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Editor’s Remarks

With the publication of Computer Contribution 31, we begin the fourth year of
the series. Since 1966 more than 60,000 copies of these publications have been
distributed in 40 countries. The series now is sponsored jointly by the Geological
Survey and the American Association of Petroleum Geologists, the largest geological
organization in the world,

In 1968, about 125 computer programs were made available to workers. The
use of the new techniques is becoming widespread and routine and very successful
in many instances. Todate most geological applications have been in statistics, trend
analysis, classification and more recently simulation, Undoubtedly other applications
will be found.

This program "Multivariate procedures and FORTRAN 1V program for evaluation
and improvement of classifications™ by Ferruh Demirmen Tists criteria by which
different classifications can be judged as to their efficiency. For a limited time the
program described here will be made available on magnetic tape for $15.00. An
extra $10,00 is charged if punched cards are required.

For an up-to-date list of COMPUTER CONTRIBUTIONS write the Editor, Kansas
Geological Survey, The University of Kansas, Lawrence, Kansas, 66044, U.S.A.
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MULTIVARIATE PROCEDURES AND FORTRAN |V PROGRAM FOR
EVALUATION AND IMPROVEMENT OF CLASSIFICATIONS

by

Ferruh Demirmen

ABSTRACT

ITERIM is an IBM System/360 FORTRAN IV(H) program designed primarily to assess and improve classi-
fications, although it can be used also for principal component analysis, discriminant analysis, and one-way
multivariate analysis of variance. Three criteria, pooled within-groups sum of squares, Wilks' Lambda, and
‘the sum of the eigenvalues associated with discriminant functions, are computed to assess and compare classi=
fications. The improvement of a classification is achieved through reduction of the pooled within=groups sum
of squares in the discriminant space. The classifications compared must contain the same number of items, the

same number of groups, and must be defined relative to the same number of variables.

both as to computations and output, are provided,
INTRODUCTION

Geologists and others dealing with multivariate
classification or "cluster analysis" are faced frequent-
ly with a great diversity of techniques from which to
choose (Sokal and Sneath, 1963; Ball, 1965; Williams
and Dale, 1965; Fortier and Solomon, 1966; Goodall,
1966a, 1966b; Gower, 1967q; Johnson, 1967), Some
of these techniques concern weighting or standardi-
zation of data, others concern similarity measures,
and yet others are related to grouping of data. At
present there exists little a priori rational basis for
choosing between these diverse techniques, although
a number of writers (Sokal and Rohlf, 1962; Eades,
1965; Minkoff, 1965; Rohlf and Sokal, 1965; Gower,
1967b) have discussed the merits and demerits of cer=-
tain techniques. With different clustering techniques,
the resulting classifications will be different, and it
may be difficult to reconcile the conflicting classi-

fications. A way out of this dilemma seems to be the
use of a variety of techniques and evaluate, in retro=
spect, the resulting classifications, Such evaluation
can be made either on a substantive and subjective
basis, or alternatively, on an objective basis, Fur-
thermore, it would be desirable if any of the classi=
fications obtained by cluster analysis could be further
improved by some criterion,

The computer program (ITERIM) presented here
is designed primarily to evaluate and improve classi-
fications by objective criteria.* In addition, as in-
termediate steps, the program computes principal
components and multiple linear discriminant functions

*It is recognized that the word "objective” is a rela-
tive term, and the selection of a so-called objective
criterion for the evaluation or improvement of a class-
ification involves a certain amount of subjective
judgment on the part of the investigator,

A number of options,

and performs a one=way multivariate analysis of vari-
ance. Techniques used for evaluation and improve=
ment are nonprobabilistic in nature. It is assumed
that data on which a classification is based are metric
in nature, that is they consist of measurements taken
on a continuous scale. For nonmetric or semiquanti-
tative data other techniques of evaluation and improve-
ment might be more appropriate, although, as an ex-
ploratory tool, the program may be useful for such
data as well. The program accepts a classification

as input. It does not do cluster analysis; nor does it
assign a new item to a class. In computing the princ-
ipal components, the classes are ignored and the data
are treated as a whole. A number of options, both as
to computations and output, are provided,

The ITERIM program described here is an out-
growth of the program originally given by Casetti
(1964). The criteria used for evaluation and improve-
ment of a classification are the same as those which
Friedman and Rubin (1967) employ to "optimize" a
partition in cluster analysis, although the ITERIM
was written before Friedman and Rubin's paper was
published, The papers of Forgy (1965) and MacQueen
(1966) also are cognate with the techniques utilized
in the program,

The writer is indebted to Dr. Paul Switzer for
many valuable and stimulating discussions, and to
Drs. J.E. Klovan and F.J. Rohlf for helpful editorial
suggestions, All statements herein, however, are the
responsibility of the writer. Partial financial support
for the development of the program was provided by
a NATO Science Fellowship to the writer and by a
National Science Foundation grant (NSF GP 4514)
to Dr. J.W, Harbaugh. The School of Earth Sciences
of Stanford University furnished most of the computer
time,



MATHEMATICAL DEVELOPMENT
Preliminaries

In the text that follows a small letter with a
bar sign ("-") underneath will denote a vector, a
capital letter with the same sign below will denote
a matrix, and a letter without this sign will denote
ascalar, If Bi (i=1, «o., p) are a set of scalars,

then I—)(Bi) will designate a (pxp) diagonal matrix

whose principal diagonal elements are the scalars
Bi arranged in descending order according to i, that

is dii =0 (i #)and di; =p;  Furthermore, if some

matrix Q(nxp) contains the scores of n items with
respect to p variables, these variables will be refer=-
red to as the w-variables, and ordinary Euclidean
space identified by them will be referred fo informal-
ly as the w-space. The i-th row vector of Q then
represents the i-th item and can be thought of as a
point in the p~dimensional Euclidean w~space. The
variables (space) which form the basis of evaluation
and improvement of a classification will be designat-
ed as initial variables (space), which may or may not
be identical to input variables (space). All correla=
tions and discriminant functions will be understood

to be product=moment correlations and linear discrim-
inant functions, respectively.,

Evaluation of a Classification

Evaluation of a classification is made on the
basis of three criteria that purport to measure the
quality of a classification. The three criteria meas-
ure, in three different senses,* the degree of "com-
pactness” of a classification, so that the quality of
a classification is equated with its "compactness.,”
Of any two classifications, the one that is more
"compact" by a given criterion is regarded "better"
relative to that criterion, The meaning of "compact-
ness" will be evident in discussion of the criteria,
The three criteria are not related monotonically, so
that a classification which ranks "best” among a
number of classifications by a particular criterion
need not rank as the "best” by the other two criteria,
although in general it might be expected, The deci-
sion to choose among the three criteria is left to the
investigator and introduces an element of subjectivity
into the evaluation process, As will be noted below,
however, two of the criteria (fr W and A) have, in
the writer's own experience, given consistent rank=
ings and may be recommended tentatively in prefer=-

ence to the third one (ir ﬂ— ]_l}). For a given classi-

*Analogous to the way that the median, the arith=
metic mean, and the geometric mean measure, in
three different senses, the "central tendency"” of a
variable,

fication the program computes all three criteria, The
three criteria have been used by Friedman and Rubin
(1967) to "optimize" a partition in cluster analysis.

To use of our evaluation criteria requires that
the two classifications that are being compared con-
tain the same number of items and the same number of
groups, and be defined relative to the same number of
variables, The initial scores in the two classifications
need not be the same, provided that cognizance is
made of the problem of invariancy of the criteria. In
the discussion that follows it is assumed that the
classifications compared meet the requirement noted
above,

Scatter Matrices

The three criteria of evaluation as defined
are based on the within, between, and total scatter
matrices (in the sense of Wilks, 1960, 1962), Assume
that a classification represents the partition of n items
into m groups on the basis of p variables, with the
h-th group containing ny items, Hence T n, =n.

Let the initial score matrix that identifies this classi=
fication and serves as the basis of classificatory
analysis be the partitioned matrix X = (xhki) (h=

1, vee,mpk=1, ..., nyi i=1, ..., p) whose
element Xpki is the score of the k-th item on the i-th

variable, with the k-th item being contained in the
h=th group. Let

n
h
Xp & = ! z Xpki
' h k=1 ™

be the mean of the i-th variable (x.) over the h-th
group, and !

p ;™
X .= Zon X .= T Xy
ool n h=-l h h.| n h=] k_:" hkl

be the grand mean of the i-th variable of the n items,
Then the matrices W = (Wii)' B= (bii)' 1= (fii), i,

i=1,eee, p, Where

m "h

.= T % Fx ) G X

M ey ki ) Gk T
m

T N R R
m "h

.= T T ) by

i h=]k=](xhk' ) B T



represent, respectively, the within, between, and
total scatter matrices in the x-space., A more cumber-
some name for W is the "within-groups sum of squares
and cross products matrix"; and similarly for B and T.

Note that T = W + B,

Trace W Criterion

m "h
trW= % %
h=1k=1i

P 2 1
1 ki 7%, M

is the total within-groups sum of squares with respect
to all p variables pooled over all m groups, hence a
reasonable criterion to assess the quality of a classi-
~fication, A classification associated with a small tr
W value can be regarded "compact? in the sense that
total variability within groups about the respective
means is small. Because tr W + tr B = tr T = constant
in the x-space, small tr W is equivalent o a large
tr B or a large tr B/tr W, Trace B in effect represents
the weighted sum (weighted by group sizes) of squared
ordinary Euclidean distances between group centers
of gravity and the grand center of gravity. Thus
small tr W also impliesthat the total variability among
the groups is large, that is centers of gravity of the
groups are dispersed from the grand center of gravity.
It forlows that, of two classifications, the one hav-
ing a small tr W value, or equivalently, a large tr
B or a large tr B/tr W value, can be regarded "better."
Note should be made that tr Wdoes not take into
account group covariances, In general group covari-
ances will be nonzero if the total covariances (meas-
ured over all n items) are zero, so that transforming
initial variables into a set of uncorrelated variables
does not help. It is easy to show that tr W, tr B and
tr T are invariant under orthogonal transformations.

Wilks' Lambda Criterion

The determinantal ratio,
|w]

1]

is a scalar quantity that was proposed by Wilks (1932)
as a statistic to test equality of group mean vectors
under assumption of normality and equal group covari-
ance matrices, A represents the ratio of within-
groups scatter to total scatter (Wilks, 1960, 1962),
and be regarded as another measure of the quality or
"compactness” of a classification, with small A values
corresponding to a "good" classification., Except for
the degrees of freedom, A also represents the ratio of
within to total generalized variance in the sample.
For a geometric interpretation of generalized vari=
ance, see Anderson (1958), A is invariant under all
nonsingular linear transformations and in this respect
has advantage over the tr W criterion. The use of

A , (2)

the A criterion, however, requires the nonsingularity
of W, which in turn requires that p< n-m (assuming
the p variables are linearly independent). If the
number of variables is too large to meet this require-
ment, then orthonormalization (see below) can be
used to reduce the number of variables before perform-
ing classificatory analysis. Note that when W is
nonsingular (positive definite), so is T, It is easy to

see that A =1/ W g+ | .

It may be addedthat the F-statistic, also
used to test the equality of group mean vectors and
computed in the program, is a decreasing monotonic
function of A, so that two classifications can be com=-
pared also on the basis of their F-values, In this
situation the "better" classification will be associated
with the larger F-value. The ratings of the classifi-
cations would of course be the same as with the A
criterion,

Trace W-]B Criterion

©)
P

i - -
P T T b e

l§=

tr &l_-
h

m
=

where w'l is (i, {)-th element of W ', represents the
weighted sum (weighted by group sizes) of squared
Mahalanobis distances between group centers of
gravity and the grand center of gravity, and is equiv-
alent to what Rao (1952, p. 257) has called generali-

zation of the Mahalanobis 02 to more than two groups.

The trace of ﬂ-]g has been used also as a test statis—
tic in the instance of the general linear hypothesis
under the assumption of normality and a common co-

variance matrix, with larger values of #r W-IB lead-
ing to an easier rejection of the null hypothesis
(Hotelling, 1951; Anderson, 1958), It is reasonable

to regard tr W-]B therefore as another measure of the
"compactness™ of a classification, with larger values

of tr W-]B indicating a more "compact" or "better"
classification, whereby group mean vectors are dis-
persed about the grand mean vector. Unlike tr B, to

which it is analogous, tr W ]B has the intuitively
appealing property that if corrects for correlations
between groups. In working with actual data, how~-
ever, the writer found that ratings of classifications by

the tr W ]§ criterion were somewhat erratic relative
to ratings by the A and tr W criteria, which were by
and large in agreement, TF this can be taken as a
tentative indication of the relative merits of our eval-

uation criteria, it follows that use of the tr _V_\/-'B

criterion might be discouraged, For purposes of
cluster analysis, Friedman and Rubin (1967) also fav-

or the A criterion over the tr _V_V:IB criterion, although
they are ambivalent about the tr W criterion, Like



the A criterion, tr W ]_Ii criterion is invariant under
all nonsingular linear transformations, and its use
requires that p < n=m,

The ITERIM program takes advantage of the

symmetricity of W and B and computes tr W-]B by a
special procedure which does not require the Tnver-
sion of W,

Discriminant Functions

The improvement of a classification in the pro-
gram is performed in the discriminant space, so that
a brief discussion of these functions is germane at
this point. Discriminant functions are useful for con-
centrating the total discriminatory power of x=vari-
ables in p dimensions, where p < p, or for obtaining
a new set of orthogonal coordinate axes along which
variation between groups is maximized relative to
variation within groups.

Let v (i=1, ..., p) be the i-th eigenvalue of

W, and M (pxp) an orthogonal matrix whose columns
are normalized eigenvectors of W arranged in the
same order as y;. Assuming that W is nonsingular,

let K (pxp) be a symmetric matrix such that
K=DTvv) M BMD VY.

We recall that matrices W and B are both defined in
the initial x-space. Lef—ei (i=1, «o., p) be the

i-th eigenvalue of K, and R (pxp) an orthogonal
matrix whose columns contain normalized eigenvectors
of K in the same order as Gi . Then it can be shown,

from similarity relations of matrices, that Oi's are

also eigenvalues of ﬂ_ lg, and that nonsingular matrix
V (pxp), where

V=MD V)R,

contains, in its columns, a set of eigenvectors of

ﬂ-]_ﬁ. Furthermore, matrix V simultaneously diago=
nalizes W and B such that

VIWV=1, ond @

Thus, if we denote the z-th column of V as Ve it
follows that

v'zgxz—e ’ _\_/_'Z_Vl\_/z—], and
p
'Bv z Viz Viz B
o —zz=2z _ ij=1 7 E U @)
z v, Wy P
z Z V. V. W..
ii=1 iz iz i

P -

Clearly, T 6, =tr W IE, which is the way this
z=1

criterion is computed in the program,

Discriminant functions are obtained by the
transformation Y = X V, where Y (nxp) contains
scores of n items with respect to p discriminant func-
tions (y=variables). If we express bi' and Wi of (5)

in terms of x=variables (see "Scatter Matrices"), and
note that y-variables are linear combinations of x-
variables with elements of Y, (z=1, «ee, p) as the

coefficients, it is easy to see that (5) is equivalent
to

T, ( ?
oy, 7y
o b=t P 2 L
z m n
h 2
Z Iy )
h=-'k=~| th yh.z
Thus, 6, is the ratio of between- to within-groups

sum of squares in the z-th discriminant dimension,
In Wilks' (1960) terminology 6, is the ratio of be tween

to within scatter in the same dimension., Hence, 92

can be regarded as the discriminatory power of the
z-th discriminant function.

We can, without loss of generality, arrange
discriminant functions in order of relative magnitudes
of associated eigenvalues, so that the first discrimi-
nant function has the greatest discriminatory power,
the second the next highest discriminatory power,

etc, The number of nonzero eigenvalues of w-lg is

equal to the rank of W ]B, which is also the rank of
B. Let p be this number.” Then, assuming that p
variables in the x-space are linearly independent, p
is the lesser of (m=1) and p. Hence, if p > m-1, the
total discriminatory power of initial variables will be
contained in fewer than p discriminant dimensions,
which provides a nice parsimony in dimensionality.
A measure of the cumulative power of the first, say
z (€ p), discriminant functions, is given by

I MN

p
8./ L 6, = T
IR TS B

An alternate, and probably more meaningful, meas-

ure of the cumulative power associated with the first
z discriminant functions is

Foa+a), 7)

i=1

This expression represents the ratio of within-groups
scatter to total scatter in the z=dimensional discrimi-
nant space, When z = p (and of course, also when
z = p), (7) gives the ratio of within-groups scatter to



total scatter in the p-dimensional initial space. This
ratio, it will be recalled, is our familiar Wilks'
Lambda, A. The program takes advantage of this fact
and computes A from the formula (7), setting z=p.
We note, in passing, that discriminant functions are
uncorrelated, with the z=th discriminant function
having a sample variance (1 + 92) / (n=1).

In our discussion, it was assumed that column
vectors of V are left nonnormalized, which is the
usual procedure of computing discriminant functions.
The ITERIM program allows an option to normalize
these vectors, If we let Y* be the counterpart of Y
when these eigenvectors are normalized, then Y* o
represents a diagonal transformation of Y,

ve=yoq)

where |i is the length of the i-th column of V. With

normalization the relations in (4) do not hold (unless
W =1), although eigenvalues, of course are not af-
fected., Furthermore, 8_ represents the ratio of
between- to within-grodps sum of squares in the z-th
discriminant dimension. Normalization, although
altering variances of discriminant functions, does not
affect their uncorrelatedness, The importance of
normalization in connection with improvement of a
classification will be noted under "Discussion. "

It is useful to compute correlations between
input variables and discriminant functions. These
correlations give a measure of the "importance " or
"weight" of each input variable on each discriminant
function. The program computes these correlations by
the usual formula (given here), but takes advan-

tageof the fact that, if the eigenvectors of W lgcre
nonnormalized the variance of a discriminant function
is a simple function of the associated eigenvalue, and
if these vectors are normalized and the data are
orthonormalized, variances are uniformly 1/(n-1)

(see Appendix). It can be verified that these correla-
tions remain invariant with scale alteration of input
data, with orthonomalization (see below) if all princ-
ipal components are retained, and with normalization

of eigenvectors of w_- 'g.

Improvement of a Classification

The rationale behind improvement of a classi-
fication is a logical extension of the concept of eval-
uation, We can alter a classification in such a way
that the altered classification will rate "better" by a
particular criterion. Hence, by this principle, a
rearrangement of a classification so as to reduce tr w
in a given space marks an improvement in that space
relative to that criterion, Similarly, a rearrangement

S . . . -1
resulting in a reduction of A oranincrease in tr W 'B
. . o, ™3 -

represents an improvement relative to these criteria.

Inasmuch as the three criteria are not related mono-

tonically, an improvement relative to a given cri- -
terion need not mark an improvement relative to the
other two criteria, although in general it would be
expected that this be the situation. The criterion
which the ITERIM program utilizes to improve a classi-
fication is the tr W criterion., From the computational
point of view, improvement by this criterion is the
easiest to perform,

Nearest Neighbor Algorithm

An efficient method of improving a classifica-
tion by the tr W criterion is provided by the nearest
neighbor algorithm, whereby each item is allocated
to that group to which it is nearest in terms of ordinary
Euclidean distances. The procedure is analogous to
the "k-means"” method of MacQueen (1966). Each
group is represented by its center of gravity, that is
the mean vector computed for that group. ~Although
the algorithm can be designed to operate in any arbi-
trary space, the ITERIM program allows the algorithm
to operate in the discriminant space generated from
the initial space. The reason for this will be evident
under "Discussion.” In computing distances, all dis-
criminant functions are used, Hence, returning to
our notation, if we let Yhk (1xp) be the vector repre-

senting the k-th item in the h-th group in the discrim-
inant space, and
n
-
X =
hee T D

Yk,

the mean vector for the h-th group in the same space,
then the nearest neighbor algorithm assigns the item
in question to the g-th group for which the distance

Ly, ~ Y

Yg..) Ok, " %..)

is smallest for all g =1, ..., m. Ifg=h, the item
remains in its group; otherwise it is displaced to the
g-th group. This procedure is repreated for all n items.
The displacement of items from their original groups
creates a new classification, whereupon new mean
vectors are recomputed, These steps are repeated
iteratively, with each iteration yielding a new classi-
fication generated from the partition of the immediate-
ly preceding iteration, If we let W ) be the within

scatter matrix in the discriminant space (y-space), it
is evident that this method of reshuffling items during
each iteration reduces tr W, ., thus marking an im-

provement in classification relative to the tr W cri-
terion in the discriminant space. Hence the ftera-

tions produce successive improvements in classifica-
tion by means of incremental reduction in tr ﬂ(y)

Iterations are terminated when an improvement
by the nearest neighbor algorithm is no longer possible,



or when the maximum number of iterations specified
by the user is exceeded. If the improvement is no
longer possible, the final classification can be con-
sidered a "stabilized" form of input classification,
When a "stabilized" condition occurs, partitions
obtained during the last two iterations are, of neces=
sity, identical. The classifications obtained during
iterations are influenced by the arrangement of items
in the input classification (for details, see Casetti,
1964). The number of groups (m) remains unchanged
during the iterations,

Core ltems

A measure of the "distance" between input
classification and classification generated during an
iteration is given by the number of "core items." A
core item is that item which, of the end of a given
iteration, is found in the same group as it was in the
input classification, Hence, a large number of core
items, indicating relatively little reshuffling of items
from their original groups, suggests that the classifi=
cation obtained during the current iteration is not too
"distant" from the input classification, The user,
however, is cautioned against attaching much signifi-
cance to the concept of core items. It is certainly
more meaningful to compare the current classifica-
tion and the input classification by the criteria which
we gave earlier, than by the relative number of core
items, Ordinarily the number of core items decreases
as iterations proceed, although slight reversals may
occur,

One-way Analysis of Variance

To test the null hypothesis that group popula-
tions have equal mean vectors, the program uses the
F-approximation given by Rao (1952, p. 258-262).
The test assumes that group populations are normally
distributed with a common covariance matrix. Then,
with these assumptions, the statistic

F=]-AVS . ks +2)
A|7s 2r !
= o2 (m=1) - 4

k=n-1- BT,
o2 + (m=1)° -5

N PMN-2  _pm1)

can be used as a variance ratio with (2r) and (ks +21)
degrees of freedom. Quantities n, p, m, and A are
the same as we have been using throughout our discus=
sion, Note that, since A is invariant under nonsing=
ular linear transformations, so is F, although the pro-
gram computes F in the x-space. When p =1, A be-
comes a mere ratio of within=groups to total sum of
squares, and the F-statistic is reduced to its familiar

where

form in the univariate case:

where Bss and Wss are the between- and within-

groups sum of squares, respectively, Before making
decisions on the basis of the F-values, it is well to
check assumptions of normality and equal covariance,
which the present program does not do. To test the
homogeneity of covariances, the program given by
Wolleben, Pauken, and Dearien (1968) may be used.

Optional Transformations Prior to Classificatory
Analysis

Up to this point it was assumed tacitly that
the initial score matrix X (nxp) serving as the basis
of evaluation and improvement of a classification is
an input data matrix. It may be desirable in some
instances to transform input data before the classifi-
catory analysis is performed. Two such transforma-
tions, scale alteration and orthonormalization, pro-
vided as options in the program, are described. Either
one or both of the transformations can be performed
on the input data, In either instance, the input
score matrix will be designated as some matrix other
than X, as noted.

Scale Alteration

The option of scale alteration is provided
chiefly to enable the user to suppress the scales of
his input variables so that results will be printed or
punched in fields specified by output formats, Further=
more, output formats are designed in such a way that,
if the number of variables is 14 or less, and the num-
ber of groups 23 or less, results will be printed in
easy-to-read tables (for example, the within scatter
matrix will not be separated). These features place
a constrain on the scales (variances) of input variables.
As a rule=of-thumb, input variables should not have
variances greatly in excess of 1/n (n = total number
of items). If the input scores do not meet this require-
ment, then their scales (variances) should be read- -
justed. However, if the data are orthonormalized (see -
below), such scale readjustment will in most instances
be unnecessary. In addition to the obtainment of a
readable output, the user also may wish to alter the
scales of his input variables for reasons of his own
before classificatory analysis is performed, so that
scale alteration is a useful and convenient option.

To formulate, let the input data contain n
items each characterized by its measurements with re=
spect to q ( £ p) variables, which we designate as the

e' /~variables. Disregarding partitioning of data in=

to groups, let E ( (n q) be the score matrix identify‘
ing input data. If < (i=1, ..., q) are some positive



constants supplied by the user, then the diagonal trans-

formation

32 ®)

= _E_(]) Q‘] (‘/ci)
(M

(2)-varicbles such that

2y - 1

var (e.
i c;

alters variances of e' /-variables and yields a set of

hew e

var (ei(]))

foralli=1, ..., q. The matrix @ (nxq) is the

new score matrix with respect to e'\“/-variables, Al-
teration of variances can be regarded as a change in
the scales of input variables. If any c,> 1, then

respective scale alteration will mean reduction in

M

some constant ¢ (> 0), then scale alteration will be
uniform for all input variables, and the scales (vari-
ances) will be altered by a constant factor of 1/c.
Unless there are special reasons to do otherwise, scale
alteration should be uniform for all input variables
(see "Discussion"),

Now, let the matrix E (nxq) stand for 5(2) if

scale (variance) of e If ci's are all equal, say to

scale alteration is requested, and for E(]) if this op-
tion is bypassed, If orthonormalization, described
below, is requested, it is based on E; if not, the pro-
gram assumes that E is the initial score matrix for pur-
poses of classificatory analysis, that means in our
notation, sets p=qand X =E.

Orthonormalization

Orthonomalization, provided as an option in
the program, refers to a series of linear transforma-
tions whereby e-variables are transformed to a new
set of uncorrelated variables each with mean zero and
variance 1/(n=1). The orthonormalized data can then
be used for classificatory analysis, that is, to evaluate
and improve a classification, Furthermore, the num-
ber of variables can be reduced before performing
classificatory analysis. Thus, orthonomalization has
the dual purpose of (i) obtaining uncorrelated vari-
ables with equal varionce, and (ii) reducing the num-
ber of input variables,

Orthonomalization is based on the E (nxq) score
matrix and is achieved through principal components
generated from the e~space. Principal components
can be extracted either from the covariance matrix or
correlation matrix, and both options are provided.
The decision between covariance and correlation op-
tions is left to the user and should be made chiefly on
substantive grounds, If e-variables are all measured
in the same or comparable units (for example, all
measuring weight in grams), then standard procedure

in component analysis is to use the covariance option.
This is because, as we shall shortly see, principal
components are linear combinations of "original" e-
variables that tend to contain large portions of the
total variance, and if the correlation option is used,
the total "variance, " being the number of e=variables
(= q), has arather artificial quality. Furthermore,

as Anderson (1963) has shown, the sampling theory

of principal components under the correlation option
is much more complicated than its counterpart under
the covariance option. If e-variables are measured
in noncomparable units, however, the rationale be-
hind the covariance option becomes highly dubious,
and in such cases the usual recourse is to use the cor-
relation option.,

It must be stressed at this point that the fore=-
going remarks about covariance and correlation op-
tions are germane only insofar as the chief interest is
in principal components per se, that is when ITERIM
is used primarily for principal component analysis. As
we shall see under "Discussion, " provided that all
principal components are retained, either option
leads to the same conclusion as far as evaluation and
improvement of a classification, so that under these
circumstances the question of choosing between co-
variance and correlation options becomes purely
academic,

-1h
;=n % e
: k=1

be the mean of the variable e, over the n items, and

To formulate our approach, let e

E a (nxq) matrix whose i=th column contains uniformly
the mean e i Then the matrix F (nxq), where

.

£=§_‘E=(ek.-e D,k

=1
i T

represents the matrix of deviations from the means
and defines a new set of f-variables such that, for
each variable fi' the mean f = 0. If we let Sir

assumed to be positive, be the standard deviation of
e, (also of fi), then the matrices C (qxq) and R (qxq),

where
C= ! F'F and R= D_](s ) C D-](s )
= n-1 — — - = i’ == i’

represent, respectively, covariance and correlation
matrices in the e=space (also in the f-space). The
transformation

z=£07'6)

standardizes f-variables and yields a new set of z-
variables each with variance 1 (and mean 0), The
matrix Z (nxq) is the score matrix with respect to z-

variables. Note that R = (n-!)—lg' Z, that is R isthe
covariance as well as the correlation matrix inthe z-
space. Note, also, that C and R are both symmetric.



(1) Covariance option: Let A be the i-th

(i=1, «es, q) largest eigenvalue of C, and A (gxq)
an orthogonal matrix whose i-th column is the normal-
ized i-th eigenvector of C. We shall assume, for
simplicity, that )\i's are distinct, Then A is uniquely

determined, The transformation G = F A linearly
maps the f-space into a g-space defined by principal
components. The matrix G (nxq) is the score matrix
with respect to these principal components, It can
be readily shown that principal components are uncor=
related, with the i-th principal component 9; having

the variance A;r and the sum of variances of q princ-

ipal components equaling tr C, the total variance con=
tained in the f-space (also in the e=space). Thus
the i-th principal component is that linear compound
of "original" e-variables which contains the i-th
largest portion of the total variance. The proportion
of total variance atiributable to i=th principal com-
ponent is Xi/fr C, and the proportion of cumulative

variance associated with the same component is
= . /trC.
i=1 !
In some applications of principal components,
it may be desirable to compute correlations between

input variables (e' /-variables) and principal com=
ponents. These correlations give a measure of "im=
portance" of each input variable on each principal
component, Computation of these correlations is
provided as an option in the program. If we let R*
(gxq)be the matrix whose element r;". is the correla~

tion between the variable f, and the principal com=
ponent gi, we have !
R* = —— p7!
= T =
Noting that, from the theory of symmetric matrices,
A'CA= Q()\i), and recalling that C = (n-])-lf' F
and G = F A, we obtain

G EGD (A

R*=D"'(s;) AD(A).
This equation provides a convenient method of com-
puting correlations between f-variables and principal
components, (-

and e(2)"variob|es only in origin, and the last-named
two differ from each other only in scale, it follows
that element ri. of R* represents not onl; correlation

Inasmuch as f-variables differ from e

between fi and g., but also between ei(2 and g,, and

between ep)and gi. Note that, unlike C and R,
R* is in general nonsymmetric.
It was remarked above that variance of a

principal component, hence its contribution to the
total variance, decreases as we proceed from the
first to the last principal component. In fact, if the
rank of C is less than q, that is, if C is positive semi-
definite, at least one principal component will have
zero variance. It may be desirable, for purposes of
classificatory analysis, to ignore those principal com-
ponents that contribute little to total variance and
retain those components that have relatively large
variances, The program will allow this in two ways:
(i) The user directly specifies a number,
say py (£ q), indicating the maximum number of

principal components to be retained.

(i) The user specifies a limit, say a, for
the proportion of cumulative variance associated
with principal components to be retained. In this
situation, Py (£ q), the maximum number of com=

ponents to meet this requirement, is determined in
such a way that the relationship

P2

T A /trC<a

=t ! 7T

will hold. Both of the specifications (i) and (ii) must
be given. The actual number of principal components

to be retained, which we designate as p, is then
taken as the smaller of Py and Py- Clearly, p satis=

fies requirements set in both (i) and (ii). the lost
(g=p) principal components are thus eliminated for
purposes of classificatory analysis.

If we now let A* (qxp) be the matrix ob=
tained from A by dropping the last (q-p) columns,
then the transformation )

@

EA D), i=1, e p,

/ n-1
orthonormalizes the E matrix and yields a new set of

()

mean zero and variance 1/(n=1). The matrix )_((c)
(nxp) is the score matrix with respect to these vari-

)_S(c) 1

-variables ( "c" for covariance option) each with

ables. Column vectors of )_(_(c) form an orthonormal
set = hence the term orthonormalization.

Note that the above transformation cannot
be performed if any A; is zero. To forestall this dif-

ficulty in the program, any principal component
whose variance is less than 0,001 percent of the total
variance is automatically ignored for classificatory
analysis, regardless of specifications given by the
user,

(2) Correlation option: The approach under
this option is analogous to that of the covariance op=
tion, except that C is replaced by R and F is replaced
by Z. With these substitutions, everything said under
the covariance option applies here. Thus, under the
correlation option, the principal components become



linear combinations of the standardized z-variables
rather than e-variables, and the total "variance™ ac-
counted for by all principal components is tr R=q.
Eigenvalues X (i = 1, ..., q) and matrices A, A%,

G, R*, and the orthonormalized score matrix under
the correlation option are in general different from
their counterparts under the covariance option. In
particular, under the correlation option, the matrix
R* is reduced to a simpler form:

R*=AD(A) .

)S(c)

We designate the counterpart of under the cor-

relation option as )S(r) (nxp) ("r" for correlation).

It may be added that the standardized
score matrix Z is not defined when any of the e-vari-
ables (or f=variables) has zero variance. When this
condition is encountered, the program prints a warn-
ing message, stops the execution for that job, and
moves on to the next job, if any. The way to get
around this problem is to use the covariance option
or to exclude the useless zero-variance variables from
the input data, Two "solutions" are equivalent as
far as the classificatory analysis.

We now let X (nxp) stand for the matrix

)_S(c) if principal components are exiracted from the
covariance matrix, and as the matrix X (r)if they are
extracted from the correlation matrix.  Then, the pro-
gram assumes that X is the initial score matrix for
classificatory analysis, basing the evaluation and
improvement of input classification on the matrix X.

Discussion

We have noted that input data can be scale-
altered and/or orthonormalized, under either the co-
variance or correlation option, and eigenvectors
associated with discriminant functions can be normal-
ized, or left nonnormalized, depending on the discre=
tion of the user, It is important to investigate what
these options mean in context of evaluation and im=-
provement of a classification, In particular, inas-
much as improvement of a classification is performed
in the discriminant space, one wishes to know
how this improvement is related to the initial space
from which discriminant functions are derived. A
full discussion of these aspects lies outside the scope
of this contribution. To assist the user in formulating
his approach, however, a brief discussion is given
below. In this connection, four theorems that bear
on problems raised above are stated informally in the
Appendix. To avoid complications, we shall assume
in our discussion below that covariance and correla-
tion matrices in the space of input variables are posi-
tive definite (that is all respective eigenvalues are
positive), and that, in the instance of orthonormal-
ization, all principal components are retained,

First, we may inquire about effects, if any, of
scale alteration and orthonormalization on our evalua-

tion criteria. In the situation of A and tr W ]B cri-
teria, the answer to this question is very simple.

Since these two criteria are invariant under all non-
singular linear transformations, and scale alteration
and orthonomalization are two such transformations,

Aand tr W ]B remain unaffected by scale alteration
and/or orthonomalization, In practical terms, this
means that, to evaluate two classifications on the
basis of these two criteria, it is unnecessary and
immaterial to perform scale alteration or orthonormal-
ization on the data. Results of evaluation would not
be affected by these transformations. Scale altera-
tion, however, may be necessary to obtain a read-
able intermediate output,

Effects of scale alteration and orthonor=
malization on the tr W criterion, however, are not
so straightforward, [n general, this criterion, being
invariant only under orthogonal transformations,
would be materially affected by scale alteration and
orthonormalization, so that relative rankings of two
classifications on the basis of the tr W criterion would
not be the same in the space of input variables as in
the space of scale-altered variables or orthonormal-

ized variables, [If we let wil) (pxp) and w2 (pxp)
be within scatter matrices Tn the space of input vari-
ables and scale-altered variables, respectively, with
positive values ¢, (i =1, ..., p) as scale=alteration
constants, then il becomes evident from expression

(8) that
W@ = e L Q-](ci) wihs

P
R R

(1 M

where ki and e

3
[ -

are defined the same way as

©) (oxp)

X1 and X i in (1). Similarly, if we let W
-or

be the within scatter matrix in the e-space (e

e(z)-space), and W(o) (pxp) the within scatter matrix
in theorthonormalized space under the covariance
(correlation) option, it can be shown from expression

(9) (setting A* = A) that

—Lwran o) A w1, )

n-

tr ﬂ(o) =

Obviously, the relation between tr ﬂ(e) and tr w(o)

is not a simple one. It should be noted from (10),
however , that, if c,=c for all i, then tr W value

in the space of scale-altered variables will be a
simple proportion of tr W in the space of input vari-
ables. This means that, if input scores of two classi-



fications are scale=altered by the same constant ¢,
then comparison of these classifications by the tr W
criterion after the scale alteration is equivalent to~
a similar comparison made prior to the scale altera-
tion,

It is also of interest to inquire whether scale
alteration has any effect on the tr W value computed
in the orthonormalized space, and how this criterion
in the orthonormalized space is affected by covari=
ance and correlation options, Answers to these ques-
tions are found in Theorems (1) and (2) (Appendix).
Theorem (1) states that, relative to the orthonormal-
ized score matrix derived directly from input data
under the covariance option, the orthonormalized
score matrix derived from scale=altered data under
the same option represents an orthogonal transforma=-
tion, that is, a linear mapping that preserves tr W,
Furthermore, if orthonormalization is performed under
the correlation rather than the covariance option,
the said orthonormalized score matrices are equal to
each other. Theorem (2) states that orthonormalized
score matrices generated from a given e-space (in=

put e ~space or scale-altered e‘“/-space) under co=
variance and correlation options also are related or-
thogonally, so that tr W values in orthonormalized
spaces under the two options are identical. In pract-
ical terms, these relations mean that, if one were to
compare two classifications on the basis of the tr W
criterion in the orthonormalized space, whether in-
put scores have been scale=altered prior to orthonor=
malization, or whether the covariance or correlation
option is used for orthonormalization, is immaterial
and would not affect the results of evaluation, Scale
alteration, however, may again be necessary to ob=
tain readable intermediate outputs, Clearly, since
any transformation that preserves tr W must also pre=

serve A and tr ﬂ-lg, what has just been said for the

tr W criterion readily applies to the A and tr W s
criteria, -7

Another question of interest is how improve-
ment of a classification by reduction of tr W in the
discriminant space is related to the initial space
from which discriminant functions are generated.
The option to normalize, or leave nonnormalized,
the eigenvectors associated with discriminant func-
tions has an important bearing on this problem, as is
evident from Theorems (3) and (4) (Appendix). If
these vectors are left nonnormalized (Theorem (3) (ii)),
it can be shown that the trace of the total scatter

matrix in the discriminant space is (p + tr ﬂ-]B),
where p is the number of variables, so thaf reduction
of tr W in the discriminant space is equivalent to an

increase in tr W-]g (identical in initial and discrim=
inant spaces). Thus, under this option, we may as-
sume that improvement of a partition is tantamount

to an increase in the value of tr W-]§_ in the initial
space. This means we utilize Mahalanobis distances
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in the initial space to improve our partition, This is
also evident from item (i) of Theorem (3).

When eigenvectors associated with discriminant
functions are normalized the above relations in gener-
al do not hold, and it is difficult if not impossible to
relate the improvement in the discriminant space to
the initial space. This is because, under the option
of normalization, tr W in the discriminant space be-
comes a function of lengths of nonnormalized eigen-

vectors of W ]_B_, and these lengths have no simple
relation to the initial space. In the special situation
where the initial space is orthonormal, however, a
simple solution is readily available, Theorem (4)
states that, relative to an orthonormal score mairix,
the discriminant score mairix under the option of nor-
malization represents an orthogonal transformation,
whereby the value of tr W is preserved. Thus, under
this option, we may assume that improvement of a
partition by reduction of tr W in the discriminant
space is equivalent to a similar improvement by re-
duction of tr W in the initial (orthonormal) space.
This means we utilize ordinary Euclidean distances
in the initial space to improve our partition,

It is evident from foregoing remarks that im=
provement of a classification will be influenced by our
choice to normalize, or leave nonnormalized, eigen-
vectors associated with discriminant functions., The
improved classification in the normalized case generally
will be different from its counterpart in the nonnor=
malized case, although differences, in most instances,
will probably be small. The choice between normal-
ization and nonnormalization is in effect equivalent
to a choice between two different measures of dis-
tance. An improvement by reduction of tr W in the
initial space implicitly assumes that proper measure
of distance in this space is the ordinary Euclidean

distance., An improvement by the tr W ]B criterion,
on the other hand, assumes that the Mahalanobis dis-
tance is the proper measure of distance, These dis~
tance measures have their own merits and demerits.
Since it tends to account for correlations between
groups, the Mahalanobis distance has a nice intuitive
appeal; it is also invariant under all nonsingular linear
transformations. lts use, however, usually requires
assumption of normality and equality of group covari=.
ance matrices., If these assumptions do not hold, the
ordinary Euclidean metric may be a more proper meas-
ure of distance, especially if variables are uncorre=
lated each with an equal variance, as in the situa=
tion where input data are orthonormalized, A dis=
advantage of ordinary Euclidean distance is that it
is invariant only under orthogonal transformations.
On the other hand, its use does not require nonsing=
ularity of the within scatter matrix,

Two final remarks, though self-evident, seem
noteworthy. First, invariancy of the Mahalanobis

distance (or tr !V_— ]E) under nonsingular linear trans=
formations means that, under the option of nonnormal=



ization, it is unnecessary and immaterial, for purposes
of improvement, to perform scale alteration and ortho-
normalization on input data., The improved partition
will not be affected by these transformations, Here
again, however, scale alteration may be necessary to
obtain a readable intermediate output. Second, when
the option of normalization is used, ordinarily the op-
tion of orthonormalizationshould also be used. Other-
wise reduction of tr W in the discriminant space under
normalization will have no simple relation to the ini-
tial space either in terms of ordinary Euclidean dis-
tances or Mdhalanobis distances.

PROGRAM DESCRIPTION
.~ General

The ITERIM is coded in FORTRAN 1V, Level
H, and is to be run on an IBM System/360 computer
with an available core capacity of 345 bytes or larg=
er. It was developed and tested on the IBM 360/67
Model at the Stanford Computation Center, where
compilation time was of the order of 25-30 seconds.
The program makes use of the dynamic storage alloca-
tion feature of FORTRAN and avoids certain poten—
tially troublesome features such as nonstandard returns.
The entire package consists of one main driving pro=
gram and four subroutines (EXEC, ORTHON, NROOT,
and DATA). In addition, however, subroutines
CORRE, ARRAY, and EIGEN, provided in the IBM
Scientific Subroutine Package, must be available as
library routines in the system, If a particular instal-
lation lacks this feature, then these subroutines,
whose listings can be found in the IBM "Programmer's
Manual H20-0205-3, Sysfem/360 Scientific Subrou-
tine Package (360A-CM-03X), Version Il (1968), "
should be appended to the program.

Limitations on Data

For a given classjfication, a maximum of 300
items, 30 input variables, 25 groups, and 25 itera-
tions are allowed. The actual number of variables
used or retained for classificatory analysis cannot
exceed the difference between the total number of
items and number of groups. If input data fail to
satisfy this requirement, then the number of variables
may be reduced through orthonormalization before per=
forming classificatory analysis. More than one classi=
fication can be processed in one run, with each clas-
sification being treated as an independent data set.

Storage Readjustment

In order to use the program on machines with
less than 345 available core capacity, or to exceed
data limitations noted, it is necessary to adjust the
storage requirement of the program. With the dynamic
storage allocation feature built into the program, this
readjustment can be made in a very simple way. It
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is only necessary to make suitable changes in the
absolute sizes of the arrays (DIMENSION statements)
in the main driving program; the DIMENSION state-
ment in the subroutines need not be, and should not
be, altered. With these readjustments the program
can handle almost any number of items, input vari-
ables, groups, and iterations, the avialable core
capacity of the machine permitting. The way to ad-
just for, say, a given number of items becomes readi-
y apparent from comparison of DIMENSION state=
ments in the main driving program and the EXEC sub-
routine. In this connection, the user will find the
following information on subroutine arguments use-
ful: MAXRO = maximum number of items; KVAR =
number of input variables; N = number of groups;
MAXIT = maximum number of iterations requested;
NSYM = (KVAR) . (KVAR + 1)/2; KK1 = (MAXRO).
(KVAR); KK2 = (KVAR)2, Input and output formats
are flexible to accommodate almost any number of
items, variables, groups, and iferations, so there is
no need to make readjustments on them.

Computational Options

The program allows the following computational
options:

1. Scale alteration of input variables through
division by square roots of a set of positive constants
supplied by the user, This option allows the user to
suppress the scales of his input variables so that re-
sults will be printed or punched in fields specified by
output formats, As a rule-of-thumb, input variables
should not have variances greatly in excess of 1/n,
where n is the total number of items. If input scores
fail to meet this requirement, then their scalesshould
be readjusted by the option provided. However, if
the data are orthonormalized, such scale readjustment
is not necessary, unless the covariance option is used
for extracting principal components and absolute
values of covariances are of the order of a billion or
larger. It may be added, that if a scale reduction
is o be done by powers of 10, this can be achieved
through the input format as well.

2. Orthonormalization. This option is pro=
vided to obtain a set of uncorrelated, equal-variance
variables for purposes of evaluation and improve=
ment of a classification. When this option is used,
the user must also specify

(i) whether principal components are to be

extracted from the covariance or correlation

matrix,

(ii) the maximum number of principal compon-

ents to be retained for classificatory analysis,

and

(iti) the limit, in percentage, set for the cu-

mulative variance associated with principal

components to be retained for classificatory
analysis,

Unless there are reasons to do otherwise, the
number in (ii) should be set equal to the number of



input variables, and the limit in (iii) should be set to
100 percent. The actual number of principal com=
ponents retained for classificatory analysis satisfies
conditions set in both (ii) and (iii).

3. The maximum number of iterations per=
formed for the purpose of improvement of a classifi~
cation, If the program is used for purposes other than
improvement of a classification, this number should
be set to 1.

4, Normalization of eigenvectors associated
with discriminant functions. This option allows the
user to have some control on the distance measure
used for improvement of a classification. Ordinarily,
when this option is used, the option of orthonormaliza-
tion should also be used. The option of normaliza-
tion applies to all iterations.

5. Computation of the F-statistic for the one-
way analysis of variance, The option applies to all
iterations,

6. Computation of correlations between in-
put variables and principal components (applies if
orthonormalization isrequested), and between input
variables and discriminant functions. The option, so
far as it concerns discriminant functions, applies to
all iterations,

In addition to computational options indicated
above, the program provides options that concern
output.

Output

Assuming that appropriate computational op=
tions are specified, a full print output from the pro-
gram includes the following:

1. Results that concern orthonormalization,
including the grand means, grand standard deviations,
grand covariance or correlationmatrix, eigenvalues
and eigenvectors associated with principal compon=
enfs, sum of eigenvalues, and correlations between
input variables and principal components.

2., The initial score matrix which serves as
the basis of classificatory analysis. This is either
the input score matrix, or the scale-altered score
matrix, or the orthonormalizedscore matrix, depend-
ing on options specified by the user.

With the exception noted in (4), the print
output listed in (3) through (12) below is given for
each iteration,

3. The group means, group standard devia-
tions, and grand standard deviations in the initial
space.

4, The between, within, and total scatter
matrices in the initial space, including appropriate
degrees of freedom for each., The total scatter matrix
is given only in the first iteration since it remains un-
changed during iterations,

5. Traces of between and within scatter ma-
trices in the initial space, and the ratio of these
traces., These values can be used to evaluate a clas-
sification,
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6. Eigenvalues and eigenvectors associated
with discriminant functions. The sum of eigenvalues,
also given, can be used to evaluate a classification,

7. Wilks' Lambda, and the ratio of within
to total scatter in 1, ..., p~dimensional discriminant
space, where p is the number of discriminant functions,
Wilks' Lambda is another criterion that can be used
to assess a classification,

8. The F-value and associated degrees of
freedom.

9. Discriminant scores for all items, as well
as the group means and grand means in the discrimi=
nant space.

10. Correlations between input variables and
discriminant functions.

11. Ordinary Euclidean distances, in the dis-
criminant space, between each item and the center
of gravity of each group. ltems are shown in those
groups to which they were assigned during the imme-
diately preceding iteration, thus indicating the im=
proved ciasmﬁccfion at the end of the said iteration.
The group to which a given item is assigned during
the current iteration is marked as the "rank" of that
item,

12. The number of core items, and its ratio
to the total number of items, at the end of the cur=
rent iteration,

13. A summary table that shows, for each
item, groups to which it was allocated during all iter=
ations performed. ltems are arranged as in the input
classification,

When the number of items and number of iter=
ations performed are large, the print output can be
voluminous. The program allows an option to suppress
this output. When a full print is not requested, the
total, between and within scatter matrices, and dis=
criminant scores for items, are not printed.

In addition to print output, the ITERIM pro-
gram allows the user to obtain some punch output
which he may later wish to use as input to another
program. The two options provided in this connec-
tion are:

1. Card output of item discriminant scores
obtained at the last iteration.

2. Card output of eigenvectors and group
discriminant scores obtained at the last iteration.

In either case above, each output card con=
tains up to 8 numbers.

Basic Executional Steps

The program treats each classification as an
independent data set and operates upon it, then moves
on to the next data set, and repeats the operation.
For each classification (data set) the basic steps of
execution, given in sequence of execution, are as
follows:

1. Control cards and input data are read in,
and the job is annotated.

2, If option given, scale alteration is per=



formed on the input data; otherwise step (2) is skipped.

3. If option given, the input data matrix,
or its rescaled form, whichever the case may be, is
orthonormalized, with due cognizance to specifica-
tions given by the user. If orthonormalization is not
requested, step (3) is skipped.

Now let X be fEe score matrix obtained by
orthonormalization if this option is requested, the
rescaled data matrix if scale alteration is requested
but orthonormalization not requested, and the input
score matrix if neither of these options is requested.

4, The matrix X is treated as the initial
score matrix and the input classification identified by
X is evaluated and improved, while at the same time
discriminant functions and F-values based on X are
computed. This process is repeated iteratively, with
each iteration yielding a new, improved classifica-
tion, which is evaluated and further improved at the
next iteration.

5. When improvement of a classification is
no longer possible, or when the maximum number of
iterations specified by the user is exceeded, itera-
tions are terminated and their history is summarized
in atable.

Input Instructions

Instructions for input to the program (exclud-
ing System or "Job Control Language" cards) are de-
scribed. All integers must be right-justified in their
fields, Floating=point numbers must not containmore
than 7 digits.

1. Multiple job card

Col. 1-5 Number of classifications (data sets)
to be processed (integer).
Note: Steps (2) through (7) below refer to

a given classification (data set).
2, Data set title card

Col. 1-80  Any string of alphanumeric charac-
ters (including blanks), intended for

job identification.

3. Data set control card

Col. 1-5 Total number of items (integer).
Col. 6-10  Number of input variables (integer).
Col. 11-15 Number of groups (integer).

Col. 16-20 Maximum number of iterations
(integer).

Col. 25 Whether scale alteration of input
variables is desired: punch 1 if yes,
leave blank otherwise.

Col. 30 Whether normalization of eigenvec-
tors associated with discriminant
functions is desired: punch 1 if yes,
leave blank otherwise .

Col. 35 Whether full print is desired: punch

1 if yes, leave blank otherwise.

13

Col. 40 Whether computation of F-statistic
is desired: punch 1 if yes, leave
blank otherwise.
Whether computation of correlations
between input variables and princi-
pal components (applies if orthonor=-
malization is requested), and be-
tween input variables and discrimi=-
nant functions is desired: punch 1
if yes, leave blank otherwise,
Whether punch output of item dis-
criminant scores of the last iteration
is desired: punch 1 if yes, leave
blank otherwise.
Whether punch output of eigenvec-
tors and group discriminant scores of
the [ast iteration is desired: punch
1 if yes, leave blank otherwise.
Whether orthonormalization is de=-
sired: punch 1 if yes, leave blank
otherwise.
The following three options apply
only when orthonormalization is re-
vested, If this is not requested,
then cols. 61-80 should be left blank,
Maximum number of principal com-
ponents to be retained for classifi-
catory analysis (integer).
Whether principal components are
to be extracted from the covariance
matrix (punch 1), or from the cor-
relation matrix (leave blank).
Limit, in percent (e.g., 95.0), set
for the cumulative variance of princ-
ipal components to be retained for
classificatory analysis (floating-
point number),

Col. 45

Col. 50

Col. 55

Col. 60

Note:

Col. 61-65

Col. 70

Col. 71-80

Group size card(s)

Col. 1-3 Number of items in first group
(integer).

Col. 4-6 Number of items in second group
(integer).

Continue until all group sizes are indicated in conse~
cutive order, allowing three columns for each group
size. |f DIMENSION statements are readjusted to
accommodate more than 25 groups, then as many
group cards as necessary, with the format given above,
should be used. Note, however, that each group

size card can contain up to 25 numbers (i.e., cols.

76-80 must not be used),
5. Scale alteration card(s) (optional)

To be supplied only if scale alteration of input vari-
ables is requested (1 in col. 25 of data set control
card). If this transformation is not requested, then
the group size card(s) is (are) immediately followed



by the format card.

Col. 1-10  Scale alteration constant for the first
input variable (floating=point num=
ber).

Col, 11-20 Scale alteration constant for the
second input variable (floating=point
number).

Continue until the scale alteration constants for all
input variables are indicated in consecutive order,
allowing 10 columns for each constant, up to 8 con-
stants per card, and using as many cards as necessary,

6.

Format card

Col, 1-80  Format, enclosed in parentheses, for
reading in the input data matrix.,
The first nonblank fields must be des-
ignated as A4, A2 for item identifi-
cation,Scores in the input data are
to be regarded as real numbers even
if, in reality, they are partly or
wholly integer numbers, Hence, for
example, the format (5X, A4, A2,
719) is not valid, while the format
(5X, A4, A2, 7F9.0) is.

7. Annotated input data matrix

Each row of this matrix must contain (i) item name or
item index (a string of 6 alphanumeric characters),
followed by (ii) input scores for that item, The ma-
trix is read in row-wise (item-wise). Scores of any
item may be placed on more than one card, but each
item must start on a new card, ltems are assumed to
have been arranged into groups.

Each group, including the last one, must

Important:
be ¥o||owed bK a comments—card in the data matrix.
What, if anything, this card contains is immaterial.

8. If another classification (data set) is to be proces=
sed, repeat steps (2) through (7) for that classifi-
cation,
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Sample Problem

A full print output from a hypothetical sample
problem involving 35 items, 5 groups (subsets), and
4 input variables is shown in Table 1. The listing of
input to the program (excluding the System or "Job
Control Language™ cards) is given in Table 2. Except
for item names, reshuffing of items, and their arrange=
ment into groups, the input score mairix is the same
as that given in Dixon (1967, p. 155) for principal
component analysis. The input data was orthonor-
malized using the correlation option prior to classifi=
catory analysis, and eigenvectors associated with
discriminant functions were normalized, All princi-
pal components were tetained. The rest of the options
are noted in the heading of the print outputinTable 1,

It will be noted that input classification, as

identified by the orthonormal score matrix, was eval-

uated (by the tr W, Wilks' Lambda, and tr W ]g cri-
teria) and improved during the first iteration. The
improved classification was then re-evaluated and
further improved at the second iteration, and so on,
Improved classifications were "stabilized" af the
fourth iteration, whereupon iterative procedures and
execution were automatically terminated. Since the
initial space was orfhonormar, and eigenvectors asso-
ciated with discriminant functions were normalized,
improvement of a partition by reduction of tr W in the
discriminant space was equivalent to a similar improve=
ment in the initial space (see "Discussion"). This is
demonstrated by progressive decrease, in the initial
space, of tr W from 2,08 at the first iteration to 1,99
at the fourth iteration. Interestingly, this improve-
ment relative to the tr W criterion in the initial space
was paralleled by improvements relative to Wilks'

Lambda (progressively decreasing) and ir W IE (pro-
gressively increasing{ criteria as well. The number
of core items (= 30) at the end of the fourth iteration
indicates that "stabilization" of input classification
involved displacement of 5 items from their original

grOUpS .



Listing of FORTRAN |V Program

o

160

105

ITERIM = "ITERATIVE IMPROVEMENTS™ PROGRAM FOR EVALUATION AND
IPROVEMENT OF A CLASSIFICATIONs PROGRAM ACCEPTS A DATA SET
PARTITIONED INTO AN ARBITRARY NUMBER OF SUBSETS, EVALUATES THIS
PARTITION, AND IMPROVES UPON IT ITERATIVFLY. IN ADDITION, A LINEAR
DISCRIMINANT ANALYSIS AND A ONE-WAY MULTIVARIATE ANALYSIS OF
VARTANCE ON THE DATA IS PERFORMED DURING EACH ITERATION,
IMPROVEMENT OF A PARTITION IS ACHIEVED THROUGH REDUCTION OF POOLED
WITHIN-SUBSETS SUM OF SQUARES BY THE NEAREST-NEIGHROR ALGORITHM IN
THE DISCRIMINANT SPACE. THE FOLLOWING THREE MEASURES, WHICH MAY

BE USED TO ASSESS THE QUALITY OF A PARTITION, ARE COMPUTED FOR

A GIVEN CLASSIFICATION: (1) POOLED WITHIN-SUBSETS SUM OF SQUARES
(IN THE INITIAL SPACE), (2) RATIO OF WITHIN-SUBSETS SCATTER TO
TOTAL SCATTER (IN THE SENSE OF SeSe WILKS, 1960,1962), AND (3)

SUM OF EIGENVALUES ASSOCIATED WITH LINEAR DISCRIMINANT FUNCTIONS.
AN OPTION IS PROVIDED TO ORTHONORMALIZE INPUT DATA THROUGH
PRINCIPAL COMPUNENTS, USING EITHER THE CORRELATION MATRIX OR THE
COVARIANCE MATRIX AS A BASIS OF ORTHOGONALIZATION. THE NUMBER OF
PRINCIPAL COMPONENTS TO BE RETAINED FOR CLASSIFICATORY ANALYSIS
CAN BE CONTROLLED BY SPECIFYING A MAXIMUM NUMBER AND/OR SETTING

A LIMIT ON THE CUMULATIVE VARIANCE, IF REQUESTED, CORRELATIONS
BETWEEN INPUT VARIABLES AND PRINCIPAL CCMPONENTS, AND BETWEEN
INPUT VARTABLES AND DISCRIMINANT FUNCTIONS, THE LATYTER DURING

EACH ITERATION, ARE COMPUTEDe PRNOGRAM ALSC ALLOWS AN OPTION TO
NORMALIZE EIGENVECTORS ASSOCIATED WITH DISCRIMINANT FUNCTIONS,
MORE THAN ONE DATA SET (JOB) CAN BE PROCESSED IN ONE RUN,
RESTRICTIONS : FOR EACH DATA SET (JOB), A MAXIMUM 0OF 300 ITEMS,

30 VARTABLES, 25 SUBSETS (CLASSES), AND 25 ITERATIDONS ARE ALLOWFED,
THE ACTUAL NUMBER OF VARIABLES USED OR RETAINED FOR CLASSIFICATORY
ANALYSIS CANNOT EXCEED THE DIFFERENCE BETWEEN THE TOTAL NUMBER CF
ITEMS AND THE NUMBER OF SURSETS,

LIBRARY SUBROUTINES CORRE, ARRAY, AND EIGEN, PROVIDED IN THE IBM
SCIENTIFIC SUBROUTINE PACKAGE, ARE REQUIRED IN THE SYSTEM,

PROCGRAM IN FORTRAN IV(H), FOR IBM S/360, BY F. DEMIRMEN, STANFQORD
Jee 1968, PROGRAM IN PART ADAPTED FROM E. CASETTI, OFFICE OF

NAVAL RESFARCH, GEOGRAPHY BRANCH, TECHe. REPDRT NQOo 12, 1964,

IMPLICIT INTEGER (I-N), REAL (A-H,0-2)

DIMENSION TITL(20)NROW(25) NORIG(25),NAME(300,2),
INAMALT(3C04+2)+1D(3G0 ), IDALT (303)4X(300,30),4 XALT(300,30),
2XR(300,30) 4y XOR(300,30)+DIST(300,425),IRANK(300+25),IRTEMP(300),
3RDOT (30) 4 XROOT(30),CUM(30),SX(30),SUMTOT(30),XBAROV(30),STALL(30),
4STRAW(30) » XMRAW(30),B(30,30),W(30,30),T(30,30),RES(30,301),
5XAVR(25430) y SUMSET(25,30) ¢XBAR(25,430) 4ST(25,30) 4RR(465),
6CONX(3000),CONBI300 )4 CONW(IC0),CONRES(9GO)

T ADJUST FOR STORAGE ALLOCATION, IT IS ONLY NECESSARY TO MAKE

CHANGES IN THE DIMENSIUGN STATEMENTS NOTED ABQOVE,.

COMMON TITL yMAXROyKVARyNgMAXIToMDIV NORM, IFULL, IFTEST,ICOR,IPUNL,
1IPUN2yNORTHy NUMORToNCOVyAyNSYMyKK1yKK2 4 NUMBER

READ NUMBER OF DATA SETS TO BE PROCESSED

READ (5,100) NUMDAT

FORMAT (I5)

PROCESS EACH DATA SET

DO 200 NUMBER=1,NUMDAT

READ TITLE AND CONTROL CARDS FOR DATA SET

READ (5,105) TITL,MAXROWKVARyNyMAXIToMDIV,NORM, IFULL,IFTEST,ICOR,
1IPUN1,IPUN2,NORTH,NUMORT yNCOV, A

FORMAT (20A4/1415,F10.0)

NSYM=KVAR* (KVAR+1)/2

KK1=MAXRO*KVAR
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KK2=KVAR*KVAR

CALL EXEC (NROWNORIGyNAME,NAMALT,ID, IDALT, Xy XALT,XRyXOR4DIST,
1IRANK,IRTEMP,ROOTyXROOT,CUMySXySUMTOT o XBAROVSTALLy STRAWXMRAW,
2ByWeToRESs XAVRy SUMSET  XBARy ST 4RRHyLCONXyCONBy CONW,CONRES)

200 CONTINUE

STOP

END
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SUBROUTINE EXEC (NROWNORIG,NAME,NAMALT 1D, IDALT 4 Xy XALT 4 XR,y XOR,
1DIST+TRANK,y IRTEMP,ROOT 4 XROOT, ClJMy SXy,SUMTOT, XBARQV,STALL ySTRAW,
2XMRAWIR 9y W o T yRESy XAVRy SUMSET yXBAR ST 4RRyCONX yCONB 3 CONW,CONRES)
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SUBRCUTINE EXEC TG PERFORM THE PRINCIPAL OPERATIONS,

DIMENSION TITL(20),FMT(20)+NROW(N) ¢NORIGIN) 4NAME(MAXROy2),
INAMALTIMAXRO+2) s IDIMAXRO) 4 IDALT(MAXRO) y X(MAXROyKVAR),
2XALT{MAXRO+KVAR) y XR{IMAXROsKVAR) 3 XOR(MAXRO4KVAR) yDISTIMAXROWN),
3IRANK(MAXROyMAXIT) o IRTEMP(MAXRO) ¢ RODTIKVAR) ¢XROOT (KVAR) y CUM(KVARY),
4SX{KVAR ), SUMTOT(KVAR) , XBAROVIKVAR) s STALL{KVAR) ySTRAW(KVAR),
5XMRAW(KVAR) s BIKVARyKVAR) 4y WIKVAR,KVAR) s TIKVAR,KVAR),RES{KVAR,KVAR),
6XAVR (Ns KVAR) y SUMSET(N,KVAR) yXBAR{N,KVAR)y ST(N,KVAR) 4RR{NSYM),
TCONX(KK1),CONBIKK2),CONWIKK2) 3CONRES{KK2)

COMMON TITL+MAXRO,KVARNyMAXIT,MDIV,NORM, IFULL, [FTEST,ICOR,IPUN1,
LIPUN2yNORTH,NUMORTsNCOV A, NSYM,KK1yKK2y NUMBER

READ (5,100} NROW

100 FORMAT (2513)
IF (MDIV .GEe 1) READ (5,105) SX
105 FORMAT (BF10,.,0)
READ (5,110) FMT
110 FORMAT (20A4)
AMNODTATE THIS J0OB
WRITE (64115) NUMBER,TITL MAXRO+KVARyNyMAXIT,NROW
115 FORMAT (*1ITERIM = "ITERATIVE IMPROVEMENTS" PROGRAM BY F, DEMIRMEN
1y, GEOLOGY DEPT.y STANFORD Ues 19681///
2' JOB NO. 24,137 JOB TITLE :'42X420A4/

3' NUMBER OF ITEMS 2% 15/
4' NUMBER OF INPUY VARIABLES :',15/
5* NUMBER OF SUBSETS 2,15/

6' MAXIMUM NQOo OF ITERATIONS REQUESTED :',14/

7* SUBSET SIZES, IN CONSECUTIVE ORDER :%,2314/(38X,2314))

WRITE (6,120) FMT
120 FORMAT (' INPUT FORMAT :',20A4)

IF (MDIV .GE. 1) GO TO 122

WRITE (6,121)
121 FORMAT (' SCALE ALTERATION OF INPUT VARIABLES NOT REQUESTED?')

GO TO 125

122 WRITE (6,123) SX

123 FORMAT (' SCALE ALTERATION OF INPUT VARIABLES THROUGH DIVISION BY
1THE SQUARE RODTS OF FOLLOWING CONSTANTS REQUESTED :'/(1X,10F13.3))

WRITE (64124)

124 FORMAT (' IF ORTHONORMALIZATION IS NOT REQUESTED THE RE-SCALED DAT
1A WILL HEREAFTER BE CALLED INITIAL DATA'/* IF ORTHONORMALIZATION I
2S REQUESTED IT WILL BE BASED ON THE RE-SCALED DATA')

125 IF (NORM ,LEs. O) WRITE (6,126)

126 FORMAT (' NORMALIZATION OF EIGENVECTORS ASSOCIATED WITH DISCRIMINA
INT FUNCTIGONS NOT REQUESTED')

IF (NORM. ,GEs. 1) WRITE (6,127)

127 FORMAT (' NORMALIZATION OF EIGENVECTORS ASSOCIATED WITH DISCRIMINA

INT FUNCTIONS REQUESTED®) :
IF (IFULL oLEe Q) WRITE (6,128)
128 FORMAT (' FULL PRINT NOT REQUESTED®')
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108
109
110
111
112
113
114
115
116
117
118
119



I[F (IFJLL «GEe 1) WRITE (6,129)
129 FORMAT (* FULL PRINT REQUESTED')
IF (IFTEST +4LEe 0) WRITE (6,130)
130 FORMAT (' COMPUTATION OF F-STATISTIC NOT REQUESTED')
IF (IFTEST ,GEe 1) WRITE (6,131)
131 FORMAT (' COMPUTATION OF F-STATISTIC REQUESTED')
IF (ICOR +LEe 0) WRITE (6,132)
132 FORMAT (' COMPUTATION OF CORRELATIONS NOT REQUESTED?)
[F {ICOR «4GEe 1) WRITE (6,133)
133 FORMAT (* COMPUTATION OF CORRELATIONS REQUESTEDY)
IF (IPUN]1 oLEe 0) WRITE (6,134)
134 FORMAT (' PUNCH OUTPUT OF ITEM DISCRIMINANT SCORES ASSOCIATED WITH
1 LAST ITERATION NOT REQUESTED")
IF (IPUN1 oGEe 1) WRITE (6,135)
135 FORMAT (' PUNCH OUTPUT OF ITEM DISCRIMINANT SCORES ASSOCIATED WITH
1 LAST ITERATION REQUESTED!')
IF (IPUN2 oLEs D) WRITE (6,4136)
136 FNORMAT (' PUNCH CUTPUT OF SUBSET DISCRIMINANT SCORES AND EIGENVECT
10RS ASSOCIATED WITH LAST ITERATION NOT REQUESTED')
IF (IPUN2 «GEs 1) WRITE (6,137)
137 FORMAT (' PUNCH OUTPUT OF SUBSET DISCRIMINANT SCORES AND EIGENVECT
10RS ASSGCIATED WITH LAST ITERATION REQUESTED?')
IF (NORTH oLEs 0O) WRITE (6,138)
138 FORMAT (' ORTHONORMALIZATION NOT REQUESTED')
READ IN DATA
K=0
DO 140 M=1,N
NR=NROW (M)
DN 139 I=1,NR
K=K+1
139 READ (5,FMT) (NAME(K+sJ) 9Jd=1+2),4(X(KyJ)yJ=1,KVAR)
SKIP COMMENTS~-CARD THAT FOLLOWS SUBSET
140 READ (5,141)
141 FORMAT (1X)
IF REQUESTED, DIVIDE INPUT VARIABLES BY A GIVEN SET OF CONSTANTS
IF (MDIV LLE. O) GO TO 151
DO 145 I=1,KVAR
145 SX(I)=SORT(SX(I))
DO 150 J=1,KVAR
DN 150 K=1,MAXRD
150 X{KysJ)=X(K,J)/SX(J)
STORE RAW DATA, RAW MEANS, AND RAW ST, DEV'S IN XOR(), XMRAW(),
AND STRAW() IF CORRELATIONS WITH DISCR, FUNCTIONS TO BE COMPUTED,.
151 IF (ICOR L LEe 0O) GO TO 155
DO 152 K=1,MAXRO
DO 152 J=1,KVAR
152 XOR(KyJ)=X(K,yJ)
If (NORTH .GE. 1) GO TO 155
CALL CORRE (MAXRO+KVARy1¢XOPRyXMRAWy STRAW,ByRR,yCUM,RO0T, XROOT)
155 NVAR=KVAR
KSTOP=0
ORTHONORMALIZE IF OPTION GIVEN
IF (NORTH oGEse 1) CALL ORTHON (XyXR¢XMRAW,STRAWROOT4XROOT,CUM,
LRES+ByRRyMAXRO+KVAR ¢yNVARy ICOR +NUMORT ¢NCOV4A,NSYM,KSTQOP)
IF (KSTOP .GE. 1) GO TO 750
PRINT DATA THAT WILL SERVE THE BASIS OF SUCCEEDING COMPUTATIONS
WRITE (64160) TITL
160 FORMAT ('1',20A4/7/)
I[F (NORTH «LEe O) WRITE (6,161)
161 FORMAT (* INITIAL DATA'/1X,12(*'-%)//)
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120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
1556
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179



(@]

162

163

165
170

175

180

185

190

195
200

205

21¢C
215

220

225

2390
235

IF (NORTH o,GEes 1) WRITE (6,162)

FORMAT (' ORTHONORMALIZED "INITIAL™ DATA'/1X,30(*-")//)

K=0

DO 165 M=1,N

WRITE (64163) M

FORMAT (* SUBSET?',132)

NR=NROW(M)

DO 165 I=1,NR

K=K+1

WRITE(6417C) Ky (NAME(KyJ) 9J=142) 3 (X(KyJ)yJ=1,NVAR)
FORMAT (2X,1342XyA4+8295X414FB,4/(18Xy14F8e41))
DO 17% K=1,MAXRD

IDIK)=K

DO 180 M=1,N

NORIG(M)=NROW{M)

START ITERATING

DD 660 IT=1,MAXIT

WRITE (6,185) IT

FORMAT (//' ITFRATION',I3/1X,12(%=-1))
COMPUTE AND PRINT SUBSET MEANS AND GRAND MEANS
DG 200 J=1,NVAR

SUMTOT(J)=0.0

K=0

DO 195 M=1,N

NR=NROW (M)

SUMSET(M,J)=0,0

D0 190 I=1,NR

K=K+1

SUMSET(M,J)=SUMSET(M,J)+X(K,J)

XBAR(M, J)=SUMSET(M,J) /NR

SUMTOT(J) =SUMTOT(J)+SUMSET (M, J)
XBAROVUJ)=SUMTOT(J) /MAXRO

WRITE (6,205)

FORMAT (//* MEANS OVER SUBSETS (IN INITIAL SPACE)*//)
DD 210 M=1,N

WRITE (64215) My (XBAR(M,yJ),yJ=14NVAR)
FORMAT (' SUBSET',13,8X414FRB,47(18X414F8,44))
WRITE (6,220) (XBARGOV(J),J=1,NVAR)

FORMAT (' GRAND',12X,14FB8,4/{18X,14F8,4))
COMPUTE SUBSET STANDARD DEVIATIONS

DO 235 J=1,NVAR

K=0

DO 23% M=1,N

NR=NROW (M)

ST(MyJ)=040

DO 225 I=1,NR

K=K+1

STIMyJ)=ST(MyJ)+X(KyJ)*x2
STIMyJ)=STIMyJ)-NRE(XBAR(M,y J)%x%x2)

IF (ST({MyJ) «GTs 060) GO TO 230
ST{M,J)=0.0

GO TO 235

STIMyJ)=SORTIST(M,J)/(NR-1))

CONTINUE

DEVELOP B AND W MATRICES

DO 24C I=1,NVAR

DO 240 J=1,NVAR

B(I .J)=0.0

DO 240 M=1,N

B(I4J)=BUI+J)+NROW(M)*(XBAR (M, I}-XBAROV(I))*{XBAR(M,J)-XBAROV(J))
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186
181
182
183
184
185
1856
187
138
189
1990
191
192
193
194
195
196
197
193
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
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219
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222
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224
225
225 -
227
228
229
230
231
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233
234
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236
237
238
239



240 BlJ,1)=8B{1,J)
D0 245 I=1,NVAR
DO 245 J=1,NVAR
W( 1 vJ ’=000
K=0
DN 245 M=1,N
NR=NROW (M)
N0 245 L=1,NR
K=K+1
WIToJ)=WT,J)+{X{Ky I)-XBAR(M, [)I%X{X(KyJ)=-XBAR(M,4J))
245 Wl I)=WlI,3)
COMPUTE T MATRIX AND GRAND STANDARD DEV'S ONLY IN FIRST ITERATION
IF (IT 4GTs 1) GD TO 26¢C
DD 250 I=1,NVAR
DO 250 J=1,NVAR
250 T{I,J)=B(I,J)+W(]l,J)
. DD 255 I=1,NVAR
258 STALL(I)=SQRTIT(I I}/ (MAXRD-1))
PRINT STANDARD DEVIATIONS
260 WRITE (6,4,265)
265 FORMAT (/7' STANDARD DEVIATIONS OVER SUBSETS (IN INITIAL SPACE)'//
1)
DO 270 M=1,4N
270 WRITE (64215) My {ST(MyJ)yJ=1,NVAR)
WRITE (6,220) (STALL(J),J=1,NVAR)
PRINT By Wy AND T MATRICES If OPTION GIVEN
T MATRIX TO BE PRINTED ONLY IN FIRST ITERATICN
IF (IFULL -LE. 0) GO TO 310
M=N=-1
WRITE (6,275) M
275 FORMAT (//' B = BETWEEN-SUBSETS SCATTER MATRIX (IN INITIAL SPACE)*
1/ DEGREES OF FREEDOM = ',13//)
DO 280 I=1,NVAR
280 WRITE (64285) (BU{I,J)ysJ=1,NVAR)
285 FORMAT (18X,14F84,4)
M=MAXRO-N
WRITE (56,290) M
29C FORMAT (//' W = WITHIN=-SUBSFTS SCATTER MATRIX (IN INITIAL SPACE)?
‘1/' DEGREES QOF FREEDOM = ',13//)
DO 265 I=1,NVAR
295 WRITE (6,285) (W(I,J)sJ=1,NVAR)
IF (IT oGTe 1) GO TO 310
M=MAXRDO-1
WRITE (6,3CC) M
300 FORMAT (//' T = TOTAL SCATTER MATRIX (IN INITIAL SPACE)?
1/ DEGREES QF FREEDOM = ',13//)
DO 305 I=1,NVAR
305 WRITE (64285) (T{I,J)+J=14NVAR)
COMPUTE AND PRINT TRACES OF B AND W MATRICES
310 SUM1=0,0
SUM2=0,0
DD 315 I=14NVAR
SUMI=SUML1+BI(1,1)
315 SUM2=SUM2+W(I,1)
SUM=SUM1/SUM2
WRITE (6,320) SUM1,SUM2,SUM
320 FORMAT (//' TRACE OF B = "4Fl0e4s?' $',5X,*TRACE OF W = ',F10,4/
1' (TRACE OF B)/(TRACE OF W) = *,F12,6)
COMPUTE AND PRINT EIGENVALUES AND EIGENVECTORS OF W-1 * B
CALL ARRAY (2,NVAR,NVAR,KVAR,KVAR,CONB,B)
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250
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255
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269
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CALL ARRAY {2,NVARyNVARJKVARJKVARLZCONW, W)
CALL NRODT (NVAR,CONB,CUONW,RODT CONRES+NORM)
CALL ARRAY {1 +NVARGNVAR,KVAR,KVAR,CONRES,RES)
WRITE {(6,325)
325 FORMAT (/7" EIGENVALUES OF W-INVERSE % R'/)
WRITE (64330) (ROUT(I),I=1,NVAR)
330 FORMAT {1X,14F9.5)
SUM=0e0
DO 325 I=1,NVAR
335 SUM=SUM+RDOT(D)
WRITE (6434C) SUM
340 FORMAT (/' TRACE OF W-INVERSE * B = t,F12,5)
DO 34% I=1,NVAR
R45 XROQTAI)I=100*RO0OT (1) /5UM
WRITE (6,350)
350 FORMAT (/' PERCENTAGE OF TRACFE DUE TO EACH EIGENVALIIEY/)
WRITE (6,4355) (XRDOT(I),I=1,NVAR)
355 FORMAT (1X,F842413F9,2)
SUM=(e 0
DO 36C I=1,NVAR
CUMIT)=SUM+XR00OT( 1)
360 SUM=CUM{T)
WRITE (6,4365)
365 FORMAT (/' CUMULATIVE PERCENTAGE CF TRACE DUE T0O FACH T IGENVALUF'/
1)
WRITE (6,355) (CUM(I),I=1,NVAR)
IF (NORM JLEs £) WRITE (6,370)
370 FORMAT (//% EIGENVECTORS OF W-INVERSE % B, NON-NORMALIZED, 2% COL
TUMNS*Y//)
IF (NORM oGE. 1) WRITE (6,375)
375 FORMAT (//' EIGENVECTORS OF W-INVERSE * B, NORMALIZED, AS COLUMNS
14/7)
DO 38C I=1,NVAR
350 WRITE (6,285) {(RES{I,J)sJ=1,NVAR)
COMPUTE AND PRINT SCATTER RATIOS IN DISCRIMINANT SPACE
CUM{1)=1/(1+RO0OT(1))
DO 400 I=2,NVAR
J=I1-1
SUM=CUM{J)
400 CUM(T)=SUMK(1/(1+RODT{(1)))
WILKS=CUM{INVAR)
WRITE (6,4,405) NVAR
405 FORMAT (//*% RATINO OF WITHIN TO TOTAL SCATTFR IM lyoose's123'-DIMEN
1SICNAL DISCRIMINANT SPACEY/)
WRITE (6,410) (CUM(T),I=1,NVAR)
410 FNORMAT (1X,14E9,2)
WRITE (64411) WILKS
411 FORMAT (/' WILKS LAMBDA = *',E14,8)
COMPUTE F-TEST STATISTIC If OPTION GIVEN
IF (IFTEST 4LEs Q) GO TO 425
IF (IT +GTe 1) GO TO 415
A=FLOAT({NVAR)
S=SORTU((2%%2) Rk {(N=-1,0)1%%2)=4) /{ (AX(2)+ ((N=1,0)%%2)=5))
XM= {MAXRO-1)=({A+N)/2)
XLAMB==( (2% (N-1))=2)/4
R=(A*(N=1))/2
F1=2%R
F2=(XM*S)+ (2% XL AMB)
NI=IFIX(F1+(0,5)
N2=TFIX(F2+C45)
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O

415

420 FORMAT (//* TEST FOR HYPOTHESIS THAT SUBSET MEAN VECTDORS ARE EQuUAL
1 2%/ F = ",F10634+"' 3'"45X+'CEGRFEES OF FREEDOM : N1 =
2 '518/' THE TEST ASSUMES NORMALITY AND A COMMON DISPERSION MATRIX?®
3)
COMPUTFE ITEM DISCRIMINANT SCDRES, AND PRINT IF QOPTION GIVEN
425 DO 430 K=1,MAXRO
DD 430 J=1,NVAR
XR{KyJ)=0e0
N0 430 L=1,NVAR
430 XRIKyJ)I=XRIKyJI+X{KHL)*RESIL,J)
IF (IFULL oLEs 0) GO TO 445
WRITE (6,435)
435 FORMAT (//' DISCRIMINANTY SCORES FDOR ITEMSt//)
K=0
DN 440 M=1,N
WRITE (64163) M
NR=NROW (M)
DN 440 I=1,NR
K=K+1
440 WRITE (64170) Ky INAME(K,J)yJ=1,2) 3 {XR(KsJ)eJd=1,NVAR)
COMPUTE AND PRINT SUBSET DISCRIMINANT SCORES
445 DN 450 M=1,N
DN 450G J=1,NVAR
XAVRIM,y J)=0,0
D) 450 L=1,NVAR
450 XAVRIMyJ)=XAVR (M, JI+XBARIM, L)%.RES(L,J)
WRITE {£4455)
455 FORMAT (/7' DISCRIMINANT SLORES FNR SUBSETSY//)
DO 460 M=1,.N
460 WRITE {(649215) My (XAVR(M,J),J=1,NVAR)
DD 461 I=1,NVAR
SX{T1)=0a.0
DN 461 J=14,NVAR
461 SX{I)=SXII)+XBAROV(J)*RES(J,1)
WRITE [6,22C) (SX{I)eI=1,NVAR)
COMPUTE CORRELATICNS WITH INPUT VARIARLES IF 0OPTION
IF (ICNR LLEFe 0) GO TO 473 .
STDORE MEANS AND ST. DEVIATIONS NF DISCR, FUNCTIONS TEMPORARILY
IN XBAROV AND SX VECTORS.
SUM=FLOAT{MAXRN-1)
[F (NNRM L,GEe 1) GO TN 463
NN 462 I=1,NVAR
XBAROVITI=SX{1)
462 SX{I)=SQRT((1L+ROOT(I))/SUM)
GO TN 466
463 IF {(NORTH +LEe 0) GO TO 465
DN 464 I=1,NVAR
XBRAROVIINI=0,L0
464 SX(I)=SQRT(1/5UM)
GN TO 466
465 CALL ARRAY (2,MAXRO,NVAR,MAXRO,KVAR,CONX,y XR)
CALL CORRE (MAXRNyNVAR,y143CONX9XBARDVySX,CONRLRR 4CIUM,RONT L XROOT)
466 M=MAXRO-1

Y=WILKS%%{1/%)
F=((1-Y)/Y)*{F2/F1)
WRITE (64420) F,N1,N2

DN 469 I=1.KVAR

DD 4€£9 J=1.NVAR
B{IyJ)=0.0
SUM=STRAW(T)*SX(J)
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IF (SUM) 465,469,467
467 DO 468 K=1,MAXRO
468 B{Iy4J)1=B(T1,J)+X0RIK,I)%XR{(K,yJ)
BT +J)=BlI,J)-MAXRO*XMRAW(I )%XBAROVI{J)
B(I+JY=B{I,J)/(MESUM)

469 CONTINUE
WRITE (6,470)

470 FORMAT (/7' CORRELATIONS BETWEEN INPUT VARIABLES AND DISCRIMINANT
1FUNCTIONS*/* INPUT VARIABLES IN ROWS, DISCRIMINANT FUNCTIONS IN CO
2LUMNS'/7)

DD 471 I=1,KVAR

471 WRITE (64472) 1, (B(I,J)+J=1,NVAR)

472 FORMAT (' VARIABLE'yI1445X,14F84,4/1018X,14F844))

COMPUTE ORDINARY EUCLIDEAN DISTANCES IN DISCRIMINANT SPACE

473 DO 480 K=1,MAXRO

DO 480 MM=]1,N
DIST(KyMM)=0,0
DD 475 L=1,NVAR
475 DISTH{K MM)=DIST(KyMM)+(XRIK4L)I-XAVRI{MM,L) )%%*2
480 DIST(K,MM)=SQRT(DIST(K,MM))
COMPUTE RANKS BY NOTING WHICH CCLe OF GIVEN ROW HAS LEAST VALUE
STORE RANKS IN IRTEMP VECTOR TEMPORARILY
DO 485 K=1,MAXRO
DISTLO=DIST(K,1)
IRTEMP(K)=1
DD 485 MM=2,N
IF (DIST(K,MM) o,GEs DISTLO) GO TO 485
DISTLO=DIST(K,MM)
IRTEMP(K)=MM
485 CONTINUE
SET FORMAT CONTROL FOR PRINTING RANKS
IF (N .GT, 8) GO TO 490
IFMT=1 '
GO TO 505
490 IF (N «GTe 13) GO TO 495
IFMT=2
GO TO 505
495 IF (N +GT. 18) GO TO 500
IFMT=3
GO TO 505
500 IFMT=4
PRINT DISTANCE MATRIX AND CURRENT RANKS
FIRST PRINT TITLES

505 WRITE (64510) (1,1=1,N)

510 FORMAT (//°' EUCLIDEAN DISTANCES FROM SUBSET MEANS (IN DISCRIMINANT
1 SPACE)*//(12X4,2315))

GO TO (515,520,525,4530), IFMT
515 WRITE (6,53%5)
G0 TO 555

520 WRITE (6,540)
GO TC 855

525 WRITE (64545)
GN TO 555

530 WRITE (64550)

535 FORMAT (54X, 'RANK!)

540 FORMAT (79X, 'RANK?)

545 FORMAT (104X, 'RANK?')

550 FORMAT (128X, 'RANK?')

NOW PRINT B8Q0DY

555 K=0
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D3 605 M=1,N

WRITE (64163) M

NR=NROW (M)

DO 605 I=1,NR

K=K+1

WRITE (64560) Ky{NAME(KyJ)9J=142)+(DIST(K,MM),MM=1,N)
FORMAT (2X9I341X9A44A2,1X423F5.2/(13Xy23F5,2))
GN TO (5654570,575458G), IFMT

WRITE (6,4585) IRTEMP(K)

GO TO 605

WRITE (64590) IRTEMP(K)

GO TO 605

WRITE (64595) IRTEMP(K)

GO TO 605

WRITE (6,600) IRTEMP(K)

FORMAT (*+%,54X,12)

FORMAT ('+',79X,12)

FORMAT ('+',104X,12)

FORMAT (*+',128X,12)

CONTINUE

STORE RANKS OF CURRENT ITERATION IN IRANK MATRIX
DO 61C K=1,MAXRO

L=1D(K)

TRANK(L,IT)=IRTEMP(K)

PRINT NO. OF CORE ITEMS AND ITS RATIQO
K=0

NCORE=0

DO 615 M=1,N

NR=NORIG(M)

DO 615 1=1,NR

K=K+1

IF (M LEQe IRANK(K,IT)) NCORE=NCORE+1
CONTINUE

CORRAT=NCORE/FLOAT(MAXRD)

WRITE (64620) NCORE,CORRAT

FORMAT (/' NOe. OF CORE ITEMS = *,13/' RATIO OF NO. OF CORE ITEMS T
10 TOTAL NO, OF ITEMS = ',F5.3)

IF (IT +EQe 1) GO TO 630

STOP ITERATING IF RESULTS OF CURRENT ITERATION SAME AS IN PREVIOUS
DO 625 K=1,MAXRO

IF {(IRANK(K,IT) oNE, TRANK(K,IT-1)) GO TO 630
CONTINUE

ITER=1IT

GO TO 665

RE-ARRANGE DATA INTO NEW SUBSETS AND KEEP COUNT OF ROWS IN EACH
NEW SUBSET,

KNU=0

DO 645 M=1,N

NROW(M) =0

DO 645 K=1,MAXROD

IF (IRTEMP(K) +NEs M) GO TO 645
NROW(M)=NROW(M) +1

KNU=KNU+1

DO 635 J=1,NVAR

XALTI{KNUs J)=X(KoJ)

DO 640 J=1,2

NAMALT(KNU¢ J)=NAME(K,J)

IDALT(KNU)=ID(K)

CONTINUE

TRANSFER RE—-ARRANGED DATA INTO WORKING LOCATIONS
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725

730
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DD 655 K=1,MAXRO

DO 650 J=1,NVAR

X{KeJ)=XALT(K,J)

IDIK)=IDALT(K)

DO 655 J=1,2

NAME (K, J)=NAMALT(K,J)

ITER=IT

CONTINUE ITERATION

CONTINUE

TERMINATE ITERATION AND TABULATE RESULTS

WRITE (64160) TITL

WRITE (6,+,670) ITER

FORMAT (' SUMMARY OF',13,' ITERATIONS'/1X,24(%=1)/)

WRITE (64675) {JyJ=1,41TER)

FORMAT (1BX,2514)

TRANSFER CURRENT ROWS BACK INTO ORIGINAL ROWS

DD 680 K=1,MAXRO

L=1D{(K)

DO 680 J=1,2

NAMALTI{L,J)=NAME{K,J)

K=0

DO 690 M=1,N

WRITE (6,685) M

FORMAT (/1X,*SUBSET',13)

NR=NORIG (M)

DO 690 I=1,4NR

K=K+1

WRITE (6+695) Ky(NAMALTI(KyJ)9sJ=1+2) 3 (TRANK(KyJ)9J=1,ITER)
FORMAT (2X9I1342X9A4+A2+45X42514/(18X42514))

IF OPTION GIVEN, PUNCH OUT ITEM DISCRIMINANT SCORES OF LAST ITER,
IF (IPUN1 4LFe 0) GO TO 710

0N 700 K=1,MAXRO

WRITE (T7,705) (NAME(KsJ)9J=142)4(XR({KyJ)yJ=1,NVAR)

FORMAT (A4 ,A2 46X ¢BFBe4/ (12X +8FBe4))

IF OPTION GIVEN, PUNCH QUT EIGENVECTORS AND SUBSET DISCRIMINANT
SCORES OF LAST ITERATION,

IF (IPUN2 .LEe 0) GO TO 750

DO 715 I=1,NVAR

WRITE (T7,720) (RES(I4J)+J=1,4,NVAR)

FORMAT (12X48F8.4)

DO 725 M=1,N

WRITE (7,730) My{XAVR(M,J),J=14NVAR)

FORMAT ('SUBSET?41343X+8F8,4/112X48F8s4))

RETURN

END

% 3 e A 3 ok o e de Ae A ok sk e ik ok 3k ok ok ale 3k o Ak R ok ok vk ol e ok e e ok e e ok e e ok ok K o e e ok k3 ik e o sk ke e ok ok ade e ol ik ok ok ok
SUBROUTINE ORTHON (XY +BARSTDyByDyTHRES,COVyRyMAXROKVAR,NVAR,
1ICORyNUMORT ¢NCOV,4AyNSYM,KSTOP)
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SHUBROUTINE CORTHON FOR ORTHONORMALIZATION OF A SEY OF VARIABLES.
THE INPUT VARIABLES ARE FIRST ORTHOGONALIZED INTO PRINCIPAL
COMPONENTS, WHICH ARE THEN NORMALIZED TO ORTAIN A SET OF NEW
UNCORRELATED VARIABLES EACH WITH VARIANCE 1/(N-1)y, WHERE N IS
THE TOTAL SAMPLE SIZE.

IMPLICIT INTEGER (I-N), REAL (A-H,0-1)

DIMENSTION X({MAXRO,KVAR) sY(MAXROKVAR) ¢BAR(IKVAR) ySTNDIKVAR) 4B{KVAR),
1ID(KVAR) s TIKVAR) yRES(KVARGKVAR) y COVIKVAR 4KVAR) yRINSYM)

WRITE (6510) NUMDRT,A

FORMAT (//' ORTHONORMALIZATION REQUESTED'/' MAXIMUM NUMBER 0OF PRIN
1CIPAL COMPONENTS TO BE RETAINED :t,15/
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2' CUMULATIVE VARIANCE OF PRINCIPAL COMPONENTS TO BE RETAINED NOT T
30 EXCEED',F742+s' PERCENY OF TOTAL VARIANCE'/
4' ANY PRINCIPAL COMPONENT WHOSE VARIANCE IS LESS THAN 0,001 PERCEN
5T OF TOTAL VARIANCE TO BE AUTOMATICALLY IGNORED?)
IF (NCOV JLE, C) WRITE (6,15)
15 FORMAT (' PRINCIPAL COMPONENTS TO BE EXTRACTED FRNM CAORRELATION MA
1TRIX?)
IF (NCOV +GEe 1) WRITE (6,20)
20 FORMAT (' PRINCIPAL COMPONENTS TO BE EXTRACTED FROM COVARIANCE MAT
1IRIX")
WRITE (6,25)
25 FORMAT (' RAW DATA REFERS TO RE-SCALED DATA IF SCALE ALTERATION IS
1 REQUESTED, TO INPUT DATA OTHFRWISE®')
COMPUTE AND PRINT GRAND MEANS, GRAND ST. DEV'S, AND GRAND
CORRELATIONS OR COVARIANCES FROM RAW DATA.
CALL CORRE (MAXROyKVARy19XyBARySTDHyCOV4ReByDyT)
WRITE (6,30) BAR
30 FORMAT (*1GRAND MEANS COMPUTED FROM RAW DATA'//(1X,10F13.,2))
WRITE (6435) STD
35 FORMAT (//' GRAND STANDARD DEVIATIONS CCMPUTED FROM RAW DATAt'//
1{1X410F13,2))
IF (NCQV «GEes 1) GO TO 55
WRITE (6,40)
40 FORMAT (//* C = GRAND CORRELATION MATRIX (LOWER TRIANGLE) COMPUTED
1 FROM RAW DATA'//)
K=0
DO 45 I=1,KVAR
M=K+1
K=K+]1
45 WRITE (6450) (R{J)y4J=MuK)
50 FORMAT (1X,14F9,.4)
GO TO 85
55 M=MAXRC-1
DD 60 I=1,KVAR
DO 60 J=1,KVAR
60 COVI(I,J)=COVII,J)/M
WRITE (6,465)
65 FORMAT (//' C = GRAND COVARIANCE MATRIX (LOWER TRIANGLE) COMPUTED
1FROM RAW DATAY'Y//)
DO 7C T=1,KVAR
TO WRITE (6,75) (COVI(IygJd)ed=1l,1)
75 FORMAT (1X,10F13,2)
STORE COVARIANCE MATRIX IN IBM STORAGE MODE 1
K=0
DO 80 J=1,KVAR
00 80 I=1,J
K=K +1
80 R(K)=COVI(I,J)
COMPUTE AND PRINT EIGENVALUES AND NORMALIZED EIGENVECTORS OF
CORRELATION MATRIX OR COVARIANCE MATRIX, WHICHEVER IS REQUESTED.
85 CALL EIGEN (R,RES,KVAR,0)
RECOVER EIGENVALUES FROM THE MAIN DIAGONAL CF R MATRIX
K=0
DO 90 I=1,KVAR
K=K+1
90 D(I1)=R(K)
WRITE (6,95) D
95 FORMAT (//' EIGENVALUES OF C MATRIX'//(1X,10F13,2))
SUM=0,0
DO 96 I=1,KVAR
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96 SUM=SUM+DI(I)
WRITE (6,97) SuM
97 FORMAT (//' TRACE OF C MATRIX = *,F20.6)
DO 98 I1=1,KVAR
98 T(1)=1C0*D(1)/SUM
WRITE (6,99) T
99 FORMAT (//' PERCENTAGE OF TRACE DUE TO EACH EIGENVALUE'//
1(1X414F942))
DETERMINE NO. OF PRINCIPAL COMPONENTS TO BE RETAINED
MM=0
SUM=0,0
DO 100 I=1,KVAR
RUI)=SUM+T(I)
IF ((A +GEe B(I) 4ORe B(I)=A .LTe ¢OLl) «ANDe T(I) oGE. ,0C1)
LMM=MM+1
100 SUM=B(T)
IF (MM .GT, NUMORT) MM=NUMORT
NVAR=MM
NVAR IS THE NUMBER OF PRINCIPAL COMPONENTS RETAINED
WRITE (6,105) B
105 FORMAT (//* CUMULATIVE PERCENTAGE OF TRACE DUE TO EACH EIGENVALUE®
1//(1X,14F9,2))
WRITE (6,110)
110 FORMAT (//* EIGENVECTORS OF C MATRIX, NORMALIZED, AS COLUMNS®//)
DO 115 I=1,KVAR
115 WRITE (6450) (RES(I,J)sJ=1,KVAR)
COMPUTE AND PRINT CORRELATIONS WITH PRIN., COMPS, IF OPTION GIVEN
IF (ICOR. LE. 0) GO TO 121
DO 117 I=1,KVAR
DO 117 J=1,KVAR
IF (STD(I) 4GTe 040 <ANDe D(J) «GTe 0.0) GO TO 116
COVI1,J4)=0.0
GO TO 117
116 COVII4JI=RES(I,J)*SQRTIDI(J))
IF (NCOV o+GE. 1) COV(I,J)=COV(I,J)/STD(I)
117 CONTINUE
WRITE (6,118)
118 FORMAT (//' CORRELATIONS BETWEEN INPUT VARIABLES AND PRINCIPAL COM
LPONENTS '/ INPUT VARIABLES IN ROWS, COMPONENTS IN COLUMNS'//)
DO 119 I=1,KVAR
119 WRITE (64120) Iy (COVI(I4J)4J=14KVAR)
120 FORMAT (' VARTABLE',14,5Xs14FBe4/(18X,14F844))
TRANSFORM INPUT VARIABLES TO HAVE ZERO MEANS
121 DO 122 J=1,KVAR
DO 122 K=1,MAXRO
122 X(KyJ)=X(KyJ)-BAR(J)
IF ORTHOGONALIZATION IS BASED ON CORRELATION MATRIX, STANDARDIZE
INPUT VARIABLES TO HAVE UNIT VARIANCES.
IF (NCOV +GE. 1) GO TO 126
DO 123 J=1,KVAR
IF (STN(J) +LE. O) GO TO 124
DO 123 K=1,MAXRO
123 X(KsJ)=X(KyJ)/STD(J)
GO TO 126
124 WRITE (6,125)
125 FORMAT (//' JOB TERMINATED : AT LEAST ONE INPUT VARIABLE HAS ZERO
1VARIANCE AND STANDARDIZATION CANNOT BE PERFORMED'/
2' DELETE SUCH USELESS VARIABLES OR USE COVARIANCE OPTION')
KSTOP=1
RETURN
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126

130

135

140

100

110

115

COMPUTE DATA SCORES WITH RESPECT TO PRINCIPAL CCMPONENTS, AND
NORMALIZE, USE AT MOST AS MANY PRINCIPAL COMPONENTS AS REQUESTED.
DO 130 K=1,MAXRO

DO 130 J=1,NVAR

Y{KyJ)=040

NO 130 L=1,KVAR

YKo J)=Y{KeyJ)#X(KGyLI*RES{LHJ)

XM=SQRT (FLOAT{MAXRO-1))

DN 135 J=1,NVAR

DO 135 K=1,MAXRQO

X{KeJ)=Y(KyJ)/ (XMAXSQRT(D(J)))

WRITE (6,140) NVAR

FORMAT (//% NOTE : CLASSIFICATORY ANALYSIS AND ITERATIONS ARE STAR
1ITING' /' NUMBER OF PRINCIPAL COMPONENTS RETAINED :2°%,15/

2' ALL COMPUTATIONS THAT FOLLOW ARE BASED ON ORTHONORMALIZED DATAY/
3" SPACE DEFINED BY ORTHONORMAL VARTABLES WILL HEREAFTER BE CALLED
4INITIAL SPACE?')

RETURN

END
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SUBROUTINE NROOT (MyAaBeXL o XyNORM)
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EIGENVALUES AND EIGENVECTORS OF A REAL MATRIX OF THE FORM
B-INVERSE TIMES A, WHERE A AND B ARE SYMMETRIC, B PDSe. DEFINITE,
SUBROUTINE SLIGHTLY MODIFIED FROM SUBROUTINE OF SAME NAME PROVIDED
IN THE IBM SCIENTIFIC SUBROUTINE PACKAGE.

IMPLICIT INTEGER (I-N), REAL (A-H,0-7)

DIMENSION A(1)4B{1)¢XL{1)yX(1)

STORE MATRIX B IN IBM STORAGE MODE 1

K=1

DO 100 J=2.M

L=M*(J-1)

DO 100 I=1.+J

L=L+1

K=K+1

B(K)=B(L)

COMPUTE EIGENVALUES AND EIGENVECTORS OF 8

MV=0

CALL EIGEN (BysXyMyMV)

FORM RECIPROCALS OF SQUARE ROODOTS OF EIGENVALUES. THE RESULTS ARE
PREMULTIPLIED BY THE ASSOCIATED EIGENVECTORS,.

L=0

DO 110 J=1,M

L=L+J
XL{J)I=1.0/SQRT(ABS(B(LI))
K=0

DO 115 J=1,M
DO 115 I=1.M
K=K+1
BIK)=X{K)*XL(J)
FORM (B*%(—-1/2))TRANSPOSE * A * (B*x*(-1/2))
DO 12C I=1.M
N2=0

DO 12C J=1,M
N1=M%x(I-1)
L=Mx(J-1)+1
X(L)=040

D0 120 K=1,M
N1=N1+1

N2=N2+1
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X(L)=X{L)+BINL)XA(N2)
L=0

DD 130 J=1,M

DO 130 I=1,J

N1=1-M

N2=M*x(J-1)

L=L+1

A(L)=0,0

DO 130 K=1,M

N1=N1+4M

N2=N2+1
A(L)I=A(L)+X(NII*B(N2)

COMPUTE EIGENVALUES AND EIGENVECTORS OF A

CALL EIGEN (A,X,M,MV)

L=0

DO 140 I=1,M
L=L+I
XLEIY=A(L)

COMPUTE EIGENVECTORS OF B-INVERSE * A
DO 150 I=1.M

N2=0

DO 150 J=1l.M

N1=I-M

L=M%x(J=-1)+1]

A(L)=0.0

DO 15C K=1,M

N1=N1+M

N2=N2+1
A(L)=A(L)+BINL)*X (N2)
NORMALIZE EIGENVECTORS IF SO REQUESTED
IF (NORM oLEe 0) GO TO 185
L=0

K=0

DO 180 J=1,.M

SUMV=0. 0

DO 170 I=1,M

L=L+1

IF (ABS({A(L)) «LT. 1.,0E-35) A(L)=0.0
SUMV=SUMV+A(L)*A(L)
SUMV=SQRT(SUMV)

DO 180 I=1,M

K=K+1

X(K)=A{K)/SUMV

GO 70 195

K=0

DD 190 J=1,M

DO 190 I=1,M

K=K+1

X{K)=A(K)

RETURN

END

3 ke o e ok o ook sk ok ok ok

SUBROUTINE DATA
ok ok ook ok ok ok ok ok ok

THIS IS A DUMMY SUBROUTINE REQUIRED IN THE SUBROUTINE CORRE.

RETURN
END

780
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783
784
785
786
787
788
789
730
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
8l4
815
816
817
818
819
820
821
822
823
824
825

826

827
828
829
830
831
832
833
834
835
836



Table 1.-Complete print output from hypothetical problem.

ITERIM = "ITERATIVE IMPROVEMENTS" PROGRAM BY F. DEMIRMEN, GEOLOGY DEPT., STANFORD Ue.y 1968

J40B NC. 1

JOGB TITLE : SAMFLE PROBLEM USING FYPCTHETICAL CATA
NUMBER OF ITEMS H 35

NUMBER OF INFUT VARIABLES : 4

NUMBER OF SUESETS H 5

MAXIMUM NOo CF ITERATICNS REQUESTEC : 5

SUBSET SIZES, IN CCNSECUTIVE ORCER = 6 8 5 9 7

INPUT FORMAT 2(A44A2,6X94F640)

SCALE ALTERATION OF INPUT VARIABLES NOT REQULESTED

NORMALIZATION CF EIGENVECTORS ASSOCIATED WITH DISCRIMINANT FUNC TIONS REQUESTED

FULL PRINT REQUESTEC

COMPUTATION CF F-STATISTIC REQUESTED

COMPUTATICN CF CCRRELATIONS REQUESTED

PUNCH OUTPUT OF ITEM DISCRIMINANT SCORES ASSOCIATED WITH LAST ITERATION NOT REQUESTED

PUNCH OUTPUT OF SUBSET DISCRIMINANT SCORES AND EIGENVECTORS ASSOCIATED WITH LAST ITERATION NOT REQUESTED

ORTHONORMALIZATION REQUESTED

MAXIMUM NUMBER CF PRINCIPAL COMPONENTS TO BE RETAINED : 4

CUMULATIVE VARIANCE OF PRINCIPAL CCMPONENTS TO BE RETAINED NOT TO EXCEED 100,00 PERCENT OF TOVTAL VARIANCE

ANY PRINCIPAL COMPONENT WHOSE VARIANCF IS LESS THAN 0,001 PERCENT OF TOTAL VARIANCE TO BE AUTOMATICALLY IGNORED
PRINCIPAL CCMPCNENTS TO BE EXTRACTEC FRCM CORRELATION MATRIX

RAW DATA REFERS TO RE-SCALED DATA IF SCALE ALTERATICN IS REQUESTEC, YO INPUT DATA OTHERWISE



GRAND MEANS CCMPUTED FROM RAW DATA

112.26 103,09 101.69 99,60

GRANLC STANCARC CEVIATIONS COMPUTEC FROM RAW DATA

51e41 21.61 26.C1 15445

C = GRAND CORRELATICN MATRIX (LOWER TRIANGLE) COMPUTED FROM RAW DATA

1.,CC00
Ce 7226 1. CCOC
-0e5798 -C.6568 1,0000
EIGENVALUES CF C MATRIX

3.21 Ce43 0.28 0.08

TRACE CF C MATRIX = 3999989

PERCENTAGE OF TRACE DUE TO EACH EIGENVALUE

8C.34 10.175 6088 20C3

CUMULATIVE PERCENTAGE OF TRACE CUE TO EACH EIGENVALUE

80.34 91.09 97,57 100,00

EIGENVECTORS OF C MATRIX, NORMALIZED, AS COLUMNS

0,4831 Ce5453 <-046577 -0,1915
05127 Cel667 06652 -065166
~-0.4619 C. 8166 0.2886 0.1777
0.5389 C.0551 0. 2041 0.8154

CORRELATIONS BETWEEN INPUT VARIABLES AND PRINCIPAL CCMPCNENTS
INPUT VARIABLES IN ROWS, COMPONENTS IN COLUMNS

VARIABLE 1 Ce 8660 0,3576 -0.3451 -C,C545
VARIABLE 2 09190 0,1093 06,3490 -0.1471
VARTABLE 3 ~Ce 8280 045375 001514 0,0506
VARIABLE 4 0.9661 0.03¢1 0.1071 C(C,2322

NOTE 2 CLASSIFICATORY ANALYSIS AND ITERATIONS ARE STARTING

NUMBER OF PRINCIPAL COMPONENTS RETAINED : 4

ALL CCMPUTATIONS THAT FOLLCW ARE BASED ON CRTHONORMALIZED DATA

SPACE CEFINEC BY ORTHONORMAL VARIABLES WILL HEREAFTER BE CALLED INITIAL SPACE
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SAMPLE PRCBLEM USING HYPCTHETICAL LCATA

CRTHONCRMALI 2ZED " INITIAL™ CATA

SUBSET 1
1 S' 2 ‘001384 002689 0.0371
2 S- 3 -0s0769 062439 -0,0009
3 S- 6 000118 0.2370 ‘000546
4 S- 8 —060377 0Cel214 0.C586
5 S’ 9 ‘000682 000563 001150
6 S-1¢C -0s 0460 0o01186 0.0430
SUBSET 2
7 S- 4 -0,0076 043022 -0.1338
8 S§- 5 0e0300 043263 -0,2051
9 S-17 00074 041732 0604328
10 S-11 0.0477 041104 -0,0184
11 S-12 0.0645 061215 -0,1374
12 S-13 061535 -0,0357 -0,2035
13 S-14 0,0864 -0,0828 -0,1530
14 S-21 0. 0700 000320 -0625S0
SUBSET 3
15 S-1 —0e2455 062677 06,0795
16 5-17 -0e1790 -0,1671 -Ce 0156
17 5-18 —042018 -062457 -0,0978
18 S-16 -0e1833 -0,2656 -0,3098
18 $-20 -0.0880 -041525 -0.37C6
SUBSET 4
20 S-22 0e2340 —-043161 -0,2717
21 S-23 0e3412 -0,0434 —-0,126€2
22 S-24 0.4703 00,1274 0.0076
23 S5-25 063202 -0 0544 GC.2228
24 S§-26 0.1788 -0.1488 042967
25 S-217 Cel509 -0.1516 062769
26 S5-28 0. 0966 -0,12C7 0425173
217 S-29 00376 —-0.0979 0.,1125
28 S-3¢0 0.0200 O0,0160 00,0909
SUBSET 5
29 S-15 -0.,0595 -0.,1613 00,0102
30 S-1¢ -0.1474 -0.1433 0,0800
31 S-31 ~0,0521 -0,0644 062411
32 S-32 —041447 -0.0441 0.2184
33 S$-33 -0.2107 -0,0851 0.0484
34 S-34 -042347 -0.,1015 0,0362
35 §-35 -0.1992 -0,0410 0,0856

ITERATICN 1

MEANS OVER SULBSETS (IN INITIAL SPACE)

SLBSET 1 060592 04,1743 0.0330
SUBSET 2 0.0565 0.1184 -0,1333
SUBSET 3 -061795 ~061126 —0,1437
SLBSET 4 02055 -0,0877 0,0963
SUBSET 5 -061498 -0.0915 0.1028

31

Ce 0214
-C,02¢€9
-°o0371
-C02178
-Ce 3225
-041465

-0.0280
-0.1063

CsCl4al
-C.0367
-C. 0438

Ce0226
-0,2037
'002024

0.3693
C. 1181
0.1634
0.1385
CeC264

-0.1685
0. 0784
Ce6217

-C.1501

-Cel154
0.,0353
C. 0501
C.0557

-0.0746

-0.,0315
0.0839
’000665
-0.0362
C. 0885
0.1671
-0.0422

’0.1215
-0,0730
Ce 1632
0.0372
C. 0233



GRAND -0.0000 0,0000 0,0000 0,0000

STANC2RD CEVIATICNS OVER SUBSETS (IN INITIAL SPACE)

SUBSET 1 00497 040867 04,0571 C.1317
SUBSET 2 0.0505 0.1472 00,1006 GC,0893
SUBSET 3 0.0575 002181 041913 0,1263
SUBSET 4 0.1503 0.1231 0.1961 C,.2412
SUBSET 5 00720 04,0469 0.0906 00,0890
GRAND 0.1715 041715 061715 G.1715

B = BETWEEN-SUBSETS SCATTER MATRIX (IN INITIAL SPACE)
DEGREES OF FREECOM = 4

00264 044859 —-C.1527 —-043325
061273 -041527 044093 -0.,0145
~0.0919 -0.3325 -0.C145 C.2807

W = WITHIN-SULBSETS SCATTER MATRIX (IN INITIAL SPACE)
DEGREES OF FREEDCM = 30

002552 -0s0264 -001273 C.0919
-0.0264 045141 00,1527 0.3325
=0e1273 061527 065907 0.0144

0.0919 0.3325 GC.0144 0.7194

T = TOTAL SCATTER MATRIX (IN INITIAL SPACE)
DEGREES OF FREEDOM = 34

1.0000 0,00C0 -C.CCCC 0.0000
0.,0000 11,0000 -0,0000 C,0000
-0,0000 -C,0000 11,0000 -0,0000
0,0000 00000 -0,0000 11,0000

TRACE OF B = 1.9207 ; TRACE OF W = 200794
(TRACE OF B)/{TRACE OF W) 0,923685

1]

EIGENVALUES CF W-INVERSE * B
4,54475 3,06972 0.51366 0,00744
TRACE OF W-INVERSE * B = 8,13¢557
PERCENTAGE CF TRACE CUE TC EACH EIGENVALUE
55486 27.73 6631 0. 0S
CUMULATIVE PERCENTAGE CF TRACE CUE TO EACH EIGENVALUE
55486 S3.59 99.91 100.0¢C
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EIGENVECTCRS OF W-INVERSE * By, NCRMALIZED, AS COLUMNS

0.8236 —0e4361 -Ce3578 (s.C30C2
063956 046807 0.1261 Co6035
~0e3878 —-0e3750 —-Ce 2635 Co7575
RATIO GF WITHIN TO TOTAL SCATTER IN ljeeer 4—DIMENSIONAL DISCRIMINANT SPACE
CelBE 00 Cos44E-C1l Coe29E-Cl 0.2SE-C1
WILKS LAMBDA = 0.29060726E-01
TEST FOR FYPOTHESIS THAT SUBSET MEAN VECTCRS ARE EQUAL =

F = 11.347 3 CEGREES CF FREEDCM : N1 = 16y N2 = 83
THE TEST ASSUMES NORMALITY AND A CCMMCN DISPERSION MATRIX

DISCRIMINANT SCCRES FCR ITEMS

SUBSET 1
1 S 2 -0.0114 C.2190 041072 (C.1835
2 5- 3 0.0435 0.21C4 GCeC673 Cal242
3 S- 6 0s1112 Co.13947 =-C.0072 C.1018
4 S5- E 01085 0.1585 (C.1578 -C.0784
5 §-9 0.1052 0.1360 00,2465 —C.1840
6 S-1C Ce0711 0.1372 061213 -0,0301
SUBSET 2
T S- 4 0,1078 Ce2755 -04C628 Co.1280
8 S~ ¢ Cel700 043410 =-0.1054 00,0667
3 S-1 0.0745 (0s(C8S7T CeC515 0,12¢€3
1¢ S-11 0.0949 0.0764 -0.0054 C.0357
11 S$-12 0.1015 0.1325 -0.1087 0.0082
12 S-13 0.0787 -C+0062 —-Cs 2408 -CsC5C0
13 S-14 0.0987 000513 -0.0975 =-C.2395
14 S-21 0s1172 (.1836 -Cel1678 -Ce1958
SUBSET 3
15 S§S-1 -042297 0.1145 060550 0.4536
16 S-117 -0s2617 -CeC711 -0.0167 ~-0.0216
17 S-18 -043387 -0,09€8 -0,1014 -C.0548
18 S-19 —Ce3476 -C40142 -0,2819 -0.,1374
16 S-20 -0e1883 (0e0SC7 -0e3127 -0.1661
SUBSET 4
20 S§-22 060998 =0.1324 -0,2935 -0.3784
21 Ss-22 062181 -0e1526 -Ce2634 C.0123
22 S-24 061952 -0.3611 —-0.3740 (.5685
23 S-2°% 0e3276 -042204 Cel227 -C.0819
24 S-2¢6 01708 -0.2673 C.2131 -0.1016
25 §=217 0.0844 -0.3067 041496 C.0082
26 5-28 0.0438 -Ce2587 Cel1509 (GC.0316
27 5-29 -0.,0157 -0.1545 ©C.04S56 (.0121
28 S-3C 0e 0628 ~0.01C3 0,0994 -0.,0238
SUBSET 5
29 S§-15 -0.0994 -0.,0763 0.0210 -C.1205
30 S-1¢ -Ce2009 -0.1004 00722 -0.0076
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31 S-31 =0.0132 -0,1037 0.2398 -C.0313

32 S$-32 =0.0959 -0.0505 (C.2452 -C,0045
33 S-33 ~0e2356 -0,0206 00727 Cl.0212
34 S-34 ~C0e2938 -0.0455 060412 00,0672
35 5§-35 =0e1535 060372 061543 -0.0416

DISCRIMINANT SCORES FOR SUBSETS

SUBSET 1 0,C714 041760 06,1155 10,0195
SUBSET 2 0e 1054 0s.1431 -0.C%21 -C0.0151
SUBSET 3 -0e2732 0.0046 -0,1315 00,0147
SUBSET 4 0.1319 -0,2071 -040162 0.0052
SUBSET 5 -0.1560 -0.,0514 0.1211 -C40167
GRAND C.0000 0.0000 0.,0000 0.0000

CORRELATIONS BETWEEN INPUT VARIABLES AND DISCRIMINANT FUNCTIONS
INPUT VARIABLES IN ROWS, GCISCRINMINANT FUNCTIONS IN COLUMNS

VARIABLE 1 0.8338 0.0382 -0.5386 0.,1155
VARIABLE 2 Ce 8997 -044296 0.0354 0.0685
VARTABLE 3 ~0+4704 006426 064745 043751
VARIABLE 4 067329 -0e5356 -043344 0,2533

EUCLICEAN DISTANCES FROM SUBSET MEANS (IN DISCRIMINANY SPACE)

1 2 3 4 5
RANK
SUBSET 1
1 S- 2 CelS 0431 0445 0s5C 0437 1
2 S' 3 0.12 0023 0044 0.45 0.36 1
3 S- 6 0el5 0615 0,45 0641 0440 2
4 S- 8 0.11 0026 0051 0’41 0.34 1
5 §- 9 0e25 0638 0055 0e47 Ce38 1
6 S-10 0606 0622 0645 0438 0430 1
SUBSET 2
7 S- 4 0e24 0620 0449 0e5C 0,48 2
8 S‘ 5 0030 0022 0056 0056 0.56 2
9 S-7 Oel5 0421 0442 0433 0,31 1
10 s-11 Cel16 0el2 0,40 0,25 0.31 2
11 S-IZ 0.23 0003 0.40 0.35 0039 2
12 s-13 Ce4l 0622 0037 0Oe31 Ce43 2
13 S-14 0636 0e24 0645 0437 0442 2
14 S-21 0e36 0620 0,48 Qo447 0eSC 2
SUBSET 3
15 ¢- 1 Oe54 0660 0649 0466 0451 3
16 S-17 0s44 0443 0014 0442 0617 3
17 s-18 0¢54 0e51 0ol4 0,49 0,29 3
18 5-19 0.63 0.53 0023 0.60 0.46 3
19 s-20 0e54 0640 0e28 0656 0,48 3
SUBSET 4
20 S-22 0.65 0.50 0.58 0.48 0061 4
21 5‘23 0.52 0.36 0.53 0.27 0.55 4
22 S-24 092 0483 0685 0,69 0,90 4
23 5‘25 0048 0.48 0.70 0026 0052 4
24 S-26 0e48 0652 06464 0426 De4l 4
25 5‘27 0.48 0.51 0055 0.20 0035 4



26 $-28
21 S-29
28 $-30
SUBSET 5
29 S-15
30 s$-16
31 S§-31
32 S$-32
33 §5-33
34 5-34
35 §-35

044
0.35
0.19

0.35
0.39
0.32
0.31
0.37
Ce 444
06,27

NC. CF CORE ITEMS

RATIO CF NCe.

" ITERATICN

0.48
0.35
025

034
0e42
0.43
Oe 44
04l
O0ea7
0.37

= 32
CF CORE ITEMS TO TCTAL NGC.

MEANS QOVER SUBSETYS (IN

SUBSET
SUBSET
SUBSET
SUBSET
SUBSET
GRANC

VW N e

STANDARD DEVIATIONS OVER SUBSETS (IN INITIAL SPACE)

SUBSET
SUBSET
SUBSET
SUBSET
SUBSET
GRAND

VT WN e

B = BETWEEN-SUBSETS SCATTER MATRIX (IN INITIAL SPACE)

0.50
0.35
Oe4l

0.28
C. 24
Oe&7
0. 42
0.21
0. 15
0.32

0.20
0.17
024

030
03¢
0.31
0.38
Qe42
O.46
0.42

0.29
0.19
0.22

O0.16
C.08
0.19
Cel4
0.10
C.18
0.10

INITIAL SPACE)

“0.0485
0.0570 0.1264
-0e1795 -0,1126
0.2287 -0.,1007
-0.1498 -0,0915
-0,0000

0.0535
060499
0.0575
0e1424
0.0720
0.1715

DEGREES OF FREEDGM =

4

0.7791
0.0221
0.1134 -0.1550
-0,0770 -0.3357

0.1426

0. 0000

0.,0928
0.1523
0.2181
0.1249
0. 0469
0.1715

0.0221
0.4733

W = WITHIN-SULBSETS SCATTER MATRIX

DEGREES OF FREEDOM

30

002209 -

-0.0221

-0.1134
0.0770

0,0221
0e 5267

03357

0.C554 -C.1075

-0.1456
-0.1437
0.0970
0.1028
C. 0000

0.0379
0.C7S7
0.1913
Ce 2057
0. 0906
0.1715

0.1134
-Ce 1550

‘0 00794
Cel632
C.0512
0,0233
C. 0000

0.1284
C.C833
0.1263
C.2539
0. €850
0.1715

-0.0770
-C. 3357

0,4435 -0.,0099

-0.0099

(IN INITIAL SPACE)

-0.1134
0. 1550

0.1550 05565

0.0099

35

0.2893

0.,0770
Ce 3357
0.0099
0.7108

—-a

(G R RS RE R RS

OF ITEMS = 0.914



TRACF QF B = 1.5851 3 TRACE OF W = 20149
(TRACE OF B)/(TRACE OF W) = CeS85243
EIGENVALUES CF W=-INVERSE % B

4e92224 3,3C564 0.60868 0.00754
TRACE OF W-INVERSE * B = 8.84450
PERCENTAGE CF TRACE DUE TC EACH EIGENVALUE

55465 37.38 6.88 0.0S

CUMULATIVE PFRCENTAGE OF TRACE CUE TO EACH EIGENVALUE

55465 93.03 3G.91 100.00
EIGENVECTCRS GF W~-INVERSE * B, NCRMALIZEC, AS COLUMNS

09078 =042672 -043225 Ce0234

Ce2517 0473C2 041481 C.6177

001722 ~Co42€3 Ce8565 C.23C8

—042880 =-0.4604 -043748 Ce7514
RATIO CF WITFIN TO TOTAL SCATTER IN ljeees 4-DIMENSIONAL DISCRIMINANT SPACE
Oel7E CC Ce3SE-C1 Ce24E-C1l Ce24E-(1

WILKS LAMENDA = 0.24186451E-01
TEST FCR FYPCTHESIS THAT SUBSET MEAN VECTORS ARE EQUAL :

F = 12.372 3 DEGREES OF FREEDCM : N1 = 16y N2 = 83
THE TEST ASSUMES NORMALITY AND A CCMMON DISPERSION MATRIX

DISCRIMINANT SCORES FOR ITEMS

SUBSET 1
1 8- 2 =0.0577 0.2075 0.1082 (.1875
2 S- 3 -0.0008 042114 0.0702 0.1284
2 S- 8 0.0691 041739 C.1619 =-C.C76C
4 S~ 9 0.0650 041585 0,2496 -C.1826
& S§-1¢C 000377 Cel479 Cel242 -0,0279
6 5- 7 0.0538 C.0962 0.0556 C.1279
7 S-3¢ 0.0593 0.0018 0.1018 -0,0247
SUBSFT 2
8 S- ¢ 00716 0.21C4 -C.CO15 C.1062
S S§- 4 0.0541 042929 -0.0569 041346
16 S- 5 0e1046 Ce367C -CaC972 0.0750
11 S-11 0.0785 00,0927 -0.0010 C.0375
12 S-12 Ce0781 Col5C6 -0.1041 0,0119
12 S-132 0.0888 (400S7 -Ce2376 =-(CoC484
14 S-14 040899 040757 -0.0948 —=0,2375
18 §-21 0.0853 Co.2088 -C41638 -0.1904
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SUBSET 3

16 S-1 -042481 040570 000485 (e4555
17 S-17 -0.2420 -0,1201 -0.0281 -0.,0232
18 S-18 -0e3089 -0,1588 ~Cell63 -0,0563
19 S$-19 -063265 =0,0760 -042975 -0,1358
20 S-20 -Cel897 040588 -063216 =-061619
SUBSET 4
21 S-22 0e1346 -0,0954 -0,2918 -C.37651
22 S-23 062545 -0,1049 -0.2539 0,0110
23 5'24 0.2795 '003249 -C.3616 0.5632
24 S-25 043586 -0,1516 0.1358 -0.0875
25 S-2¢ Ce2103 -042285 06,2192 -0,1090
26 S-27 0.1364 -0,2859 (0.1528 C,00C3
21 S-28 00872 -042472 061525 00247
28 S-25 0.0128 -0415%3 (C.C488 (0,0083
SUBSET 5
25 S§-15 -0,0838 -0,0918 0,0158 -0.1223
30 S-1¢ -0.1803 -0.1381 040634 -Ca0104
31 S-31 -0,0028 -0,1058 042387 -C.0354
32 S-32 -Ce 0944 -040704 00,2407 -0.0074
33 S§-33 -0e2298 -0,0673 (40637 (Co0201
34 S-34 -042805 -0.1038 06,0290 0,0657
35 §-35 -0s1643 00060 0,1473 -0,0420

DISCRIMINANT SCORES FOR SUBSETS

SUBSET 1 00323 001429 061245 0.0189
SUBSET 2 0.0814 061760 -0.0946 -0,0139
SUBSET 3 -0e2631 -0.0478 -061430 0,0157
SUBSET 4 0.1842 -0,1997 -0.0248 0.0040
SUBSET 5 ~-061480 -0,0816 0.1l141 -0.0188
GRANC 0.,0000 0,0000 0.0000 C.0000

CORRELATIONS BETWEEN INPUT VARIABLES AND DISCRIMINANT FUNCTIONS
INPUT VARIABLES IN ROWS, DISCRIMINANT FUNCTIONS IN COLUMNS

VARIABLE 1 06244 04,1820 -0.5112 -0.C9S7
VARIABLE 2 048573 -0,2012 -0,1606 0.0422
VARIABLE 3 -0.3206 0045€1 065229 Ce1490
VARIABLE 4 07211 —-0e2462 -0,4096 -0,0311

EUCLIDEAN DISTANCES FROM SUBSET MEANS (IN DISCRIMINANT SPACE)

1 2 3 4 5

RANK
SUBSET 1
1 §- 2 0420 0632 0445 0453 0.37 1
2 S- 3 Oel4 0424 0044 0448 0636 1
3 -8 Oell 0426 0451 0e44 0434 1
4 S“ 9 0.24 0038 0059 0050 0038 1
5 §-10 005 0423 0445 0041 0630 1
6 S- 7 Oel4 0422 0,42 0436 0,31 1
7 $-30 0o 15 0626 0e41 0627 0.22 1
SUBSET 2
8 S—- 6 0017 0.16 0045 0.44 0.40 2
9 S- 4 0626 06019 0s49 0653 0.48 2
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1¢ §- 5 0033 0.21 0.56 0058 0.56 2
11 S-11 Cel4 0sl4 0440 0431 0431 2
12 §-12 De23 0404 Ce4C Ce37 039 2
13 s-13 Ce4C 0022 0437 0432 Co43 2
14 5-14 0035 0.25 0.45 0038 0.42 2
15 s-21 Oe37 0419 0648 0.48 0.50 2
SUBSET 3
16 S- 1 0e53 Ceb60 0049 068 Co5l 3
17 3‘17 0041 0044 0014 0043 0.17 3
18 S-18 0e52 0652 0e14 0451 Ca2S 3
19 5'19 0062 0053 0.23 0061 0046 3
20 $-20 0e54 0640 0028 0457 (o048 3
SUBSET 4
21 5'22 0063 0.50 0058 0.48 0'61 4
22 S-23 050 0437 0453 0s26 0455 4
23 5'24 0.90 0.83 0085 0067 0090 4
24 S-25 0e45 0649 0470 0426 0452 4
25 S$-26 Oe 44 0e54 0e64 0027 0041 4
26 5-27 0044 0.53 0.55 0.20 0.35 4
27 S-28 0640 0449 0.5C 0421 0429 4
28 S-29 Oe31 0437 0435 0419 0,19 5
SUBSET 5
29 S-15 0e32 0635 028 0s32 Culéb 5
30 S-16 0e36 0444 0424 0438 0,08 5
31 S-31 Q.28 0.44 0.47 0.34 0.19 5
32 S-32 0e28 0645 0442 0e4l 0,14 5
33 5-33 0034 0043 0.21 0.44 C.IG 5
34 S-34 Oe4]1 0.48 0419 0,48 0,18 5
35 5-35 0.25 0.39 0.32 0044 0.10 5

NCe CF CORE ITENMS = 31
RATIO OF NO. OF CORE ITEMS TO TOTAL NO. OF ITEM, = 0.886

ITERATION 3

- - - - - ——

MEANS OVER SULBSETS (IN INITIAL SPACE)

SUBSET 1 -0.0485 00,1426 0,0554 -0,1075
SUBSET 2 0.0570 061264 -0s145€6 -Co 0794
SUBSET 3 =0e1795 ~041126 -041437 0.1632
SUBSET ¢4 0.2560 -0,1011 0.05948 (C.0505
SUBSET 5 -0e1264 -0.0923 0,1040 0.0274
GRAND 0.0 0.0000 0,0000 0,0000

STANCARD CEVIATICNS OVER SUBSETS (IN INITIAL SPACE)

SUBSET 1 0.0535 0.,0928 0,0379 C,.1284
SUBSET 2 0.0499 041523 0,0797 0.0839
SUBSET 3 0.0575 0.2181 001913 (.1263
SUBSET 4 061292 001349 042264 0,2743
SUBSET 5 0.0940 0.0435 0,0840 0,0832
GRAND 0e1715 001715 041715 041715

B = BETWEEN-SUBSETS SCATTER MATRIX (IN INITIAL SPACE)
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CEGREES OF FREEDOM = 4

Ce 7901 Coe0225 Co1084 -C.0833
00,0225 064733 -C.154S -C. 3355
01084 -0.1549 044437 -0.0101
-0,0833 -Ce 3355 -C.C1C1l C.2884

W = WITHIN-SLBSETS SCATTER MATRIX (IN INITIAL SPACE)
DEGREES OF FREEDOM = 30

062099 -0.C225 -C.1C84 (C.0833
=040225 045267 041549 Co3355
~0.1084 041549 04,5563 0.0101

0eC833 Ce3355 (.C1C1 (o117

TRACE OF B = 1. 6355 3 TRACE OF W = 20046
{TRACE CF B)/(TRACE OF W) = 0.595464
EIGENVALUES CF W-INVERSE * B
e 23869 2,25615 (C.61455 0.C0727
TRACE CF W-INVERSE * B = 9.22037
PERCENTAGE OF TRACE DUE TGO EACH EICENVALUE
5790 35435 6661 0.08
CUMULATIVE PERCENTAGE OF TRACE CUE 7O EACH EIGENVALUE

575C $3.25 95492 100.CC
EIGENVECTCRS OF W-INVERSE * B, NCRMALIZEC, AS COLUMNS

09052 -042865 -0.3123 (C.0307
0e2623 Ce7261l 061549 Ce6164
0.1518 -064321 C.85S51 C.2286
=062978 =044516 -0.3748 0.7529
RATIO OF WITHIN TG TOTAL SCATTER IN ljseeey 4-CIMENSIONAL DISCRIMINANT SPACE
Cel6F 00 Ce27E-C1 Ce23E-Cl Co.23E~C1
WILKS LAMEDA = Ce22169373E-01
TEST FCR FYPCTHESIS THAT SUBSET MEAN VECTORS ARE EQUAL :

F = 12,723 3 DEGREES 0OF FREEDCOM : N1 = 16y N2 = 83
THE TEST ASSUMES NORMALITY AND A CCMMON DISPERSION MATRIX

DISCRIMINANT SCORES FOR ITENMS
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SUBSET 1
1 S- 2 =0.0555 06,2092 0,1087 0.1861
2 S- 3 0.0022 042117 O0.C711 Go1275
3 s-8 0e0714 061720 061625 -0,0769
4 S- 9 0. 0665 061563 042496 -0,1839
5 S-10 0.0396 0601469 041246 -C,0287
6 S-7 0+0546 00983 0,0570 0.1276
7 S-30 0.0583 (.0003 0,1023 -0,0249
SUBSET 2
9 S- 4 0.0604 042921 =-0,0552 Cel344
10 S- 5 01132 063650 -040952 (0,0751
11 s-11 C.0803 0.0910 10,0002 0,0377
12 s-12 0.0825 06,1450 -0,1029 0.0125
13 S-13 0.0920 040079 -0,2368 -0,0467
14 S-14 Ce 0939 00,0732 -0,0949 -0.,2367
15 Ss-21 C.0928 0.2065 =0,1625 -C,1897
SUBSET 3
17 S-17 =0e2440 -0,1149 -0,0311 -0.,0240
18 S-18 -0e3106 -0,1521 -0,12C3 -0,0570
13 S-19 -0e3239 -C4 €650 -0,3020 -0,1359
20 S-20 ~041838 060627 -043245 -C.1615
SUBSET 4
21 S-22 001378 -061030 —-Ce 2922 -Ce3766
22 S-23 02550 -0.1101 -0,2511 0,0139
23 S-24 02734 -0e3290 -0.3559 0.,5674
24 S-25 0.3541 -0.1557 0.1352 -0.0858
25 S-26 0.2034 -0,2335 0,22C8 -0.1083
26 S-217 Cel284 -C42889 0,1540 0,0011
27 S-28 00800 -042491 041533 0,0251
SUBSET 5
28 S-29 0.0088 -0.156 0.,0488 (€,0085
29 S-15 -0.0853 ~0,0903 0,0141 -0.1226
30 S-16 =0.1839 -001343 00,0611 -C.01l14%
31 S-31 =0.0077 -0,10€0 0,2383 -0.,0363
32 S-32 -0.0986 -0.,0686 042395 -0,0089
33 §-33 =0s2321 -0.0623 10,0610 0,0187
34 S-34 ~0.2834 -0,0975 0,0260 0,0643
35 S-35 =041655 0.0093 0,1452 -0.,0436
DISCRIMINANTY SCORES FOR SUBSETS
SUBSET 1 0.0339 0.1421 041251 C.0181
SUBSET 2 0.0863 00,1742 -0,0935 -0,0134%
SUBSET 3 ~0e2625 -040420 -041460 0,0150
SUBSET 4 0.2046 -0.2105 -0.0321 C(C,0052
SUBSET 5 -0.1309 -0,0882 00,1043 -0.0164
GRAND 0.0000 G.0000 0,00C0 C.0000

CORRELATIONS BETWEEN INPUT VARIABLES AND CISCRIMINANT FUNCTIONS
INPUT VARIABLES IN ROWS, DISCRIMINANY FUNCTIONS IN COLUMNS

VARTABLE 1
VARIABLE 2
VARTABLE 3

066345 0,1687 -0e5043 -(0.0941
048543 -0,2194 -0,1509 (0.,0483
=0e3174 0+4628 045204 001434
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VART ABLE 4 047203 =-062615 -0,4017 -0,0244

EUCLICEAN DISTANCES FROM SUBSET MEANS (IN DISCRIMINANT SPACE)

1 2 3 4 5
RANK
SUBSET 1
1 §-2 0e20 0432 0445 06454 0437 1
2 S‘ 3 0014 0.24 0044 0049 0.36 1
3 S‘ 8 0011 026 0.51 0446 0034 1
4 S- 9 0e24 0438 0059 0652 0,38 1
5 §-10 0e05 0423 0e45 0643 0,29 1
6 S- 7 Oel4 0.22 0442 0438 0430 1
7 S$-30 Del5 0626 064l 0029 0,21 1
"SURSET 2
8 S- 6 Oel7 Oelb 0445 0e45 0,40 2
9 S- 4 0e26 0¢1l9 064G 0e54 Ce48 2
10 S- 5 0e33 0e21 0656 0659 0456 2
11 s-11 Celd Ool4 0040 0e33 0030 2
12 s-12 0423 0404 0440 0039 0.38 2
13 §-13 Ce40 0e22 06327 0e32 Co42 2
14 S-14 0e35 0425 0645 0639 0041 2
15 5‘21 0037 0019 0.48 0049 0.49 2
SUBSET 3
16 S‘ 1 Ce53 0060 0.49 0070 0.51 3
17 S-17 De4l Oo44 Ool4 0,46 0,18 3
18 S-18 0e52 0452 0el4 0453 0430 3
19 S-19 0e62 0453 0423 0663 0,47 3
20 5‘20 0054 0440 0.28 0.58 0048 3
SUBSET ¢4
21 £-22 0e¢63 0450 0,58 0048 0,60 4
22 S-23 0e50 06437 0653 0625 0653 4
23 S-24 0e¢90 0483 0,85 0e66 088 4
24 5‘25 0045 0049 0.70 0025 0050 4
25 $-26 Oe44 054 0e64 0428 0,39 4
26 S-27 De44 0453 0455 0s22 0433 4
27 S-28 0e40 0449 0450 0423 0627 4
SUBSET 5
28 S-29 0e31 0437 0435 0422 0,17 5
28 S-15 0e32 0635 0e28 0034 Cel5 5
30 S-16 0e36 0e44 0424 0441 0,08 5
31 s-31 0e28 0e44% Co4l 0e03€ 0418 5
32 §-32 0¢28 0445 0442 0e43 0.14 5
33 S-33 Ce34 0043 0e21 0eal Col2 5
34 S5-34 De4l 0448 0419 0,51 0,19 3
35 S-35 0e25 0639 0s32 0647 Coll 5

NCe CF CORE ITEMS = 30
RATIO OF ND., OF CORE ITEMS TO TOTAL NOe. OF ITEMS = 0.857

ITERATION 4

MEANS OVER SULBSETS (IN INITIAL SPACE)

SUBSET 1 -0s0485 041426 0,0554 -0.1075
SUBSET 2 Ne0570 Coel264 -0e1456 -CoCT794
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SUBSET 3 -0.1887 -001108 -0,1137 0,1638

SUBSET 4 0.2560 -0.1011 0.C%48 0.0505
SUBSET 5 -0.1109 -0,0910 10,1137 0,0074
GRAND 0.0000 0.00C0 0,0000 0.0000

STANDARD CEVIATICNS OVER SUBSETS (IN INITIAL SPACE)

SUBSET 1 00535 0.0928 0.0379 0.1284
SUBSET 2 00499 0.,1523 06,0797 00,0839
SUBSET 3 0.0562 0.1952 (C.1862 C,1130
SUBSET ¢4 061292 061349 042264 042743
SUBSET 5 00898 040468 06,0857 0,0660
GRAND 0el715 061715 0e1715 G0.1715

B = BETWEEN-SUBSETS SCATTER MATRIX (IN INITIAL SPACE)
DEGREES OF FREECOM = 4

0.8010 0,0242 0.1251 -C.100C4
00242 044733 -0,1558 -0,3370
0e1251 -Co1558 Co4220 -C.0216
-0.1004 -03370 -C.0216 (.3107

W = WITHIN-SUBSETS SCATTER MATRIX (IN INITIAL SPACE)
OEGREES OF FREEDCM = 30

041990 -0,0242 -0.1251 (.10C4
00242 005267 0,1558 0,3370
-0e1251 0.15%58 0.5780 0.0216

01004 03370 0.021¢ 0.68%4

TRACE OF 8 = 20070 3 TRACE OF W = 1.9931
(TRACE CF B)/(TRACE OF W) 1.006968

EIGENVALUES CF W-INVERSE * B
6464543 3,21804 0.56974 0.01202
TRACE COF W-INVERSE * B = 1044523
PERCENTAGE OF TRACE DUE TO EACH EIGENVALUE
63,62 20.81 5045 Oel2
CUMULATIVE PERCENTAGE OF TRACE DUE TO EACH EIGENVALUE

63,62 94443 99.88 100.00

EIGENVECTORS OF W-INVERSE * B, NORMALIZED, AS COLUMNS

Ce 8911 -0e3017 -0.3374 (C,0322
02639 07278 001056 Co6242
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0. 1730 -0s4145 Co853C Ca2659
-0e3261 -0.4555 —Ce3840 C.7339
RATIO GOF WITHIN TO TOTAL SCATTER IN ljeees 4—DIMENSIONAL DISCRIMINANT SPACE
0. 13E CO Ce21E-Cl Ce20E-Cl 0.20E-01
WILKS LAMEDA = 0e19519621E-C1
TEST FOR FYPCTHESIS THAT SUBSET MEAN VECTCRS ARE EQUAL =

F = 13.649 3 DEGREES OF FREECCHM : N1 = 16, N2 = 83
THE TEST ASSUMES NORMALITY AND A CCMMCN DISFERSION MATRIX

DISCRIMINANT SCCRES FOR ITENS

SUBSET 1
1 sS- 2 -Ns 0529 Cs2123 Ca0585 C.1889
2 S- 13 0.0044 Co2133 C.0%513 C.l287
3 S- 8 0.C795 041747 061592 -0.,0697
4 S-S 0e C791 Cel16C7 Co25C8 =-0.1732
5 5-1¢ 0.0455 0.1451 041210 -0.0235
6 5- 1 040553 040962 040479 0.1304
7 S-3C 0.0621 C.0C019 0.1012 -C.02CO
SLBSET 2
g 5- € CeC757 C.2085 =-040112 Ce1066
9 S- 4 00589 Ce29C4% -C.0689 (C.1323
10 S- 5 0e1120 043619 -0.1098 0.0721
11 S5-11 C. 0804 Co09C3 -C.C06C 040386
12 Ss-12 0.0801 0.1455 -C.1093 (.0092
13 S-12 0.C848 0.0018 -042378 -C.0548
14 S-14 Ce 0951 (e C658 —-0s0902 —-0.2391
15 5-21 0.0921 042017 -0,1634 ~-C.1952
SUBSET 3
16 S- 1 -0.2548 CeC6TT 0.0371 Ce.4514
17 S-17 ~0e2455 -041133 -0,0194 -C.0286
18 S5-1¢ -0e3149 -0.1518 -0.1040 =0,0660
19  S-1S -0e3322 -0,0727 -0.2837 -Cae 1524
20 S-20 -0s1914 040572 -0.3127 -0.1771
21 S-34 -0e.2842 -0+ 0942 Ca0351 0.0614
SUBSET 4
22 S=22 0e1330 =-0.1112 -0.2793 -0.3857
23 S-22 002452 -Ce1179 -0.2574 C.0079
24 5-24 042493 =063382 ~Ce3769 C(u.5574
25 S-2°% 0e3585 =-Co1601 041339 -0.0746
26 S=2¢6 0e2103 =Ce23C8 (e2229 -Ce0959
21T  S§=27 0.1309 -0.2867 01557 C.0058
28 5-2¢€ 0. 0824 =-0,2465 001548 0.0330
SUBSET 5
29 S-289 0.0089 -0.,1546 0.0515 C.0109
30 S5-1¢ -0, 0836 -0,0893 0.0238 -0.1230
31 S-16 -0.1827 -0.1312 CoC706 -C.0113
32 S-31 -040000 -0.1008 00,2419 -0.0266
32 S-32 ~Ce 0910 -0+0625 Ce2443 -Co0006
34 S§-32 -042307 -0.0587 0.0694 C.C179
35 S-35 -041598 040140 041521 -0.0402



DISCRIMINANT SCORES FOR SUBSETS

SUBSET 1 0.0390 0.1445 (C,1200 (.0233
SUBSET 2 0.0849 001713 -0.0996 -0,0163
SUBSETY 3 =062705 -040512 -0.,1079 00,0148
SUBSET 4 002014 -0.2131 ~-04C356 (0.0074
SUBSET 5 ~041056 -0,0833 0,1220 =0.,0247
GRAND 0.0000 0.0000 0.0000 0,0000

CCRRELATICNS BETWEEN INPUT VARIABLES AND CISCRIMINANT FUNCTIONS
INPUT VARIABLES IN ROWS, DISCRIMINANT FUNCTIONS IN CCLUMNS

VARTABLE 1 03588 042010 -0,4328 -0,1931
VARIABLE 2 Ce6485 —041787 -0e2424 —Qe 0044
VARIABLE 3 ~0.1108 044332 00,5105 0.1413
VART ABLE 4 Ce4607 -0e2165 -064120 -0.1661

EUCLIDEAN DI STANCES FRCM SUBSET MEANS (IN DISCRIMINANT SPACE)

1 2 3 4 ]
RANK
SUBSET 1
1 §- 2 0e2C D632 0444 Co54 0,37 1
2 §$- 3 Oe1l4 0624 0643 0449 0436 1
3 5-8 Oell 0626 0450 0446 0,32 1
4 S‘ 9 0024 0038 0.58 0.52 0036 1
5 S-10 0005 0423 0444 Ce43 0,28 1
6 S‘ 7 0.14 0.22 0041 0038 0030 1
7 S-30 0el5 0426 0440 0429 0,19 1
SUBSET 2
8 S- 6 Oel7 0ol6 0045 0045 0e36 2
9 S‘ 4 0.26 0019 0049 0054 0048 2
10 S- 5 0e33 0421 0457 0659 0456 2
11 S‘ll 0014 0014 0.39 0033 0029 2
12 S-12 0023 0004 0e.40 0639 0,38 2
12 s-13 0e4C 0622 0039 0632 Co42 2
14 5‘14 0.35 0025 0046 0.39 0.39 2
15 5“21 0.37 0019 0.49 0.49 0048 2
SUBSET 3
16 S‘ 1 0053 0060 0'48 0.70 0053 3
17 S-17 Oe4l Oe44 Qo012 0,46 0,20 3
18 S-18 Ce52 0652 0014 0453 0.32 3
19 S-19 0e62 053 0425 0463 0,48 3
20 S°20 0.54 0040 0031 0:58 C049 3
21 5‘34 0.41 0048 0016 0051 0.22 3
SUBSET 4
22 $-22 0e63 0650 0e60 0448 0459 4
23 5'23 0.50 0.37 0054 0.25 0052 4
24 S$-24 0eS50 0683 0485 04,66 0,88 4
25 5'25 0.45 0.49 0069 0.25 0'47 4
26 S$-26 Oe44 0054 0e62 0428 0437 4
21 S-27 Oe44 0453 0453 0422 0,32 4
28 $-28 0e40 0449 0648 0423 0426 4
SUBSET 5
29 5'29 0031 0037 0.34 0022 0.16 5
30 S-15 0e32 0435 Ca27 0434 Cols 5
31 S-16 0036 D44 0e.22 0041 0.11 5



32
33
34
35

S$-31
$-32
S-33
$-35

0e28 Oe44 0045 003¢ Colb
0e28 0e45 0e4C 0443 0.13
0e34 0443 0018 0.47 O.14
0e25 Ce39 0430 0e47 0.12

v o

NCe CF CCRE ITEMS = 30

RATIC OF NO.

OF CORE ITEMS TO TCTAL NO. OF ITEMS = 0.857



SAMFLE PRUOBLEM USING HYPOTHETICAL DATA

SUMMARY OF 4 ITERATIONS

| ——— - ———— -

SUBSET 1
1 S- Z 1 1 1 1
2 S- 3 1 1 1 1
3 S-6 2 2 2 2
4 S- 8 1 1 1 1
5 5~ 9 1 1 1 1
é& S§-10 1 1 1 1
SUBSET 2
7T S- 4 2 2 2 2
8 S- 5 2 2 2 2
9 S- 7 1 1 1 1
1¢ S-11 2 2 2 2
11 S-12 2 2 2 2
12 S-13 2 2 2 2
13 S-14 2 2 2 2
14 S§-21 2 2 2 2
SUBSET 3
15 s- 1 3 3 3 3
16 S-17 3 3 3 3
17 S-18 3 3 3 3
18 5-16 3 3 3 3
19 S§-20 3 3 3 3
SUBSET 4
20 S-22 4 4 4 4
21 S-23 4 4 4 4
22 S-24 4 4 4 4
23 S-25 4 4 4 4
24 S-26 4 4 4 4
25 5-217 4 4 4 4
26 S-28 4 4 4 4
27 S-29 4 5 5 5
28 S-30 1 1 1 1
SUBSET 5
25  $-15 5 5 5 5
30 S-16 5 5 5 5
31 S-31 5 5 5 5
32 §-32 5 5 5 5
33 S-33 5 5 5 5
34 S-34% 5 5 3 3
35 S§-35 5 5 5 5



Table 2. -Listing of input to hypothetical problem.

1 .
SAMPLE PRCUBLEM USING HYPOTHETICAL CATA
35 4 5 5 1 1 1 1 1 4 100. 0
6 8 5 & 7
(A4 4A2,6Xy4FE£40)

S=- 2 C001010000920001420000459
S- 3 CCC11600CCS80CC1310C0Ce8
5- 6 €001470001C60CC1180CG1C2
S- 8 €0C1130C01C70CC116000066
S- 9 £0CC940CC1070C011500CCa4
3-10 0001110001040001172000¢€S
END 1 ST SUBSET

S- 4 CC01570001010C01240CCCS2
S- 5 000178000104000119000CS7
S—- 1 £0C1280CC1080CC116000109
S-11 €C013900011000£1040C0117
S=-12 CC0157000107000190000118
$-13 €€01690001110C0C75000157
S-14 0001450001090CCCT790C0107
S-21 000164000104000088000067
END 2 ND SUBSET

S- 1 €000630000750CC1550CC041
S-17 000048000077000111000032
S-138 C0C041000C690C0106000022
S-19 C0006600006206CC970CCC1L7
S-2¢C €0011100007400C092000045
END 3 RD SUBSET

S-22 0001700001170CCC390C0164
S=23 €302080001350000530C0246
S-24 €002370C01480CCC580CC3¢6
§$-25 C001690001520€C0610C0220
S=26 000114000137000073000175
S-27 €001C60001300CCCT72CC1T8
5-28 00009700012300C0860CC156
S-29 €0CCSS0C011000C092000125
S-3¢C €CC1110CN1110CC1C20C01C5
END 4 TH SUBSET

S-15 C00CT7S0CC09500C096000069
S-16 CCCC45000C860CC1110COCAHT
§-31 c0C0680001080CC1080CACEL
S-32 C0CC48000C960CC121000044
S-33 €0C0420C0C780CC€1230C002C
$-34 £0003400007300C1250Q0C17
S-35 €000480C0C840C0125000014

END 5 TH SUBSET, END ALL DATA SET
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APPENDIX

Four theorems that have a bearing on computa=
tional options provided in the program are stated be-
low. Proofs are omitted and will be given, along
with discussion of other aspects, in a future paper.

In the interim, the interested reader may wish to prove
these theorems for himself. Mimeographed proofs are
also available from the writer upon request. For proof
of item (i), Theorem (3), see also Friedman andRubin

(1967).

Theorem 1: Let E(]) (nxp) be a score matrix in
some e(])-space, and E_(z) (nxp) = —E-(])Q-](/ki) anon-
singular diagonal transform of E''/, where k. (i=1,
..., p) are some positive values. Let C (])(Ipo) and

(_:(2) (pxp) be covariance matrices, both assumed to be

(M (2)

- and e\ ’=spaces, respec-
tively, Then, if )_(_(]) (nxp) and )£(2) (nxp) represent,

positive definite, ine

respectively, orthonormalized forms of E“) and 5(2

2

under covariance option, X(]) and )S( are related
orthogonally (it is implicitTy assumed that all princi-
pal components are retained in both cases). More
specifically, if we let A be the i-th eigenvalue of

c', Bi the i-th eigenvalue of (;(2), and if columns

of P (pxp) and Q (pxp) contain, respectively, nor=

mcI;zed eigenvectors of g_(]) and C(z), then X(]) =
o -3 Al

x(

A, where
A=D(E) Q' D (k)P D ()

is orthogonal. In the special instance where e(])-
variables are uncorrelated, or when ki =k for all i,

then A=1, i.e., X(]) = )_(.(2). If orthonormalization
is performed under the correlation instead of the co-
variance option, the respective orthonormalizedscore

matrices obtained from e(])- and e(z)—spaces are al-
ways equal, i.e., using the notation analogous to
that given above, always A = | and X“) = X(z).
Theorem 2: Let E (nxp) be a score matrix in
some e-space, and C (pxp) and R (pxp) positive
definite covariance and correlation matrices, respec-

tively, in this space. Then, if X(C) (nxp) and )_(_(r)
(nxp) represent orthonormalized forms of E under co-

. . . . c
variance and correlation options, respectively, )ﬁ( )

and )S(r) are orthogonally related (it is implicitly
assumed that all principal components are retained
in both cases). More specifically, if we let s be the

standard deviation of e )‘i the i-th eigenvalue of
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C, Bi the i-th eigenvalue of R, and if columns of P
(pxp) and Q (pxp) contain, respectively, normalized
eigenvectors of C and R, then )_(_(C) = )S(r) A, where

A=D{B) Q' Ds) P D)

is orthogonal. In the special situation where e-vari-

ables are uncorrelated, A=1, i.e., X(C) = X(r).
Theorem 3: Let X (nxp) be a partitioned score -

matrix in some x-space, B (pxp) and W (pxp), the

latter assumed to be posifive definite, the between

and within scatter matrices in this space, and Y (nxp)

the discriminant score matrix derived from X under

the assumption that eigenvectors associated with dis-

criminant functions (i.e., eigenvectors of W ]E) are
left nonnormalized. Then

(i) The ordinary Euclidean distances in the
discriminant space, assuming all discriminant functions
are used, are identical to corresponding Mahalanobis
distances in the initial space; that is, in our notation,
if we consider squared distances between, say, the
k-th and 1-th items in the h-th group,

- - v - -1
Ohk. “Yht ) Ok, "0 =G, 2 ) W

X

(k. “%h

1)

(it) If we let I—(y)

matrix in the discriminant space, tr 1;(

(pxp) be the total scatter
) =p+1'r_V_V-]§.
(iii) Discriminant functions are uncorrelated,

with the i-th discriminant function having a sample
variance (1 + Si) /(n = 1), where Gi is the i-th eigen-

value of W ]B.

Theorem 4: Let X (nxp) be a partitioned score
matrix in some orthonormal x-space, B (pxp) and W
(pxp), the latter assumed to be positive definite, the
between and within scatter matrices in this space, and
Y* (nxp) the discriminant score matrix derived from
X under the assumption that eigenvectors associated

with discriminant functions (i.e., eigenvectors of W lg)
are normalized. Then '
(i) Y* represents an orthogonal transforma-
tion of X .
{ii) Discriminant functions are uncorrelated
each with constant sample variance 1/ (n -1),
(iii) If we let V* (pxp) be the matrix whose

columns are normalized eigenvector of W-]B, the
element v of V*represents the correlation between

the i=th orthonormal variable x, and the j-th discrim=

inant function yf.



KANSAS GEOLOGICAL SURVEY COMPUTER PROGRAM
THE UNIVERSITY OF KANSAS, LAWRENCE

PROGRAM ABSTRACT

Title (If subroutine state in title):

Multivariate procedures and FORTRAN |V program for evaluation and improvement of classifications.

Date: November, 1968

Author, organization: _ Ferruh Demirmen, Geology Department,

Stanford University

Direct inquiries to: Author, or

Name: D. F. Merriam Address:  Kansas Geological Survey

Lawrence, Kansas 66044

Purpose /description:  Evaluates classifications by three criteria that measure the degree of "compactness"

of a partition, and improves classifications by the nearest neighbor algorithm in discriminant space.

Also performs principal component analysis, linear discriminant analysis, and one=way multivariate

analysis of variance.

Mathematical method: Described in text. Matrix inversion and direct computation of determinants

avoided.

Restrictions, range: Up to 300 items, 25 groups, 30 input variables, and 25 jterations allowed for

each classification. More than one classification can be processed in one run, Storage requirements

can be readjusted easily.

Computer manufacturer: IBM Model:___ System/360, Model 67

Programming language: FORTRAN IV, Level H

Memory required: 345 K Approximate running time:

Special peripheral equipment required:  None

Remarks (special compilers or operating systems, required word lengths, number of successful runs, other ma-
chine versions, additional information useful for operation or modification of program)

Subroutines CORRE, ARRAY, and EIGEN, provided in the IBM Scientific Subroutine Package . must

be available in the system. All options were tested repeatedly and successfully at Stanford University.
Compilation time on I1BM 360/67 is 25-30 seconds.
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COMPUTER CONTRIBUTIONS

. Mathematical simulation of marine sedimentation with IBM 7090/7094 computers, by J.W.

Harbaugh 9668 st s 1 . e e ST 00
A generalized two-dimensional regressnon procedure, by J R Dempsey, 1966 R . $0.50
FORTRAN IV and MAP program for computation and plotting of trend surfaces for degrees 1

through 6, by Mont O'Leary, R.H. Lippert, and O.T. Spitz, 12661 et $0.75
FORTRAN ll program for multivariate discriminant analysis using an IBM 1620 compufer, by

J.C.Davis and R.J. Sampson, e lavsn, S RER L 2190095050
FORTRAN 1V program using double Fourrer series for surface ﬁh‘mg of |rregu|ar|y spaced

data, by W.R. James, 1966. . . " 50575
FORTRAN |V program for estimation of cladistic relaflonshlps usmg the 1BM 7040 by R. L

Barticher; 1266 . %% o s 6 TRaD B Sl
Computer applications in the earth sciences: Colloquium on classification procedures,

edited by D.F. Merriam, 1966 . . . . 2% 100
Prediction of the performance of a solution gas drrve reservoir by Muskaf s Equahon by

Apolonio Baca, 1967 . iyt 8100
FORTRAN 1V program for mathematical simulation of marine sedlmenraflon with IBM 7040

or 7094 computers, by J.W. Harbaugh and W.J. Wahlstedt, 1967 . . . $1.00
Three-dimensional response surface program in FORTRAN || for the IBM 1620 compufer, by

Ri.J.Sampsoniand 3.C Davis; 19670 . s el BT

FORTRAN |V program for vector trend analyses of directional data, by W T Fox, 1967 . . $1.00
Computer applications in the earth sciences: Colloquium on trend analysis, edited by D.F.

Merriom and N,C, Cocke, 1967 . . . . $1.00
FORTRAN IV compu’rer programs for Markov chain experlmen’rs in geology, by W C Krumbem,

1967 % . 3o VL 00
FORTRAN 1V programs to determine surface roughness in topography for the CDC 3400

computer, by R, D, Hobson, 1967 . . . . AR X Bl
FORTRAN 1l program for progressive lmear fit of surfaces on a quadra’rrc base usmg an IBM

1620 computer, by A.J. Cole, C. Jordan, and D. F. Merriam, 1967 . o 31500
FORTRAN 1V program for the GE 625 to compute the power spectrum of geologrcal surfaces,

by J.E. Esler and F.W. Preston; 1967. . . $0.75
FORTRAN IV program for Q-mode cluster analysis of nonquanhrahve da’ra usmg IBM 7090/

7094 computers, by G.F. Bonham- Carter, 1967 . . . . . . . . vl 00
Computer applications in the earth sciences: Colloquium on time-series analysrs, D E:

Merriam, editor, 1967. . SR e 91400
FORTRAN Il time-trend package for the IBM 1620 computer, by J C Davis and R e

Sampson, A1967 vires e A s S T [R0T6)

Computer programs for mulhvarlafe analysrs in geology, D F Merrlam, edlfor, 1968 S s £ 51000
FORTRAN 1V program for computation and display of principal components, by W.J.

Wahlstedt and J.C. Davis, 1968 s vl SR e S R i e G e SO s 518200
Computer applications in the earth sciences: Colloquium on simulation, D.F. Merriam

and N.C. Cocke, editors, 1968. . . . o 1200
Computer programs for automatic contourlng, by D B Mclnfyre, D D Pollord and

RESSIitEhis 1968 M nisieS i oe e £ w0
Mathematical model and FORTRAN IV program for compurer srmulahon of delforc sedlmen'

tation, by G.F. Bonham=Carter and A.J. Sutherland, 1968 . . . 5 e 1500
FORTRAN IV CDC 6400 computer program for analysis of subsurface fold geomefry, by

EoHUT . (Whikten, 19884 e fus X4 3100
FORTRAN IV computer program for 5|mulahon of ’rransgressuon and regressron Wll‘h con’rmuou5'

time Markov models, by W.C. Krumbein, 1968. . . 3 0 G 1 00
Stepwise regression and nonpolynomral models in trend analysrs, by A T Miesch and Jad

Connor; L1768k s Pl o Ches S [0 0]
KWIKR8 a FORTRAN 1V program for mulhple regressron and geologlc trend analysrs, by

J.E_Esler, PiF 3 Smithy and ). C:Davis; 1968, & s, et S 200

FORTRAN 1V program for harmonic trend analysis using double Fourfer series and regularl

gridded data for the GE 625 computer, by J.W. Harbaugh and M.J. Sackin, 1968. . . $1.00
Sampling a geological population (workshop on experimenf in sampling) by J.C. Griffiths

and C. W. Ondrick, 1968. . . . 4 SR LS00
Multivariate procedures and FORTRAN IV program for evaluahon and rmprovement of

classifications,t by FertuhDenirmen il G6 Mt St Lo nt DM ol e LSRR Csbie s o e S 1500
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