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Editor’s Remarks

This computer program, "FORTRAN IV program for sample normality tests", by D.A. Preston starts
our fifth year of the series. We are pleased that the publications have been so well received and are proving
of use to practicing geologists the world over. About 80,000 copies of COMPUTER CONTRIBUTIONS now
have been distributed to scientists in more than 40 countries !

This COMPUTER CONTRIBUTION should be of value to geologists interested in distributions of geo-
logical populations. It will have special meaning to petroleum geologists seeking to improve their predic-
tions of finding new oil and gas fields. Examples are given from Kansas and Texas by the author in present-
ing results of his many years of research on the subject. | am pleased to note that the manuscript was comple-
ted by the author during his tenure as a visiting industrial scientist with the Geological Survey in 1969,

The program will be made available on magnetic tape for a limited time for $15.00 (US). An extra
$10.00 charge is made if the punched cards are required.

| am pleased to welcome Dr. Frederic P. Agterberg of the Geological Survey of Canada (Ottawa) and
Mr. John H. Hefner of the Humble Oil and Refining Company (Houston) as new associate editors and Mr.
Paul J. Wolfe, Director of the Computation Center at The University of Kansas, as a technical editor. They
will help maintain the high editorial standards of the past four years, | am most pleased to acknowledge the
help of retiring board members, Dr. John R. Dempsey and Dr. R.G. Hetherington, who over the past sever-
al years gave unselfishly of their time in refereeing manuscripts. Their efforts are most appreciated.

We look forward to the new decade with all its promise and hope that geological accomplishments
will equal or surpass those of the 1960's. The soaring 70's should witness a review of old techniques and
ideas, a development and refinement of known methods, and a search for new untried ways and concepts.

Some recent Computer Contributions

33. FORTRAN IV program for construction of Pi diagrams with the Univac 1108 computer, by

Jetivey Watner, T9EF . i b o ic s e v 5w 6 R e 50 s B i v W e 6 $1.00
34. FORTRAN IV program for nonlinear estimation, by R.B. McCammon, 1969 . . .. ... . ... $0.75
35. FORTRAN IV computer program for fitting observed count data to discrete distribution models

of binomial, Poisson and negative binomial, by C.W. Ondrick and J.C. Griffiths, 1969 . .. $0.75
36. GRAFPAC, graphic output subroutines for the GE 635 computer, by F.J. Rohlf, 1969 . . . . . . $1.00
37. An iterative approach to the fitting of trend surfaces, by A.J. Cole, 1969 . .. ....... $1.00
38. FORTRAN Il programs for 8 methods of cluster analysis (CLUSTAN 1), by David Wishart, 1969. . $1.50
39. FORTRAN Il program for the generalized statistical distance and analysis of covariance

matrices for the CDC 3600 computer, by R.A. Reyment, Hans-Ake Ramden, and

LA IR T e e e R S S S R T i LI L I $1.00
40. Symposium on computer applications in petroleum exploration, edited by D.F. Merriam, 1969. . $1.00
41. FORTRAN IV program for sample normality tests, by D.A. Preston, 1970, . . . . . . ... ... $1.00
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FORTRAN IV PROGRAM FOR SAMPLE NORMALITY TESTS

by

D.A. Preston

INTRODUCTION

The improvement of prediction is among the
most important goals of any scientific investigation.
Yet the results of an investigation will be subject to
considerable uncertainty if the supporting data are
drawn from a population whose characteristics are in-
completely understood. This limitation is particular-
ly common for geologic investigations where popula-
tions are, in general, only partially accessible so
that their exact nature cannot be determined. Use-
ful numerical approximations of their probability
distributions may be derived, however, if the data
are drawn in such a manner that they constitute a
representative sample of the parent population (see
Griffiths, 1967; Griffiths and Ondrick, 1968). Stat-
istical analysis of such data then may improve the
predictability of further sampling by suggesting an
appropriate a priori probability model for the parent
population from which predictive inferences can be
drawn. Moreover, once an appropriate model is est-
ablished for a population, the quality of any sample
drawn from that population may be determined ecsily.

A distinction must be preserved for possible
purposes for which samples are statistically analyzed.
On one hand, if samples are from a population whose
probabilistic nature is known, statistical analysis
yields a measure of sample error created by departure
from randomness, operator error, and the like. The
main problem is identifying the sources of error. On
the other hand, if samples are analyzed in order to de-
rive a population distribution model, the sample must
be constructed painstakingly to minimize sample error.
Poorly constructed samples from populations of un-
known distribution will yield completely ambiguous
statistical results,

THE NORMAL A PRIORI PROBABILITY MODEL

Two generally accepted categories of a
priori probability models exist. One characterizes
the distribution of discrete variables based on count-
ing or similar enumeration, and the other character-
izes the distribution of continuous variables based
on measurements. In the second category the normal
or lognormal model seems to be most frequently ap-
plied to natural phenomena. Perhaps this is because
of the mathematical basis of multivariate normality;
namely, that the sum of an assemblage of random
variables is distributed normally irrespective of the
distribution of each contributing variable. If a nat-
ural phenomenon is assumed to be the result of sever-
al random events, by the same reasoning that pheno-

menon should be normally distributed. This is true,
of course, only to the degree that the contributing
events tend to be random with respect to each other.
In the extremely complex physical systems with which
the geologist deals a seemingly randomness may des-
cribe the net effect.

The normal distribution with its two parame-
ters is not the simplest of the probability models. It
is, nonetheless, relatively easy for the nonstatistician
to understand because its two parameters describe
(1) the average data value of the sample (mean), and
(2) the variability or spread of the data around the
average (standard deviation). Moreover, the separ-
ation of the two parameters makes the model particu-
larly tractable mathematically.

In practice, to test for population normality
or lognormality, the parent population is assumed to
be normally or lognormally distributed. This is the
so~called null hypothesis., The data (or their logar-
ithms) then are analyzed and their statistical behav-
jor tested against the null hypothesis of population
normality. Lognormal distributions can be handled
by standard normality tests because the logarithms of
data elements drawn from a lognormal population are
normally distributed. The hypothesis then is either
accepted or rejected on the basis of closeness of fit
to the normal model at some predetermined level
(usually 95%). Certain risks are incurred by this
procedure. An improper model for the population
may be accepted, or a proper model may be rejected.
The tests used in the program SNORT tend to minimize
the former risk because acceptance of an improper
model is usually the most undesirable of the two out-
comes, Testing for sample quality from a population
of known distribution is, of course, more straightfor-
ward because in this situation the answer sought is
contingent only on the test results.

STATISTICAL DESCRIPTION

The principal statistical tests used in the
program SNORT are the chi=square and the Kolmo-
gorov-Smirnov parametric tests for normality. The
nonparametric two sample Kolmogorov=Smirnov
test is made if two samples are run. In addition, the
program computes the mean, standard deviation, co-
efficients of skewness and kurtosis, and ratio of
range of the data to the standard deviation.

Chi-square test

The chi-square test is a measure of the dis-
parity existing between observed data values in a



sample and those expected from whatever a priori
probability model the sample is being tested against.
The test value is calculated by

n (obs, - exp.)2

x2- . A,

=1 P,

(1

where n = number of class intervals into which the
data are divided, obs: = frequency of observed data
in class |, and exp; = frequency of data in class j
expected from the model. The chi=square values of
each sample follow a distribution given by

(2)

where v = degrees of freedom and Y, is a constant
dependent on v so that the area under the function
curve is kept at 1.0,

If the expected frequency in each class interval is
at least equal to 5 then equation (2) is a close ap-
proximation fo the sampling distribution of X4, Con-
sequently most statisticians, when samples are small,
will pool class intervals until the expected frequency
in each pooled interval is at least 5. Other statis—~
ticians argue that the improved approximation is more
than offset by loss of resolution in the tail portions
of the curve. They recommend pooling only when
an expected frequency otherwise would be close to
or less than 1.0. Their argument is that excessive
pooling is likely to reduce the chance of legitimate=
ly rejecting the a priori model. Rather than arbi=
trate this argument for the user, pooling for the chi-
square statistic in the program SNORT is done, if
necessary, at levels of expected values of both 5.0
and 1.5.

The class intervals are set before pooling at 0.3
standard deviations. The error of grouping is kept
to less than 0.1 of the standard error, as recommend-
ed by Fisher (1946). This is slightly coarser than
0.25 standard deviation intervals, at which point
the information loss due to grouping is less than 1.0
percent. Degrees of freedom in a chi-square test
are based on the number of class intervals used after
pooling and on whether the model parameter(s) are
known or assumed. The program SNORT deducts
two degrees of freedom for an assumed mean and
standard deviation since they are derived from the
sample itself.

2
v=v, (xHE (V7 DEX

Kolmogorov=Smirnov Test

This test is based on the sample distribution func-
tion, Fn(x), where

Fn(X) = ]/n

The function is expressed as the cumulative relative
frequency of the sample. The choice of class inter=
val is less critical than in the chi=square test, so
0.3 standard deviation intervals are used for conven=
ience. The sample statistic used is

(number of observations< x) . (3)

Dy = sup |Fpx) = Fo(x)| ,

—o L <o

(4)

where D, = the maximum absolute difference between
the cumulative relative frequency curves of the ob-
served and expected frequencies. The critical value
for acceptance at the 95 percent significance level

is calculated by
D, =1.36/Jyn, ()

where n =sample size. The null hypothesis for the
model is rejected if this critical value is exceeded.
Valuable information about the sample distribution is
given by observing where on the curve the critical
value is exceeded. Accordingly, the program SNORT
plots the derived values for both expected and ob-
served frequencies in each interval to provide a di-
rect visual comparison of the curves.

Kolmogorov=Smirnov Two Sample Test

This test compares the relative cumulative fre-
quency curves of two samples. It determines whether
or not the samples have been drawn from populations
having the same frequency distribution irrespective of
that distribution. The test statistic is

Dmn = sup | Fn(x) = Fm(x) | . (6)
—o <X <
The critical value for acceptance at the 95 percent
significance level is calculated by

Dmn < fl.36 J(m +n) /mn ’ ’ (7)

where F,(x) and F(x) are the observed relative cu-
mulative frequencies of samples n and m respectively,
and D, is the maximum absolute difference between
the two functions. The program SNORT makes this
calculation, compares it to the maximum deviate
between intervals, and prints out a statement of
acceptance or rejection. This procedure is inaccurate
for sample sizes less than 20, where tables should be
used (Lindgren, 1962).

Skewness, Kurtosis, and Sample Range Statistics

Departure from normality in a sample is reflected
by the asymmetry (skewness) and peakedness (kurtosis)
of the frequency curve it describes relative to the
normal curve. Measures of these effects are given by
the third and fourth moments about the mean. Any
moment about the mean is expressed as

M, =;£__i>__ : )

where My = the rth moment, x; = ith sample element,
x = the sample mean, and n = sample size.
In dimensionless form the moment coefficient of

skewness = Mg / 53 =\/[3—; the moment coefficient of

kurtosis = My / 54 = Bp, where § 5/My. For the
standardized normal curve,\/ﬁ =0.0and B2 = 3.0.



When B >0.0 the distribution curve has a longer
tail to the right of the central maximum indicating
bias toward high data values. For A/B1<0.0 the
converse is true. When B2 >3.0 the curve tends
toward strong centering about the mean with long
tails (leptokurtosis) indicating less than expected
variation of the data values. When By < 3.0 the
converse is true. Plates | and Il, which graph the
acceptable deviations of NB1 and Bp at the 95 per=
cent significance level, are based on Pearson type
curves that approximate the distribution of NB1 and
B2 (Pearson and Hartley, 1966).

Another useful test for departure from normality is
the ratio of the range of the data to its standard dev-
iation. This test is especially sensitive for detecting
maverick data values. A thorough discussion of this
statistic is given in Pearson and Hartley's tables
(1966). Plate Il is a graph of the acceptance limit
of this statistic at the 95 percent significance level.

POLY NOMIAL APPROXIMATION TO NORMAL
CURVE

The use of this function in the program SNORT
allows the expected value within any class interval
of the normal to be generated from the specific
sample being tested. Consequently, except for the
chi=square test, no manual table look=up or subse-
quent hand calculation is required. The function is
expressed

P(x) = 1. = Z(X) (0.4361836t - 0.1201676t2

(9)
+0.9372980t3) +e(x) ,

1 e—X2/2 ,
27

and |e(x)| = error of approximation < 1072, The
value of x is arbitrarily chosen as the class interval
expressed in standard deviations from the mean

(0.3 S here). P(x) is the area under the normal

curve from x to the mean. Expected values for
sample size N are derived by

where t = 1./(1. +0.33267x), Z(x) =

expi = (P(xj) = P(xj-1)) N . (10)

PROGRAM DESCRIPTION
Input

The program SNORT (Sample NORmality Tests) is
written in FORTRAN 1V at a sufficiently generalized
level to be compatible with or easily adapted to most
computers. The program accepts one or two samples
input as decks of punched cards with a limit of 5000
cards per deck, one datum to a card in fixed format.
It will test the sample(s) for either normality or log=
normality at the user's option. When two samples
are run an additional test, the Kolmogorov-Smirnov

two sample test, is run also. [t is recommended,
though not necessary, that sample size be kept in
excess of 20. The input format may be changed to

fit any special need of the user by changing format
statement 1000. The sample size limit may be in=
creased by changing the arguments of variables SMPL1
and SMPL2 in the first dimension statement.

Program Input Cards

CARD 1 An option card
Cols.
5 An integer 1 or 2 punched in this
column specifies one or two samples.
10 An integer 1 or 2 punched in this
column specifies a test for normality
or lognormality respectively.
DATA CARDS 20 to 5000 allowed
Cols.

1-10 Sample one data elements either
right justified or with decimal
punched.

CARD 2
Cols.
75-80 Punch FINISH to signify end of
data set.
DATA CIIARDS (optional) 20 to 5000 allowed
Cols.

1-10 Sample two data elements either

right justified or with decimal

punched.
CARD 3
Cols.
75-80 Punch FINISH to signify end of
data set.
Output

An example of printer output is shown in Figures
1-8. The sample mean, standard deviation, skewness,
kurtosis, ratio of range to standard deviation, and
sample size are printed out first. Next, a statement
of acceptance or rejection of the null hypothesis of
normality at the 95 percent significance level is made
based on the stated Kolmogorov=Smirnov critical
value. The observed and expected cumulative relative
frequencies at 0.3 S intervals are listed next with
their absolute differences so that the user can deter=
mine the goodness of fit between each interval. The
listed interval values are plotted below to afford a
visual comparison of the curves they describe. The
user can easily ascertain details and trends of dev=
iation between the observed (empirical) and expected
frequency distributions. The expected curve is the
"1" curve, the empirical is the "2" curve. Where
the curves are coincident an asterisk is printed. The
range of data (or their logarithms) is calculated and
scaled beneath the X axis. A listing of expected and
observed frequencies in 0.3 S class intervals for the
chi=square test is printed out below the plot.



SAMPLE 1 HAS A MEAN OF 2,1431,4 STANDARD DEVIATION OF ,5781=-SKEWNESS IS ,9707,KURTOSIS 3,5520,

THE RATIO OF THE RANGE YO THE STL DEV = 5,49 THE SAMPLE SIZE = 264

YOUR NULL HYPOTHESIS FOR (LOGINOKMALITY IS REJECTED AT THE ,05 LEVEL--K~S CRITICAL VALUE IS ,08370 ABS DIFF
CUM FREQ EXP FREQ ABS DIFF

00000 100000 00000
,00000 100135 00135
L4000y \00348 00346
4100000 100821 00824
L0000 101787 01787
,U0000 103595 03593
, 00000 LU66B0 ,06680
00758 111506 .10748
37500 113406 .19094
37500 127426 ,10074
198106 58209 09897

157955 ,50000 ,07955
69518 (61791 ,07527
73106 72574 ,00532

V79167 181594 102428
186364 188494 .02130
192803 193320 +00517
94697 196407 01710
196970 196213 201243
97727 99179 ,01452
198485 199652 W01168
V99242 199865 ,00000

K=S TEST FOR (LOGINORMALITY SAMPLE ONE
CUMULATIVE NURMAL#1# EMPIRICAL#2%

"

o
&
*
*
IR}

N

N

M<——prC2CO

<ozrcem=zm

1
2

=)
=S I T T T O T T T T T B T O N B B I T B B I T I R R S I S A I T B R A I B R B B = |

213 1 3 9 8 434333844823 22430 24134381400

1 1 1 1
“ 2 2 2 2 2 2
R —mre—————- B R B ———————— D L T

1,301+00 2,889+00 4,477+00

o

KANGE OF DATaA
THE EXPECTED AND ORSERVED FREQUFENCIES FOR A CH] SQUARE TEST OF (LOGINORMALITY N INTERVALS OF 0,3 ST DEV==SAMPLE 1le= ARE
EXPECTED OBSERVED

)4 v

6 0
1,2 0
2,6 Q
4,8 o]
8,1 0
12,7 2
18,2 97
23,8 0
28,5 28
31,1 26
31,1 50
28,5 10
23,8 16
18,2 19
12,7 17
8,1 5
4,8 6
2,6 2
1,2 2

6 2

CHI SQUARE TEST VALUE FOKX MINIMUM EXPECTED VALUE OF 1,5 = 412,462 WITH 15 DEGREES OF FREEDOM

CH] SQUARE TEST VALUE FOX MINIMUM EXPECTED VALUE OF 5,0 = 409,434 WITH 11 DEGREES OF FREEDOM

Figure 1.= Sample 1 statistics, field area, Kansas City=Lansing Groups, Central Kansas Uplift.



SAMPLE 2 HAS A MEAN OF 2,4472,A STANDARD DEVIATION OF ,7890--SKEWNESS IS ,9430,KURTOSIS 4,6987,
THE RATIO OF THE RANGE TO THE STD DEV = 4,92 THE SAMPLE SIZE = 250
YOUR NULL HYPOTHESIS FOR (LOGINORMALITY IS REJECTED AT THE ,05 LEVEL-=K~S CRITICAL VALUE IS ,08601 ABS DIFF

CUM FREG EXP FREQR ABS DIFF
,00000 100000 ,00000
00000 100135 100435
,00000 100348 .00348
,00000 100821 00821
4100000 101787 ,01787
,00400 103993 ,03193
,00400 106680 06280
01600 111506 ,09906
,26400 118406 ,07994

, 37200 127426 L9774
,34800 138209 06591
154800 150000 04800
162400 161791 ,00609
172800 72574 .00226
182400 181594 00806
87600 188494 00894
192800 193520 00520

196000 196407 .00407
96800 198213 01413
198400 199179 00779
99600 199652 100052
199600 199865 100000

K=5 TEST FOR (LOGINORMALITY SAMPLE TWO
CUMULATIVE NORMAL®1s EMPIRICAL#2%

1,0 -

- 1 - 13 o

- o 2 -

- . -

- » -

- L -

c - -

1] - ' -

M " -

U - -

L " -

A - -

T - - -

1 - -

v - -

3 - 2 -

0,5 -

F - 1 -

R - -

E - 2 -

€] - -

v - 1 -

E - 2 -

N - -

[ - -

Y - -

- 2 1 -

- 1 -

- -

- 1 -

- 1 -

- 1 -

- 1 1 1 1 2 2 2 -

0,0 L 2 2 2 2 -

R e R D btk T T e T —————— LR R e R D T
1,000+00 3,728+00 6,456+00

RANGE OF DATA

THE EXPECTED AND OBSERVEU FREQUENCIES FOR & CH] SQUARE TEST OF (LOGINORMALITY IN INTERVALS OF 0,3 ST DEV=<SAMPLE 2~= ARE
EXPECTED OBSERVED

' 0
5 0
1,2 0
2,4 0
4,5 1
7,7 0
12,1 3
17,2 62
22,6 27
27,0 19
29,5 25
29,5 19
27,0 26
22,6 24
17,2 13
12,1 13
7.7 8
4,5 2
2,4 4
1,2 3
l5 D

CHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF 1,5 s 150,122 WITH 15 DEGREES OF FREEDOM

CHI SQUARE TEST VALUE FOR MINIMUM EXPECTER VALUE OF 5,0 = 146,732 WITH 11 DEGREES OF FREEDOM

Figure 2.~ Sample 2 statistics, field area, Arbuckle Group, Central Kansas Uplift.



SAMPLE 1 VS, SAMPLE 2--K=S TEST
CRITICAL VALUE OF KOLMOGUROV=SMIRNOFF TWQO SAMPLE TEST FOR ACCEPTANCE AT ,05 IS LESS THAN,12002 ABS DIFF
YOUR NULL HYPOTHESIS IS REJECTED
CUM FREG CUM FREQ ABS,DJFF

,0000 0000 0036

10076 + 004U 0036

10076 +0040 0036

10076 0040 , 0036

,0076 0040 ,0036

10076 10160 \0uB4

0076 10160 ,0084 19280 19640 10560
. 0076 10160 , 0084 19318 +9640 10322
10076 10160 0084 19318 19680 +0362
3750 10160 , 3290 ,9356 19680 ,0324
13750 10160 13290 19432 19760 10328
13750 12640 11110 19470 19760 10290
13750 12640 .1110 19470 19800 10330
13750 12640 11110 19585 19840 10257
13750 12720 11030 1 9659 19840 10181
13750 2720 +1030 19659 19840 ,0181
¢ 3750 ¢ 3720 ,0030 19659 , 9880 0221
an o om e e
' ' ' 9735 19960 0225
14811 14120 10691 19773 19960 ,0187
14811 14120 10691 49773 19960 0187
14811 14160 10651 19773 19960 ,0187
+5000 .4489 0520 19773 19960 ,0187
+5000 15120 . 0120 19811 19960 10149
15795 15160 : 0635 9811 19960 10149
15795 15360 10435 9811 19960 0149
y 5795 15480 10315 9811 19960 10149
¢ 5835 15680 0153 ) 9848 19960 0112
16326 15840 0486 19848 19960 ,0112
16326 608U 0246 19848 19960 ,0112
.:3%: -2%:8 .gigz 19848 .3960 .0112
, 693 ; ,049; ,9845 9960 ,0112
,6970 , 6560 ,06410 ,9886 19960 0074
7083 16880 0203 19924 19960 , 0036
,7083 .728q 10197 19924 19960 0036
e FOTR
[ ] 1’ [} ’ [
17462 17880 , 0418 19962 19960 . 0002
+ 7500 18120 .DQZQ 19962 19960 ,0002
17576 18320 0744 19962 19960 ,0002
7727 +8400 , 00673 19962 19960 ,0002
» 7805 1 860U ,0(97 19962 19960 , 0002
27917 18640 0723 19962 19960 ,0u02
el T e o
' ’ ’ ' 19960 .0u02
8182 9120 , 0938 19962 996U ,oune
«8333 19200 10867 19962 19960 ,0002
18523 19280 0727 19962 19960 ,ouo2
18636 19320 0684 19962 19960 , 000z
R e g o
’ ' ' ’ : 19960 » 00
18977 19560 10583 19962 19960 0002
19053 » 960U 10247 19962 19960 , 0002

Kolmogorov=Smirnov two sample test, from samples shown in Figures 1 and 2.



SAMPLE 1 HAS A MeAN (F 24291144 STANDARD DEVIATION OF ,7373=--SKEWNESS IS 1,0385,KURTOSIS 3,4691,
THE RATIO OF THE RANGE TO THe STU DEV = 4,17 THE SAMPLE SIZF = 86
YOUR NULL HYPOTHESIS FOR (LDGINCKMALLITY 16 REJECTED AT THE 0% LEVEL-~K=S CRITICAL VALUE IS ,14665 ABS CIFF

CUM FREY  EXP FREQ aBS DIFF

200000 +COUN0 ,0000
LGUU0Y NS LU0135
LoD LT Lu0348
,ciuou 0B21 00821
, 00000 Wi1787 01787
L1000 yU3593 »03593
(00000 s 06LHO LU6680
JU1168 111506 .10343
, 34484 118306 .16478
,S4884 \ 27426 ,07458
L4186 ELYAL] L5977
ESTLL 150000 ,03489
169767 161791 7976
W76744 V72574 04170
L2558 181594 .00964
L8953 188494 L0104
yY1u60 193320 01459
VY3u2s 196407 203383
LY3023 L9821 ,05189
1953549 199179 .03830
LS8B3Y 199652 ,00815
1,0000u 199165 «00000

K=5 TEST FOR (LOGINORMALITY SAMPLE ONF
CUMULATIVE NURMAL®{® EMPIRICAL#2%

1,0 24

- 101 o ts

- i 2 -

- 1 2 2 -

- 2 -

- M -

- 2 -

- 1 -

c - 2 -

U - 1 -

M - -

u - 2 -

L - -

A - -

T - 1 -

1 - -

Vv - -

E - 2 -

2.5 -

F - 1 -

R - -

E - 2 -

Q - -

u - 1 -

13 - -

N - 2 2 -

c - -

% - -

- 1 N

- s -

- n -

- 1 -

- 1 -

- 101 1 1 2 -

o, 2 2 2 2 2 2 -

temmmem B it Rt T ) kL T B D el et T
1,301+00 2,838+00 4,374400

RANGE OF DATA
THE EXPECTEDN AND OBSERVEL FREQUENCIES FAR A CHI SQIARE TEST OF (LOGINORMALITY IN INTERVALS OF 0,3 ST DEV~~SAMPLE 1-= ARE

EXPECTFD OBSERVED

W1 )
X3 0
4 o
' 8 ¢]
1,6 0
2,7 o
4,2 1
5,9 29
7,8 o
95 L
18,1 8
10,1 14
9,3 6
7,8 5
9,9 6
4,2 2
2.7 1
1,6 ]
X 2
o4 3
W2 1

CHI SQUARE TEST VALUE FOR MINIMU™M EXPECTEN VALUE OF 1,5 3 113,488 WITH 12 DEGRFES OF FREEDOM
CHI SGUARE TEST VALUE FOR MIWIMUM EXPECTED VALUE OF 5,0 = 53,641 WITH 7 DEGREES OF FREEDOM

Figure 3.~ Sample 1 statistics, field area, Clearfork Formation, Midland Central Basin Platform.



SAMPLE 2 HAS A MEAN GF 2.5205,4 STANUARD DEVIATION OF ,6521-=SKEWNESS IS ,4020,KURTOS1S 2,0070,
THE RATIO OF THE RANGE TO THE STD DFEV 5 3,92 THE SAMPLE SIZE =  10%
YOUR NULL HYPOTHESIS FUR (LOGINORMALLITY 1S REJECTED AT THE ,05 LEVEL-~K-§ CRITICAL VALUE IS ,13272 ABS DIFF

CUM FREG EXP FREQ ABS DIFF

Lutuno 100000 .00000
Q000U s 10135 .0013%
L0000 BELE] +U0348
, 00000 00821 .00821
20009 01787 01787
L0000 103993 ,03593
»2000Y W06680 206680
U571 111506 02934
33338 L18406 .14928
V35238 127426 .u7812
146667 V38209 .08458
128095 50000 08096
L 60952 161791 00839
169574 172574 » 03050
75258 181594 2U6356
185714 188494 02780
90476 193520 .02844
197145 196407 L00736
Y9548 298213 00835
99048 199179 200132
1,00000 399652 ,U0348
1,00000 99865 ,u0000

K=3 TEST FOR (LOGINORMALITY SAMPLE TwWO
CUMULATIVE NORMAL®#1e EMPIRICAL#Ze

1,0 2 2=
- . » 1 1~
- - -
- 1 -
- 2 -
- 1 -
- 2 -
- 1 -
- -
[ - 2 -
U - 1 -
[ - -
u - 2 -
L - -
A - -
T - . -
T - 2 -
v - -
E - -
D45 b4
F - 1 -
R - 2 -
E - -
Q - -
u - 1 -
E - 2 -
N - ? -
4 - -
Y - -
- 1 -
- 1 -
- 1 -
- 2 -
- 1 -
- 1 -
- 101 1 -
e a4 e e e meeeeccdeameemem—m—ea————— -

1.602+00 2,880+00 4,158+00

RANGE OF DATA
THE EXPECTED AND UBSERVED FREQUENCIES FOR Ao CHI SWUARE TEST OF (LOG)NORMALITY IN INTERVALS OF 0,3 ST DEV=~SAMPLE 2-=- ARE

EXPECIED  OBSERVED
1 0

,2 0
o 0
1,0 0
1,9 0
3,2 0
5,1 9
7.2 26
9,5 2
11,3 12
12,4 12
12,4 3
11,3 9
9,5 6
7.2 11
5,1 5
5,2 7
1,9 2
1,0 0
) 1
.2 0

CH] SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF 1,5 = 79,909 WITH 13 DEGREES OF FREEDOM

CHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF 5,0 = 78,497 WITH 9 DEGREES OF FREEDOM

Figure 4.~ Sample 2 statistics, field area, Devonian rocks, Midland Central Basin Platform.



SAMPLE 1 VS, SAMPLE 2--K=S TEST
CRITICAL VALUE OF KOLMOGUROV~SMIRNOFF TWO SAMPLE TEST FOR ACCEPTANCE AT ,05 IS LESS THAN,19779 ABS DIFF
YOUR NULL HYPOTHESIS 1S REJECTED

CuM FREQ CUM FREQ ABS,DIFF

,0000 ,0000 0741

0116 ,0857 0741

,0116 ,0857 ,0741

0116 .0857 10741

0116 L0857 ,0741

10116 1085/ 0741

,0116 0857 0741 8256 07145 1113
10116 ,0857 10741 18372 7143 11229
L0116 L0857 0741 8372 L7333 1039
3488 ,085/ 12631 , 8605 7333 ,1271
3488 10857 12631 8837 7429 '1409
3488 V3333 10155 8837 17524 1515
‘348 V3333 10155 13837 7619 1218
S
. . . 18955 L8000 ,0953
S g
) L * '89 * UOU '09 3
'Jass V3335 10155 18953 .8286 0668
,3488 3524 L0035 ,9070 ,8571 0498
14419 13524 Tn895 9070 ,8571 T0498
4419 3524 089 19186 V8667 L0519
. . 0895 19186 8667 ,0519
14419 ,3524 ,0895 19186 18762 10424
L4419 L4571 10153 19302 ,8857 ,0445
14419 14571 10153 19302 L8857 10445
15116 14571 0545 19302 ,8857 10a45
15116 L4571 "0545 19302 18857 10445
\5116 L4667 10450 19302 L9046 10255
15116 1466/ 10450 19302 19238 064
15349 V4667 10682 9302 V9333 L0031
15349 4952 10396 9302 942 0126
. . . 19302 19429 10126
15930 14952 ,0978 19302 L9524 "0221
15930 15143 0787 19302 9714 0412
15930 ,5143 L0787 19302 L9810 ,0507
16279 15810 10470 19302 V9810 0507
F
. . . L9419 9810 L0591
16512 .6000 0512 19419 19905 .na8s
.63;—; 02000 .09;7 9535 «990% L0570
6 ,6000 0977 9535 29905 0370
16977 .6000 10977 19535 ,9905 10370
,6977 ,6095 , 0382 L9535 9905 L0370
V7209 L6095 11114 19535 .9905 10370
7674 16476 11198 19535 19905 10570
, 7674 6476 1198 ‘9935 19909 ,N370
17674 \6571 11103 19651 29905 L0254
,7791 16667 1124 9767 29905 0137
, 7907 16762 , 1145 9884 «990% ,0321
8023 16762 .1261 9844 .990% 0021
'8023 .6952 \1071 T98H4 ,9905 T0021
8023 16952 1071 ou84 29905 Louzt
,8140 7048 , 1092 9884 9905 .0021

Kolmogorov=Smirnov two sample test, from samples shown in Figures 3 and 4.



SAMPLE 1 HAS A MEAN OF 1,9704,4 STANDARD DEVIATION OF ,9729--SKEWNESS IS ,1615%,KURTOSIS 2,9422,
THE RATIO OF THE RANGE TU THE STD DEV 3 5,18 THE SAMPLE SIZE = 264
YOUR NULL HYPOTHESIS FOR (LOGINORMALITY S ACCEPTED AT THE ,05 LEVEL-=K=S CRITICAL VALUE IS ,08370 ABS DIFF

CUM FREG@ EXP FREG ABS DIFF
100000 100000 00000
+ 00000 100135 .00135
, 00000 100348 ,00348
+ 00000 100821 00821
, 00000 101787 .01787
403788 103593 00194
(07197 106680 .Q0517
112879 111508 «01373
119697 118406 .01291
,27273 127426 ,00153
136742 138209 01466
120758 150000 400758
165530 161791 03739
174242 172574 101669
180682 181594 400913
89015 188494 200521
,92803 193320 100517
195835 196407 400573
97348 198213 .00864
198489 199179 100694
199621 199652 ,00031
199621 199865 ,00000

K~8 TEST FOR (LOGINORMALITY SAMPLE ONE
CUMULATIVE NORMAL®1s EMPIRICAL#2%

1.0 "
- 1 % & s
- . 2 -
A - -
- -
- . -
» -
- - -
- -
c - -
9] - - -
M - -
U - -
L - 2 -
A - -
T - 1 -
1 - -
v - -
E - -
045 2 -
F - 1 -
R - -
E - -
Q - -
v - 1 »
E - 2 -
N - -
c - -
Y - -
- » -
- -
- -
- » -
- 2 -
- 1 .
- -
- - -
L - -
- i1 1 1 )
0,0 & 2 2 2 2 -
DT L T Ll TSP IR ———hm——
0,000 2,521+00 5,041+00

RANGE OF DATA
THE EXPECTED AND OBSERVEL FREGUENCIES FOR A CH] SGUARE TEST OF (LOGINORMALITY IN INTERVALS OF 0,3 ST DEV~=SAMPLE 1-- ARE
EXPECTED OBSERVED

l4 u
'8 [4
1,2 0
2,6 0
4,8 10
8,1 9
12,7 15
18,2 18
25,8 20
28,5 25
31,1 37
31,1 39
28,5 23
23,8 17
18,2 22
12,7 10
8,1 8
4,8 4
2,6 3
1,2 3
6 0

CHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF 1,5 = 20,447 W]TH 15 DEGREES OF FEEEDON
CHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF 5,0 = 9,043 WITH 11 DEGREES OF FREEDOM

Figure 5.~ Sample 1 statistics, ultimate volume, Kansas City=Lansing Groups, Central Kansas Uplift.
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SAMPLE 2 HAS A MeAN OF 2,3855,4 STANDARD DEVIATION OF 1,2049--SKEWNESS 1S ,1556,KURTOSIS 2,9203,
THE RATI0 OF THE RANGE TO THE S$TD DEV = 6,37 THE SAMPLE SIZE = 250
YOUR NULL HYPOTHESIS FOR (LOGINORMALITY IS ACCEPTED 4T THE ,05 LEVEL--K=S CRJTICAL VALUE IS 108601 ABS DIFF

CUM FREQ EXP FREQ ABS DIFF
100000 + Q0000 «00000
200000 100135 4 0013%
Q0000 100348 00348
200000 100821 .0ns21
,U000U 01787 401787
103600 103993 ,00007
,07600 06680 .00920
12000 111506 00494
121200 118406 02794
128000 127426 «00574
137200 138209 101009
50000 150000 +00000
162000 161791 ,00209
1 72400 172574 00174
180800 161594 .00794
,90000 188494 015086
193600 193320 , 00280
196000 196407 00407
197600 198213 . 00613
1 Y8400 199179 100779
199600 199652 .00052
1 Y9600 1990865 00000

KeS TEST FOR (LOGINURMALITY SAMPLE TwO
CUMULATIVE NORMAL®#1s EMPIRICA( #2%

1,0 -

- o - - L)

- » -

- . -

- . -

- -

- - -

hd -

c - -

U - 1 "

M - H -

Y] - -

L 4 -

A - "

T - . -

1 - -

v - -

13 - -

0,5 -

F " 3 -

R - -

E - -

Q - -

v - 1 -

E - 2 -

N - -

c - -

Y - 2 -

- 1 -

- -

- 2 -

- 1 -

- -

- -

- . -

- 2 -

- 1 -

- “ -

- 1 1 1 1 -

0,0 * 2 2 2 2 -

‘o= + B iy R P ——
4,139-02 3,275+00 6,508+00

RANGE OF DATA
THE EXPECTED AND OBSERVEDU FREQUENCIES FNR A CH] SQUARE TEST OF (LOGINORMALITY IN INTERVALS OF 0,3 ST DgVe=SAMPLE 2-~ ARE
EXPECTED OBSERVED

CHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF 1,5 @ 18,098 WITH 15 DEGREES OF FREEDOM

CHI SQUARE TEST VALUE FOR MINIMUM EXPECTEN VALUE OF 5,0 s 8.202 WITH 11 DEGREES OF FREEDOM

Figure 6.- Sample 2 statistics, ultimate volume, Arbuckle Group, Central Kansas Uplift.

11



SAMPLE 1 VS5, SAMPLE 2--K=S TEST
CRITICAL VALUE OF KOLMOGUROV=SMIRNQFF TWU SAMPLE TEST FOR ACCEPTANCE AT ,05 [S LESS THAN,12002 ABS DIFF
YOUR NULL HYPOTHESIS IS ACCERTED

CUM FREQ CUM FREQ ABS,DIFF

0000 » 0000 ,0Ul19

0579 » 0360 , 0019

10379 y 0360 , 0019

,0379 10360 ,0019

0379 10680 , 0501

0568 10680 ,0112

0568 0760 0192 17765 18360 0595
,0568 »0760 , 0192 17803 18560 10757
0568 20840 0272 7917 18680 0763
.0?20 .084C ,0120 18144 18840 10696
,0/2D +1000 ,0280 18485 18960 0475
,0985 +1080 10095 18561 «9000 ,0439
0985 1320 ,Q13% 8712 19040 10328
,1098 ,1200 ,0102 . 8826 19160 0334
11098 1360 40262 8902 19200 0298
11288 11400 ,0112 8977 09320 ,0343
11439 11640 .020; 19091 19360 0269
11515 1760 10245 19129 19360 0231
11667 12000 L0333 19205 19520 ,0315
1742 12120 ,0378 .9?42 9520 ,0278
11856 12160 10304 19280 19560 0280
11970 12200 0230 19432 19560 0128
12121 12320 , 0199 , 9470 19600 , 0130
12197 ,2649 ,0443 9470 19680 , 0210
12311 12800 0489 19545 19720 ,017%
12386 3000 10614 19583 »9760 40177
12576 ,3200 10624 19583 19760 0177
.280; 13240 .0457 19621 19760 0139
22955 13360 10405 9659 + 9800 10143
13106 3680 10074 19697 19800 0103
03333 3800 (0467 19735 » 9840 0105
3485 14000 , 0515 9735 19840 ,0105
13636 14240 ,0904 9775 19840 , 0067
3788 14520 0732 ,9811 19840 ,0029
3826 14840 »1014 19811 19920 10109
14129 15000 , 0871 19811 19960 20149
14356 .5240 ,0884 ,9848 19960 ,0112
14735 15440 ,0705 ,9848 19960 (0112
15341 15720 L0379 19848 o060 .o11z
[} ' . L] . oo 2
15492 5920 , 0428 , 9886 9960 ,0074
15720 +6200 .0489 19924 19960 0U36
6023 6320 , 0297 19962 19960 0002
,6288 16640 0352 19962 19960 , 0002
16591 16760 0169 19962 19960 ,0002
16667 17040 ,0:?} 19962 19960 , 0002
16780 27200 , 0420 19962 19960 , 0002
6894 ¢ 7280 .0356 19962 19960 ,0002
7045 + 7400 , 0355 19962 19960 ,0002
. 7348 7600 10252 19962 19960 , 0002
17424 + 7800 10376 19962 19960 0002
,7309 + 7960 , 0460 19962 19960 , 0002
7652 18080 ,0428 19962 19960 ,0002

Kolmogorov=Smirnov two sample test, from samples shown in Figures 5 and 6.
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SAMPLE 1 HAS A MEAN OF 2.245124 STANDARD DEVIATION OF 1,1557--SKEWNESS 1S ,2641,KURTOSIS 2,7947,
THE RATIO OF THE RENGE TG THe ST0 DEV & 4,75 THE SAMPLE SIZE = 86
YOUR NULLL HYPOTHESIS FOR (LOGIWNRMALITY (S ACCEPTE]Q AT THE ,U5 LEVEL==~K~S CRITICAL VALUE IS ,14665 ABS DIFF

CUM +ReQ  EXP FREQ 4RS DIFF

, 300610 00008 00000
L 00UaY 200135 U013%
RULIRIY) 10344 LiN348
LU0unu 1n0821 JU0821
yooony 101787 01787
V12526 103993 .11268
Py 09302 1C66B] 02622
115955 11500 J2440
W17442 VL8406 LUN964
126744 127426 0632
41860 38209 203652
V03408 150000 , 03489
,63953 161791 02162
1 13256 172574 00682
L H0233 181094 01362
LK7209 545494 L01285
93625 + 93320 0297
, Y4186 196407 202221
97674 94213 00538
19883/ 199179 £00342
L9883/ 199652 L0081%
1,00000 199065 .30000

K=5 TEST FOR (LOGINORMALITY SAMPLE ONE
CUMULATIVE NURMAL®i# EMPIRICAL#2%

1.0 2-
- " . - 1=
- 1 -
- - 2 -
- 1 -
- P -
- . -
[ - -
U - * -
M - -
U - -
L - -
A - 2 -
T - 1 -
1 - H
v - :
3 - 2 -
045 -
F - 1 -
R - -
E - -
Q - 2 -
u - 1 -
E - -
N - -
c - -
Y - N
- - -
- . -
- ‘(‘ -
- 2 -
- 1 -
- 2 -
- 1 -
- 1 -
- 101 1 12 -
0 e 2 2 2 2 -
D T bt T TRy et m————— e e eembmmme e, —————— e edrerereer e e —————

3,000 2,743400 5,487+00

RANGE OF DATA
THE EXPECTEDN AND OBSERVEU FREQUENCIES FOAR A4 CH] SGUARE TEST OF (LOGINORMALITY [N INTERVALS OF 0,3 ST DEV==SAMPLE 1-=- ARE

EXPECTED OBSERVED

L 0
V2 o
L4 n
N 0
1,6 2
2,7 3
4,2 4
5,9 3
/.8 s
9,3 13
19,1 10
1,1 y
9,3 B
7.8 6
5,9 6
4,2 5
2,7 1
1,6 3
Ia 3
V4 0
2 1

CHI SQUARE TEST VALUE FOR MINIMU EXPECTED VALUE OF 1,5 = 12,100 WITH 12 DEGREES OF FREEDOM

CHI SRUARE TEST VALUE FOR MINIMUIT EXPECTEDN VALUE OF 5,0 = 4,369 WITH 7 DEGREES OF FREEDOM

Figure 7.~ Sample 1 statistics, ultimate volume, Clearfork Formation, Midland Central Basin Uplift.
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SAMPLE 2 HAS A MkAN OF 2.75%4,4 STANDARD DEVIATION OF 1,1203~-SKEWNESS IS =,2218,KURTOS1S 2,4627,

THE RATIO OF THE RAMGE TO tHE S8TL DEV = 4,5/ THE SAMPLE SIZE = 105

YOUR NULL HYPOTHESIS FOR (LOGINOGRMALITY [§ ACCEPTER AT THE ,05 LEVEL--K~S CRITICAL VALUE 1S ,13272 ABS DIFF
CUM FREQ EXP FREAQ ABS DIFF

000U 100300 .00002
,0000U 100135 200135
, 20000 1y N0348 00348
00952 BLYSY 00132
y3190% 01787 00117
4762 03293 01168
L19524 106680 ,02844
12381 11506 +00875
20000 1108406 .J1594
25714 127420 01712
239048 233209 00839
449524 150000 00476
V51905 161791 u0114
,h9524 172574 03050
V15238 181594 206356
,89524 158494 01030
4230 193520 00966
, 95095 196407 01689
29046 V98213 .0083%
1,20009 199179 ,00821
1,92000u 199652 200348
1,00094 199865 ,00000

#-S TEST FOP (LOG)INORMALITY SAMPLE TWO
CUMLLATTVE MORMAL#1# EMPIRICALeZ»

1.0 2 2 2=
- 2 * 1 1 1=
- 1 -
- - -
- - -
- 1 -
c - 2 -
u - 1 -
M - -
v - 2 -
L - -
A - -
T - - -
1 - -
v - -
E - -
0.5 -
F - * -
R - -
E - -
Q - -
v - L -
3 - -
N - -
[+ - -
Y B -
- » -
- Ll -
- -
- * -
- 2 -
- 1 -
- L -
- 1 1 - - -
0,0 & 2 2 -
bemme e a e B R e e PP e Dbt D e et it it LT

0,000 2,559+00 5,119+00

RANGE OF DATA
THE EXPECTED AND ORSERVED FREQUENCIES FOR A CHI SQUARE TEST OF (LOGINORMALITY IN INTERVALS OF 0,3 ST DEV-=SAMPLE 2-- ARE

EXPECTED  OHSERVEL

o1 0
I3 Q
e 1
1,0 1
1,9 3
5,2 5
2,1 3
742 8
745 €
11,3 14
12,4 11
12,4 13
11,35 A
9,5 6
7,2 15
5,1 5
3,2 4
1,9 1
1,0 1
] o

W 2 n

CHI SGUARE TEST VALUE FOR MINIMUM EXFECTED VALUF OF 1,5 3 15,942 WITH 13 DEGREES OF FREEDOM

CH] SGUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF 5,0 = 14,621 WITH 9 DEGREES OF FREEDOM

Figure 8.~ Sample 2 statistics, ultimate volume, Devonian rocks, Midland Central Basin Platform.
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SAMPLE 1 VS, SAMPLE 2--K=S5 TEST
CRITICAL VALUE OF KOLMOGUROV=-SMIRNQFF TWwO SAMPLE TEST FOR AGCEPTANCE AT ,05 IS LESS THAN,19779 ABS DIFF
YOUR MULL HYPOTHES]S 1S REJECTED

CUM FREQ CUM FREG ABS,.DIFF

, 0000 , 0000 L0157

0235 , 0092 0137

D233 0092 , 0157

«N235 + 009> 20137

,0233 0095 0137

, 0465 0190 ,0275

, 0465 . 0190 ,0275 , 7442 14952 ,248Y
0465 0190 ,0275 7558 5048 29211
, 0930 » 0190 0740 7558 15143 2415
w0930 0286 L0645 , 7554 15429 2130
, 1047 . 0286 0761 17558 5429 ,2130
11047 20381 , 0666 , 7554 15619 ,1939
11279 0321 , N894 8140 16095 , 2044
1279 10476 L, 0803 6256 6381 1875
11279 10476 ,0803 8372 L6381 L1991
,139% 0571 L0824 ,8372 16476 , 1896
11512 10571 0940 18605 16667 L1938
.1;1; .8362 .g;gc 8600 16762 18453
o1 10762 + 0750 8721 6762 L1959
s 1512 0762 ,0750 3837 6952 14885
1628 10952 00676 9070 7048 V2022
11744 11048 , 0697 9186 7048 . P138
1744 11048 L0897 19302 7234 ,2064
12093 »1048 (1045 19302 7429 L1874
» 2209 1145 ,1066 9302 7524 1779
.ggg: -12;; .iigg .3419 -;524 11895
1232 112 . . 419 . 619 qldDU
.2554 01335 ,1225 9419 , 8095 ,1525%
.2;91 01335 .14;/ 9419 8190 1228
22907 11429 ,1478 , 9419 +8381 10386
3140 11524 21616 19419 8571 , 0847
13256 1714 ,1942 19419 .« 8952 0466
3605 1810 1795 9651 8952 069y
3837 12000 ,1837 ,9651 19048 0604
14302 .;095 ,2207 9767 » 9238 . 0529
,4302 12090 12207 9767 29335 L0434
4651 12194 12461 9767 19335 ,0434
,4651 12190 , 2461 9767 09333 ,N454
+5000 12476 ,2924 9767 . 9429 L0539
15253 12476 . 2756 9767 19429 , 0539
.5329 .g;gz ,255; 19767 19429 , 0339
,546% 12952 25 ,9767 ,9429 L0339
5465 12952 12913 , 9884 1961y L0265
158698 13048 12650 ,9884 ,9619 . 0265
6279 131438 3136 ,9884 19810 0074
.627? y361Y , 2660 , 0884 19810 L0074
16395 390% 12491 9684 19810 ,0U74
6512 4000 2512 ,9884 9810 .0074
6628 .4190 , 2437 ,9884 + 990> ,0u21
L6860 14381 12480 ,9884 19905 .0uZ1
L7093 . 4381 L2742 , 9884 + 9905 ,0021
17209 4762 12447 ,98684 « 9905 .0021
7209 14952 2257 9884 19905 ,00231

Kolmogorov=Smirnov two sample test, from samples shown in Figures 7 and 8.
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Finally, the chi-square test values for the sample

at the two pooling levels, and the associated degrees
of freedom are printed. Acceptance or rejection of
the null hypothesis must be determined from chi-
square tables.

When two samples are run, a statement of accept-
ance or rejection of the two sample null hypotheses,
with the critical value on which the decision is based,
is printed out. The cumulative relative frequencies
of both samples in class intervals of range,/100, and
the absolute differences between the intervals is
listed below the statement.

GEOLOGIC EXAMPLE

Several statistical studies of oil and gas field
frequency distributions have been published (Kaufman,
1964; Drew and Griffiths, 1965; and McCrossan,
1969). Kaufman confined his study to ultimate vol-
umes of fields, while Drew and McCrossan included
both ultimate volumes and areas of fields. Kaufman's
and Drew's samples apparantly included all fields
within specified areas, whereas McCrossan separated
fields into categories based on lithology and depo-
sitional types. The conclusions reached on the basis
of their studies is that the areas and volumes of fields
are acceptably approximated by a lognormal distri=
bution. Both Drew and McCrossan, however, had
problems fitting this model to part of their field area
samples; Drew in the Denver Basin, and McCrossan
with his reef pool areas in general. It is my view
that field area distribution is of first order importance
to the explorationist since it constitutes the critical
parameter effecting discovery. Ultimate volumes
are more within the province of those people con-
cerned with post-discovery operations. The incon-
sistencies suggested by these studies and disclosed by
some of my early work inspired further examination
of the problem,

Sample Description

The fields in this study are categorized by geo-
logic horizon. The horizons are carbonates in the
Clearfork (lower Permian) and Devonian formations
on the Midland Central Basin Platform in Texas, and
the Arbuckle (Ordovician) and Kansas City=Lansing
(Pennsylvanian) Groups on the Central Kansas Up-
lift. These horizons were chosen for analysis be~
cause: (1) they have a reasonably consistent lith=
ology over the areas of investigation and have been
thoroughly explored within these areas; (2) they
contain a sufficiently large number of fields to
afford a meaningful sample size; (3) field develop-
ment is far enough in the past so that the field pa=
rameters of area and ultimate volume are well es-
tablished; and, (4) the data are as comprehensive
and reliable as available. Oil fields only are in=
cluded in the sample, and associated gas volumes
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are ignored. All oil fields are included, even those
abandoned. In fields where both horizons are pro-
duced, the pools are separated as accurately as
possible. The field areas are based on the maximum
acreage attained during their producing history. The
field volumes are estimated ultimate volumes including
secondarily recoverable oil. Fields discovered after
1965 are not included in the samples to avoid using
possibly inaccurate early estimates.

Analytical Results

The statistical attributes of the four horizons
considered are listed in Table 1. Almost without
exception the skewness, kurtosis, and range statistics
for field areas are beyond the acceptable limits for
lognormal distribution. In contrast every field volume
statistic is compatible with the null hypothesis. This
consistent statistical difference is reflected perfectly
in Table 2. The null hypothesis for lognormality at
the 95 percent significance level is rejected for all
field area samples by the chi-square and Kolmogorov-
Smirnov tests. Again, all field volume samples are
accepted.

Table 3 exhibits the outcomes of the Kolmogorov=
Smirnov two sample tfests between all combinations of
the four samples for areas and ultimate volumes. It is
interesting to note that although the field areas in the
Clearfork and Kansas City=Lansing formations are re-
jected as being lognormally distributed they are
accepted as coming from the same population distri-
bution. Other interesting relationships are shown
between field volume samples. | believe that in
context with other studies, this type of analysis is
helpful as a guide for investigation of underlying
geologic factors that might contribute to establishing
analogs for other new or more lightly explored pro-
vinces. Moreover, economic predictions may be
substantially improved. The computer runs on which
these tables are based comprise Figures 1-8.

Chronological Study

The exploration for oil in a newly opened horizon
is a highly biased, statistically nonstationary process.
The few giant fields that often contain most of the oil
are easiest to find, and as a rule are discovered early
in the exploration history. As exploratory holes are
more densely spaced the probability of giant or large
fields remaining undetected decreases as do the ex~-
pected values for the remaining population. In a
province with several producing horizons, all at
different stages of development, this process is largely
obscured. Figure 9 is included to illustrate how the
output from the program SNORT was used to obtain
quickly an approximation of the exploration process
within the Devonian horizon. The plotted curves show
the distribution of logarithms (base 10) of the field
volumes in thousands of barrels. Skewness is not shown.
The plot output is from another program. The field



Table 1.= Sample statistics.

HORIZON LITH SAMPLE MEAN | STANDARD | RANGE/ | SKEWNESS | KURTOSIS
SIZE DEVIATION | STD. DEV.
E E 2.4472 0.7890 6.92* 0.9430% 4.6987%
= <
& ARBUCKLE DOL 250
w 12
< =
z 3| 23855 1.2049 5.37 0.1556 2.9203
< =]
b4 >
-
= <
£ = 21431 0.5781 5.49 0.9707% 3.5520%
G| KANSASCITY — LS 264 E
<
LANSING
[}
=
2| 19704 09729 5.18 0.1615 29422
g
. <
€ g1 2291 0.7373 4.17% 1.0385* 3.4691
= <
& CLEARFORK DOL 86
z =
z H
S 3 22451 11557 475 0.2641 2.7947
o o
=z -
-
=
z <
S G| 25205 0.6521 3.92¢ 0.4020% 2.0070%
a <
Z DEVONIAN LS 105
2 £
= g 2.7554 1.1203 457 —0.2218 2.4627
-

* NULL HYPOTHESIS

REJECTED AT 95% SIGNIFICANCE

areas and volumes were arranged chronologically
according to date of discovery, and then divided
into 5 numerically equal subsamples. Analysis of
the subsamples by SNORT showed each field volume
subsample to be roughly lognormally distributed, but
only the subsamples 5658 and 58-62 were accepted
by the Kolmogorov=Smirnov two sample test. None
of the field area subsamples was accepted as log=
normally distributed. In this example, as in all
others run, the mean and standard deviation change
substantially and systematically through time. lden-
tical trends were observed for these parameters of the
field area subsamples as well, but the plot routine
used for Figure 9 cannot conveniently handle mul-
tiple empirical curves so no plot is shown. A list=
ing follows, however.

Subsample Mean Standard Deviation
29-52 2.87 0.65
52-56 2.99 0.55
56-58 2.31 0.49
58-62 2.29 0.69
62-65 2.10 0.33

Table 2. = Chi=square and Kolmogorov=Smirnov
test for lognormality.

CLEARFORK DEVONIAN ARBUCKLE KC—LANSING
AREA | VOLUME AREA VOLUME AREA VOLUME AREA | VOLUME
x2 | REJECT | ACCEPT | REJECT | ACCEPT | REJECT | ACCEPT REJECT | ACCEPT
K-S | REJECT | ACCEPT | REJECT | ACCEPT | REJECT | ACCEPT | REJECT | ACCEPT
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The parameters of the field area subsamples are
based on the logarithms (base 10) of the acreages.

Table 3.~ Kolmogorov=Smirnov two sample test.

CLEARFORK DEVONIAN ARBUCKLE KC—-LANSING

VOLUME
CLEARFORK X REJECT ACCEPT ACCEPT
DEVONIAN REJECT X REJECT REJECT
ARBUCKLE | REJECT REJECT X ACCEPT
KC—LANSING| ACCEPT REJECT REJECT X
AREA

Obviously, the optimum periods for exploration
were 29-52 and 52-56, from the standpoint of like=
lihood of discovery and the economic rewards attend=
ant on discovery. The low standard deviation of
field volumes in the 5256 period may reflect a com=
bination of few remaining giant fields and the effect
of information gleaned from the preceding period re-
ducing the number of small fields discovered. Acci-
dental discoveries related to deeper drilling for other
primary objectives accentuate the number of small
fields discovered later in the history of the horizon.



OMNITAB  DEVONIAN SEQUENTIAL SAMPLING TEST PAGF 2
TIME DEPENCENT DISTRIBUTION CHANGES
ABS= COLUMN 67 ORD=- COLUMN 1 (.)r COLUMM 2 (k)y COLUMN 3 (+)» COLUMN 4 (s)y COLUMN 5 (=)
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Figure 9.~ Devonian field ultimate volume distribution curves by chronological subsamples (x axis plotted as

log1g M bbls).

CONCLUSIONS

The parameter of field area, so important to the
explorationist, has been accepted as lognormally
distributed by most statistical measurements in other

oil field studies, although some problems were recog-

nized. The completely consistent rejection of the
lognormal null hypothesis in this study is, conse~
quently, somewhat surprising. It is important to
remember that the disparity in results carries no con-
notation of "right" or "wrong”. | believe that the
explanation lies in the different structure of the
samples used in this study. It is obvious that the
fields within each horizon comprise a composite of
several populations, physically as regards types of
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geologic traps, etc., and through time as is ade-
quately demonstrated by the chronological analysis.
Moreover, there is an apparent layering of popula=
tions between horizons shown by tt:e Kolmogorov=
Smirnov two sample tests. The extraction of samples
with different selection schemes would be expected
to lead to different outcomes. This is perfectly
legitimate since it is the worker's prerogative to
define his own target population depending on the
purpose of the study. The target population as
defined for this study is considered as well resolved
by the samples which almost include the target
population. Hence, it is likely that forecasts of
discoveries, reserves, or economic returns made on
the assumption of a stationary lognormal distribution
will be subject to considerable error.
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Listing

OO0

50

C REA
51

33
34

35
36

C CZHE

of program SNORT

PROGRAM SNORT
AUTHOR--D.A.PRESTON
LAST REVISION--JUNE 11,1969

THIS PROGRAM WILL TEST ONE OR TWO SAMPLE SETS FOR EITHER NORMALITY
OR LOGNORMALITY. A KJLMOGOROV-SMIRNOFF PARAMETRIC TEST IS MADE ON
EACH SAMPLE, AND THE RESULTS ARE PLOTTED. A CHI-SQUARE TEST 1S
ALSO MADE OF EACH SAMPLE WITH POJLING OF 1.5 MINIMUM EXPECTED
VALUE PER INTERVAL, AS WELL AS 5.0. THE NORMAL CURVE FIT TJ THE
DATA (OR THEIR LOGARITHMS) IS COMPUTED BY A POLYNOMIAL APPROXI-
MATION WHICH HAS AN AVERAGE ERROR OF 10%%-6.

SKEWNESSy KURTOSIS, AND THE RATIO OF THE RANGE T3 THE STANDARD
DEVIATION ARE GIVEN FOR FURTHER TESTS FOR (LDG) NORMALITY. TABLES
ARE PROVIDED IN COMPUTER CONTRIBUTION NO. 41 PUBLISHED BY THE
KANSAS GEOLDSIC SURVEY.

WHEN TWO SAMPLE SETS ARE RUN A KJILMOS0ROV-SMIRNOFF NON-PARAMETRIC
TEST IS MADE TO DETERMINE IF THE SAMPLE SETS ARE FROM THE SAME
POPULATION.

CONFIDENCE LIMITS FOR ALL TESTS ARE AT THE .95 LEVEL.

NDIMENSION S1(101),S2(101)4SDIFF(101)ySMPL1(5000),SMPL2(5000)PINI
125)40ONE(25) s TWO(25) KONE(25) 4KTWI(25)4K03S1{25),KOBS2(25) 4EXPS1(25
2)+EXPS2(25),MAXDL1(25) 4MAXD2(25)

REAL KURT14KURT24MAX1yMAX2,MINL,MIN2,MAXD1,MAXD2

INTEGER FINISH

DATA FINISH/6HFINISH/

READ(5,101)[VER, IOPT

IF{IVER.LT«1l «ORLIVER.GT.2)GO TO S0

IF(IOPT.LT.1 4ORLIOPT.GT.2) GO T3 50

GO 7O 51

WRITE(6,117)

STOP
D IN DATA FROM SAMPLE DNE

DO 33 IX=1,5000

READ(5,1000) SAMPLE,LOOK

SMPL1(IX)=SAMPLE

[F{LOOK.EQ.FINISH)GO TO 34

CONTINUE

NSIZEl=1X-1

SIZEL=NSIZE1l

MINL=10.0%%*12

MAX1=-1.0%{10.0%%12)

DO 36 [=14NSIZE1L

IF{MAX1.GT.SMPLLI{I))GO TO 35

MAX1=SMPL1(I)

[IF(MINL.LTL.SMPLLI(I))GO TO 36

CONTINUE

MIN1=SMPL1(I)

CK IVER FOR SECOND SAMPLE

IF(IVER.EQ.1)GO TO 524

DO 37 1IX=1,5000

20

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
o120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0280
0270
0290
0300
0310



READ{(541000)SAMPLE,LODK 0320

SMPL2(IX)=SAMPLE 0330
IF(LDOK.EQ.FINISH)GD TO 38 0340

37 CONTINUE 0350
38 NSIZEZ2=IX-1 0360
SIZE2=NSIZE2 0370
MIN2=10.0%%*12 0380
MAX2=-1.0%(10.0%%12) 0390

DO 40 I=1,NSTZE2 0400
IF{MAX2.5T.SMPL2(I))GOD TO 39 0410
MAX2=SMPL2(1) 0420

39 IF(MIN2.LT.SMPL2(I1))GO TO 40 0430
MIN2=SMPL2(T) 0440

40 CONTINUE 0450
C CHECK IDOPT FOR LOG OPTION 0460
524 IF(IDOPT.EQ.1)G0 TO 3 0470
C ZONVERT DATA TO LOGARITHMS 0480
MAX1=ALOG10O(MAX1) 0490
MIN1=ALOG10{(MINL) 0500

DO 1 I=1,NSIZEL 0510

L SMPLI(I)=ALOGL1O0(SMPLL(I)) 0520
IF(IVER.EQ.1)GO TO 3 0530
MAX2=ALUGL10(MAX2) 0540
MIN2=ALOG10(MIN2) 0550

DO 2 I=14NSIZE2 0560

2 SMPL2(I)=ALOG1O(SMPL2(I)) 0570
C CALCULATE 14243,4 MOMENTS OF SAMPLE ONE 0580
3 TOTAL1=0.0 0590
DO & I=1,NSIZE! 0600

4 TOTAL1=TOTALI1+SMPLL(I) 0610
AMEAN1=TOTALL1/SIZEL 0620
AMOM21=0.0 0630
AMOM31=0.0 0640
AMOM41=0.0 0650

DO 5 I=1,NSIZE1 0660
AMOM21=AMOM21+((SMPL1(I)-AMEANL)%%2)/SIZE1 0670
AMOM31=AMOM31+ ((SMPLL1(I)-AMEAN1)**3)/SIZE1 0680

5 AMOM41=AMOM41+({SMPL1{I)-AMEANL)*%4)/SIZE1 0690
STDEV1=SQRT(AMOM21) 0700
SKEW1=AMOM31/STDEV1%%3 0710
KURT1=AMOM4]1/STDEVL*%4 0720
RANGE1=MAX1-MIN1 0730
STAT1=RANGE1/STDEV1 0740
CLASS1=RANGE1/100.0 0750
WRITE(6,100) 0760
WRITE(64939) 0770
ILK=1 0771

b0 21 I=1,11 0780
IFII.EQ.7TI)WRITE(6,124)ILK o781

21 WRITE(6,120) 0730
WRITE(64118)AMEAN]1,STDEV14SKEWL,KURT1 0800
WRITE{6,4102)STAT1,NSIZEL 0810

C ZHECK IVER AND CALCULATE 142,3,4 MOMENTS OF SAMPLE TWO 0320
IF(IVER.EQ.1)GO TO 12 0830
TOTAL2=0.0 0840

DO 6 I=1,NSIZE2 0850

6 TOTAL2=TOTALZ2+5MPL2(1) 0860
AMEAN2=TOTAL2/ SIZE2 0870
AMOM22=0.0 0880
AMOM32=0.0 0890

21



~
“

(O

(]

AMOM42=0.0

DO 7 I=14NSIZE2

AMOM22=AMOM22+({ (SMPL2(1)-AMEAN2)%%2)/SIZE2
AMOM32=AMOM32+{ (SMPL2(I)-AMEAN2)%%3)/SIZE2
AMOM42=AMOMA2+ [ (SMPL2(T)-AMEAN2)%%4)/SIZE2
STDEV2=SQRT(AMOM22)
SKEW2=SQRT(AMOM32/STDEV2%*%3)
KURT2=AMIM42/STDEV2%%4

RANGE2=MAX2-MIN2

STAT2=RANGE2/STDEV2

CLASS2=RANGE2/100.0

SCALCULATE CUMULATIVE FREQUENCY FOR SAMPLES ONE AND TwWO

10

8

ARGL=MIN1

ARG2=MIN2

DD 8 I=2,101
ARG1=ARG1+CLASS1
ARG2=ARG2+CLASS2

N=0

M=0

S1(1)=0.0

S2(1)=0.0

DO 9 J=1,NSIZE1
IF(SMPL1(J)oLE.ARGL)IN=N+1
DO 10 J=1,NSIZE2
IF(SMPL2(J)<LE.ARG2)M=M+1
AN=N

AM=M

S1{I-1)=AN/SIZE1
S2(I-1)=AM/SIZE2
SOIFF(I-1)=ABS(SL(I-1)-S2{I-1))

SIND MAXIMUM DEVIATION BETWEEN CURVES AND COMPARE WITH CRITIZAL VALUE
AS DETERMINED FOR KOLMOGOROV-SMIRNOFF TwWw) SAMPLE TEST(NON-PARAMETRIC)

11

CRVALS=(SQRT((STZEL+SIZE2)/{(SIZE1*STZE2)))*1.36
CHOICE=0.0

DO 11 I=1,100

IF(SDIFF(I).5T.CRVALS5)CHIICE=1.0

CALCULATE POLYNOMIAL APPROUXIMATION TD NURMAL CURVE

12

Y‘=(°303)

PIN(1)=0.0

DO 13 I=2,22

Y=Y+0.3

Y1=-0,5%Y%%2
Y2=EXP{Y1l)*0.39894
Y¥3=ABS(Y)
Y4=1.0/(1.0+0.33267%Y3)
PINII)=(({(0.937298%Y4-0.1201676)*Y4)+0.4361836)%Y4%)%Y2
IF(Y.LT.0.,0)G0 TO 130
PIN(I)=1.0-PIN(I)

C CALCULATE EXPECTED VALUES IN INTERVALS OF 0.3 STANDARD DEVIATIONS

130
13

EXPSI(I-1)=(PIN(I)-PIN(I-1))% SIZE1
IF{IVERLGEQ.2)EXPS2(I-1)=(PIN(I)-PIN(I-1))%* SIZE2
DNE(1)=0.0

TWO{1)=0.0

TNORM1=AMEAN1-3.3%STDEV1
IFI{IVER.EQe2) TNORM2=AMEAN2-3,3%STDEV?2
KONE(1)=0

KTWO(1)=0

DO 14 1=2,22

N=0

M=0
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0910
0920
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0970
0980
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1010
1020
1030
1040
1050
1060
1070
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1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
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TNORM1=TNORM1+0.3%STDEV1
IFIIVER.EQs2) TNORM2=TNORM2+0.3%STDEV?2
DO 15 J=1,NSIZE1
[F(SMPL1(J).LE.TNORML)IN=N+1
AN=N
CALCULATE CUMULATIVE FREQUENCIES AT INTERVAL BIJUNDARIES FOR
ONE(I)=AN/SIZEL
JETERMINE COUNT JF SAMPLE ONE DATA IN 0.3 ST DEV INTERVALS
KONE(TI)=N
KOBS1(I-1)=KINE(I)-KONE(I-1)
FIND MAXIMUM DEVIATION FROM NORMAL CUMULATIVE FREQUENCY FOR
15 MAXDL(I-1)=ABS(ONE(I-1)-PIN(I-1))
IF{IVER.EQ.1)GO TO 14
DO 16 J=1,NSIZE2
IF(SMPL2(J).LE.TNORMZ2)M=M+1
AM=M
CALCULATE CUMULATIVE FREQUENCIES AT INTERVAL BOUNDARIES FOR
TWO(I)=AM/SIZE2
JETERMINE COUNT JF SAMPLE TwWO DATA IN 0.3 ST DEV INTERVALS
KTWO(I)}=M
KOBS2(I-1)=KTWO(I)-KTWO(I=1)
FIND MAXIMUM DEVIATION FROM NORMAL CUMULATIVE FREQUENCY FOR
16 MAXD2(I-1)=ABS(TWO(I-1)-PINI(I-1))
14 CONTINUE
CALCULATE CRITICAL VALUE FOR K-S TEST OF SAMPLE 1 VS NIRMAL
CVNT1=1.36/SQRT(SIZEL)
CAPUT=0.
DO 17 I=1,22
17 IF(MAXDLI(I).GE.CVNTL1)CAPUT=].
IF(CAPUT.EQ.D-O0)WRITE(6,108)CVNTL
[F(CAPUT.EQ.L1.O)WRITE(6,109)CVANT1
WRITE(6,111)
WRITE(64112)(ONE(T)4PIN(I)oMAXDLI(I)yI=1,22)
BANNER=1.0
CALL PLOT{(ONE,PINyMAX1,MIN1,BANNER)
[F(IVER.EQ.1)G0 TO 19
CALCULATE CRITICAL VALUE FOR K-S TEST OF SAMPLE 2 VS NORMAL
CVYNT2=1.36/SQRT(SIZE2)
CRATER=0
DO 18 I=1,22
18 IF(MAXD2(1).GE.CVNT2)CRATER=]1,
JUTPUT
19 WRITE(6,4113)
WRITE(6,114)
WRITE{6,115){EXPSL(I),KOBSL{I)sI=1s21)

SAMPLE ONE

SAMPLE ONE

SAMPLE TWO

SAMPLE TWO

DISTRIB.

DISTRIB.

1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940

ZALCULATE THE CHI SQUARE VALUE FJIR SAMPLE ONE WITH MINIMUM EXPECTED VALUES1950

JF 1.5 IN EACH INTERVAL
CuLP=0.0
K08=0
INDEX=0
DD 61 I=1,21
KOB=KOB+KOBS1( 1)
CULP=CULP+EXPS1(I)
IF(CULP.LT.1.5)G0 TO 61
INDEX=INDEX+1
EXPS1 (INDEX)=CULP
KOBS1( INDEX)=K0B
CULP=0.0
K0B=0

61 CONTINUE
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1960
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CHI=0.0
IDF=INDEX-3
DO 63 I=1,INDEX
63 CHI=CHI+((FLOAT(KOBSL(I))-EXPSL(I))*%2)/EXPSL(I)
WRITE(6,121)CHI,IDF

2100
2110
2120
2130
2140

ALCULATE THE CHI SQUARE VALUE FJIR SAMPLE ONE WITH MINIMUM EXPECTED VALUES2150
C JF 5.0 IN EACH INTERVAL

INDEC=0
00 65 I=1,INDEX
KOB=K0OB+KOBS1 (1)
CULP=CULP+EXPSI(I)
[IF(CULP.LT.5.0)G0 TO 65
INDEC=INDEC+1
EXPSL{INDEC)=CULP
KOBS1(INDEC)=KOB
CULP=0.0
KOB=0
65 CONTINUE
CHI=0.0
IDF=INDEC-3
DO 66 I=1,INDEC
66 CHI=CHI+((FLOAT(KOBSL(I))-EXPS1(I))*%2)/7EXPSL(I)
WRITE({64123)CHI,IOF
IF{IVER.EQ.1)GO TO 20
WRITE(6,4122)
[LK=2
DO 22 I=1,11
IF{I.EQ.T)WRITE(6,124)1ILK
22 WRITE(6,120)

[F{IVER.EQ.2)WRITE(64119)AMEAN2,STDEV2,SKEW2 4KURT2

WRITE(6,102)STAT2,NSIZE?2
IF(CRATER.EQ.O.O)WRITE(6,108)CVNT2
IF(CRATER.EQ.1.0)WRITE(6,109)CVNT2
WRITE(6,111)
WRITE(69112)(TWO(I)4PINCI)gMAXD2(I),1=1,22)
BANNER=2.0

CALL PLOT(TWO,PINyMAX2,MIN2,BANNER)
WRITE(6,116)

WRITE(6,114)
WRITE(69115)(EXPS2(1)4KOBS2{I)sI=1,21)

2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2341
2350
2351
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470

C CALCULATE THE CHI SQUARE VALUE FOR SAMPLE TWJ WITH MINIMUM EXPECTED VALUES2480
C JF 1.5 IN EACH INTERVAL

CULP=0.0
KOB=0
INDEX2=0
DO 62 1=1,21
KOB=KOB+K0OBS2(1)
CULP=CULP+EXPS2(1)
IF(CULP.LT.1.5)G0 TO 62
INDEX2=INDEX2+1
EXPS2({INDEX2)=CULP
KOBS2(INDEX2)=K0B
CULP=0.0
K0OB=0

62 CONTINUE
CHI=0.0
IDF=INDEX2-3
DO 64 1=1,INDEX2

64 CHI=CHI+((FLOAT(KOBS2(I))-EXPS2(1))%%2)/EXPS2{I)
WRITE(6,4121)CHI,IDF

24
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C CALCULATE THE CHI SQUARE VALUE FIR SAMPLE TwW] WITH MINIMUM EXPECTED VALUES2680
C JF 5.0 IN EACH INTERVAL

~
-

INDEX5=0
DO 67 I=1,INDEX2
KOB=K0OB+X0B8S2( 1)
CULP=CULP+EXPS2(1I)
IF(CULP.LT.5.0)60 TO 67
INDEX5=INDEX5+1
EXPS2(INDEXS5)=CULP
KOBS2(INDEXS5)=K08B
CuLP=0.0
KOB=0
67 CONTINUE
CHI=0.0
IDF=INDEX5-3
DO 68 I=1,INDEXS5
68 CHI=CHI+((FLJATI(KOBS2{I))-EXPS2(I))**2)/EXPS2(1)
WRITE(65123)CHI,LIDF
WRITE(64125)
WRITE(64103)CRVALS
IF{CHOICE.EQ.1.0}WRITE(6,4106)
IF(CHOICE.NE«.1.0)WRITE(64107)
WRITE{6,104)
WRITE(64105)(S1(I)4S2(1)ySDIFF(I),41I=1,4100)
FORMAT STATEMENTS
99 FORMAT(1HO,40HPUBLISHED BY THE KANSAS GEDLDGIC SURVEY- )

100 FORMAT{1H1,90HTHE TESTS FOR (LOGI)NDRMALITY IN THIS PROGRAM ARE DIS
LCUSSED IN COMPUTER CONTRIBUTION NO. 41)

101 FORMAT(215)

102 FORMAT(1HO,40HTHE RATIO O3F THE RANGE TO THE STD DEV = ,F5.2,20H T
1HE SAMPLE SIZE = ,1I5)

103 FORMAT(1HO,8BHCRITICAL VALUE OF KOLM3GOROJOV~-SMIRNOFF TWDO SAMPLE TES
1T FOR ACCEPTANCE AT .05 IS LESS THAN,F6.5,9H ABS DIFF)

104 FORMAT(1HO,30H CUM FREQ CUM FREQ ABS.DIFF )

105 FORMAT(2XgFbeby4XsFbabsaX9Fbatt)

106 FORMAT(1HO,32HYOUR NULL HYPOTHESIS IS REJECTED)

107 FORMAT(1HO,32HYOUR NULL HYPOTHESIS IS ACCZEPTED)

108 FORMAT(1HO, 92HYOUR NULL HYPOJTHESIS FOR (LOGINORMALITY IS ACCEPTED
1 AT THE .05 LEVEL--K-S CRITICAL VALUE IS +F6.5,9H ABS DIFF)

109 FORMAT(1HO, 92HYOUR NULL HYPITHESIS FOR (LOGINIDRMALITY IS REJECTED
1 AT THE .05 LEVEL--K-S CRITICAL VALUE IS 4F6.5494 ABS DIFF)

111 FORMAT{1HO,20X,30H CUM FREQ EXP FREQ ABS DIFF)

112 FORMAT(20X,43F10.5)

113 FORMAT(1H1,120HTHE EXPECTED AND OJBSERVED FREQUENCIES FOR A CHI SQU
1ARE TEST OF (LOGINORMALITY IN INTERVALS JF 0.3 ST DEV--SAMPLE 1--
2ARE)

114 FORMAT{1HO0,20H EXPECTED OBSERVED )

115 FORMAT(F10.1,110)

116 FORMAT{1H1,120HTHE EXPECTED AND OJBSERVED FREQUENCIES FJR A CHI SQU
LARE TEST OF (LOG)NORMALITY IN INTERVALS OF 0.3 ST DEV--SAMPLE 2--
2ARE)

117 FORMAT(1H1,30HCHECK PARAMETERS IJPT AND IVER)

118 FORMAT(1HO,23HSAMPLE 1 HAS A MEAN OF ,Fl0.4425H,A STANDARD DEVIATI
LON OF 3F6.4914H--SKEWNESS IS 4F644910H,KURTOSIS +Fba4ylH.)

119 FORMAT(1HO,23HSAMPLE 2 HAS A MEAN OF ,F10.4,25H,A STANDARD DEVIATI
10N OF 4F644914H--SKEWNESS IS ¢F6.%4910HsKJURTOSIS 4Fb6.4y1H.)

120 FDORMAT(1HO)

121 FORMAT(1HO,58HCHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF
11.5 = 4F8.3,45H WITH ,12,19H DEGREES JF FREEDOM)

122 FORMAT(1HL)

25

2690
2700
2710
27120
2730
2740
27150
2760
2770
2780
2790
2800
2810
23820
2830
2840
2850
2851
2860
2870
2880
2890
2900
2910
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FORMAT (1HO,58BHCHI SQUARE TEST VALUE FOR MINIMUM EXPECTED VALUE OF
15.0 = 4FB8.345H WITH ,12,19H DEGREES JF FREEDOM)
FORMAT(1H 441X, 7THSAMPLE ,11,11H STATISTICS)
FORMAT(1H1+40X431HSAMPLE 1 VS. SAMPLE 2--K-S TEST)
FORMAT(10X4F10.0954X,A6)
STOP
END
FORTRAN
SUBRDUTINE PLDT(ONE,PIN,AMAX,AMIN,BANNER)
DIMENSION INC(130).YINC(SO)9DNE(22)'P!N(22),CURVES(4)vFRAME(Z).TIT
1LE(20),SCALE(4)
INTEGER FRAMELCURVES,TITLE,SCALE
DATA CURVES/1H1,1H2, 1H%x,1H /
DATA FRAME/1H—-41H+/
DATA TITLE/IHC:IHUQIHM'IHUy1HL'1HA11HT'1HI'IHVolHE,lH ¢+ 1HF 9y 1HR 4 1 HE
LelHQy1HUy LHE 3 1HNy 1HC 4y LHY/
DATA SCALE/1Hl41Haey1HO,1HS/
IF(BANNER.EQe1.0)WRITE(6,201)
[F(BANNER.EQ<.2.0)WRITE{6,204)
WRITE(64205)
WRITE(6,202)
YINC(1)=1.025
[y=12
IT=0
[MARK=7
00 1 1=2,43
DO 2 J=1,94
INC(J)=CURVES{4)
INC(6)=FRAME(1)
INC(95)=FRAME(1)
YINC(I)=YINC(I-1)-0.025
IF(IY.EQ.I)GD TO 16
GO TO 17
IYy=1v+1
IF(IY.GT.32)50 TO 17
IT=1T+]
INC(1)=TITLE(IT)
CONTINUE
DO 3 J=1,22
JI=0
JI1J=0
IF(PIN(J)oGELYINC(I) ANDPIN(J)LT.YINC{I-1))GD TO 4
G0 TO 5
JI=J%4+6
INC(JI)=CURVES(1)
IF(ONE(J) «GEYINC(1).ANDJONE(J)LT.YINCI(I-1))GD TO 6
GO 10 3
JIJ=J%4+p
IF{JIJ.EQ.JINGO TO 8
INCUJTJ)=CURVES(2)
GO 70 3
INCUJIJ)I=CURVES(3)
CONTINUE
IF(YINC(I).EQ.1.0)5G0 TO 9
GO TO 10
INCU(4)=SCALE(1)
INC(5)=SCALE(2)
INC(6)=SCALE(3)
GO 70 1
IF{YINCUI)oeGTa0.499.ANDLYINC(I)oLT.0.5001)G0 T0 11
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INC(4)=SCALE(3)
INC(5)=SCALE{2)
INCI6)=SCALE(4)

G0. 70 1
IF(YINC(1)elLTo(-0.001))GD TO 13
GO T0 1

INC(4)=SCALE(3)
INC(5)=SCALE(2)
INC(6)=SCALE(3)
WRITE(65200) (INC(M)yM=1,95)
DO 26 L=1,46
INC(L)=CURVES(4)

DO 14 L=7,94
[F{IMARK.EQ.L)GD TO 15
INC(L)=FRAME(1)

GO TO 14

IMARK=IMARK+22
INC(L)=FRAME(2)

CONTINUE

WRITE(69200) (INC(M),4M=1,95)
AMID=AMIN+ (AMAX-AMIN) /2.0
WRITE(6,4203)AMIN,AMIDyAMAX
WRITE(64206)
FORMAT(1X,95A1)

FORMAT(1H1,30X,39HK-S TEST FOR (LOG)INORMALITY SAMPLE ONE )

FORMAT (1HO)

FORMAT(1H ,1PE11.3,30X,1PE13.3,30X,1PE13.3)
FORMAT(1H1430X439HK-S TEST FOR (LOG)NDRMALITY SAMPLE TWO )
FORMAT(1H ,32X,34HCUMULATIVE NORMAL*1*

FORMAT(1HO,42X,13HRANGE OF DATA)
RETURN
END

27

EMPIRICAL*2%)

5500
5510
5520
5530
5540
5550
5560
5570
5580
5590
5600
5610
56
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5640
5650
5660
5670
5680
5690
5700
5710
5720
5725
5730
5740
5750
5760
5770
5780
5790
5800
5810



KANSAS GEOLOGICAL SURVEY COMPUTER PROGRAM
THE UNIVERSITY OF KANSAS, LAWRENCE

PROGRAM ABSTRACT

Title (If subroutine state in title):

SNORT - FORTRAN [V program for sample normality tests

Date:
Auther, organization: D.A. Preston
Shell Development, Houston, Texas
Direct inquiries to: D.A. Preston
Name: Address: P.O. Box 481
Houston, Texas 77001
Purpose /description: ~ Selected tests of samples are made to determine (log) normality of parent
populations of one or two samples.
Mathematical method: Polynomial approximation to normal distribution curve, chi=square test,

Kolmogorov=Smirnov test (parametric and two sample).

Restrictions, range:

Computer manufacturer; GE or RAND Model: 635 or 1108

Programming language: FORTRAN |V

Memory required: K Approximate running time: 15 sec (1108)

Special peripheral equipment required:  None

Remarks (special compilers or operating systems, required word lengths, number of successful runs, other ma-
\@ne versions, additional information useful for operation or modification of program)
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Sample Size (n)
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