* Editor

Technical Editors

John C. Davis*

Owen T. Spitz° Associate Editors

Paul J. Wolfe

Frederic P. Agterberg Richard W. Fetzner*

James M. Forgotson, Jr. John C. Griffiths John W. Harbaugh*

John H. Hefner* Sidney N. Hockens* J. Edward Klovan William C. Krumbein* R.H. Lippert

William C. Pearn + Max G. Pitcher*
Floyd W. Preston
Walther Schwarzacher Peter H.A. Sneath

Editor's Remarks

This computer program, "FORTRAN IV program for sample normality tests", by D.A. Preston starts our fifth year of the series. We are pleased that the publications have been so well received and are proving of use to practicing geologists the world over. About 80,000 copies of COMPUTER CONTRIBUTIONS now have been distributed to scientists in more than 40 countries!

This COMPUTER CONTRIBUTION should be of value to geologists interested in distributions of geological populations. It will have special meaning to petroleum geologists seeking to improve their predictions of finding new oil and gas fields. Examples are given from Kansas and Texas by the author in presenting results of his many years of research on the subject. I am pleased to note that the manuscript was completed by the author during his tenure as a visiting industrial scientist with the Geological Survey in 1969.

The program will be made available on magnetic tape for a limited time for \$15.00 (US). An extra

\$10.00 charge is made if the punched cards are required.

I am pleased to welcome Dr. Frederic P. Agterberg of the Geological Survey of Canada (Ottawa) and Mr. John H. Hefner of the Humble Oil and Refining Company (Houston) as new associate editors and Mr. Paul J. Wolfe, Director of the Computation Center at The University of Kansas, as a technical editor. They will help maintain the high editorial standards of the past four years. I am most pleased to acknowledge the help of retiring board members, Dr. John R. Dempsey and Dr. R.G. Hetherington, who over the past several years gave unselfishly of their time in refereeing manuscripts. Their efforts are most appreciated.

We look forward to the new decade with all its promise and hope that geological accomplishments will equal or surpass those of the 1960's. The soaring 70's should witness a review of old techniques and ideas, a development and refinement of known methods, and a search for new untried ways and concepts.

Some recent Computer Contributions

33.	FORTRAN IV program for construction of Pi diagrams with the Univac 1108 computer, by	
	Jeffrey Warner, 1969	\$1.00
34.	FORTRAN IV program for nonlinear estimation, by R.B. McCammon, 1969	\$0.75
35.	FORTRAN IV computer program for fitting observed count data to discrete distribution models	
	of binomial, Poisson and negative binomial, by C.W. Ondrick and J.C. Griffiths, 1969	\$0.75
36.	GRAFPAC, graphic output subroutines for the GÉ 635 computer, by F.J. Rohlf, 1969	\$1.00
37.	An iterative approach to the fitting of trend surfaces, by A.J. Cole, 1969	\$1.00
38.	FORTRAN II programs for 8 methods of cluster analysis (CLUSTAN I), by David Wishart, 1969.	\$1.50
39.	FORTRAN II program for the generalized statistical distance and analysis of covariance	
	matrices for the CDC 3600 computer, by R.A. Reyment, Hans-Ake Ramden, and	
	W.J. Wahlstedt, 1969	\$1.00
40.	Symposium on computer applications in petroleum exploration, edited by D.F. Merriam, 1969.	\$1.00
41.	FORTRAN IV program for sample normality tests, by D.A. Preston, 1970	\$1.00

^{*} Active Member, * Associate Member, * Junior Member, American Association of Petroleum Geologists

by

D.A. Preston

INTRODUCTION

The improvement of prediction is among the most important goals of any scientific investigation. Yet the results of an investigation will be subject to considerable uncertainty if the supporting data are drawn from a population whose characteristics are incompletely understood. This limitation is particularly common for geologic investigations where populations are, in general, only partially accessible so that their exact nature cannot be determined. Useful numerical approximations of their probability distributions may be derived, however, if the data are drawn in such a manner that they constitute a representative sample of the parent population (see Griffiths, 1967; Griffiths and Ondrick, 1968). Statistical analysis of such data then may improve the predictability of further sampling by suggesting an appropriate a priori probability model for the parent population from which predictive inferences can be drawn. Moreover, once an appropriate model is established for a population, the quality of any sample drawn from that population may be determined easily.

A distinction must be preserved for possible purposes for which samples are statistically analyzed. On one hand, if samples are from a population whose probabilistic nature is known, statistical analysis yields a measure of sample error created by departure from randomness, operator error, and the like. The main problem is identifying the sources of error. On the other hand, if samples are analyzed in order to derive a population distribution model, the sample must be constructed painstakingly to minimize sample error. Poorly constructed samples from populations of unknown distribution will yield completely ambiguous statistical results.

THE NORMAL A PRIORI PROBABILITY MODEL

Two generally accepted categories of a priori probability models exist. One characterizes the distribution of discrete variables based on counting or similar enumeration, and the other characterizes the distribution of continuous variables based on measurements. In the second category the normal or lognormal model seems to be most frequently applied to natural phenomena. Perhaps this is because of the mathematical basis of multivariate normality; namely, that the sum of an assemblage of random variables is distributed normally irrespective of the distribution of each contributing variable. If a natural phenomenon is assumed to be the result of several random events, by the same reasoning that pheno-

menon should be normally distributed. This is true, of course, only to the degree that the contributing events tend to be random with respect to each other. In the extremely complex physical systems with which the geologist deals a seemingly randomness may describe the net effect.

The normal distribution with its two parameters is not the simplest of the probability models. It is, nonetheless, relatively easy for the nonstatistician to understand because its two parameters describe (1) the average data value of the sample (mean), and (2) the variability or spread of the data around the average (standard deviation). Moreover, the separation of the two parameters makes the model particularly tractable mathematically.

In practice, to test for population normality or lognormality, the parent population is assumed to be normally or lognormally distributed. This is the so-called null hypothesis. The data (or their logarithms) then are analyzed and their statistical behavior tested against the null hypothesis of population normality. Lognormal distributions can be handled by standard normality tests because the logarithms of data elements drawn from a lognormal population are normally distributed. The hypothesis then is either accepted or rejected on the basis of closeness of fit to the normal model at some predetermined level (usually 95%). Certain risks are incurred by this procedure. An improper model for the population may be accepted, or a proper model may be rejected. The tests used in the program SNORT tend to minimize the former risk because acceptance of an improper model is usually the most undesirable of the two outcomes. Testing for sample quality from a population of known distribution is, of course, more straightforward because in this situation the answer sought is contingent only on the test results.

STATISTICAL DESCRIPTION

The principal statistical tests used in the program SNORT are the chi-square and the Kolmogorov-Smirnov parametric tests for normality. The nonparametric two sample Kolmogorov-Smirnov test is made if two samples are run. In addition, the program computes the mean, standard deviation, coefficients of skewness and kurtosis, and ratio of range of the data to the standard deviation.

Chi-square test

The chi-square test is a measure of the disparity existing between observed data values in a

sample and those expected from whatever a priori probability model the sample is being tested against. The test value is calculated by

$$\chi^2 = \sum_{j=1}^{n} \frac{(obs_j - exp_j)^2}{exp_j},$$
 (1)

where n = number of class intervals into which the data are divided, obs; = frequency of observed data in class j, and exp; = frequency of data in class j expected from the model. The chi-square values of each sample follow a distribution given by

$$Y = Y_{o} (\chi^{2})^{\frac{1}{2}} (\nu^{-2}) e^{-\frac{1}{2} \chi^{2}}, \qquad (2)$$

where ν = degrees of freedom and Y_o is a constant dependent on ν so that the area under the function curve is kept at 1.0.

If the expected frequency in each class interval is least equal to 5 then equation (2) is a close approximation to the sampling distribution of χ^2 . Consequently most statisticians, when samples are small, will pool class intervals until the expected frequency in each pooled interval is at least 5. Other statisticians argue that the improved approximation is more than offset by loss of resolution in the tail portions of the curve. They recommend pooling only when an expected frequency otherwise would be close to or less than 1.0. Their argument is that excessive pooling is likely to reduce the chance of legitimately rejecting the a priori model. Rather than arbitrate this argument for the user, pooling for the chisquare statistic in the program SNORT is done, if necessary, at levels of expected values of both 5.0 and 1.5.

The class intervals are set before pooling at 0.3 standard deviations. The error of grouping is kept to less than 0.1 of the standard error, as recommended by Fisher (1946). This is slightly coarser than 0.25 standard deviation intervals, at which point the information loss due to grouping is less than 1.0 percent. Degrees of freedom in a chi-square test are based on the number of class intervals used after pooling and on whether the model parameter(s) are known or assumed. The program SNORT deducts two degrees of freedom for an assumed mean and standard deviation since they are derived from the sample itself.

Kolmogorov-Smirnov Test

This test is based on the sample distribution function, $F_n(x)$, where

$$F_n(x) = 1/n$$
 (number of observations $\leq x$). (3)

The function is expressed as the cumulative relative frequency of the sample. The choice of class interval is less critical than in the chi-square test, so 0.3 standard deviation intervals are used for convenience. The sample statistic used is

$$D_n = \sup_{-\infty < x < \infty} |F_n(x) - F_0(x)|, \qquad (4)$$

where D_n = the maximum absolute difference between the cumulative relative frequency curves of the observed and expected frequencies. The critical value for acceptance at the 95 percent significance level is calculated by

$$D_{n} = 1.36 / \sqrt{n}$$
 (5)

where n = sample size. The null hypothesis for the model is rejected if this critical value is exceeded. Valuable information about the sample distribution is given by observing where on the curve the critical value is exceeded. Accordingly, the program SNORT plots the derived values for both expected and observed frequencies in each interval to provide a direct visual comparison of the curves.

Kolmogorov-Smirnov Two Sample Test

This test compares the relative cumulative frequency curves of two samples. It determines whether or not the samples have been drawn from populations having the same frequency distribution irrespective of that distribution. The test statistic is

$$D_{mn} = \sup_{-\infty < x < \infty} | F_n(x) - F_m(x) | .$$
 (6)

The critical value for acceptance at the 95 percent significance level is calculated by

$$D_{mn} < |1.36 \sqrt{(m+n)/mn}|,$$
 (7)

where $F_n(x)$ and $F_m(x)$ are the observed relative cumulative frequencies of samples n and m respectively, and D_{mn} is the maximum absolute difference between the two functions. The program SNORT makes this calculation, compares it to the maximum deviate between intervals, and prints out a statement of acceptance or rejection. This procedure is inaccurate for sample sizes less than 20, where tables should be used (Lindgren, 1962).

Skewness, Kurtosis, and Sample Range Statistics

Departure from normality in a sample is reflected by the asymmetry (skewness) and peakedness (kurtosis) of the frequency curve it describes relative to the normal curve. Measures of these effects are given by the third and fourth moments about the mean. Any moment about the mean is expressed as

$$M_r = \sum_{i=1}^{n} \frac{(x_i - \overline{x})^r}{n}$$
 (8)

where M_r = the r^{th} moment, x_i = i^{th} sample element, \bar{x} = the sample mean, and n = sample size.

In dimensionless form the moment coefficient of skewness = $M_3/\overline{S}^3=\sqrt{\beta_1}$; the moment coefficient of kurtosis = $M_4/\overline{S}^4=\beta_2$, where $\overline{S}=\sqrt{M_2}$. For the standardized normal curve, $\sqrt{\beta_1}=0.0$ and $\beta_2=3.0$.

When $\sqrt{\beta_1} > 0.0$ the distribution curve has a longer tail to the right of the central maximum indicating bias toward high data values. For $\sqrt{\beta_1} < 0.0$ the converse is true. When $\beta_2 > 3.0$ the curve tends toward strong centering about the mean with long tails (leptokurtosis) indicating less than expected variation of the data values. When $\beta_2 < 3.0$ the converse is true. Plates I and II, which graph the acceptable deviations of $\sqrt{\beta_1}$ and β_2 at the 95 percent significance level, are based on Pearson type curves that approximate the distribution of $\sqrt{\beta_1}$ and β_2 (Pearson and Hartley, 1966).

Another useful test for departure from normality is the ratio of the range of the data to its standard deviation. This test is especially sensitive for detecting maverick data values. A thorough discussion of this statistic is given in Pearson and Hartley's tables (1966). Plate III is a graph of the acceptance limit of this statistic at the 95 percent significance level.

POLYNOMIAL APPROXIMATION TO NORMAL CURVE

The use of this function in the program SNORT allows the expected value within any class interval of the normal to be generated from the specific sample being tested. Consequently, except for the chi-square test, no manual table look-up or subsequent hand calculation is required. The function is expressed

$$P(x) = 1. - Z(X) (0.4361836t - 0.1201676t^{2} + 0.9372980t^{3}) + e(x) ,$$
 (9)

where
$$t = 1./(1. + 0.33267x)$$
, $Z(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$,

and |e(x)| = error of approximation $< 10^{-5}$. The value of x is arbitrarily chosen as the class interval expressed in standard deviations from the mean $(0.3\ \overline{S}\ here)$. P(x) is the area under the normal curve from x to the mean. Expected values for sample size N are derived by

$$\exp_{i} = (P(x_{i}) - P(x_{i-1})) N$$
 (10)

PROGRAM DESCRIPTION

Input

The program SNORT (Sample NORmality Tests) is written in FORTRAN IV at a sufficiently generalized level to be compatible with or easily adapted to most computers. The program accepts one or two samples input as decks of punched cards with a limit of 5000 cards per deck, one datum to a card in fixed format. It will test the sample(s) for either normality or lognormality at the user's option. When two samples are run an additional test, the Kolmogorov-Smirnov

two sample test, is run also. It is recommended, though not necessary, that sample size be kept in excess of 20. The input format may be changed to fit any special need of the user by changing format statement 1000. The sample size limit may be increased by changing the arguments of variables SMPL1 and SMPL2 in the first dimension statement.

Program Input Cards

CARD 1 An option card Cols.

- 5 An integer 1 or 2 punched in this column specifies one or two samples.
- 10 An integer 1 or 2 punched in this column specifies a test for normality or lognormality respectively.

DATA CARDS 20 to 5000 allowed Cols.

1-10 Sample one data elements either right justified or with decimal punched.

CARD 2

Cols.

75-80 Punch FINISH to signify end of data set.

DATA CARDS (optional) 20 to 5000 allowed Cols.

1-10 Sample two data elements either right justified or with decimal punched.

CARD 3

Cols.

75-80 Punch FINISH to signify end of data set.

Output

An example of printer output is shown in Figures 1-8. The sample mean, standard deviation, skewness, kurtosis, ratio of range to standard deviation, and sample size are printed out first. Next, a statement of acceptance or rejection of the null hypothesis of normality at the 95 percent significance level is made based on the stated Kolmogorov-Smirnov critical value. The observed and expected cumulative relative frequencies at $0.3\overline{5}$ intervals are listed next with their absolute differences so that the user can determine the goodness of fit between each interval. The listed interval values are plotted below to afford a visual comparison of the curves they describe. The user can easily ascertain details and trends of deviation between the observed (empirical) and expected frequency distributions. The expected curve is the "1" curve, the empirical is the "2" curve. Where the curves are coincident an asterisk is printed. The range of data (or their logarithms) is calculated and scaled beneath the X axis. A listing of expected and observed frequencies in 0.3 5 class intervals for the chi-square test is printed out below the plot.

```
2.1431.4 STANDARD DEVIATION OF .5781--SKEWNESS IS .9707.KURTOSIS 3,5520,
THE HATTO OF THE RANGE TO THE STU DEV = 5.49 THE SAMPLE SIZE = 264
YOUR NULL HYPOTHESIS FOR (LOG)NORMALITY IS REJECTED AT THE .05 LEVEL--K-S CRITICAL VALUE IS .08370 ABS DIFF
                                  CUM FREQ EXP FREQ ABS DIFF
                                                    ,00000
,00135
,00348
,00821
,01787
                                                                    .00000
.00135
.00348
.00821
.01787
                                    ,00000
,00000
,00000
                                     .00000
                                     .00000
                                     ,00000
,00000
,90758
,37500
,37500
,48106
,57955
,69318
,73106
,79167
                                                    ,06680
,11506
,18406
,27426
                                                    .27426
.38209
.50000
.61791
.72574
.81594
.88494
.93320
.96407
.954213
.99179
.9965
                                                                    .00532
.02428
.02130
.00517
.01710
.01243
.01452
                                     ,79167
,86364
,92803
,94697
,96970
,97727
                                     .98485
                                                K-S TEST FOR (LOG)NORMALITY SAMPLE ONE CUMULATIVE NORMAL*1* EMPIRICAL*2*
                                                                                                              1 2
                                                                                                        1
    0,5
                                                                          2,889+00
     1,301+00
                                                                   RANGE OF DATA
THE EXPECTED AND OBSERVED PREQUENCIES FOR A CHI SQUARE TEST OF (LOG)NORMALITY IN INTERVALS OF 0.3 ST DEV--SAMPLE 1-- ARE
  EXPECTED OBSERVED
         1,4
6,2
2,6
4,8
8,1
12,7
18,2
23,8
28,5
31,1
28,5
23,8
          8.1
4.8
2.6
1.2
CHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF 1,5 = 412,462 WITH 15 DEGREES OF FREEDOM
```

Figure 1. - Sample 1 statistics, field area, Kansas City-Lansing Groups, Central Kansas Uplift.

CHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF 5.0 = 409.434 WITH 11 DEGREES OF FREEDOM

```
2,4472, A STANDARD DEVIATION OF ,7890--SKEWNESS IS ,9430, KURTOSIS 4,6987,
SAMPLE 2 HAS A MEAN OF
THE HATIO OF THE RANGE TO THE STD DEV = 6.92 THE SAMPLE SIZE = 250
YOUR NULL HYPOTHESIS FOR (LOG)NORMALITY IS REJECTED AT THE .05 LEVEL--K-S CRITICAL VALUE IS .08601 ABS DIFF
                                                                                                   CUM FREQ
.00000
.00000
.00000
                                                                                                                                               EXP FREQ ABS DIFF
.00000 ,00000
.00135 ,00135
.00348 .00348
                                                                                                                                                                                                   .00348
.00821
.01787
.03193
.06280
.09906
.07994
.09774
.06591
                                                                                                         ,00,000
,00,000
,00,400
,01,400
,01,600
,57,200
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,800
,54,80
                                                                                                                                                      ,00821
,01787
,03393
,06680
,11506
,18406
,27426
,50000
,61791
,7257
,81594
,88494
,93320
,96407
,98213
                                                                                                                                                                                                     .00609
.00226
.00806
.00894
.00520
                                                                                                                                                                                                     ,01413
.00779
.00052
                                                                                                                                                       99179
99652
99865
                                                                                                                                        K-S TEST FOR (LOG)NORMALITY SAMPLE TWO CUMULATIVE NORMAL*1* EMPIRICAL*2*
                                                                                                                                                                                                                               2
                                                                                                                                                                                                             2
            0,0
             1,000+00
                                                                                                                                                                                                                 3,728+00
                                                                                                                                                                                               RANGE OF DATA
THE EXPECTED AND OBSERVED FREQUENCIES FOR A CHI SQUARE TEST OF (LOG)NORMALITY IN INTERVALS OF 0.3 ST DEV--SAMPLE 2-- ARE
    EXPECTED OBSERVED
                           3
1,2
2,4
4,5
7,7
CHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF 1.5 : 150.122 WITH 15 DEGREES OF FREEDOM
```

Figure 2. - Sample 2 statistics, field area, Arbuckle Group, Central Kansas Uplift.

CHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF 5.0 = 146,732 WITH 11 DEGREES OF FREEDOM

SAMPLE 1 VS. SAMPLE 2--K-S TEST

CHITICAL VALUE OF KOLMOGUROV-SMIRNOFF TWO SAMPLE TEST FOR ACCEPTANCE AT ,05 IS LESS THAN,12002 ABS DIFF YOUR NULL HYPOTHESIS IS REJECTED

UM FREQ	CUM FREQ	ABS.DIFF	
0	.0000	.0036	
	.0040	.0036	
76 76	.0040	.0036	
76	.0040	.0036	
76	.0040	.0036	
076	0160	0084	
76	.0160	.0084	0.74.0
			,9280
076	,0160	,0084	,9318
176 150	.0160	.0084	,9318
750	.0160	,3590	,9356
50	0160	,3590	,9432
750	.2640	,1110	.9470
750	,2640	,1110	,9470
75Q	,2640	,1110	,9583
3750	.2720	,1030	,9659
75U	.2720	,1030	9659
3750	,3720	,0030	,9659
750	3720	.0030	,9735
811	,3720	.1091	,9735
811	,4120	.0691	
811	4120	0691	9773
811	4160	0651	,9773
000	4480	.0520	,9773
000	5120	.0120	,9773
795	5160	.0635	,9811
	· :	• -	,9811
5795	,5360 5480	,0435	,9811
5795	,5480	,0315	,9811
5835	.5680	.0153	,9848
326	,5840	,0486	,9848
326	.6080	,0246	,9848
364	6240	,0124	,9848
932	.6440	,0492	.9848
970	,6560	.0410	.9886
083	,6880	.0203	9924
083	7280	.0197	.9924
083	,760Ü	.0517	9962
197	.7760	.0563	.9962
462	.7880	.0418	,9962
500	8120	.0620	,9962
576	8320	.0744	,9962
7727	8400	.0673	
7803	,8600	.0797	,9962
7917	.8640	.0723	,9962
992	.880Ü	.0808	19962
144	,9000	.0856	,9962
			,9962
182	9120	,0938	,9962
333	,9200	,0867	,9962
8523	,9280	,0757	,9962
3636	9320	.0684	9962
3712	.9440	,0728	,9962
902	.9480	,0578	,9962
1977	.9560	,0583	,9962
053	,9600	.0547	,9962

Kolmogorov-Smirnov two sample test, from samples shown in Figures 1 and 2.

```
SAMPLE 1 HAS A MEAN OF
                                     2.2911.A STANDARD DEVIATION OF ,7373--SKEWNESS IS 1.0385.KURTOSIS 3,4691.
THE RATIO OF THE RANGE TO THE STO DEV = 4,17 THE SAMPLE SIZE =
YOUR NULL HYPOTHESIS FOR (LOG)NORMALITY IS REJECTED AT THE .05 LEVEL--K-S CRITICAL VALUE IS ,14665 ABS DIFF
                               CUM FREQ
                                                           ABS DIFF
                                00000
                                               .00000
00135
00135
00246
                                                            00000,
طر2000,
طر2000,
                                                             .00821
                                ,0000U
,0000U
,0000U
,01163
,54884
,54884
,44186
,53488
,76744
,8258
,89535
,93023
,93023
,95349
,9883/
                                               .00521
.01787
.03593
.06680
.11506
.18406
.27426
.50000
.61791
.72574
.81594
.88494
.93320
.98213
.99179
.99865
                                                             .06680
.10343
.16478
.07458
.05977
                                                             .07976
.04170
.00964
.01041
.01459
                                                             .05189
.03830
.00815
                               1,00000
                                          K-S TEST FOR (LOG)NORMALITY SAMPLE ONE CUMULATIVE NORMAL*1* EMPIRICAL*2*
    1.0
                                                                                                      1
1 2 2
                                                                                            2
                                                                                 2
   0,5
                                                                           2
                                                                     2
                                                          1
                                                                 2,838+00
                                                                                                                              4.374+00
                                                           RANGE OF DATA
THE EXPECTED AND OBSERVED PREQUENCIES FOR A CHI SQUARE TEST OF (LOG)NORMALITY IN INTERVALS OF 0,3 ST DEV--SAMPLE 1-- ARE
 EXPECTED OBSERVED
CHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF 1.5 = 113.488 WITH 12 DEGREES OF FREEDOM
CHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF 5.0 = 53.641 WITH 7 DEGREES OF FREEDOM
```

Figure 3. - Sample 1 statistics, field area, Clearfork Formation, Midland Central Basin Platform.

```
2.5205.A STANDARD DEVIATION OF .6521--SKEWNESS IS .4020,KURTOSIS 2,0070,
 THE HATTO OF THE HANGE TO THE STO DEV = 3.92 THE SAMPLE SIZE = 105
 YOUR NULL HYPOTHESIS FOR (LOG)NORMALITY IS REJECTED AT THE .05 LEVEL--K-S CRITICAL VALUE IS .13272 ABS DIFF
                                 CUM FREG EXP FREG ABS DIFF
                                  ,00000
,00000
,00000
                                                 .00000
.00135
.00348
                                                                .00000
.00135
                                                 .00348
.00821
.01787
.03593
.06680
.11506
.27426
.38209
.50000
.61791
.72574
                                                                .00821
                                   .auana
                                   .00000
.00000
.08571
.33333
                                                                .06680
.02934
.14928
                                  33333
35238
46667
580952
69528
75238
85714
90476
97144
99048
                                                                .14928
.07812
.08458
.08096
.00839
.03050
.06356
.02780
.02844
.00736
                                                 ,72574
.81594
.88494
.93520
.96407
.98215
.99179
,99652
                                                                .00132
.00348
.00000
                                 ,99048
1.00000
                                 1,00000
                                                 ,99665
                                            K-S TEST FOR (LOG)NORMALITY SAMPLE TWO CUMULATIVE NORMAL=1* EMPIRICAL=2*
                                                                                               1
                                                                                               2
                                                                        2
    1,602+00
                                                                   2,880+00
                                                                                                                                  4,158+00
                                                             RANGE OF DATA
THE EXPECTED AND OBSERVED PREQUENCIES FOR A CHI SQUARE TEST OF (LOG)NORMALITY IN INTERVALS OF 0.3 ST DEV--SAMPLE 2-- ARE
CHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF 1.5 = 79,909 WITH 13 DEGREES OF FREEDOM
CHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF 5.0 = 78.497 WITH 9 DEGREES OF FREEDOM
```

Figure 4. - Sample 2 statistics, field area, Devonian rocks, Midland Central Basin Platform.

SAMPLE 1 VS. SAMPLE 2--K-S TEST

CRITICAL VALUE OF KOLMOGOROV-SMIRNOFF TWO SAMPLE TEST FOR ACCEPTANCE AT ,05 IS LESS THAN,19779 ABS DIFF YOUR NULL HYPOTHESIS IS REJECTED

	,, .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. 10				
CUM FREQ	CUM FREQ	ABS, DIFF				
.0000	,0000	.0741				
,0116	.0857	0/41				
.0116	.0857	.0741				
.0116	.0857	.0741				
.0116	.0857	.0741				
0116	.085/	.0741				
0116	.0857	0741		8256	.7145	.1113
0116	0857	,0741		.8372	.7145	,1229
.0116	.0857	.0741		8372	.7335	1039
3488	.085/	2631		8605	7333	,1271
,3488	.0857	2631		8837	,7429	1409
3488	. 3333	.0155		8837	7524	.1313
,3488	3333	.0155		8837	7619	,1218
.3488	3333	.0155		8953	.781U	.1144
.3488	.3333	.0155		8953	.8000	0953
3488	,3333	.0155		8953	.8000	0953
3488	3333	.0155		8953	.8000	.0953
3488	3333	,0155		8953	.8286	.0668
3488	3524	.0035		9070	8571	.0498
4419	3524	0895		9070	8571	.0498
4419	3524	.0895		.9186	,8667	.0519
4419	3524	.0895		,9186	8667	.0519
4419	3524	.0895		.9186	.8762	.0424
4419	4571	,0153		.9302	,8857	.0445
4419	4571	,0153		9302	8857	.0445
5116	4571	.0545		9302	.8857	.0445
,5116	4571	.0545		9302	8857	.0445
5116	4667	.0450		,9302	,9048	,0255
.5116	4667	0450		9302	,9238	.0064
5349	4667	.0682		9302	,9333	.0031
5349	4952	0396		,9302	.9429	.0126
5349	4952	.0396		,9302	.9429	,0126
5930	4952	.0978		.9302	,9524	.0221
5930	5143	.0787		.9302	.9714	,0412
5930	,5143	0787		,9302	.9810	.0507
6279	5810	.0470		.9302		.0507
6279	,5810	.0470		9302	,9810 ,9810	.0507
6512	,5905	0607				
6512	6000	.0512		,9419 .9419	,9810 ,9905	.0391 .0486
6977	.6000	.0977		,9535	,9905	, 0400 0370
6977	.6000	.0977		*	.9905	
6977	.6000	.0977		,9535		,0370
6977	,6095	0882		,9535	,9905 .9905	,0370
7209	6095	.1114		.9535		,0370
.7674	6476	,1198		,9535	.9905	.0370
7674	6476	,1198		,9535	9905	.0570
,7674	6571	,1103		,9535	,9905	,0370
7791	.6667	,1124		,9651	.9905	,0254
7907				9767	9905	.0137
8023	,6762 ,6762	,1145 .1261		9884	9905	.0021
.8023	.6952	.1201		,9884	.9905	,0021
				9884	9905	,0021
8023	,6952	,1071		,9884	9905	,0021
,8140	,7048	,1092		.9884	.9905	.0021

Kolmogorov-Smirnov two sample test, from samples shown in Figures 3 and 4.

```
1,9704, A STANDARD DEVIATION OF ,9729--SKEWNESS IS ,1615, KURTOSIS 2,9422,
THE RATIO OF THE RANGE TO THE STD DEV = 5.18 THE SAMPLE SIZE = 264
YOUR NULL HYPOTHESIS FOR (LOG)NORMALITY IS ACCEPTED AT THE .05 LEVEL--K-S CRITICAL VALUE IS .08370 ABS DIFF
                                  CUM FREQ EXP FREQ
                                                                ABS DIFF
                                                                  ABS DIF
.00000
.00135
.00348
.00821
.01787
.00194
.00517
                                   00000
                                                   ,00000
,00135
,00348
                                                    00821
                                                   .00821
.01787
.03593
.06680
.11506
.18406
.27426
.38209
.50000
.61791
.72574
                                   00000
03788
0712879
12879
19697
27273
50758
65530
74248
89015
92803
97348
98485
99621
                                                                  .01291
.00153
.01466
.00758
.03739
                                                   ,72574
,81594
,88494
,93320
,96407
,98213
,99179
,99652
,99865
                                                                  .01669
.00913
.00521
.00517
.00573
.00864
.00694
.00031
                                              K-S TEST FOR (LOG)NORMALITY SAMPLE ONE CUMULATIVE NORMAL*1* EMPIRICAL*2*
    1,0
    0.0
                                                                       2,521+00
                                                                                                                                          5,041+00
                                                                RANGE OF DATA
THE EXPECTED AND OBSERVED PREQUENCIES FOR A CHI SQUARE TEST OF (LOG)NORMALITY IN INTERVALS OF 0.3 ST DEV--SAMPLE 1-- ARE
 EXPECTED
                          100
109
1518
205
37
237
217
220
84
330
CHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF 1.5 = 20.447 WITH 15 DEGREES OF FREEDOM
CHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF 5.0 =
                                                                                           9.043 WITH 11 DEGREES OF FREEDOM
```

Figure 5. - Sample 1 statistics, ultimate volume, Kansas City-Lansing Groups, Central Kansas Uplift.

```
SAMPLE 2 HAS A MEAN OF
                                          2,3855, A STANDARD DEVIATION OF 1,2049--SKEWNESS IS ,1556, KURTOSIS 2,9203,
 THE RATIO OF THE HANGE TO THE STU DEV = 5.37 THE SAMPLE SIZE = 250
 YOUR NULL HYPOTHESIS FOR (LOG)NORMALITY IS ACCEPTED AT THE .05 LEVEL--K-S CRITICAL VALUE IS .08601 ABS DIFF
                                  CUM FREQ EXP FREQ
                                                                 ABS DIFF
                                   00000
                                                   .00000
.00135
                                                                   ,00000
,00135
,00348
                                                   00821
01787
03593
06680
11506
18406
27426
3829
50000
61791
72574
81594
98494
93520
98494
99521
99652
99855
                                                                   .00821
.01787
.000920
.00494
.02794
.01009
.00000
.00209
.001794
.01506
.00280
.00280
.00613
.00779
.00613
                                    .00000
                                    .00000
.00000
.03600
.07600
.12000
.21200
.28000
.37200
.50000
.62000
.72400
                                    ,72400
,80800
,90000
,93600
,96000
,97600
,99600
,99600
                                              K-S TEST FOR (LOG)NORMALITY SAMPLE TWO CUMULATIVE NORMAL*1* EMPIRICAL*2*
     1,0
     0,5
CUMULATIVE
                                                                           1 2
                   1
                         1 2
                                                                       3,275+00
                                                                                                                                         6,508+00
                                                                RANGE OF DATA
THE EXPECTED AND OBSERVED FREQUENCIES FOR A CHI SQUARE TEST OF (LOG)NORMALITY IN INTERVALS OF 0.3 ST DEV-*SAMPLE 2-+ ARE
  EXPECTED OBSERVED
                          0
0
0
0
0
10
11
23
17
23
32
26
21
23
9
CHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF 1.5 # 18,098 WITH 15 DEGREES OF FREEDOM
CHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF 5.0 =
                                                                                           8.202 WITH 11 DEGREES OF FREEDOM
```

Figure 6. - Sample 2 statistics, ultimate volume, Arbuckle Group, Central Kansas Uplift.

SAMPLE 1 VS. SAMPLE 2--K-S TEST

CRITICAL VALUE OF KOLMOGUROV-SMIRNOFF TWO SAMPLE TEST FOR ACCEPTANCE AT .05 IS LESS THAN, 12002 ABS DIFF YOUR NULL HYPOTHESIS IS ACCEPTED

CUM FREQ	CUM FREQ	ABS, DIFF			
.0000	.0000	0019			
0379	.0360	.0019			
0379	.0360	0019			
0379	.0360	0019			
0379	0680	.0301			
0568	.0680	.0112			
.0568	.0760	.0192	,7765	.8360	.0595
0568	.0760	0192	,7803	,8560	0757
0568	.0840	0272	,7917	,868Ü	.0763
0720	.0840	0120	,8144	.8840	.0696
0720	.1000	0280	.8485	.8960	0475
0985	1080	0095	,8561	9000	.0439
0985	.1120	.0135	.8712	.9040	.0328
1098	.1200	0102	,8826	9160	0334
,1098	.1360	0262	.8902	9200	0298
1288	1400	.0112	,8977	9320	0343
1439	.1640	0201	9091	.9360	0269
1515	.1760	.0245	.9129	9360	0231
1667	.2000	0333	9205	9520	.0315
1742	2120	0378	,9242	9520	.0278
1856	,2160	0304	,9280	9560	0280
1970	.2200	0230	9432	9560	0128
2121	, 2320	0199	9470	9600	.0130
2197	2640	.0443	9470	9680	.0210
2311	2800	0489	.9545	9720	0175
,2386	3000	0614	9583	9760	0177
2576	.320Ü	0624	,9583	9760	0177
2803	3240	0437	,9621	9760	0139
2955	.3360	0405	,9659	9800	0141
3106	3680	0574	,9697	9800	0103
,3333	.3800	0467	.9735	9840	.0105
3485	4000	0515	,9735	9840	.0105
3636	.4240	.0604	,9773	9840	.0067
3788	4520	0732	,9811	9840	,0029
.3826	4840	1014	,9811	9920	.0109
4129	5000	0871	.9811	9960	.0149
4356	5240	0884	,9848	9960	.0112
4735	.5440	0705	,9848	9960	.0112
5076	.5560	.0484	9848	9960	0112
5341	5720	0379	9848	.9960	0112
5492	.5920	0428	,9886	9960	.0074
5720	,6200	.0480	.9924	.9960	0036
6023	.6320	0297	9962	9960	.0002
6288	,6640	0352	9962	9960	0002
6591	.6760	.0169	,9962	9960	.0002
.6667	.7040	0373	,9962	9960	.0002
6780	7200	0420	,9962	9960	0002
6894	7280	.0386	.9962	9960	.0002
7045	7400	0355	,9962	9960	.0002
7348	7600	0252	9962	9960	.0002
7424	7800	0376	.9962	9960	.0002
7500	.796D	0460	,9962	9960	.0002
7652	8080	0428	9962	9960	0002
	,		1,,,,,	*****	* U O O C

Kolmogorov-Smirnov two sample test, from samples shown in Figures 5 and 6.

```
2.2451.4 STANDARD DEVIATION OF 1.1557--SKEWNESS IS .2641, KURTOSIS 2.7947,
THE RATIO OF THE RANGE TO THE STO DEV = 4.75 THE SAMPLE SIZE =
YOUR NULL HYPOTHESIS FOR (LOG)NORMALITY IS ACCEPTED AT THE .05 LEVEL--K-S CRITICAL VALUE IS .14665 ABS DIFF
                                CUM FREG
                                                .00000
.00135
.00348
.00821
.01787
.03593
                                  ,00000,
00000,
00000,
                                                               .00000
.00135
.00348
.00821
.01787
.01268
                                  ,00000
,00000
,02326
,09302
                                                                .02622
                                  ,09302
,13953
,17442
,26744
,41860
,53488
,63953
,73256
,80233
,87209
,93028
                                                ,06660
.11506
.27426
.38209
.50000
.61791
.72574
.81594
.884320
                                                               .02622
.02448
.00964
.00682
.03652
                                                                .02162
.00682
                                                                .01285
                                                ,93320
,96407
,98213
,99179
,99652
,99665
                                  ,94186
,97674
,98837
                                                               .02221
.00538
.00342
.00815
                                1.000000
                                                                .00000
                                            K-S TEST FOR (LOG)NORMALITY SAMPLE ONE CUMULATIVE NORMAL*1* EMPIRICAL*2*
    1.0
                                                                                                      1
                                                                              2
                1 2
    0.000
                                                                   2.743+00
                                                                                                                                   5.487+00
                                                              RANGE OF DATA
THE EXPECTED AND DESERVED PREQUENCIES FOR A CHI SQUARE TEST OF (LOG)NORMALITY IN INTERVALS OF 0,3 ST DEV--SAMPLE 1-- ARE
 EXPECTED OBSERVED
CHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF 1.5 = 12.100 WITH 12 DEGREES OF FREEDOM
CHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF 5.0 =
                                                                                        4.369 WITH 7 DEGREES OF FREEDOM
```

Figure 7. - Sample 1 statistics, ultimate volume, Clearfork Formation, Midland Central Basin Uplift.

```
2.7554.4 STANDARD DEVIATION OF 1,1203--SKEWNESS IS -,2218.KURTOSIS 2,4627,
THE RATIO OF THE RANGE TO THE STD DEV = 4.57 THE SAMPLE SIZE = 105
YOUR NULL HYPOTHESIS FOR (LOG) NORMALITY IS ACCEPTED AT THE .05 LEVEL--K-S CRITICAL VALUE IS .13272 ABS DIFF
                                CUM FREQ
                                              EXP FRED
                                 00000,
                                                ,00000
,00135
,00348
                                                               ,00000
                                                               ,00132
,00132
,00117
                                00952
01905
04762
09524
12381
20000
25714
39046
49524
75238
49524
75238
49524
74286
76090
                                                 .00#21
.01787
.03593
                                                .06680
.11506
.16406
.27426
.38209
.50000
.61791
.72574
.81594
.68494
.93320
.96407
                                                                .00476
                                                               .00476
.00114
.03050
.06356
.01030
                                                                .01689
.01689
.00835
.00821
                                                 ,98213
,99179
,99652
,99665
                                1,00000
                                1.00000
                                                                ,00000
                                            K-S TEST FOR (LOG)NORMALITY SAMPLE TWO CUMULATIVE NORMAL*1* EMPIRICAL*2*
    1.0
                                                                                               2
    0.0
                                                                                                                                   5,119+00
                                                              RANGE OF DATA
THE EXPECTED AND UNSERVED PREQUENCIES FOR A CHI SQUARE TEST OF (LOG)NORMALITY IN INTERVALS OF 0.3 ST DEV--SAMPLE 2-- ARE
  EXPECTED OBSERVED
         .1
.2
.5
1.0
CHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF 5.0 = 14.621 WITH 9 DEGREES OF FREEDOM
```

Figure 8. - Sample 2 statistics, ultimate volume, Devonian rocks, Midland Central Basin Platform.

SAMPLE 1 VS. SAMPLE 2--K-S TEST

CRITICAL VALUE OF KOLMOGUROV-SMIRNOFF TWO SAMPLE TEST FOR ACCEPTANCE AT .05 IS LESS THAN,19779 ABS DIFF YOUR NULL HYPOTHESIS IS REJECTED

.0000 .0233	CUM FREQ	ABS.DIFF		
	0000			
	, 0000	.0137		
	,0095	.0137		
.0233	.0095	.0137		
.0235	.0095	.0137		
.0233	.0095	.0137		
0465	.0190	.0275		
0465	.0190	.0275	,7442 ,4952	.2489
0465	.0190	.0275	,7558 .5048	.2511
0930	.0190	.0740	,7556 ,5143	.2415
0930	.0286	0645	,7558 ,5429	.2130
1047	.0286	0761	,7558 ,5429	,2130
1047	.0381	.0666	.7558 .5619	,1939
1279	.0381	.0898	8140 ,6095	.2044
1279	.0476	.0803	8256 6381	1875
1279	0476	.0803	,8372 ,6381	1991
1395	0571	.0824	8372 ,6476	.1896
1512	.0571	0940	,8605 ,6667	1938
1512	0762	0750	,8605 .6762	1843
1512	.0762	.0750	,8721 ,6762	1959
1512	0762	.0750	,8837 ,6952	1885
,1628	0952	.0676	9070 .7048	.2022
.1744	1048	.0697	9186 .7048	,2138
1744	1048	,0697	9302 .7238	2064
2093	,1048	1045	,9302 ,7429	,1874
.2209	,1145	,1066	9302 .7524	1/79
.2326	.1143	.1183	,9419 .7524	1895
,2558	1238	.1520	,9419 ,7619	1800
. 2558	1333	.1225	9419 .8095	.1323
2791	.1333	,1457	,9419 ,8190	.1228
2907	1429	.1478	,9419 .8381	.1036
.3140	1524	.1616	9419 .8571	.0847
3256	1714	.1542	,9419 .8952	.0466
3605	.1810	.1795	,9651 ,8952	.0499
-	2000	,1837	.9651 .9048	.0604
,3837 ,4302	,2095	,2207	,9767 ,9238	0529
4302	,2095	.2207	,9767 ,9333	.0434
.4651	.2190	.2461	,9767 ,9333	.0434
•	2190	,2461	,9767 ,9333	.0434
,4651 ,5000	.2476	,2524	9767 9429	.0339
,5233	.2476	2756	9767 9429	.0339
•	2762	2587	976/ 9429	
,5349	2952	,2513	9767 9429	,0339 ,0339
,5465	3	.2513	9884 9619	•
,5465	,2952			,0265
,5698	.3048	,2650		.0265
,6279	.3145	,3136	,9884 ,981D	,0074
,6279	3619	,266U	,9884 ,9810	.0074
,6395	.3905	,2491	,9884 ,9810	,0074
,6512	.4000	.2512	,9884 ,9810	.0074
6628	.4190	,2437	,9884 ,9905	.0021
,6860	,4381	,248p	,9884 ,9905	,0021
,7093	,4381	.2712	,9884 ,9905	.0021
,7209	.4762	,2447	,9884 ,9905	.0021
.7209	. 4952	.2257	,9884 ,9905	.0021

Kolmogorov-Smirnov two sample test, from samples shown in Figures 7 and 8.

Finally, the chi-square test values for the sample at the two pooling levels, and the associated degrees of freedom are printed. Acceptance or rejection of the null hypothesis must be determined from chi-square tables.

When two samples are run, a statement of accept—ance or rejection of the two sample null hypotheses, with the critical value on which the decision is based, is printed out. The cumulative relative frequencies of both samples in class intervals of range/100, and the absolute differences between the intervals is listed below the statement.

GEOLOGIC EXAMPLE

Several statistical studies of oil and gas field frequency distributions have been published (Kaufman, 1964; Drew and Griffiths, 1965; and McCrossan, 1969). Kaufman confined his study to ultimate volumes of fields, while Drew and McCrossan included both ultimate volumes and areas of fields. Kaufman's and Drew's samples apparantly included all fields within specified areas, whereas McCrossan separated fields into categories based on lithology and depositional types. The conclusions reached on the basis of their studies is that the areas and volumes of fields are acceptably approximated by a lognormal distribution. Both Drew and McCrossan, however, had problems fitting this model to part of their field area samples; Drew in the Denver Basin, and McCrossan with his reef pool areas in general. It is my view that field area distribution is of first order importance to the explorationist since it constitutes the critical parameter effecting discovery. Ultimate volumes are more within the province of those people concerned with post-discovery operations. The inconsistencies suggested by these studies and disclosed by some of my early work inspired further examination of the problem.

Sample Description

The fields in this study are categorized by geologic horizon. The horizons are carbonates in the Clearfork (lower Permian) and Devonian formations on the Midland Central Basin Platform in Texas, and the Arbuckle (Ordovician) and Kansas City-Lansing (Pennsylvanian) Groups on the Central Kansas Uplift. These horizons were chosen for analysis because: (1) they have a reasonably consistent lithology over the areas of investigation and have been thoroughly explored within these areas; (2) they contain a sufficiently large number of fields to afford a meaningful sample size; (3) field development is far enough in the past so that the field parameters of area and ultimate volume are well established; and, (4) the data are as comprehensive and reliable as available. Oil fields only are included in the sample, and associated gas volumes

are ignored. All oil fields are included, even those abandoned. In fields where both horizons are produced, the pools are separated as accurately as possible. The field areas are based on the maximum acreage attained during their producing history. The field volumes are estimated ultimate volumes including secondarily recoverable oil. Fields discovered after 1965 are not included in the samples to avoid using possibly inaccurate early estimates.

Analytical Results

The statistical attributes of the four horizons considered are listed in Table 1. Almost without exception the skewness, kurtosis, and range statistics for field areas are beyond the acceptable limits for lognormal distribution. In contrast every field volume statistic is compatible with the null hypothesis. This consistent statistical difference is reflected perfectly in Table 2. The null hypothesis for lognormality at the 95 percent significance level is rejected for all field area samples by the chi-square and Kolmogorov-Smirnov tests. Again, all field volume samples are accepted.

Table 3 exhibits the outcomes of the Kolmogorov-Smirnov two sample tests between all combinations of the four samples for areas and ultimate volumes. It is interesting to note that although the field areas in the Clearfork and Kansas City-Lansing formations are rejected as being lognormally distributed they are accepted as coming from the same population distribution. Other interesting relationships are shown between field volume samples. I believe that in context with other studies, this type of analysis is helpful as a guide for investigation of underlying geologic factors that might contribute to establishing analogs for other new or more lightly explored provinces. Moreover, economic predictions may be substantially improved. The computer runs on which these tables are based comprise Figures 1-8.

Chronological Study

The exploration for oil in a newly opened horizon is a highly biased, statistically nonstationary process. The few giant fields that often contain most of the oil are easiest to find, and as a rule are discovered early in the exploration history. As exploratory holes are more densely spaced the probability of giant or large fields remaining undetected decreases as do the expected values for the remaining population. In a province with several producing horizons, all at different stages of development, this process is largely obscured. Figure 9 is included to illustrate how the output from the program SNORT was used to obtain quickly an approximation of the exploration process within the Devonian horizon. The plotted curves show the distribution of logarithms (base 10) of the field volumes in thousands of barrels. Skewness is not shown. The plot output is from another program. The field

Table 1. - Sample statistics.

Γ	HORIZON	LITH	SAMPLE		MEAN	STANDARD	RANGE/	SKEWNESS	KURTOSIS
E			SIZE	43	2.4472	0.7890	STD. DEV.	0.0420*	4.60074
UPLIFT	ARBUCKLE	DOL	250	E AREA		0.7890	0.92	0.9430	4.0987*
KANSAS				VOLUME	2.3855	1.2049	5.37	0.1556	.1556 2.9203 .9707* 3.5520* .1615 2.9422 .0385* 3.4691 .2641 2.7947
CENTRAL	KANSAS CITY – LANSING	LS	264	AREA	2.1431	0.5781	5.49	0.9707*	3.5520*
	2 /11/01/10			VOLUME	1.9704	0.9729	5.18	0.1615	2.9422
PLAT.	CLEARFORK	DOL	86	AREA	2.2911	0.7373	4.17*	1.0385*	3.4691
AL BASIN	CDEAN ORK	DOL		VOLUME	2.2451	1.1557	4.75	0.2641	2.7947
MIDLAND CENTRAL	DEVONAN		AREA	2.5205	0.6521	3.92*	0.4020*	2.0070*	
	DEVONIAN	LS	105	VOLUME	2.7554	1.1203	4.57	-0.2218	2.4627

* NULL HYPOTHESIS REJECTED AT 95% SIGNIFICANCE

areas and volumes were arranged chronologically according to date of discovery, and then divided into 5 numerically equal subsamples. Analysis of the subsamples by SNORT showed each field volume subsample to be roughly lognormally distributed, but only the subsamples 56-58 and 58-62 were accepted by the Kolmogorov-Smirnov two sample test. None of the field area subsamples was accepted as lognormally distributed. In this example, as in all others run, the mean and standard deviation change substantially and systematically through time. Identical trends were observed for these parameters of the field area subsamples as well, but the plot routine used for Figure 9 cannot conveniently handle multiple empirical curves so no plot is shown. A listing follows, however.

Subsample	Mean	Standard Deviation
29-52	2.87	0.65
52 - 56	2.99	0.55
56 - 58	2.31	0.49
58-62	2.29	0.69
62-65	2.10	0.33

Table 2. - Chi-square and Kolmogorov-Smirnov test for lognormality.

	CLEARFORK		CLEARFORK DEVONIAN		ARBU	ARBUCKLE		KC-LANSING	
	AREA	VOLUME	AREA	VOLUME	AREA	VOLUME	AREA	VOLUME	
x 2	REJECT	ACCEPT	REJECT	ACCEPT	REJECT	ACCEPT	REJECT	ACCEPT	
K-S	REJECT	ACCEPT	REJECT	ACCEPT	REJECT	ACCEPT	REJECT	ACCEPT	

The parameters of the field area subsamples are based on the logarithms (base 10) of the acreages.

Table 3. - Kolmogorov-Smirnov two sample test.

	CLEARFORK	DEVONIAN	ARBUCKLE	KC-LANSING
			VOLUME	1
CLEARFORK	×	REJECT	ACCEPT	ACCEPT
DEVONIAN	REJECT	X	REJECT	REJECT
ARBUCKLE	REJECT	REJECT	x	ACCEPT
KC-LANSING		REJECT	REJECT	x
AF	REA			

Obviously, the optimum periods for exploration were 29-52 and 52-56, from the standpoint of like-lihood of discovery and the economic rewards attendant on discovery. The low standard deviation of field volumes in the 52-56 period may reflect a combination of few remaining giant fields and the effect of information gleaned from the preceding period reducing the number of small fields discovered. Accidental discoveries related to deeper drilling for other primary objectives accentuate the number of small fields discovered later in the history of the horizon.

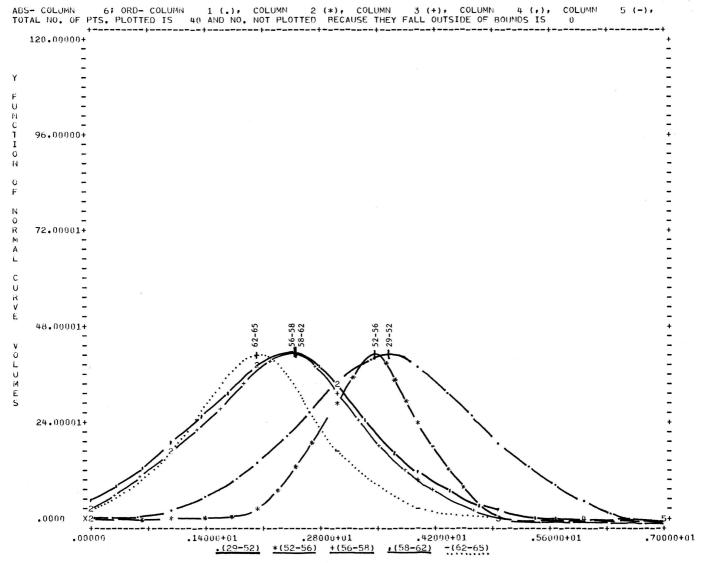


Figure 9. - Devonian field ultimate volume distribution curves by chronological subsamples (x axis plotted as log10 M bbls).

CONCLUSIONS

The parameter of field area, so important to the explorationist, has been accepted as lognormally distributed by most statistical measurements in other oil field studies, although some problems were recognized. The completely consistent rejection of the lognormal null hypothesis in this study is, consequently, somewhat surprising. It is important to remember that the disparity in results carries no connotation of "right" or "wrong". I believe that the explanation lies in the different structure of the samples used in this study. It is obvious that the fields within each horizon comprise a composite of several populations, physically as regards types of

geologic traps, etc., and through time as is adequately demonstrated by the chronological analysis. Moreover, there is an apparent layering of populations between horizons shown by the Kolmogorov-Smirnov two sample tests. The extraction of samples with different selection schemes would be expected to lead to different outcomes. This is perfectly legitimate since it is the worker's prerogative to define his own target population depending on the purpose of the study. The target population as defined for this study is considered as well resolved by the samples which almost include the target population. Hence, it is likely that forecasts of discoveries, reserves, or economic returns made on the assumption of a stationary lognormal distribution will be subject to considerable error.

REFERENCES

- Drew, L.J., and Griffiths, J.C., 1965, Size, shape, and arrangement of some oil fields in the U.S.A.:
 Pennsylvania State Univ., Mineral Industries, Contr. No. 64-59, p. F1-F31.
- Griffiths, J.C., 1967, Scientific method in the analysis of sediments: McGraw-Hill Book Co., New York, 307 p.
- Griffiths, J.C., and Ondrick, C.W., 1968, Sampling a geologic population: Kansas Geol. Survey Computer Contr. 30, 53 p.
- Fisher, R.A., 1946, Statistical methods for research workers: Oliver and Boyd, London, 354 p.
- Kaufman, G.M., 1963, Statistical decisions and related techniques in oil and gas exploration: Prentice-Hall, Englewood Cliffs, New Jersey, 307 p.
- McCrossan, R.G., 1969, An analysis of size frequency distributions of oil and gas reserves of western Canada: Canadian Jour. Earth Sci., v. 6, no. 2, p. 201-211.
- Pearson, E.S., and Hartley, H.O., 1966, Biometrika tables for statisticians: Cambridge University Press, New York, 264 p.

ADDITIONAL REFERENCES

- Abramowitz, M., and Stegun, I.A., 1965, Handbook of mathematical functions: National Bur. Standards, Washington, D.C., p. 912–913.
- Burington, R.S., and May, D.C., 1958, Handbook of probability and statistics: McGraw-Hill Book Co., New York, 332 p.
- Lindgren, B.W., and McElrath, G.W., 1966, Introduction to probability and statistics: Macmillan, New York, 288 p.
- Spiegel, M.R., 1961, Theories and problems of statistics: Schaum's Outline Series, McGraw-Hill Book Co., New York, 359 p.

Listing of program SNORT

C

C

C

C

C

C

C

C

000

C

000

C

C

CC

C

PROGRAM SNORT
AUTHOR--D.A.PRESTON
LAST REVISION--JUNE 11,1969

THIS PROGRAM WILL TEST ONE OR TWO SAMPLE SETS FOR EITHER NORMALITY OR LOGNORMALITY. A KOLMOGOROV-SMIRNOFF PARAMETRIC TEST IS MADE ON EACH SAMPLE, AND THE RESULTS ARE PLOTTED. A CHI-SQUARE TEST IS ALSO MADE OF EACH SAMPLE WITH POOLING OF 1.5 MINIMUM EXPECTED VALUE PER INTERVAL, AS WELL AS 5.0. THE NORMAL CURVE FIT TO THE DATA (OR THEIR LOGARITHMS) IS COMPUTED BY A POLYNOMIAL APPROXIMATION WHICH HAS AN AVERAGE ERROR OF 10**-6.

SKEWNESS, KURTOSIS, AND THE RATIO OF THE RANGE TO THE STANDARD DEVIATION ARE GIVEN FOR FURTHER TESTS FOR (LOG) NORMALITY. TABLES ARE PROVIDED IN COMPUTER CONTRIBUTION NO. 41 PUBLISHED BY THE KANSAS GEOLOGIC SURVEY.

WHEN TWO SAMPLE SETS ARE RUN A KOLMOGOROV-SMIRNOFF NON-PARAMETRIC TEST IS MADE TO DETERMINE IF THE SAMPLE SETS ARE FROM THE SAME POPULATION.

CONFIDENCE LIMITS FOR ALL TESTS ARE AT THE .95 LEVEL.

DIMENSION S1(101), S2(101), SDIFF(101), SMPL1(5000), SMPL2(5000), PIN(0010 125), ONE(25), TWO(25), KONE(25), KTWO(25), KO3S1(25), KOBS2(25), EXPS1(25 0020 2), EXPS2(25), MAXD1(25), MAXD2(25) 0030 REAL KURT1, KURT2, MAX1, MAX2, MIN1, MIN2, MAXD1, MAXD2 0040 INTEGER FINISH 0050 DATA FINISH/6HFINISH/ 0060 READ(5,101)[VER, IOPT 0070 IF(IVER.LT.1 .OR.IVER.GT.2)GO TO 50 0080 IF(IOPT.LT.1 .OR.IOPT.GT.2) GO TO 50 0090 GO TO 51 0100 50 WRITE(6,117) 0110 STOP 0120 C READ IN DATA FROM SAMPLE ONE 0130 51 DO 33 IX=1,5000 0140 READ(5,1000)SAMPLE,LOOK 0150 SMPL1(IX)=SAMPLE 0160 IF(LOOK.EQ.FINISH)GO TO 34 0170 33 CONTINUE 0180 34 NSIZE1=IX-1 0190 SIZEL=NSIZEL 0200 MIN1=10.0**12 0210 $MAX1 = -1.0 \times (10.0 \times 12)$ 0220 DO 36 I=1, NSIZE1 0230 IF(MAX1.GT.SMPL1(I))GO TO 35 0240 MAX1=SMPL1(I)0250 35 IF(MIN1.LT.SMPL1(I))GO TO 36 0260 36 CONTINUE 0280 MIN1=SMPL1(I) 0270 C SHECK IVER FOR SECOND SAMPLE 0290 IF(IVER.EQ.1)GO TO 524 0300 DO 37 IX=1,50000310

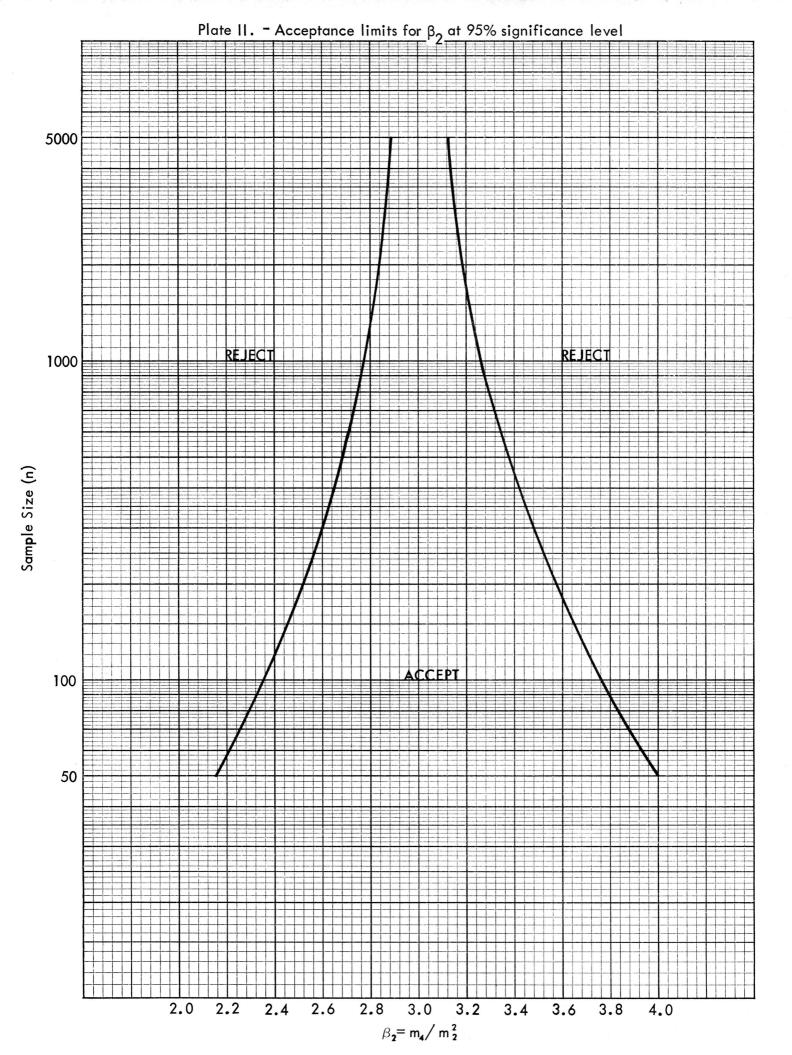
```
READ(5,1000)SAMPLE,LOOK
                                                                                 0320
      SMPL2(IX)=SAMPLE
                                                                                 0330
      IF(LOOK.EQ.FINISH)GD TO 38
                                                                                 0340
   37 CONTINUE
                                                                                 0350
   38 NSIZE2=IX-1
                                                                                 0360
      SIZE2=NSIZE2
                                                                                 0370
      MIN2=10.0**12
                                                                                 0380
      MAX2 = -1.0 * (10.0 * *12)
                                                                                 0390
      DO 40 I=1.NSIZE2
                                                                                 0400
      IF(MAX2.GT.SMPL2(I))GO TO 39
                                                                                 0410
      MAX2 = SMPL2(I)
                                                                                 0420
   39 IF(MIN2.LT.SMPL2(I))GO TO 40
                                                                                 0430
      MIN2=SMPL2(I)
                                                                                 0440
   40 CONTINUE
                                                                                 0450
C SHECK TOPT FOR LOG OPTION
                                                                                 0460
  524 IF(IOPT.EQ.1)GO TO 3
                                                                                 0470
  CONVERT DATA TO LOGARITHMS
                                                                                 0480
      MAX1=ALOG10(MAX1)
                                                                                 0490
      MIN1=ALOG10(MIN1)
                                                                                 0500
      DO 1 I=1.NSIZE1
                                                                                 0510
    1 SMPL1(I)=ALOG10(SMPL1(I))
                                                                                 0520
      IF(IVER.EQ.1)GO TO 3
                                                                                 0530
      MAX2=ALUG10(MAX2)
                                                                                 0540
      MIN2=ALOG10(MIN2)
                                                                                 0550
      DO 2 I=1,NSIZE2
                                                                                 0560
    2 SMPL2(I)=ALOG10(SMPL2(I))
                                                                                 0570
C CALCULATE 1,2,3,4 MOMENTS OF SAMPLE ONE
                                                                                 0580
    3 TOTAL 1=0.0
                                                                                 0590
      DO 4 I=1,NSIZE1
                                                                                 0600
    4 TOTAL1=TOTAL1+SMPL1(I)
                                                                                 0610
      AMEAN1=TOTAL1/SIZE1
                                                                                 0620
      AMOM21=0.0
                                                                                 0630
      AMOM31=0.0
                                                                                 0640
      AMOM41 = 0.0
                                                                                 0650
      DO 5 I=1,NSIZE1
                                                                                 0660
      AMOM21=AMOM21+((SMPL1(I)-AMEAN1)**2)/SIZE1
                                                                                 0670
      AMOM31=AMOM31+((SMPL1(I)-AMEAN1)**3)/SIZE1
                                                                                 0680
    5 AMOM41=AMOM41+((SMPL1(I)-AMEAN1)**4)/SIZE1
                                                                                 0690
      STDEVI=SQRT(AMOM21)
                                                                                 0700
      SKEW1=AMOM31/STDEV1**3
                                                                                 0710
      KURT1=AMOM41/STDEV1**4
                                                                                 0720
      RANGE1=MAX1-MIN1
                                                                                 0730
      STAT1=RANGE1/STDEV1
                                                                                 0740
      CLASS1=RANGE1/100.0
                                                                                 0750
      WRITE(6,100)
                                                                                 0760
      WRITE(6,99)
                                                                                 0770
      ILK=1
                                                                                 0771
      DO 21 I=1,11
                                                                                 0780
      IF(I.EQ.7)WRITE(6,124)ILK
                                                                                 0781
   21 WRITE(6.120)
                                                                                 0790
      WRITE(6,118)AMEAN1,STDEV1,SKEW1,KURT1
                                                                                 0800
      WRITE(6,102)STAT1,NSIZE1
                                                                                 0810
C SHECK IVER AND CALCULATE 1,2,3,4 MOMENTS OF SAMPLE TWO
                                                                                 0820
      IF(IVER.EQ.1)GO TO 12
                                                                                 0830
      TOTAL 2=0.0
                                                                                 0840
      DO 6 I=1,NSIZE2
                                                                                 0850
    6 TOTAL 2 = TOTAL 2 + SMPL 2(1)
                                                                                 0860
      AMEAN2=TOTAL2/ SIZE2
                                                                                 0870
      AMOM22=0.0
                                                                                 0880
      AMDM32=0.0
                                                                                 0890
```

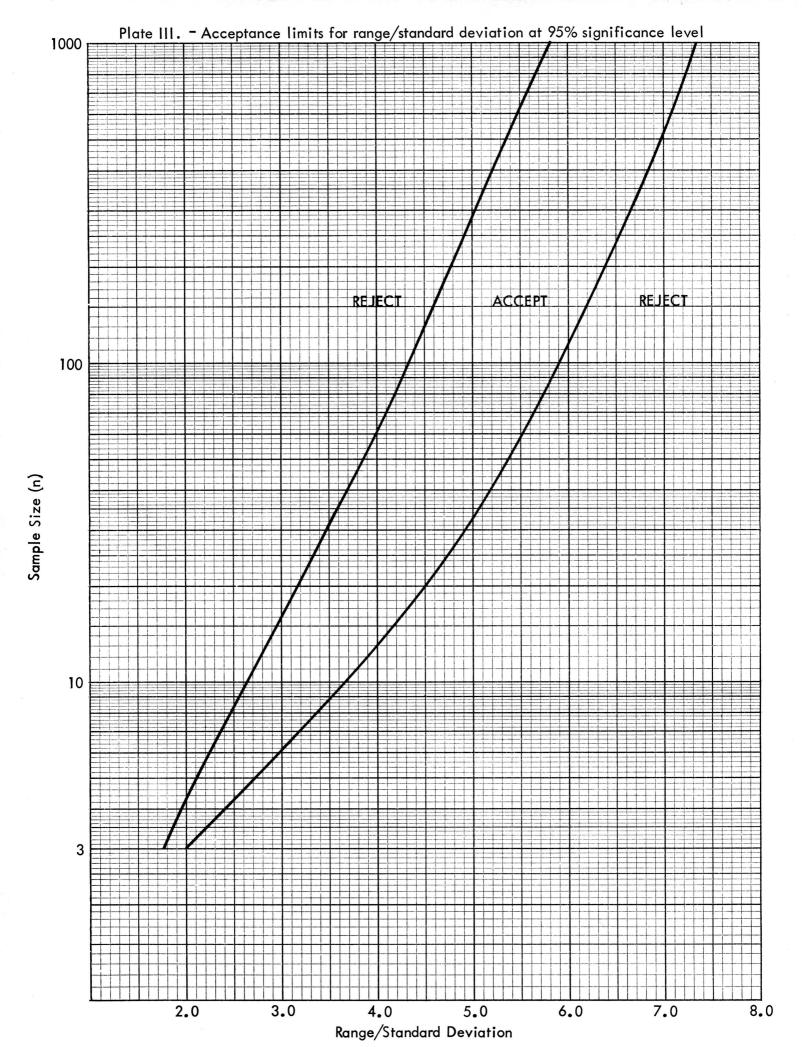
```
AMOM42=0.0
                                                                                 0900
      DO 7 I=1.NSIZE2
                                                                                 0910
      AMOM22=AMOM22+((SMPL2(I)-AMEAN2)**2)/SIZE2
                                                                                 0920
      AMOM32=AMOM32+((SMPL2(I)-AMEAN2)**3)/SIZE2
                                                                                 0930
    7 AMOM42=AMOM42+((SMPL2(I)-AMEAN2)**4)/SIZE2
                                                                                 0940
      STDEV2=SQRT(AMOM22)
                                                                                 0950
      SKEW2=SQRT(AMDM32/STDEV2**3)
                                                                                 0960
      KURT2=AMDM42/STDEV2**4
                                                                                 0970
      RANGE2=MAX2-MIN2
                                                                                 0980
      STAT2=RANGE2/STDEV2
                                                                                 0990
      CLASS2=RANGE2/100.0
                                                                                 1000
C SALCULATE CUMULATIVE FREQUENCY FOR SAMPLES ONE AND TWO
                                                                                 1010
      ARG1 = MIN1
                                                                                 1020
      ARG2=MIN2
                                                                                 1030
      00 8 I = 2,101
                                                                                 1040
      ARG1=ARG1+CLASS1
                                                                                 1050
      ARG2=ARG2+CLASS2
                                                                                 1060
      N = 0
                                                                                 1070
      M = 0
                                                                                 1080
      S1(1)=0.0
                                                                                 1090
      S2(1)=0.0
                                                                                 1100
      DO 9 J=1, NSIZE1
                                                                                 1110
    9 IF(SMPL1(J).LE.ARG1)N=N+1
                                                                                 1120
      DO 10 J=1, NSIZE2
                                                                                 1130
   10 IF(SMPL2(J).LE.ARG2)M=M+1
                                                                                 1140
      AN = N
                                                                                 1150
      \Delta M = M
                                                                                 1160
      S1(I-1)=AN/SIZE1
                                                                                 1170
      S2(I-1)=AM/SIZE2
                                                                                 1180
    8 SDIFF(I-1) = ABS(SI(I-1) - S2(I-1))
                                                                                 1190
C FIND MAXIMUM DEVIATION BETWEEN CURVES AND COMPARE WITH CRITICAL VALUE
                                                                                 1200
C AS DETERMINED FOR KOLMOGOROV-SMIRNOFF TWO SAMPLE TEST(NON-PARAMETRIC)
                                                                                 1210
      CRVAL5=(SQRT((SIZE1+SIZE2)/(SIZE1*SIZE2)))*1.36
                                                                                 1220
      CHOICE=0.0
                                                                                 1230
      DO 11 I=1.100
                                                                                 1240
   11 IF(SDIFF(I).GT.CRVAL5)CHDICE=1.0
                                                                                 1250
C SALCULATE POLYNOMIAL APPROXIMATION TO NORMAL CURVE
                                                                                 1260
   12 Y = (-3.3)
                                                                                 1270
      PIN(1) = 0.0
                                                                                 1280
      DO 13 I=2.22
                                                                                 1290
      Y = Y + 0.3
                                                                                 1300
      Y1=-0.5*Y**2
                                                                                 1310
      Y2=EXP(Y1)*0.39894
                                                                                 1320
      Y3=ABS(Y)
                                                                                 1330
      Y4=1.0/(1.0+0.33267*Y3)
                                                                                 1340
      PIN(I)=((((0.937298*Y4-0.1201676)*Y4)+0.4361836)*Y4)*Y2
                                                                                 1350
      IF(Y-LT-0.0)GD TD 130
                                                                                 1360
      PIN(I)=1.0-PIN(I)
                                                                                 1370
C CALCULATE EXPECTED VALUES IN INTERVALS OF 0.3 STANDARD DEVIATIONS
                                                                                 1380
 130 EXPS1(I-1)=(PIN(I)-PIN(I-1))* SIZE1
                                                                                 1390
  13 IF(IVER.EQ.2)EXPS2(I-1)=(PIN(I)-PIN(I-1))* SIZE2
                                                                                 1400
      ONE(1) = 0.0
                                                                                 1410
      TWO(1)=0.0
                                                                                 1420
      TNORM1=AMEAN1-3.3*STDEV1
                                                                                 1430
      IF(IVER.EQ.2)TNORM2=AMEAN2-3.3*STDEV2
                                                                                 1440
      KONE(1)=0
                                                                                 1450
      KTWO(1)=0
                                                                                 1460
      DO 14 I=2,22
                                                                                 1470
      N=0
                                                                                 1480
      M=0
                                                                                 1490
```

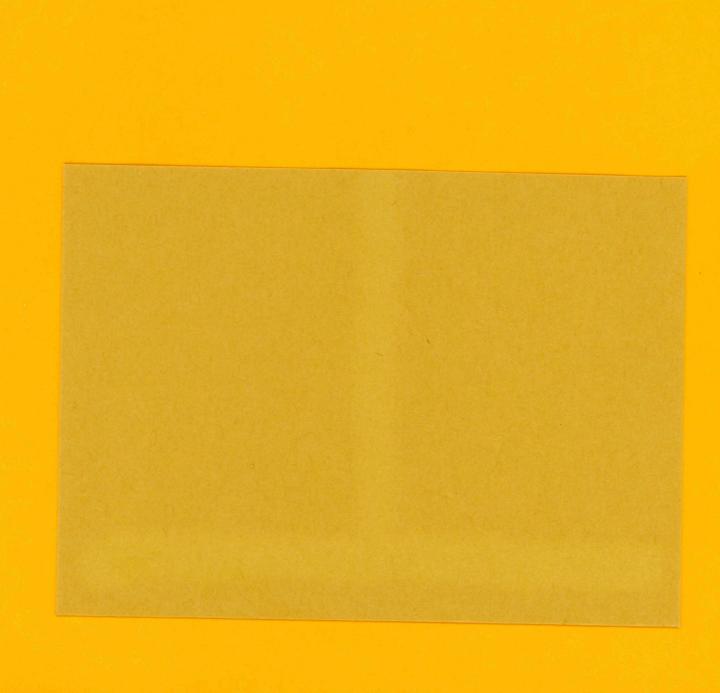
```
TNORM1=TNORM1+0.3*STDEV1
                                                                               1500
      IF(IVER.EQ.2)TNORM2=TNORM2+0.3*STDEV2
                                                                               1510
      DO 15 J=1,NSIZE1
                                                                               1520
      IF(SMPL1(J).LE.TNORM1)N=N+1
                                                                               1530
                                                                               1540
C CALCULATE CUMULATIVE FREQUENCIES AT INTERVAL BOUNDARIES FOR SAMPLE ONE
                                                                               1550
      ONE(I)=AN/SIZE1
                                                                               1560
C DETERMINE COUNT OF SAMPLE ONE DATA IN 0.3 ST DEV INTERVALS
                                                                               1570
      KONE(I)=N
                                                                               1580
      KOBSI(I-I)=KJNE(I)-KDNE(I-I)
                                                                               1590
C FIND MAXIMUM DEVIATION FROM NORMAL CUMULATIVE FREQUENCY FOR SAMPLE ONE
                                                                               1600
   15 MAXD1(I-1)=ABS(ONE(I-1)-PIN(I-1))
                                                                               1610
      IF(IVER.EQ.1)GO TO 14
                                                                               1620
      DO 16 J=1.NSIZE2
                                                                               1630
      IF(SMPL2(J).LE.TNORM2)M=M+1
                                                                               1640
                                                                               1650
      \Delta M = M
C CALCULATE CUMULATIVE FREQUENCIES AT INTERVAL BOUNDARIES FOR SAMPLE TWO
                                                                               1660
      TWO(I)=AM/SIZE2
                                                                               1670
C DETERMINE COUNT OF SAMPLE TWO DATA IN 0.3 ST DEV INTERVALS
                                                                               1680
                                                                               1690
                                                                               1700
      KOBS2(I-1)=KTWO(I)-KTWO(I-1)
C FIND MAXIMUM DEVIATION FROM NORMAL CUMULATIVE FREQUENCY FOR SAMPLE TWO
                                                                               1710
   16 MAXD2(I-1)=ABS(TWO(I-1)-PIN(I-1))
                                                                               1720
   14 CONTINUE
                                                                               1730
C CALCULATE CRITICAL VALUE FOR K-S TEST OF SAMPLE 1 VS NORMAL DISTRIB.
                                                                               1740
      CVNT1=1.36/SQRT(SIZE1)
                                                                               1750
      CAPUT=0.
                                                                               1760
      DO 17 I=1.22
                                                                               1770
   17 IF(MAXD1(I).GE.CVNT1)CAPUT=1.
                                                                               1780
      IF(CAPUT.EQ.D.O)WRITE(6,108)CVNT1
                                                                               1790
      IF(CAPUT.EQ.1.0)WRITE(6,109)CVNT1
                                                                               1800
      WRITE(6,111)
                                                                               1810
      WRITE(6,112)(ONE(I),PIN(I),MAXD1(I),I=1,22)
                                                                               1820
      BANNER=1.0
                                                                               1830
      CALL PLUT(ONE, PIN, MAX1, MIN1, BANNER)
                                                                               1840
      IF(IVER.EQ.1)GO TO 19
                                                                               1850
C SALCULATE CKITICAL VALUE FOR K-S TEST OF SAMPLE 2 VS NORMAL DISTRIB.
                                                                               1860
      CVNT2=1.36/SORT(SIZE2)
                                                                               1870
      CRATER=0
                                                                               1880
                                                                               1890
      DO 18 I=1,22
   18 IF(MAXD2(I).GE.CVNT2)CRATER=1.
                                                                               1900
C DUTPUT
                                                                               1910
   19 WRITE(6,113)
                                                                               1920
      WRITE(6,114)
                                                                                1930
      WRITE(6,115)(EXPS1(I),KOBS1(I),I=1,21)
                                                                               1940
C CALCULATE THE CHI SQUARE VALUE FOR SAMPLE ONE WITH MINIMUM EXPECTED VALUES1950
C OF 1.5 IN EACH INTERVAL
                                                                               1960
      CULP=0.0
                                                                               1970
      KOB=0
                                                                               1980
      INDEX=0
                                                                               1990
      DO 61 I=1,21
                                                                                2000
      KOB=KOB+KOBS1(I)
                                                                                2010
      CULP=CULP+EXPS1(I)
                                                                                2020
      IF(CULP.LT.1.5)GD TO 61
                                                                               2030
      INDEX=INDEX+1
                                                                               2040
                                                                               2050
      EXPSI(INDEX)=CULP
      KOBS1(INDEX)=KOB
                                                                                2060
                                                                                2070
      CULP=0.0
      KOB=0
                                                                                2080
   61 CONTINUE
                                                                                2090
```

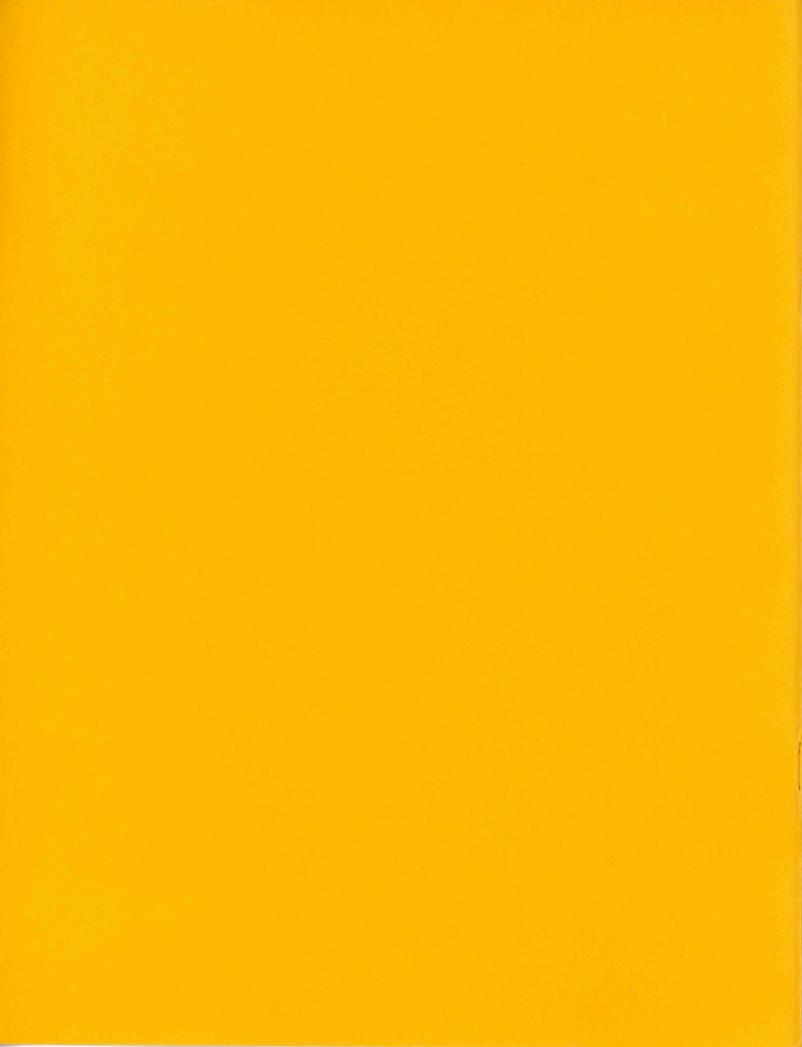
```
CHI=0.0
                                                                                 2100
      IDF=INDEX-3
                                                                                 2110
      DO 63 I=1, INDEX
                                                                                 2120
   63 CHI=CHI+((FLDAT(KOBS1(I))-EXPS1(I))**2)/EXPS1(I)
                                                                                 2130
      WRITE(6,121)CHI, IDF
                                                                                 2140
 CALCULATE THE CHI SQUARE VALUE FOR SAMPLE ONE WITH MINIMUM EXPECTED VALUES2150
C OF 5.0 IN EACH INTERVAL
                                                                                 2160
      INDEC=0
                                                                                 2170
      DO 65 I=1, INDEX
                                                                                 2180
      KOB=KOB+KOBS1(I)
                                                                                 2190
      CULP=CULP+EXPS1(I)
                                                                                 2200
      IF(CULP.LT.5.0)GD TO 65
                                                                                 2210
      INDEC=INDEC+1
                                                                                 2220
      EXPSI(INDEC)=CULP
                                                                                 2230
      KOBS1(INDEC)=KOB
                                                                                 2240
      CULP=0.0
                                                                                 2250
      KOB=0
                                                                                2260
   65 CONTINUE
                                                                                2270
      CHI=0.0
                                                                                2280
      IDF=INDEC-3
                                                                                2290
      DO 66 I=1, INDEC
                                                                                2300
   66 CHI=CHI+((FLDAT(KOBS1(I))-EXPS1(I))**2)/EXPS1(I)
                                                                                2310
      WRITE(6,123)CHI, IDF
                                                                                2320
      IF(IVER.EQ.1)GO TO 20
                                                                                2330
      WRITE(6,122)
                                                                                2340
      ILK=2
                                                                                2341
      DO 22 I=1.11
                                                                                2350
      IF(1.EQ.7)WRITE(6,124)ILK
                                                                                2351
   22 WRITE(6,120)
                                                                                2360
      IF(IVER.EQ.2)WRITE(6,119)AMEAN2,STDEV2,SKEW2,KURT2
                                                                                2370
      WRITE(6,102)STAT2,NSIZE2
                                                                                2380
      IF(CRATER.EQ.O.O)WRITE(6,108)CVNT2
                                                                                2390
      IF(CRATER.EQ.1.0)WRITE(6,109)CVNT2
                                                                                2400
      WRITE(6,111)
                                                                                2410
      WRITE(6,112)(TWO(I),PIN(I),MAXD2(I),1=1,22)
                                                                                2420
      BANNER=2.0
                                                                                2430
      CALL PLOT(TWO, PIN, MAX2, MIN2, BANNER)
                                                                                2440
      WRITE(6,116)
                                                                                2450
      WRITE(6,114)
                                                                                2460
      WRITE(6,115)(EXPS2(I),KOBS2(I),I=1,21)
                                                                                2470
C SALCULATE THE CHI SQUARE VALUE FOR SAMPLE TWO WITH MINIMUM EXPECTED VALUES2480
C OF 1.5 IN EACH INTERVAL
                                                                                2490
      CULP=0.0
                                                                                2500
      KOB = 0
                                                                                2510
      INDEX2=0
                                                                                2520
      DO 62 I=1,21
                                                                                2530
      KOB=KOB+KOBS2(I)
                                                                                2540
      CULP=CULP+EXPS2(I)
                                                                                2550
      IF(CULP.LT.1.5)G0 TO 62
                                                                                2560
      INDEX2=INDEX2+1
                                                                                2570
      EXPS2(INDEX2)=CULP
                                                                                2580
      KOBS2(INDEX2)=KOB
                                                                                2590
      CULP=0.0
                                                                                2600
      KOB=0
                                                                                2610
   62 CONTINUE
                                                                                2620
      CHI=0.0
                                                                                2630
      IDF=INDEX2-3
                                                                                2640
      DO 64 I=1, INDEX2
                                                                                2650
   64 CHI=CHI+((FL)AT(KOBS2(I))-EXPS2(I))**2)/EXPS2(I)
                                                                                2660
      WRITE(6,121)CHI, IDF
                                                                                2670
```

```
C CALCULATE THE CHI SQUARE VALUE FOR SAMPLE TWO WITH MINIMUM EXPECTED VALUES2680
C OF 5.0 IN EACH INTERVAL
      INDEX5=0
                                                                               2700
      DO 67 I=1, INDEX2
                                                                               2710
      KOB=KOB+KOBS2(I)
                                                                               2720
      CULP=CULP+EXPS2(I)
                                                                               2730
      IF(CULP.LT.5.0)GO TO 67
                                                                               2740
      INDEX5=INDEX5+1
                                                                               2750
      EXPS2(INDEX5)=CULP
                                                                               2760
      KOBS2(INDEX5)=KOB
                                                                               2770
      CULP=0.0
                                                                               2780
      KOB=0
                                                                               2790
   67 CONTINUE
                                                                               2800
                                                                               2810
      CHI = 0.0
                                                                               2820
      IDF=INDEX5-3
                                                                               2830
      DO 68 I=1, INDEX5
   68 CHI=CHI+((FL)AT(KOBS2(I))-EXPS2(I))**2)/EXPS2(I)
                                                                               2840
                                                                               2850
      WRITE(6,123)CHI, IDF
      WRITE(6,125)
                                                                               2851
      WRITE(6,103)CRVAL5
                                                                               2860
      IF(CHOICE.EQ.1.0) WRITE(6,106)
                                                                               2870
                                                                               2880
      IF(CHOICE.NE.1.0)WRITE(6,107)
                                                                               2890
      WRITE(6,104)
                                                                               2900
      WRITE(6,105)(S1(I),S2(I),SDIFF(I),I=1,100)
C FORMAT STATEMENTS
                                                                               2910
   99 FORMAT(1H0.4DHPUBLISHED BY THE KANSAS GEDLOGIC SURVEY-
                                                                               2920
  100 FORMAT(1H1,90HTHE TESTS FOR (LOG)NORMALITY IN THIS PROGRAM ARE DIS
                                                                               2940
     ICUSSED IN COMPUTER CONTRIBUTION NO. 41)
                                                                               2950
                                                                               2960
  101 FORMAT(215)
  102 FORMAT(1H0,40HTHE RATIO OF THE RANGE TO THE STD DEV = ,F5.2,20H T
                                                                               2970
                                                                               2975
     THE SAMPLE SIZE = , 15)
  103 FORMAT(1H0,88HCRITICAL VALUE OF KOLMOGORDV-SMIRNOFF TWO SAMPLE TES
                                                                               2990
     IT FOR ACCEPTANCE AT .05 IS LESS THAN, F6.5, 9H ABS DIFF)
                                                                               3000
  104 FORMAT(1HO, 30H CUM FREQ CUM FREQ ABS.DIFF )
                                                                               3010
  105 FORMAT(2X,F6.4,4X,F6.4,4X,F6.4)
                                                                               3020
  106 FORMAT(1HO.32HYOUR NULL HYPOTHESIS IS REJECTED)
                                                                               3030
  107 FORMAT(1H0,32HYOUR NULL HYPOTHESIS IS ACCEPTED)
                                                                               3040
  108 FORMAT(1HO, 92HYDUR NULL HYPOTHESIS FOR (LOG)NORMALITY IS ACCEPTED
                                                                               3050
     1 AT THE .05 LEVEL--K-S CRITICAL VALUE IS ,F6.5,9H ABS DIFF)
                                                                               3060
  109 FORMAT(1HO, 92HYDUR NULL HYPOTHESIS FOR (LOG)NORMALITY IS REJECTED
                                                                               3070
     1 AT THE .05 LEVEL--K-S CRITICAL VALUE IS .F6.5,9H ABS DIFF)
                                                                               3080
  111 FORMAT(1HO, 20X, 30H CUM FREQ EXP FREQ ABS DIFF)
                                                                               3090
  112 FORMAT(20X,3F10.5)
                                                                               3100
  113 FORMAT(1H1,120HTHE EXPECTED AND OBSERVED FREQUENCIES FOR A CHI SQU
                                                                               3110
     1ARE TEST OF (LOG)NORMALITY IN INTERVALS OF 0.3 ST DEV--SAMPLE 1--
                                                                               3120
                                                                               3130
     2ARE)
                                                                               3140
  114 FORMAT(1HO, 20H EXPECTED OBSERVED )
                                                                               3150
  115 FORMAT(F10.1, I10)
  116 FORMAT(1H1,120HTHE EXPECTED AND OBSERVED FREQUENCIES FOR A CHI SQU
                                                                               3160
     TARE TEST OF (LOG)NORMALITY IN INTERVALS OF 0.3 ST DEV--SAMPLE 2--
                                                                               3170
                                                                               3180
  117 FORMAT(1H1.30HCHECK PARAMETERS IDPT AND IVER)
                                                                               3190
  118 FORMAT(1HO,23HSAMPLE 1 HAS A MEAN OF ,FlO.4,25H,A STANDARD DEVIATI
                                                                               3200
     10N OF ,F6.4,14H--SKEWNESS IS ,F6.4,10H,KURTOSIS ,F6.4,1H.)
                                                                               3210
  119 FORMAT(1H0,23HSAMPLE 2 HAS A MEAN OF ,F10.4,25H,A STANDARD DEVIATI
                                                                               3220
                                                                               3230
     10N OF ,F6.4,14H--SKEWNESS IS ,F6.4,10H,KURTOSIS ,F6.4,1H.)
                                                                               3240
  120 FORMAT(1H0)
  121 FORMAT(1H0,58HCHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF
                                                                               3250
     11.5 = .68.3,6H WITH , I2,19H DEGREES OF FREEDOM)
                                                                               3260
  122 FURMAT(IH1)
                                                                               3270
```


```
123 FORMAT(1HO,58HCHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF
                                                                                  3280
     15.0 = .F8.3,6H WITH .I2,19H DEGREES OF FREEDOM)
                                                                                  3290
  124 FORMAT(1H ,41X,7HSAMPLE ,11,11H STATISTICS)
                                                                                  3300
  125 FORMAT(1H1,40X,31HSAMPLE 1 VS. SAMPLE 2--K-S TEST)
                                                                                  3310
 1000 FORMAT(10X,F10.0,54X,A6)
                                                                                  2980
   20 STOP
                                                                                  3320
      END
                                                                                  3330
       FORTRAN
$
      SUBROUTINE PLOT(ONE, PIN, AMAX, AMIN, BANNER)
                                                                                  5000
      DIMENSION INC(130), YINC(50), DNE(22), PIN(22), CURVES(4), FRAME(2), TIT
                                                                                  5010
     1LE(20), SCALE(4)
                                                                                  5020
      INTEGER FRAME, CURVES, TITLE, SCALE
                                                                                  5030
      DATA CURVES/1H1,1H2,1H*,1H /
                                                                                  5040
      DATA FRAME/1H-,1H+/
                                                                                  5050
      DATA TITLE/1HC, 1HU, 1HM, 1HU, 1HL, 1HA, 1HT, 1HI, 1HV, 1HE, 1H , 1HF, 1HR, 1HE
                                                                                  5060
     1,1HQ,1HU,1HE,1HN,1HC,1HY/
                                                                                  5070
      DATA SCALE/1H1,1H.,1H0,1H5/
                                                                                  5080
      IF(BANNER.EQ.1.0) WRITE(6,201)
                                                                                  5090
      IF (BANNER . EQ . 2.0) WRITE (6, 204)
                                                                                  5100
      WRITE(6,205)
                                                                                 5110
      WRITE(6,202)
                                                                                 5120
      YINC(1)=1.025
                                                                                 5130
      IY=12
                                                                                 5140
      IT=0
                                                                                 5150
      IMARK=7
                                                                                 5160
      DO 1 I=2,43
                                                                                 5170
      DO 2 J=1.94
                                                                                 5180
    2 INC(J)=CURVES(4)
                                                                                 5190
      INC(6)=FRAME(1)
                                                                                 5200
      INC(95) = FRAME(1)
                                                                                 5210
      YINC(I)=YINC(I-1)-0.025
                                                                                 5220
      IF(IY.EQ.I)GO TO 16
                                                                                 5230
      GO TO 17
                                                                                 5240
   16 [Y=[Y+1
                                                                                 5250
      IF(IY.GT.32)GO TO 17
                                                                                 5260
      IT=IT+1
                                                                                 5270
      INC(1)=TITLE(IT)
                                                                                 5280
  17 CONTINUE
                                                                                 5290
      D0 3 J=1,22
                                                                                 5300
      JI=0
                                                                                 5301
      JIJ=0
                                                                                 5302
      IF(PIN(J).GE.YINC(I).AND.PIN(J).LT.YINC(I-1))GO TO 4
                                                                                 5310
      GO TO 5
                                                                                 5320
   4 JI=J*4+6
                                                                                 5330
      INC(JI)=CURVES(1)
                                                                                 5340
   5 IF(ONE(J).GE.YINC(I).AND.DNE(J).LT.YINC(I-1))GO TO 6
                                                                                 5350
      GO TO 3
                                                                                 5360
   6 JIJ=J*4+6
                                                                                 5370
      IF(JIJ.EQ.JI)GO TO 8
                                                                                 5380
      INC(JIJ)=CURVES(2)
                                                                                 5390
      GO TO 3
                                                                                 5400
   8 INC(JIJ)=CURVES(3)
                                                                                 5410
   3 CONTINUE
                                                                                 5420
      IF(YINC(I).EQ.1.0)GO TO 9
                                                                                 5430
     GO TO 10
                                                                                 5440
   9 INC(4)=SCALE(1)
                                                                                 5450
      INC(5)=SCALE(2)
                                                                                 5460
      INC(6)=SCALE(3)
                                                                                 5470
     GO TO 1
                                                                                 5480
  10 IF(YINC(I).GT.0.499.AND.YINC(I).LT.0.50011GD TO 11
                                                                                 5490
```


	GO TO 12	5500
11	INC(4)=SCALE(3)	551 0
	INC(5)=SCALE(2)	5520
	INC(6)=SCALE(4)	5530
	GO. TO 1	5540
12	IF(YINC(1).LT.(-0.001))GD TO 13	555 0
	GO TO 1	5560
13	INC(4)=SCALE(3)	5570
	INC(5)=SCALE(2)	5580
	INC(6)=SCALE(3)	5590
1	WRITE(6,200)(INC(M),M=1,95)	5600
	DO 26 L=1,6	5610
26	INC(L)=CURVES(4)	56 <u>2</u> 0
	DO 14 L=7,94	5630
	IF(IMARK.EQ.L)GO TO 15	5640
	INC(L)=FRAME(1)	5650
	GO TO 14	5660
15	IMARK=IMARK+22	5670
	INC(L)=FRAME(2)	5680
14	CONTINUE	5690
	WRITE(6,200)(INC(M),M=1,95)	5700
	AMID=AMIN+(AMAX-AMIN)/2.0	5710
	WRITE(6,203)AMIN,AMID,AMAX	5720
	WRITE(6,206)	5725
	FORMAT(1X,95A1)	5730
201	FORMAT(1H1,30X,39HK-S TEST FOR (LOG)NORMALITY SAMPLE ONE)	5740
202	FORMAT(1HO)	5750
	FORMAT(1H ,1PE11.3,30X,1PE13.3,30X,1PE13.3)	5760
	FORMAT(1H1,30X,39HK-S TEST FOR (LOG)NORMALITY SAMPLE TWD)	5770
205	FORMAT(1H ,32X,34HCUMULATIVE NORMAL*1* EMPIRICAL*2*)	5780
206	FORMAT(1H0,42X,13HRANGE OF DATA)	5790
	RETURN	5800
	END	5810


KANSAS GEOLOGICAL SURVEY COMPUTER PROGRAM THE UNIVERSITY OF KANSAS, LAWRENCE


PROGRAM ABSTRACT

Title (If subroutine state in title):	
SNORT - FORTRAN IV p	rogram for sample normality tests
Date:	
Author, organization: D.A. Preston	
Shell Developr	ment, Houston, Texas
Direct inquiries to: D.A. Preston	
Name:	Address: P.O. Box 481
	Houston, Texas 77001
Purpose/description: Selected tests of se	amples are made to determine (log) normality of parent
populations of one or two sai	mples.
Mathematical method: Polynomial appr	oximation to normal distribution curve, chi-square test,
Kolmogorov-Smirnov test (p	arametric and two sample).
Restrictions, range:	
Computer manufacturer: GE or RAND	425 m 1100
	Model: 635 or 1108
Programming language: FORTRAN IV	
Memory required:K A	pproximate running time: 15 sec (1108)
Special peripheral equipment required:	None
Remarks (special compilers or operating syschine versions, additional information use	stems, required word lengths, number of successful runs, other ma- ful for operation or modification of program)

