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FORTRAN IV Program For Nonlinear Estimation

by

Richard B. McCammon

ABSTRACT

NONLIN is a FORTRAN |V computer program for estimating parameters in algebraic nonlinear simulta-
neous equations. The program is designed for problems in which the number of observations equals or exceeds
the number of parameters to be estimated, Starting from initial estimates, a modified Gauss~-Newton proce-
dure is used to obtain an improved set of parameter values. The process is continued until a set of best esti-
mates has been obtained. A number of options in the program offer wide flexibility in handling a variety of
nonlinear problems. Numerical examples-are given for dissecting a bimodal distribution into normal compo-

nents and estimating the porosity in vuggy carbonates.
INTRODUCTION

Discrete linear methods have attained a fore-
most position in the numerical processing of geologic
data. The reasons for this are clear-simplicity and
ease of computation, In developing mathematical
models that describe geologic processes, linear mod-
els are the first that come to mind. For the linear
model, the nature and properties of the solution are
well known, With advent of computers, the algo-
rithms have been made highly efficient and require
small amounts of computer time.,

In many instances, however, the linear model
is inadequate in describing a particular process
(James, 1967). Consider, for example, the growth
in numbers of a population described by the logistic
function

N = k
a-rt

1+e
where N is the number of individuals in the popula-
tion at time t, and a, k, and r are parameters of the
population. Clearly, no transformation will make q,
k, and r linear with respect to N and t simultaneously.
Or consider a mixture of two normally distributed
populations where the problem is to estimate the pa-
rameters in each population, The equation for such
a mixture is

X T M y?
X H

fx)=_a ! +
/ZTTGI
17X = May?
B o)
(1-a) .
f2TT02 Ofai]

where x if the variable of interest, u;, u,, 01, and o2
are the respective means and standard deviations of

the two populations, and a is a degree of mixing. The
variable might represent particle size of a sediment,
for instance, which would describe the mixing of two
different modes of transport. The problem would be

to identify and determine the textural characteristics
of each mode given the observed particle size frequen-
cy distribution, _

In both examples, the parameters enter into the
equations in a nonlinear fashion, It may be possible
by a suitable transformation to transform a nonlinear
equation into one which is linear, For instance, the
logarithm

y =ax"
becomes
log y = log a + n log x

where log a and n are linear in terms of log y and log
x. In the two examples, however, no single trans=
formation will convert each function into a linear
form, and hence, such functions are considered to be
intrinsically nonlinear (Draper and Smith, 1967, p.
132). Clearly, special methods are needed to solve
these types of equations.

The algorithm described here is designed for
nonlinear equations, It is intended for use where the
number of observations exceeds or is equal to the num-
ber of parameters. The algorithm provides the best
local estimates of the parameters with respect to the
given estimates. For this reason, the initial estimates
or what are called starting values assume considerable
importance in the solution to most nonlinear type pro-
blems. In this respect, nonlinear methods differ mark=-
edly from linear techniques which are independent of
initial values,

Acknowledgments.= The program was written
during my employment with Gulf Research and Devel-
opment Company, | wish to thank Chester Pelto whose
early version of the program led to the development
of this program and Dr, Thomas Elkins for suggesting
the application of nonlinear estimation to the dissec-
tion of bimodal distributions.
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Consider that we have a function of the form

y=f(x1’ooa,xk;ell°°'lep) (])
and that we wish to estimate the values of the para-
meters {9] reser Gp} given a set of observations on

y and {x] reeer xk} . y is considered to be the de-
pendent variable and the set of x, 's the independent
variables, Let us assume that one or more of the & s

are nonlinear with respect to y.
We start by considering a set of values {9]°

14
eeer 8_° 1 which are sufficiently close fo the true
values of the parameters {9] yeeer8 Y. As afirst

approximation to y, we expand (1) into a Talyor's
series about the values 9]° reees8 °, and retain only

the terms up to the first partial derivatives., Thus,

)I'_\_«f(x-',...lxk;e]o ,ooo,epo) +

P
P (6 - 8.
=1 1 e=aC )

If we convert this to an equality, we have a linear
expression in Aei = (Gi - Gi") with respect to y. If

there are ot least p observations on y with the cor-
responding values for {x] ’ .o.,xk}, we can express

(2) as a set of simultaneous linear equations

yi -fi (Xn ,ooclxki;el I‘O'Iep ) =

i=1,00e,n

” a.f_i A6
Z [Bei ] e. =e.° i
i=1 | |

)
where n is the number of observations,
We first consider the situation where n = p.
We have a set of exact simultaneous linear equations
which we can solve for the Aei's. If we define the

following row vectors
f'= { (Y]'f]):---,()'n’fn) } and (e-eo)l = { (e] =
9]°),.a.,(9p"9p°) } and the matrix D = {dii} =

af;
L B. )9i=8 i°} we can write as the solution for

3) :

8=06%“+D 'f (4)

where D! is the inverse of D, The expression in (4)

gives a set of values which are, as arule, closer to
the true values of the unknown parameters than the

initial values, We now repeat the process replacing
the initial estimates with fﬁe improved set of values,

If we continue the process, we can write for the kfh
step y .
-1, 51

87 =8+ Dfis,
It is assumed that after a finite number of steps Bk
will converge to 8 which represents the vector bearing
the true parameter values. Only in a few limited
instances, however, can convergence be guaranteed.
Usually, it is necessary to have a fair idea of how
the function behaves so that the initial estimates will
approximate closely the true values, This method for
finding the roots of simultaneous nonlinear equations
is known as the Newton-Raphson method. A more
complete description can be found in Scarborough
(1966).

For n>p, we no longer have a set of exact
simultaneous equations; thus, we must choose a cri-
terion for obtaining the "best" solution. The one
most used is that for which f'f is @ minimum for any
choice of 68, This is the least-squares criterion for
which the solution to the system of equations given
in (3) is well known, The expression for the improved
least squares estimate of 8 based on an initial esti~
mate becomes

8=0° +(D'D) " D' 5)
using the same vectors and the same matrix as before,

For the kfkh si'alge of fhe: iterative process
_ k=1 =T

" =6+ (Dk-le-]) Dk-lfk-I (6)
This is known as the Gauss=Newton method of non-
linear regression and is described more fully in Dra-
per and Smith (1967). Again it is essential to use
reasonably accurate initial estimates of the param=
eters,

MODIFIED GAUSS-NEWTON PROCEDURE

Past experience with nonlinear regression meth-
ods has shown that it is necessary to modify slightly
the iterative process described in (6). The best known
of these modifications is described in Draper and
Smith (1967). In the program described here, how=
ever, asimpler procedure is used, This is justified
on the basis that if reasonably accurate initial esti~
mates are provided, the process converges rapidly
to the local minimum value. The procedure is defined
by modifying efaﬁon (6) to read

k -1 ! -1
87 =67 " +¥(OD—y) Dpoyfiy
where vy is a specified constant. Usually, several vy

values rather than a single value are used where each
value results in a different value for

fic i 7)



which represents the error sum of squares for a par-
ticular estimate of 8, At each step, that change in
AB is chosen for which (7) is a minimum, From past
experience, the set of y values that has provided
consistently improved parameter values and faster

rates of convergence is [1, 1/3, (7/3)2, eeer(1/3)M]
where n is an arbitrary number depending on the de-
sired accuracy of the final parameter estimates.

PROGRAM OPERATION
Program Dimensions

The program is dimensioned so that estimates
are obtainable for up to 10 parameters based on a
maximum of 250 observations and up to 10 indepen-
dent (conirol) variables. These numbers are arbitrary,
however, and may be made larger by increasing the
dimensions for the appropriate program variables. No
other changes in the program are necessary.

Special Options

A number of options are available which make
the program highly flexible in handling a wide vari-
ety of problems. The options available to the user
are as follows:

1. Exact Versus Nonexact Equations = If the
number of observations, n, equals the num-
ber of parameters, p, to be estimated, use
the algorithm specified in equation (4)
where there are p exact simultaneous equa=
tions; if n exceeds p, use the algorithm
given by equation (5) of an overdetermined
system of equations; in either situation, the
iterations are performed until there is no
further improvement in the performance
criterion,

2, Weighted Observations = Some of the ob-
servafions may receive greater weight than
other observations in determining the best
choice of parameter values; in such instan-
ces, separate weights are entered along
with each observation and the estimation
procedure is modified to give a weighted
best fit.

3. Finite difference approximation for partial
derivatives ~ [t may not be possible to ob-
tain closed form expressions of the partial
derivatives. Therefore an option may be
used in which the partial derivatives are
approximated by finite difference quotients.

Thus, for the ifh partial derivative,

where 4 is a specified constant. The appropriate
value for § depends upon the function, but reason=
able value for 4 is 0.05.

4, Test for parameter validity = In many pro-
blems, the solution to the set of simultan—
eous equations during the iterative pro-
cess will yield values of the parameters
which are either unacceptable or for
which the function cannot be evaluated.
For instance, a negative value may result
for a parameter which takes on only posi-
tive values in a function. To avoid this
difficulty, an option is available in which
the user can supply a subroutine to test
any or all of the parameters. This proce-
dure does not result in a constrained so-
lution to a problem, it merely avoids
evaluating the function for improper val-
ves of the parameters.

5. Multiple Runs = It may be difficult, if
not impossible, to obtain reasonable
initial estimates for part or all of the
parameters. In such situations, it is de-
sirable fo perform a pattern search where
certain parameters are held fixed while
solving for the remaining ones. The
search is conducted on a grid in which
the values of the performance criterion
are mapped for different fixed values of
the parameters. In conducting a search,
it is necessary, therefore, to make multi-
ple runs. For each run, the values of the
parameters held fixed are changed ac-
cordingly. The final values of the para-
meters to be estimated are retained from
the previous run so that a more rapid con-
vergence is obtained with the new set of
values. The option allows the user to per-
form any number of runs using the same
set of observations. A further advantage
to the multiple run option is that in cases
where it is thought that values correspond-
ing to a highly local minima for the per-
formance criterion have been found, diff-
erent sets of initial estimates can be tried
to see whether the process converges to a
different set of values.,

ORDER OF INPUT CARDS

. Program control card
. Title card
. Parameter name card

1
2
3
4, Output format card

a f(x'l '...’xk;e] l-oo,al +66i 'oao’ep) - f(x'l ,ooo,xk:e] YA KN4 ei '...’eE_)

%,

46,
i



5-

6.
7-

Data format card

Data cards

Initial parameter estimate card

Blank card

PROGRAM USAGE

Card 1:
Columns

1-2

3-8
9-12
13-14

15-16
17-18

19

20

21-23

24-25

26-29

30-33

34-37

38

NO
NUM
NP

NCOL
NIDV

NOPT

ITEST

NTIM

NRD

FRAC

RDC

DELT

NWGT

card number (a 1 punched
in column 2)

problem identification
number of observations

number of parameters fo
be estimated

total number of parameters
number of independent

(control) variables

tients used
0 partial derivatives used

{ 1 finite difference quo-

1 test parameter values
for validity

0 do not test parameter
values

maximum number of
iterations

number of proportional
constants (suggested NRD=
9; NRD must not exceed
10).

initial proportional con-

stant (suggested FRAC=1,0).

order of geometric rate de-

crease for proportional con-

stants (suggested RDC=3.0).

fractional increment of
parameter values for finite
difference quotients if
NOPT=1 (suggested DELT=
.05); otherwise, DELT=0.0,

1 weighted nonlinear
estimation

0 unweighted nonlinear
estimation

39 ISMLT 1 exact simultaneous
equations
0 nonexact simultaneous
equations

40 NR

number of runs

41-60 blank spaces

1 ifh parameter to be
{ estimated

0 ifh parameter held
constant

61-80 IP(J)

1P(J), J=1, NCOL

Card 2: (A 2 punched in Column 2)

Columns 3-74 may be used for the title.

Card 3: (A 3 punched in Column 2)

UP(J) = name of ifh parameter
UP(J), J=1, NCOL
FORMAT (2X, 10A4)

Card 4: (A 4 punched in Column 2)

Columns 3-74 may be used to specify output
format which has either of two forms:

NWGT = 1
(F(), Y (1, WT(D), (X(1,J), J=1, NIDV),
I=1, NUM)

NWGT =0
(F(D, Y, (X(,J), J=1, NIDV), I=],
NUM)

where F(l) = calculated value of ifh observation
Y(1) = value of ifh observation
WT(I) = weight on ith observation
X(1,J) = value of ith independent variable
for it observation

Card 5: (A 5 punched in Column 2)

Columns 3-74 may be used to specify the input
format for the data in either of two forms:

NWGT =1
(Y@, wr(@, (xa,J), =1, NIDV), I=1,
NUM)

NWGT =0



(Y, X@,J,J=1,NIDV), 1=1, NUM)
Data Cards:

Data cards according to format specified in
Card 5. :

Card 6: (A6 punched in Column 2)
NI = total number of parameter values to be
read
_ .th
IN() = | parameter

UJ(1) = value of ifh parameter
NI, (IN(I),UJ(D), 1=1, NI)

(2X13,5(13, E12.5)/(5X13, E12.5,
13,E12.5,13,E12.5,13,E12.5,13,
E12.5))

(a total of NR Card 6's)

(if a new set of data is to be read, go to Card 1)
(a blank card follows the last data card)

FORMAT

SUBROUTINES REQUIRED
MATINT - subroutine to invert a matrix
FUNC - subroutine o evaluate the function.

The subroutine is entered by the
statement

CALL FUNC (Y, X, P, N)

where th
Y value of i" observation
X vector of indeEendenf (control)

variables of i observations
parameter vector

number of parameters to be
estimated,

The user must supply this subroutine,

P
N

nn

DERIV - subroutine to evaluate partial derivations.
The subroutine is entered by the statement

CALL DERIV (D,P,X,N)
where th
D = partial derivative vector of i

observation and P, X, and N
are defined as in subroutine FUNC,
The user must supply this subroutine, If NOPT =
1, a dummy DERIV must then be supplied.

TESPAR - subroutine to test parameter values for
validity. The subroutine is entered by the
statement

CALL TESPAR (P,N,K)

where

1 any parameter value found
K= unacceptable

0 otherwise
and P and N have the same meaning as in sub-
routine FUNC. The user must supply this sub=
routine, If ITEST=0, a dummy TESPAR then
must be supplied.

GEOLOGICAL EXAMPLES
Bimodal Distributions

In sampling from geological populations, it is
not uncommon to find the values of a particular vari=
able characterized by a bimodal distribution, In
such situations, it is reasonable to suppose that the
observed distribution represents a mixture of two par=
ent populations, The problem becomes one of esti-
mating the parameters of each population, Consider,
for example, a bimodal distribution of grain diameters
of particles making up a sediment sample in which
the diameters of particles making up the sample are
expressed in phi units, Assuming the observed dis-
tribution to represent a mixture of two normal pop-
ulations, the density function is written as

~1( X7 y2
)=o)
/2TTO.,

U242
+ (___l-a) -e%(xc;)
f2ﬂ02

(8)
where u,, Uz, 0,, and o,are the respective means
and standard deviations and a represents the degree

Table 1. = Calculated frequencies at one-quarter phi
unit intervals for mixed normal distribution having
parameter values given in text.

fgx! x

0.00 -0.50
0.02 -0.25
0.11 0,00
0.44 0.25
1.35 0.50
3.24 0.75
6,06 1.00
9.02 1.25
12,67 1.50
20,90 1.75
26,00 2,00
15,34 2,25
4,05 2.50
0.66 2,75
0.12 3.00
0.02 3.25
0.00 3.50




f(x)

of mixing of the two populations. For a given set of
data, we wish to estimate values for uy, w2, oy, o2,
and a. Clearly, it is not possible to convert (8) into
a linear expression by any transformation. Thus we
must employ nonlinear methods.

Taking a numerical example, Table 1 lists the
weight percentage of particles at one~quarter phi
unit intervals generated from a mixture of two normal
populations characterized by the parameter values

w =15 w2 =2,0
o, =05 o2 =0,25
a = .5

The histogram for the resulting mixture is shown in
Figure 1. If we did not know the true values of the
parameters, the problem would be to estimate these
values from the given frequency data,

For estimates based on interval data, it is nec-
essary to modify (8) slightly by introducing

y = Ndf (x) )

as a nonlinear function where N represents the total

sample weight and d represents the class interval,
For this example, N =100 and d = 0.25.

-

T T T 1
0.0 1.0O 2.00 3.00

X

Figure 1, = Histogram constructed from weight fre-
quency data given in Table 1,

In addition to the density function, we need the
partial derivatives of (9) with respect to the different
parameters, To simplify the following expressions,
we first define

= a,=1-a
2
1/ X" L1 XTU2 2
'E('G*I—) 25
u](x)=e U2(x)=e

Nd

/2m
so that

y = CI3u (x) + 22u, ()]

The partial derivatives with respect to the population
means become

dy
aui

with respect to the population standard deviations

Q. .
N
1 1 1

and with respect to the degree of mixing

N x i "
= CO-.Q( o )Ui (x), i=12
| I

1,2

1
02

1
(O

_oy -

Y cl

U.I(X) = U2 (x)]o
It follows from the density function that Gi>0 and
a2+ a2 =1 Whel"eO.IZO.

To illustrate the use of the program,the true val-
ves of the parameters were perturbed slightly and the
following values used as the initial or starting values:

U-]o = 1.4 Uzo = 1,8
¢ ° = .45 0'20 = .22
a® = .55

The subroutines FUNC, DERIV, and TESPAR for this
function are included in the program listing, Remem-
ber that these subroutines are different for each pro-
blem. The input data are listed in Table 2 and the
results are given in Table 3. The program converged
to the solution after 10 iterations resulting in a near
perfect fit of the relative frequency data, For actual
data, the fit would not be as exact. This example,
however, provides a test set of data which can be
used to check the program on a computer at a diff-
erent installation,

Porosity Determination

Another example in which nonlinear functions
prove useful is in the determination of porosity in
vuggy carbonates based on the travel times observed
on sonic logs. It is recognized widely that the Wyl-
lie time average equation for this type of rock mat-=
erial results in anomalously high fluid velocities.
The equation for the porosity for a single rock type
based on the observed travel time is

Atg = Atm(l-¢) + Ated (10)
where A t, is the observed transit time in microse-
conds per foot, At is the transit time for the given



Table 2. = Input data for mixture of two normal populations

00000000011111111112222222222333333333344444444445555555555666666666677777777778

12345678901234567890123456789012345678901234567890123456789012345678901234567890
IDISECT 17 5 6 101200 9 1 3 1 11111

2DISSECTION OF A FREQUENCY FUNCTIUN INTU TWO NORMAL COMPONENTS

3 M1 S1 M2 S2 WT C

4{ 1HO4X20HF(CALC) F(0BS) X//7U1H 4XF5.2 44XF5.243XF5.2))

5(16F5.2)

00 -50 02 =25 11 00 44 25 135 50 324 75 606 100 902 125

1267 150 2090 175 2600 200 1534 225 405 250 66 275 12 300 02 325
00 350

6 6 1 l.4 2 .45 3 1.8 4 22 5 «55

6 9.9736

Table 3. - Results of dissecting mixture of two normal populations into separate components,

STARTING VALUES

M1 = (.14000e 01 S1 .= C.45000E 09 M2 = 0.13000F 01 S2 = 0.22000E 00
WT = 0.55CC0E CC C = (€.96736E 01
DISSECTICON OF A FREQUENCY FUNCTICN INTC TwC NCRMAL CCMPGNENTS
INITIAL SUM OF SQUARES IS 0.31774E 03
AFTER 10 ITERATIONS USING S REDLCTICMN FACTURS, THE SUM CF SCUARES IS C.58816E~-04
M1 = C.146¢5E Cl S1 = 0.459S6F 00 M2 = 0.200C0E 01 $S2 = (.z5005E 00
WT = 0.4S5G655E (C

FICALC) F(0BS) X

C.C0 0.0 -C.5C

0.C2 0.02 -C.25

Coll 0.11 Cc.C

0.44 C.44 C.25

1.35 1.2¢ C.5C

3.24 3.24 C.75

6.06 €.0¢ 1.CC

S.02 S.0¢ 1.25

12.67 12.¢€1 1.5C
20.90 20.90 1.75
26.00 Z€.0C 2.CC

15.34 £e24 2.25

4,05 4.,0¢ 2.5C

0.66 0.6¢€ 2.5

0.12 0.12 3.CC

0.C2 0.0z 3.25

0.00 0.0 3.5C




Table 4,- Observed transit time versus core porosity -k -L(1-¢) .
for Caddo Limestone samples (Data from Meese and Aty = Afm(]—¢)e + Aff¢e an
Walther, 1967).

where k and £ are parameters which characterize the
At nonlinear portion of the time average equation.

(u seco/ff) é Clearly, for k={=0, (11) is the same as (10).

—_— s As an example, Table 4 lists data taken trom
48.9 0.023 Meese and Walther (1967) relating log derived tran-
48,2 0.040 sit times with measured core porosities for six samples

55.4 0,093 of the Caddo Limestone.
51,9 0.107

53.9 0.107
59.0 0.157

matrix material, A te is the transit time of the con-

tained fluid, and @ is the porosity. If porosities of
vuggy carbonates calculated from sonic logs are com=
pared with core derived porosities, the log derived
porosities are invariably lower., To correct for this
difference, the usual procedure is to choose an "app-
arent" high fluid velocity (low transit time) in order
to make the log derived porosities match the core de-
rived porosities.

A different approach is to devise a nonlinear func-
tion which allows the use of the correct fluid velocity
in order to make the log derived porosities match the =
core derived porosities,

A different approach is to devise a nonlinear func-
tion which allows the use of the correct fluid velo-
city and which also provides a best fit for an observed
set of data. One condition, however, is that the
function reduce in the limit to the time average equa=
tion when, in fact, the nonlinear effects associated
with the irregular acoustic wave path through the Figure 2, = Plot of Caddo Limestone samples and
rock material are neglible. A nonlinear function best fitting curve determined by nonlinear estima-
which meets these requirements is tion,

TRANSIT TIME
At (xsec/ft)

2(X100)

POROSITY

Table 5. =Results of fitting nonlinear function given by equation (11) for six samples of Caddo Limestone.

STARTING VALUES
K = 0.50000E 00 L = 0.50000€ 00 T¢M = 0.45000E 02 TF = 0.19000E

POROSITY CALCULATION FCR CADDC LIMESTCNE

INITIAL SUM CF SQULARES IS 0.63570E 02

AFTER 6 ITERATIONS USING 9 REDLCTICN FACTORS, THE SUM CF SCUARES IS 0.12382E 02
K = C.2887CE Cl L = -0.13294E 00 TM = 0.47474E 02

T(CALC) T(OBS) P

48 .4 48.6G C.C23

49.2 48.2 C.04C

52.9 £ 4 C.Cc<3

54.0 51.9 C.1C7

54.0 £2.6 C.1C7

58.8 £S.0 Ce157




In order to fit an equation of the type expressed
in (11), it is necessary to obtain estimates for k and
£ using nonlinear methods. In most instances, it is
necessary also to estimate Ai'm, the matrix transit

time. The latter stems from the lack of knowledge
of the exact mineral composition.

The partial derivatives with respect to the un-
known parameters k, / and Afm are given by

22 — a1 - ¢)e:k¢,
2, =-btg $(1=0)e  (19)
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With this information, we may proceed to estimate
the values of the parameters.

Table 5 lists the results obtained for the data in
the Caddo Limestone. The curve drawn in Figure 2
represents the relationship that exists between log
transit time and porosity, Consequently, more re=
liable estimates of porosity are now made possible
from sonic logs.
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NONLINEAR ESTIMATION PRDGRAM

4 COMPUTER PROGRAM TO OBTAIN ESTIMATES OF PARAMETERS
FNR ALGEBRAIC NINLINEAR SIMULTANEDUS EQUATIONS. THE PRESENT
PROGRAM ALLOWS FOR UP TO 10 PARAMETERS TO BE ESTIMATED BASED ON
A MAXIMUM OF 250 OBSERVATIONS AND 10 INDEPENDENT VARIABLES. THESE
LIMITS CAN BE ADJUSTED UPWARDS BY IMNCREASING THE DIMENSION OF THE
APPRUPRIATE VAKIABLES IN THE PROGRAM,

ORDER OF INPUT CARDS
1. PROGRAM CUONTROL CARD
2. T1TLE CARD
3. PARAMETER NAME CARD
4, UTPUT FORMAT CARD
5. DATA FORMAT CARD
% DATA CARDS k¥
6o INITIAL PARAMETER ESTIMATE CARD
7. BLANK CARD

FORMAT OF PRUGRAM CONTROL CARD

COLUMNS
1 - 2 CARD NUMBER (A 1 PUNCHED IN COLUMNS2 )
3 - 8 NO PROBLEM IDENTIFICATION
9 - 12 NUM NUMBER NF OBSERVATIONS
15 - 16 NCOL TOTAL NUMBER OF PARAMETERS
17 - 18 NIDV NUMBER OF INDEPENDENT (CONTROL) VARIABLES
19 NUP1 NOPT=1, FINITE DIFFERENCE QUOTIENTS USED
NOPT=0, PARTIAL DERIVATIVES SUPPLIED
20 ITEST TITEST=1, TEST PARAMETER VALUES FUR VALIDITY
ITEST=0, NO VALIDITY TEST FOR PARAMETER VALUES
21 - 23 NTIM MAXIMUM NUMBER OF ITERATIONS
24 - 25 NRD NUMBER OF PROPORTIONAL PARAMETER ADJUSTMENT

CONSTANTS {SUGGESTED NRD=9)

26 - 29 FRAC INITIAL PROPORTIONAL PARAMETER ADJUSTMENT
CONSTANT (SUGGESTED FRAC=1.90)

30 - 33 RDC ORDER OF DECREASE OF PROPORTIONAL PARAMETER
ADJUSTMENT CONSTANTS {(SUGHLESTED RDC=3.0)

34 - 37 DELT FRACTIONAL INCREMENT OF PARAMETER VALUES FOR
FINITE DIFFERENCE QUOTIENTS IF NOPT=1
{SUGGESTED DELT=.05)3; OTHERWISE, DELT=0.0

38 NWGT NWGT=1, WCIGHTED NONLINEAR EST IMATION
NWGT=0, UNWEIGHTED NONLINEAR ESTIMATION
39 ISMLT ISMLT=1, EXACT SIMULTANECUS EQUATIONS
ISMLT=0, NONEXACT SIMULTANEDUS EQUATIONS
40 NR NUMBER OF RUNS
41 - 60 COLUMNS FILLED WITH BLANK SPACES
61 - 80 1P [P{J)=1, JTH PARAMETER TO BE ESTIMATED

IP(J)=0, JTH PARAMETER Ti BE HELD CONSTANT

SUBROUTINES REQUIRED

MATINT MATRIX INVERSION SUBROUTINE

10
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OO0 o OO0 000

OO

OO0

2

101

10

11

102

103

35
36

37
13

FUNC FUNCTICN EVALUATION SUBROUTINE

DERITV PARTIAL DERIVATIVE EVALUATION SUBROUTINE
{IF NOPT=1, THEN A DUMMY ODERIV MUST BE SUPPLIED)

TESPAR PARAMETER VALIDITY TEST SUBROUTINE (IF ITEST=0, THEN
A DUMMY TESPAR SUBROUTINE MUST BE SUPPLIED)

s sk sk ok kR ok ok

MAIN PROGRAM

e sokok o R ok ok ok

DIMENSION Y{250) 4F(250) +X(250,10) % {10,250),DF(250,410),4WT(250)
DIMENSION PVIL10) ,FX{10) yPR{LD410)UP(LD)UI{(10)4RF{10)yAM{10410),8
IMOLIO) o VI10) oFMTIL8) ,FMLILB) ,FMO(18),D{10),IP{L10), IN{10),UJ(10),KY{
210) 9 X1(10) »UK(1D) 4ULT10) yNO{2)

DATA ZERO/D.EL/

NINT=5

NOUT=6

1SOLV=0

READ PROGRAM CONTROL CARD

READ(NINT+101) NO(1)sNO(2) yNUMyNPyNCOLoNIDY 4 NOPT, ITESTyNTIM,NRDyFR
LACyRDC +DEL T NWGET»ISMLT NR,(IP(J),yJ=1,NCOL)
FORMAT(2XA%4,A24,144+3124211413,124,3F4.29311,20X2011)
IF(NUM.EQ.0) GO TG 99

K=0

DU 11 I=1,NCOL

IF{IP(I))1L,411,10

K=K+1

KY{K)=1

CONTINUE

RF(1)=FRAC

CALCULATE PROPORTIONAL PARAMETER ADJUSTMENT CONSTANTS

DO 9 K=2,NRD
RF{K)=RF{K=-1) /RDC

READ TITLE,PARAMETER NAME,AND FORMAT CONTROL CARDS

READ(NINT102){(FMLI(I) yI=1,18)
FORMAT(2X,18A4)
READ(NINT,103){UP(J),J=1,NCOL)
FORMAT(2Xs18A4)
READ(NINT,102)(FMO(I) yI=1,18)

READ(NINT102) {FMT{(I)yI=1,18)
READ INPUT DATA CARDS

IFI{NWGT)354+35,37

DO 36 I=1,NUM

WT{I)=1.

READ(NINT,FMT)(Y(I) 1(x(! 1J) yd=1'NIDV"I=11NUM)

GO 7O 13

READININT FMT) (Y{I)gWTII) y(X{I9J)sJd=19NIDV)},I=1,NUM)
DO 43 INR=1,NR

n

62
63
64
65
66
67
68
69
70

72
73
14
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102 -
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
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READ INITIAL PARAMETER ESTIMATE CARD

READININT»104) NI, CINCJIY JUILI) 9 d=14NI)
104 FORMAT(2X+I345(I13,E1245)/(5XI34E12.59013,E12.5913yE12.59139E12.5,13
1yE12.5))
DO 15 T=1,4nI
J=IN(I)
UIed)r=udil)
15 PV({J)=UuI (N
WRITE(NOUT 4200) NOU1) yNO(2) 5 LUP{JI4yUT(J)4J=1,NCOL)
200 FORMAT(1H1/1HO/1H 22X32HNON-LINEAR LEAST SQUARES PROGRAM /1H 31X 7
1HPRUBLEM 2 XA4 A2/ /1H 15HSTARTING VALUES/( 4(4XA4,3H = ,E12.5)))
WRITE(NOUT,221) (FML{J) 4d=1,18)
221 FORMAT{LHOLOX18A4%)
[FLISMLT.EQ.0) 50 TO 7
WRTTE(NOUT ,335)
335 FORMATA140 5X41IHSCOLUTION FOR EXACT SIMULTANEOUS EQUATIONS )
7 CONTINUE
00 8 K=1,NRD
D0 8 J=1,NP
[=KY{J}
83 PR{KyJ)=UI{I)
NC=0
ITN=0

TEST FOR NUMBER OF ITERATIONS

17 IFCITN-NTIM)331,89,89
89 WRITE(NOUT,334) NTIM
334 FORMAT{1H 5X33HTHE NUMBER OF ITERATIONS EXCEEDED, I5)
GO TO 90
331 CONTINUE

EVALUATE FUNCTIOUN AND CALCULATE TEST CRITERION FOR INITIAL
PARAMETER ESTIMATES

14 D3 20 K=1,NRD
FX{K)=0.
DO 21 N=1,NP
[=KY{N)
21 PVII)=PR{K¢N)
IF{ITEST) 26426427
27 NPASS=0
CALL TESPAR(PV,NP,NPASS)
IF{NPASS)26426,29
29 FX{K)=FY
680 1O 20
26 CONTINUE
65 DO 67 J=1yNUM
D0 68 I=1,NIDV
68 X1{I)=X(Jd,yI)
CALL FUNC(Y1l,X14PV,4NP)
WKy J)=Y1
[F{ISMLT.EQ.0) GO TO 69
FXCK)=FX{K)+WT(J) *¥ABS Y J)-W(K,yJ})
GO T 67
69 FX{K)=FXUKI+WTLI) H(Y{I)-W(Kyd) ) *x2
67 CONTINUE
20 CONTINUE

12

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
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CHOUSE THE SET OF PARAMETER ESTIMATES FOR WHICH THE TEST 182
CRITERION IS A MINIMUM 183
184

AIN=1 185
FZ=FX(1) 186

DG 25 K=2,NRD 187
IF(FXIK)-FZ)244,25,25 188

24 MIN=K 189
FZ=FX{K) 190

25 CUNTINUE 191
IF(NC)53,53,31 192

31 IF(FZ-FY)152,90,90 ' 193
53 NC=1 : 194
IF(ISMLT.NELO) 50 TO 702 195
WRITE(NOUT,701)FZ 196
701 FORMAT{LHO20X25HINITIAL SUM OF SQUARES IS ,E£15.5 ) 197
GO TJ 52 198
702 WRITE(NGUT,703) FZ 199
703 FORMAT(1HO020X34HINITIAL SUM OF ABSOLUTE VALUES IS ,E15.5 ) : 200
201

CALCULATE THE SET OF PARTIAL DERIVATIVES 202
203

52 DO 56 J=1,NP ©204
I=KY(J) 205
ULUII=PRIMIN,J) 206

DIl 56 K=1,NRD 207

56 PR(KyJ)=PRIMIN,J) 208
FY=FZ 209

D3 70 J=1,4UM ' 210

70 FOJ)=WIMIN,J) : : S 211
IFINOPT) 62,62 466 212

62 DO 63 J=1,NUM 213
D3 64 I=1,NIDV ‘ 214

64 XL(1)=X(Jy1) 215
CALL DERIV{DsUI yX1L4NP) 216

DO 61 K=1,NP v ' 217
L=KY({K) 218

61 DF{J,K)=D(L) ' 219
63 CONTINUE ' 220
60 TO 76 : 221

66 DO 71 I=1,NCOL : ' 222
71 UJ(II=UIL(]) 223
DU 72 I=1,NP 224
J=KY{I) ‘ 225
UKLJ)=( 1 +DELT)*UJ(J) : 226

72 ULLJ) =UK{J) =0l d) 227
DU 73 J=1,NUM 228

DO 75 I=1,NIDV ' : 229

75 X1(I1)=X{Jd,1) 230
DD 74 1=14NP : 231
K=KY(I) . 232
UJLK) =UK(K) _ 233
CALL FUNC(Y1e¢X1,UJyNP) 234
D1=(Y1-F(J))/ULIK) 235
DF(J,1)=D1 236

74 UJ{K)=UI(K) 237
73 CONTINUE 238
76 CUNTINUE 239
240

CALCULATE THE CHANGE REQUIRED TO IMPROVE THE CURRENT SET OF 241

13
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PARAMETER VALUES

59 IF{ISMLT.NE.O) 50 TO 45
DO 34 I=1,NP
DO 33 J=1,NP
AM{T 4 J)=ZERD
DO 33 K=1,NUM

33 AMUI 2 I)=AMIT 3 J)+WTIKIFDF{K, [ )%DF(KyJd)
BM{11=ZERD
DO 34 K=1,NUM

34 BMUI)=BMITI ) +WTIK)HDF (K I ) *(Y(K)—W{MIN,K))
GO TO 44

45 DO 46 1=1,WNP
BMUI)=WTIII*(Y{I)-WIMIN,1))
D3 46 J=1,NP

40 AMUT 4 J)=WTLI) #DF (1 4J)

44 CALL MATINT(AMyVNP,ISOLY)

CALZULATE THE SETS OF FRACTIUNALLY INCREASING PARAMETER VALUES

DO 42 I=1,NP
VII)=ZERO
DO 42 J=1,NP
42 VIL)Y=VIII+AM{I,Jd) *BMI )
40 D3I 69 K=1,HNRD
DO 60 J=1,nP
60 PR{KyJ)I=PRIKyJI+RF(KI V(D)
ITN=ITN+1
60 T0 17
90 CONTINUE

PRINT QUT RESULTS

DO 88 J=1,WP
I=KY(J)
UK(J)I=UPI(T)
83 UJLJI=UI(I])
IFCISMLT.NE.O) GO TO 704
WRITEINUUT»500) TTNyNRDyFY sy (UK(J) yUJ(J)yJ=1,NP)

500 FORMAT(1HO/1H 2X5HAFTER,16417H ITERATIONS USING,I3,41H REDUCTION F
LACT3RS, THE SUM OF SQUARES IS ,E12.5 //{1H 10XA4,3H = 1E12.542XA4
293H = yE12.592XA493H = ,E12.542XA443H = ,£12,5,2X))

Gi) TO 705

704 WRITE(NUUT,501) ITNyNRDJFY 4 (UK(J)oUJ(J),d=1,NP)

501 FORMAT(140/1H 2X5HAFTER,16417H ITERATIONS USING, 13,51H REDUCTION F
1ACTORS, THE SUM OF ABSOLUTE VALUES IS ,E12.5 //(1H 10XA4y3H = ,EL
22.592XA4 331 = 4E12.5492XA%433H = 4E12.5,2XA%93H = ,E12.5,2X))

705 CUNTINUE

IF(NW6T)39,39,41
39 WRITE(NOUT,FMO)UF(I) oY (1) 9 (XUT4J)yd=1oyNIDV), I=1,NUM)

GO TO 43
41 WRITE(NOUT»FMO) LFLT) o YUL) o WTHI) 9 (X (14d)yJ=1,NIDV),I=1,NUM)
43 CONTINUE

GO TO 2
99 CONTINUE

STOP

END
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242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
2638
269
270
271
212
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
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115

12

19
20

3406

348
350

353

360
362
1012

1050

1051
1052

1053

1056
1058

AR R A FOR R e

SUBRUUTINE MATINT (0,8,K,IS0LV)
% Aok s ok dek sk okok ok

DIMENSIUN A{10,20),0{10,10),0{10,10),8{(10)
DATA ZERG/OLEV/+UNE/1.ED/
NTI=5

NTD=56

CALL OVERFL{KDOOFX)

GO TO(5,45)+KO00FX
CUNTINUE

D3 115 I=1,K

B(I)=ZERD

00 115 J=1,K

C({I4J)=1ERDJ
A(I+3)=0(1,4)

M=2%K

KPUO=K+1

DO 20 I=1,K

D0 20 J=KPd,M

IF{J-K-1) 19412419
A{1,J)=0NE

G TO 20

A(14JdY=LERU

CONTINUE

DU 1060 N=1,K

NPU=N+1

OMAX=ABS({A{NsN))

KEEP=N

[F (N=-K) 346,362,362

DO 350 I=NPO,yK
X=ABS{A(I+N))

IF (X-DMAX) 350,350,348
DMA X=X

KEEP=]

CONTINUE

IF {KEEP-N) 353,362,353
TEMP=B(N)

B{(N)=B(KEEP)
B(KEEP)=TEMP

DO 360 J=1,M

TEMP = A(N,J)
A(NyJ)=A{KEEP,J)
A(KEEP,J) =TEMP

IF {A{NyN)) 1012,30,1012
AP=A(N,N)

BIN)=B(N) /AP

DD 1050 I=n,M
A(N,I)=A{N,I) /AP

CALL OVERFL{KODOFX)

GO TU(1051,1053),KO00FX
WRITE (NTO,1052)

FORMAT {(1H0,12H MQ OVERFLOW)
G0 T0 200

D0 1060 I=1,4K

IF {I-N) 1056,1060,1056
IF (A{I,N)) 1058,1060,1058
BP=A(1,4N)
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299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
3le
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
3386
337
338
339
340
341
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1595
1060

1061

1062

30

31
34

36
200

BOI)=B(I)-3(N)*3P
DO 1595 Jd=7yM
A(T2d)=A(T4J)-A{N,J)*BP
CUNTINUE
CALL UOVERFL{KOOOFX)

GO TU(10614+34) 4KOOOFX

WRITE (NTQ,1062)
FORMAT (1H0,21H ACCUMULATOR OVERFLUW)
GO TO 200

WRITE (NTO,31)
GO T9 200

FORMAT(///19H HMATRIX SINGULAR )
CONTINUE
DO 36 I=1,K
DO 36 J=1,K

J1l=J+K
Al d)=A(1,J1)
RETURN

END
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SUBRUUTINE FUNCI{Y4XePyN)
e okok 2 ok gk ok ok

SUBROUTINE TO CALCULATE DENSITY FUNCTION FOR A MIXTURE OF TWD

NORMAL DISTRIBUTIONS
DIMENSIGN P(1)4X{1)

Y=PL )R (P{S)REXP(={(X(L)=-P{1))/P{2))*%2/2.)/P(2)+(1.~-P{5))%EXP(~

HOXUL)=P(3))/P(4))%%2/2.)/P{4))
RETURN
END
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SUBROUTINE DERIVID,P4XsN)
e s o o 3o Kok ok

SUBROUTINE TU EVALUATE PARTIAL OERIVATIVES FOR THE PARAMETERS
OF A MIXED NORMAL DISTRIBUTION

DIMENSION 2101),P{1),X(1)
Ul=EXPL-({X{1)-P(L1)) /P{2))*%2/2,)
UZ=EXPL=({X{L)=PI3))/P{%) ) %%2/2,)
Us=(x{ijy-pPi1)i)/r¢2)

Uas={ X{1)-P(3))/P(4)
DUL)=PLO)*P(5)*U3*UL /P{2) *%2
D121=P{o)=P{5)¥{U3*%*2-1,}%UL/P{2)**%2
DI2)=P(6}1*(1.~P{5))*Uaxu2/P(4) *%2
O(4)=Plo)*(1.-P(5) ) *{U4s%*2~-1,)*U2/P(4)%*2
D{5I=P{6)%{UL/P(2)-U2/P(4))

RETURN

END

18

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410



ok o ok sk ko
SUBROUTINE

e ook Rk D

3

‘313

SUBRUJTINE TO TEST
DIMENSION P(1)

K=90

IF(P{2).LELD.) GO

IF(P{4).LE.D.) GD

IF(P(5).LT.0.) B5U

IF(P({5)=-1.) 64694

K=1

RETURN

END

*
NE TESPAR(PyN,yK)
SRR

PARAMETER VALUES

T0 4
TO 4
T0 4
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KANSAS GEOLOGICAL SURVEY COMPUTER PROGRAM
THE UNIVERSITY OF KANSAS, LAWRENCE

PROGRAM ABSTRACT

Title (If subroutine state in title):

FORTRAN IV PROGRAM FOR NONLINEAR ESTIMATION

Date:  February, 1969

Author, organization: Richard B, McCammon

Department of Geological Sciences, University of lllinois at Chicago

Direct inquiries to:

Name: Richard B, McCammon ’ Address: _Department of Geological Sciences

University of lllinois at Chicago

Purpose/description:  To estimate the parameters in nonlinear algebraic simultaneous

equations,

Mathematical method: A modified Gauss=Newton procedure

Restrictions, range: The program is currently dimensioned for estimating up to 10 parameters

based on up to 250 observations and 10 independent (control) variables.

Computer manufacturer: IBM Model: 360/50

Programming language: FORTRAN IV

Memory required: Approximate running time:

Special peripheral equipment required:

Remarks (special compilers or operating systems, required word lengths, number of successful runs, other ma-
chine versions, additional information useful for operation or modification of program)
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COMPUTER CONTRIBUTIONS

1. Mathematical simulation of marine sedimentation with IBM 7090/7094 computers, by J.W.Harbaugh, 1966.
« A generalized two~dimensional regression procedure, by J.R.Dempsey, 1966.
. FORTRAN IV and MAP program for computation and plotting of trend surfaces for degree 1 through 6, by
Mont O'Leary, R.H.Lippert, and O.T.Spitz, 1966.
. FORTRAN Il program for multivariate discriminant analysis using an IBM 1620 computer, by J.C.Davis
and R.J.Sampson, 1966,
. FORTRAN IV program using double Fourier series for surface fitting of irregularly spaced data, by W.R.
James, 1966,
. FORTRAN 1V program for estimation of cladistic relationships using the IBM 7040, by R.L.Bartcher, 1966.
. Computer applications in the earth sciences: Colloquium on classification procedures, edited by D.F.
Merriam, 1966,
8. Pre&liicf;on of the performance of a solution gas drive reservoir by Muskat's Zquation, by Apolonio Baca,
967.
9. FORTRAN 1V program for mathematical simulation of marine sedimentation with IBM 7040 or 7094 compu-
ters, by J.W.Harbaugh and W.J . Wahlstedt, 1967.
10. Three=dimensional response surface program in FORTRAN Il for the IBM 1620 computer, by R.J.Sampson
and J.C,Davis, 1967.
11. FORTRAN IV program for vector trend analyses of directional data, by W.T.Fox, 1967,
12, Computer applications in the earth sciences: Colloquium on trend analysis, edited by D.F,Merriam and
N.C.Cocke, 1967,
13. FORTRAN [V computer programs for Markov chain experiments in geology, by W.C.Krumbein, 1967.
14. FORTRAN IV programs to determine surface roughness in topography for the CDC 3400 computer, by R.D,
Hobson, 1967,
15. FORTRAN Il program for progressive linear fit of surfaces on a quadratic base using an IBM 1620 computer,
by A.J.Cole, C.Jordan, and D.F.Merriam, 1967,
16. FORTRAN [V program for the GE 625 to compute the power spectrum of geological surfaces, by J.E.Esler
and F.W.Preston, 1967,
17. FORTRAN 1V program for Q-mode cluster analysis of nonquantitative data using 1BM 7090/7094 computers,
by G.F.Bonham=Carter, 1967.
18, Computer applications in the earth sciences: Colloquium on time=series analysis, D.F.Merriam, editor,
1967,
19. FORTRAN Il time=trend package for the IBM 1620 computer, by J.C.Davis and R.J.Sampson, 1967.
20. Computer programs for multivariate analysis in geology, D.F.Merriam, editor, 1968,
21, FORTRAN |V program for computation and display of principal components, by W.J,Wahlistedt and J.C.
Davis, 1968,
22, Computer applications in the earth sciences: Colloquium on simulation, D.F.Merriam and N.C.Cocke,
editors, 1968,
23, Computer programs for automatic contouring, by D.B.Mcintyre, D.D.Pollard, and R.Smith, 1968,
24, Mathematical model and FORTRAN [V program for computer simulation of deltaic sedimentation, by G.F.
Bonham=Carter and A,J.Sutherland, 1968.
25, FORTRAN |V CDC 6400 computer program for analysis of subsurface fold geometry, by E.H.T.Whitten,
1968,
26, FORTRAN IV computer program for simulation of transgression and regression with continuous=time Markov
models, by W.C.Krumbein, 1968,
27. Stepwise regression and nonpolynomial models in trend analysis, by A.T.Miesch and J.J.Connor, 1968.
28. KWIKR8 a FORTRAN |V program for multiple regression and geologic trend analysis, by J.E.Esler, P.F.
Smith, and J.C, Davis, 1968,
29. FORTRAN 1V program for harmonic trend analysis using double Fourier series and regularly gridded data
for the GE 625 computer, by J.W.Harbaugh and M.J.Sackin, 1968,
30. Sampling a geological population (workshop on experiment in sampling), by J.C.Griffiths and C. W,
Ondrick, 1968,
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