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Editor’s Remarks

The following remarks are the author's preface to our "Workshop on experiment in sampling.” The workshop is the.fifth
in a series of colloquia on Computer Applications in the Earth Sciences. The colloquium is sponsored by the Geological Survey,
U.S. Geological Survey, Water Resource Branch (Kansas District), and University Extension. We would like to thank all people
concerned for help in preparation of the meeting. :

It is recognized generally that effective teaching of a science subject is achieved by having students perform
experiments which illustrate the principles and laws upon which the subject is based. In fKe geosciences the subject is
the earth and most experiments with earth materials rely heavily on sampling. This report outlines a series of experi=
ments in sampling common materials of the earth's crust; the sampling and measurements are performed in the field, a
feature which caters to the emphasis on field work that characterizes many geological investigations.

Sampling of a gravel pit has the "simple " objective of measuring the size and shape of some of the pebbles it con=
tains; it is not difficult to alter the location either in the field or from the field to the laboratory. Again, it is possible
also to change the variate from measurement of pebble size to counts of pebbles and counting may be performed in the
field or laboratory. Thus, these sampling experiments include a wide range of potential studies==the procedure is invari=
ant to change of scale over orders of magnitude of fractions of a millimeter to kilometers. T

The original experiments commenced in 1951 with measurement of size of quartz grains from the Homewood Quartzite
(Pennsylvanian of Pennsylvania) and studies of the Montoursville gravel, Montoursville, Pennsylvania, a fluvioglacial
terrace gravel in the vurley of the Susquehanna River near Williamsport, Pennsylvania; commenced in 1956 (with kind
permission of the Lycoming Silica Sand Company, Montoursville, Pennsylvania). From 1956 the experiments have alter-
nated each year between the Montoursville gravel and screes of Tuscarora Quartzite. The two rock types represent an
approximation fo the extremes of the sampling model (Griffiths, in Milner, 1962; Griffiths, 1967; and this feport, Fig.2), .
and recommendations resulting from the work cover a wide range of geological populations, ; :

The account was composed as a rough draft syllabus for a graduate course in The Pennsylvania State University and
was later completed in a syllabus for an American Geological Institute short course prior to the Annual Meeting of the
Geological Society of America in San Francisco in November, 1966. The results 6f measuring size and shape of white
felsite pebbles in the Elliott Plant gravel pit of the Pacific Cement and Aggregates Co. near Livermore, California are
similar to those of the white quartzite and red sandstone pebbles from the Montoursville gravel, Pennsylvania.

- The sampling experiments therefore are applicable to a wide range of materials and serve to illustrate the use of a
number of statistical procedures such as the construction of frequency distributions, calculation of moment measures, tests
for randomness, quality control graphs, analysis of variance, and regression and correlation analysis. In addition the
recording of data on Port=a-Punch Cards in the field, data processing utilizing an electronic computer, and construction
and use of different algorithms incorporated in the systems program also are exemplified. The experiments thus may be
used to introduce the student to the use of statistics and computers in geological problems. :

Objectives of the experiment are not by any means trivial because the variation in the outcomes of different sam= -
pling arrangements illustrate the problems involved in estimation of means and variances. The procedure is of general
inferest in many scientific fields and of considerable importance in many industrial fields such as in the estimation of
reserves, The use of teams of operators serves to illustrate the effect of differences among investigators in performing
experiments and the design requirements that must be met to ensure that differences among operators do not vitiate the
finding of differences among materials. 3

The experiments completed to date yield general recommendations for sampling geological populations and are of
value in research both in suggesting efficient sampling designs and in formulating an objective means of specifying the
structure or pattern of variation of geological materials, ‘

Success of the experiments has depended mainly on cooperation of students who have carried out the data gather-
ing and analysis as part of their graduate course work; graduate assistants have helped with the experiments, and in
particular, Dr. E.C. Dahlberg was invaluable in the Short Course experiment in San Francisco in 1966, Dr. Ondrick is
responsible for compiling the separate steps into a single systems program which increases the efficiency of the analysis
and represents an example of the use of an algorithm for problem solving in the geosciences. ;

The experiment that will be performed within this outline will be concerned with the measurement of size and shape
of white (carEgnofe) pebbles, List and Clark Construction Co. allowed use of the Holliday glacial gravel pit near

Zaah; Kanges, John C. Griffiths and Charles W. Ondrick, December 1968

An up-to-date list of computer and related publications can be obtained by writing the Editor, COMPUTER CONTRIBU-
TION Series, Kansas Geological Survey, The University of Kansas, Lawrence, Kansas 66044, 1

*Active Member, °Associate Member, *Junior Member, American Association of Petroleum Geologists.



SAMPLING A GEOLOGICAL POPULATION

by

John C. Griffiths and Charles W. Ondrick

INTRODUCTION
Statement of Problem

When the outcome of an experiment is impor-
tant it possesses some tangible value. For example,
the Bureau of Census was created to sample the (human)
population of the United States for information re-
quired by government. Although this population is a
sizeable unit, census taking is evidently a worthwhile
aid to governmental decisions. Many private polls
also supply=-at a price-=information on character-
istics of the American people. The important princi-
ple here is that information is of value, and when it
is, people will pay the necessary price. The popula-
tion of the United States consists of only about 200
million individuals; the geologist is faced with the
problem of sampling units of the earth's crust, each
of which includes a larger population of elements.,

If geological information is valuable, it is worthwhile
investing the necessary effort to ensure that is is ade=
quately reliable for the purpose for which it is to be
used.,

No experiment is better than the constraints
included in its sampling arrangement, therefore it is
necessary to be deliberate in planning an experiment,
and in particular, in planning its sampling design to
fit the objective for which the experiment is per-
formed (Steinmetz, 1962). In our experiment, a geo-
logical population is characterized by describing cer-
tain properties of its individual elements, The experi-
ment illustrates different results that arise from various
sampling arrangements. Essentially the objective is
simple, that is to determine the mean and dispersion
around the mean of some specified characteristics of
the population. It is assumed that these two estima-
tors are valuable items of information and both are
necessary and sufficient in describing the specific
characteristics of the population (Griffiths, 1961,
1964).

A number of constraints are imposed on the ex-
periment by these apparently simple requirements, In
order to fulfill the constraints, the procedure becomes
elaborate (Fig. 1). All sampling experiments to deter-
mine "best estimators" of population parameters are
among the most difficult and expensive experiments to
complete successfully (Stephan and McCarthy, 1963).
In order to achieve the objectives within specified
limits it is necessary to be specific about each step in
the procedure, and the steps are designed so that the
data fulfill the constraints (Fig. 1).

Defining the Problem

The objectives entail determining statistical
estimators of the required population paramefers, Thus
from a population and its elements, a sample of size

"n" of the elements is taken, The problem of estima-
tion of parameters of a detrital sediment is outlined
by Griffiths (in press). Notation is noted in Table 1.
It is essential that as the sample size "n" increases
towards the population size "N", sample estimators

(X, ) converge on their respective population para-

meters (u, 0'2).

Table 1.—Relationship between statistical estimators
and population parameters.

Characteristic Statistical Population
Estimator Parameter
Mean X u
Variance 62 o2
Sample Size n N

The statistical estimators are "best estimators"
of their respective parameters if they are consistent,
unbiased, efficient and sufficient (Fisher, 1948, p. 10).
To obtain statistical estimators which fulfill the require-
ments, it is necessary to commence with random sam-
ples from known frequency distributions. Design of
the experiment therefore is based essentially on the
constraints, In effect, we have decided answers to
our questions and worked backwards to the experi-
mental design which will yield these answers. Most
of the analysis is concerned with ensuring that the re-
quirements are fulfilled adequately.

The second step is to select the characteristic
parameters to estimate, Some parameters are defined
as fundamental properties of populations (Griffiths,
1987, T987) and the analysis may be extended simply
to the remaining properties and to derived properties.
The fundamental properties of a population are a func-
tion of composition, size, shape, orientation, and
packing. Data are measurements or counts. Measure=-
ments arise if the variate exhibits a continuoUs range
of variation, such as the properties of size and shape.
Counts arise if the variate differs in discrete steps.
Experimental determination of the proportions of ele-
ments of different types, or composition, generally
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yields discrete data as does packing (Kahn, 1956;
Miller and Kahn, 1962),

An important distinction between the two types
of data arises essentially from their different frequency
distributions. Continuous variates, if measured appro-
priately, exhibit normal frequency distributions. Count
data results generally in binomial and Poisson distri-
butions. These are called constant probability models.
By suitable definition of the sampling design and meas-
urement procedure, it is possible usually to achieve a
constant probability model. Again, knowing the re-
sult, that is the constant probability model, it is pos—
sible to use tests of random sampling which permit ad-
justment of the sampling design so that a constant prob-
ability model is appropriate (Griffiths and Drew,1966).

Now this is a somewhat elaborate and rigorously
prescribed procedure to ensure outcome of the experi-
ments are of the desired form. It may well be ques-
tioned whether a less elaborate procedure would not
be adequate in a geological sense. Fortunately it is
possible to use all the constraints as an interpretive
base to yield conclusions of geological interest and
there appear to be no other procedures which yield
such unequivocal answers to geological questions.

The desirable features ("best estimators” as described)
are obtained by arranging an equivalence between the
geological and statistical questions.

If for example, a variate is continuous and if
arrangement of different values of the variate in the
population is random, then random samples are simple
to achieve and variate values will generate a normal
distribution after suitable transformation., Geological-
ly, this is equivalent to random sampling a population
which possesses a massive structure, that is there is no
discernible systematic arrangement of variation in this
variate in the population.,

On the other hand, suppose that the population
is stratified or layered, then it is necessary to be more
circumspect about the sampling. If it is unnecessary
to describe the layering, channel samples are adequate
‘to achieve the required estimators. Channel samples,
if they are random, will be self-weighting and will
yield unbiased best estimators. To ensure that the
channel samples are unbiased, and self-weighting,
each channel sample must cross the entire population.
This can be achieved only if the entire population is
accessible to the sampling procedure.

If it is necessary to define the layering as well,
additional constraints are imposed on the sampling
arrangement. |t is necessary to ensure that the samples
are confined to single layers, for example, sedimen-
tation unit sampling is required (Otto, 1938). If
samples transgress the layers the estimators will be
biased and certainly will not be "best estimators.” In
fact the frequency distributions usually will, in this
instance, not yield constant probability models.

On this basis, by suitable sampling design, it is
possible to determine the pattern of variation in the
population, or in other words, to define the structure
of the population. A sampling model for detfrital sed-

iments using this approach has been described by
Griffiths (in Milner, 1962; Fig. 2). Tests of the
model are described by Steinmetz (1962), Wood and
Griffiths (1963), Dalhlberg (1964) and Ondrick (1968).

It is possible by ensuring fulfillment of the con-
straints to define structure of the variate in the popu-
lation and achieve best estimates of the population
parameters. In contrast, without this level of attain-
ment there is no guarantee of achieving either objec-
tive. If the information resulting from the experiment
is valuable then the estimators must be reliable, and
in general, best estimators are essential. In order to
ensure best estimators, fulfillment of the constraints
is essential.

Suppose the object of interest in the investiga-
tion (target population in the terminology of Cochran,
Mosteller and Tukey, 1954; Krumbein, 1960; Krum-
bein and Graybill, 1965) is a gravel pit, although it
could be any population, and the variate is length
of the long axis, suitably defined, of white pebbles.
The population, therefore, is defined as all long axes
of white pebbles in the gravel pit. In this example
attention is confined to the exposed face of the pit
so that all elements of the population are equally
accessible. The different types of target populations
which a geologist considers have been defined by
Griffiths (in Milner, 1962; 1967) as follows:

1. The hypothetical population - that population

of elements which was formed by geological

processes operating in a specified geographical
area and through a specified time interval. The
whole population may no longer exist because
of erosion or nondeposition, thus it is hypothet-
ical and defined on the basis of geological
information,
The existent population - that population of
elements which now exists in some circum-
scribed unit volume of the earth's crust. This
is the population which may be defined rigor-
ously and yields the most statistical and geo-
logical information.
Frequently the geologist complains that the
existent population is not accessible equally and so
he cannot sample it. Such a complaint presupposes
a judgement of value; what the geologist is actually
saying is that it will cost too much to make this exist-
ent population accessible to random sample. In other
words, he has decided that the result is not worth the
investment! He compromises and collects data which
costs little, and of course, is also worth little. Until
we resolve this compromise and show that geological
information, properly collected, is worth the invest-
ment necessary to collect it, our level of predicta-
bility will suffer. Indeed, the information collected
on the basis of the compromise will generally be ob-
tained cheaply and of little value. In this experi-
ment the exposed face of the gravel is the available,
and by definition, represents the existent population.
It is emphasized that all conclusions, however, are
limited to the fuce of the gravel pit!
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Figure 2.-Source area, process, stage and variation among and within samples of different sedimentary deposits;

basic model for defining sampling patterns.

3. The available population - that population of
elements which is available readily and usually
sampled. If it is equivalent to the existent pop-
ulation, then the information will be adequate.
If, however, this available population is either
not sampled randomly or not representative of
the existent population,the estimators will be
biased. The bias cannot be measured and the
conclusions and interpretation will apply solely
to the sampled population. In this instance it
may be difficult to relate to the existent geo-
logical population.,

It seems worthwhile emphasizing this aspect of
sampling and investigation because few scientists,
except perhaps in the behavioral sciences, have ac-
cepted the available in place of the existent popula-
tion. Results of the Lanarkshire Milk experiment
(Student, 1931; Pearson and Wishart, 1942), the pres-
idential polls of 1937 and 1948 and the Kinsey report
(Cochran, Mosteller, and Tukey, 1954), have been
criticized severely because the conclusions, while
correctly applied to the available population, were

extrapolated incorrectly to a different target popula-
tion (Stephan and McCarthy, 1963, p. 235-272). In-
deed if the experimental result is used in decision mak-
ing, and most geological investigations are thus used,
then the outcome should be reliable so that the deci-
sions are rationally sound. Geological information is
considered low order because of its poor predictabil-
ity, which is a function of reliability of the informa-
tion. To improve reliability and predictability it is
necessary to invest the effort and money required to
make the data worthwhile. It is necessary to ensure
that the conclusions and interpretations actually apply
to the existent population.

In summary then it has been decided to obtain
random samples from homogeneous populations, and
the investigation is concerned with the existent pop-
ulation, These are stringent requirements and the
result will suffice not only to yield unbiased estima-
tors of population parameters but by suitable arrange-
ment will yield information on the pattern of varia-
tion or structure of the population. Random samples
of homogeneous populations will yield frequency dis-
tributions that are constant probability models.



SAMPLING AND MEASUREMENT PROCEDURE

The procedure actually consists of two steps, the
first dealing with details of sampling and the second
with process of measurement. Both steps are in effect
sampling procedures and are equally important in
ensuring fulfillment of the requirements.,

Size, Shape and Arrangement of Samples

First assume that the pattern of variation in the
population is unknown but an attempt will be made to
determine the structure. Suppose the population is
homogeneous, then no systematic pattern of variation
exists. In geological terms this is a massive popula-
tion as far as the specific variate is concerned, In
such an instance a simple sampling procedure will
suffice to yield random samples and unbiased estima-
tors. Each sample will yield a mean and a variance
which will be "best estimators” of the population para-
meters, Differences between the sample estimators
will not be statistically (or geologically)significant.

On the other hand if the population possesses
a structure or pattern of variation then it may be
considered a collection of homogeneous subpopula-
tions, It may be necessary, then, to random sample
these subpopulations. Thus if the samples cross all
subpopulations with appropriate weights, they will
be random samples of the populations and will yield
unbiased estimators. These are channel samples.
Each sample yields a mean and variance that are
unbiased estimators of population parameters and they
will not be statistically (or geologically) different.
They will, however, contain no information on the
pattern of variation or structure,

To obtain information on the structure it is
necessary to sample within the homogeneous sub-
populations. Each sample will yield a mean and a
variance, These will not be necessarily "best esti-
mators" unless appropriately weighted in the propor-
tions in which they occur within the population, If
the population is composed of layers, wherein each
layer is a homogeneous subpopulation, a channel
sample will cross all layers and if self-weighting, it
contains the appropriate contribution from each sub-
population,

When samples are taken within the layers the
combined set of samples will yield "best estimators"
of the population parameters only if the layers are
representative of the entire population. By ensuring
that the estimators are similar to those from channel
sampling the same population, the appropriate weights
are determined. Similarity is defined as "no statisti=-
cally significant difference" between the means and
variances from the two sampling designs. In effect
this answers the question of how many different
layers occur in the population.

Suppose that the population represents one of
the stages in Figure 2. Samples are collected small
enough to fall within a layer and large enough to

embrace the largest element in the population, and
the sample sites are arranged in a rectangular grid.
The sample statistics are grouped into horizontal rows
and vertical columns. If the mean of the row means
equals the mean of the column means, the population
is massive, that is representative of stage 1. If the
mean of the row means differs significantly, in a
statistical sense, from the mean of the column means
then the population has a structure which may resem-
ble stage 2 or 3. In other words this sampling arrange-
ment enables us to differentiate the layered frem the
massive population,

In practice the layers may be present but may
not be horizontal. Because the samples cross several
layers, their arrangement does not fulfill the require-
ments outlined previously, and we will generally con-
clude wrongly that the population is a stage 1, or
homogeneous type. It is necessary therefore to group
the sample estimators in different ways to determine
whether a structural arrangement is present or not.
Generally it is necessary to specify a structure and
test the results of sampling against the model. Other-
wise an infinite number of possibilities result, The
orthogonal (rectangular) grid may be rotated and dif-
ferent types of groupings examined by means of a
computer; examples of the procedure applied to deter-
mining reservoir heterogeneity are described by Ben-
nion (1965) and Bennion and Griffiths (1966), and in
determining a gradient in a single specimen of a de-
trital sediment by Dahlberg (1964, 1965) and Dahl-
berg and Griffiths (1967).

Several requirements outlined here suffice to
define size, shape and arrangement of samples in a
population. It is advisable to take small samples
where possible and sample sizes of 4 or 5 elements
are usually an advantage.

In designing experiments usually more than one
operator is employed and then it is necessary to remove
the effect of operator variation (Griffiths and Rosen-
feld, 1954). The use of several operators has a num-
ber of advantages. Firstly, it is possible to reduce
the work of each operator and yet collect a relative-
ly large number of observations., Secondly, by using
several operators, the results may be generalized for
all operators and final recommendations are therefore
independent of operator differences. For generalized
conclusions the multioperator sampling design is a
requirement,

Operators differ, therefore we can arrange the
experiment so that operator differences are independ-
ent of, that is orthogonal to, the source of variation
we wish to isolate. The grid arrangement of sampling
sites and isolation of operator differences both have
a similar role=-to introduce independence or orthog=-
onality, into the analysis. It is necessary to be able
to test for the presence of independence or orthog-

. onality. The term interaction or discrepance

is a measure of degree of nonindependence and the
discrepance is the source of variation we wish to
reduce. If the interaction between rows and columns



or between operators and rows and columns is present,  plan 1, Stratified Random Sampling
differences in the former instance between subpopula- |
tions cannot be isolated. In the latter instance, pos-
sible differences among subpopulations cannot be iso= | No, of  Source of Degrees of Expected Mean
lated from those due to differences among operators. items Variation  Freedom Square

By envisaging possible results of the experiment, |
we have defined sample size, shape and arrangement
and also an experimental design. Any variate (X) q=6 Operators  (q-1)=5 02+p02 +1po
will contain variation from each source, for example e "l

N ODN

from differences among channels (or layers) and from B _7 2 2
among operators. We wish to test the interaction =8 Layers (I-1)= Te t PO * APY
between the two sources which gives a third source
of variation. To test this interaction we need a fourth Operators
item, usually called replication, which leads to the by (g=N)(I-1) 2 2
experimental structure Layers =35 o+ P, |
X..o =H +a, +B,+aB,.+ Lo+ €00 1,
iik i B| B|| [Yk(||) ijk ! p=7 Pebbles
oo : Within
Variation in a variate represented by xiik Operators  gl(p-1) 5
receives contributions from differences among subpop- & Layers =288 o
ulations ., differences among operators B., interac- €
tion (or lack of independence) of the two sources of qlp=336 Total (qlp-T1) 2
variation if present (OLBE.), repeated measurements =335 % total

within each subpopulation (Y /..\) where (ij) repre-
(i) Population = Size of Out

sents within each a. and 8., and from all other unas- opuidarion = Size of Lurerop
signed sources (CIIk) In this design we are unable to Operators 1 -6
isolate eiik from Yk(i]) , but it is well to be aware of
its presence.

In practice, | operators will sample i subpopula=
tions by observing a value for the variate (X) on k
pebbles from each subpopulation. Small sets of opera-
tors are advantageous and we generally use 4 or 5;
therefore | = 1 to q, where q =4 or 5. Examples of
designs used in sampling the Montoursville gravel in
Montoursville, Pennsylvania are represented in Fig-
ures 3, 4, and 5 for stratified, channel and spot sam-
pling respectively. These designs are utilized here.

In the stratified sampling plan, there are q
operators, where q = 6 in Figure 3 or in terms of the

equation above | = 1...q, where q =4 or 5. There o o o °

are "|" subpopulations or layers where | =8 in the 0% 2,800 2 o o 0°
figure or in terms of the above equation, i =1...1. o
In the experiments we will change this item for dif- o Qo 8
ferent teams using | = 10, 15 and 25 to determine 2 ° _°

what effect changing the number of layers has on the

estimators, Observations were performed on "p" peb- Lavers 1 - 8
bles by each operator within each layer, or in terms 4
of the equation above, k = 1...p. Again we will
change the number of pebbles so that the total number Pebbles Number
of measurements is reasonably similar in each case. p
: er Layer 42

Channel and spot sampling procedures follow Pef Dperetor 46

the same experimental structure. Spot sampling is TOTAL 336

included in the experiment because it has been advo-
cated as an appropriate sampling procedure. From
our experiments, however, it appears to be woefully ~ Figure 3.-Plan 1 stratified random sampling of white
inefficient. A spot sample is arranged so that it quartzite pebbles in Montoursville gravel
crosses some but not all layers (about equivalent to Pennsylvania (1958-1959).




Plan 2. Channel Sampling

Plan 3. Spot Sampling
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items Variation  Freedom Square
- T 2 2 2
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= 323 c
total
Population = Size of Outcrop
Operators 7 = 12
% % 9 % 9 2
g9 % % 2 9 %
% % 9 9 9 9
o 2k o ofo o ik
—+ 2o 4 20 et 2l
9 % 9 9 2 %
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Channels 1-6
Pebbles Number
Per Channel 54
Per Operator 54
TOTAL 324

Figure 4.-Plan 2 channel sampling of white quartzite
pebbles in Montoursville gravel, Pennsyl-

vania (1958-1959).

Spots 1 -15
Pebbles Number
Per Spot 20
Per Operator 60
TOTAL 300

Figure 5.-Plan 3 spot sampling of white quartzite peb-
bles in Montoursville gravel, Pennsylvania

(1958-1959),



Table 2. Sampling designs and distribution of samples for measurement.

(p)

Number of Pebbles
. Channels (c) @) Pebbles Measured per
. . Design  Replicate  Layers (l) Pebbles per Number of  Measured per  Operator
Sampling Design ~ Number  Number Spots (s) c, I, s TOTAL (n) Operators  Operator perc, |, s Remarks
1 1 8 36 288 4 72 9 } Each operator
2 2 8 36 288 4 72 9 samples two channels
Channel 3 1 6 50 300 5 60
4 2 6 50 300 5 40 10 } Each operator samples
5 1 5 75 375 10 one channel and as a
5 75 | .
6 2 5 75 375 5 75 15 team samples an additional
= = 15 channel
TOTAL 1926 28
c=8,6,5,;9=4,5,;p=9,10,15; n = qcp = 288,300,375
7 1 10 30 300 5 60 6
8 2 10 30 300 5 60 6
Stratified 9 1 15 20 300 5 60 4
(Layers) 10 2 15 20 300 5 60 4
11 1 25 10 250 5 50 2
12 2 25 10 250 5 50 2
TOTAL 1700 30
1=10,15,25; 9=5,5,; p=6,4,2; n = qlp = 300,300,250
13 1 10 35 350 5 70 7
14 2 10 35 350 5 70 7
Spot 15 1 15 25 375 5 75 5
16 2 15 25 375 5 75 5
17 1 25 15 375 5 75 3
18 2 25 15 375 5 75 3
TOTAL 2200 30
s=10,15,25;9=5,5,5p=7,5,3; n =qsp = 350,375,375
GRAND TOTAL 5826 88

taking a handful, bagful, or small shovelful from a
beach or dune sand). As a result it is a cross between
the channel and stratified sample with all the disad-
vantages of both and with few of the advantages of
either. Estimators based on this type of sample usually
are biased, the frequency distributions are rarely con=

is the largest or smallest pebble commonly is selected.
By taking the next four contiguous pebbles this bias is
reduced, assuming that pebbles of different sizes are
arranged randomly within the sampling unit.

For channel sampling place the pebbles from
each channel in a heap and randomize them across

stant probability models and convergence with increas- operators. Position in the channel is not important

ing sample size or number is slow. The spot sampling
design is included in the experiment to show, by
example, what happens if the sampling arrangement

" is not prescribed carefully in size, shape and arrange-
ment.

Figures 3,4, and 5 include the experimental
design, the sampling procedure and the form of anal-
ysisof variance table which will be used to analyze
the data. The figures illustrate that the sampling
design and experimental design are interrelated close-
ly and once the sampling arrangement is decided, the
form of the statistical analysis is fixed.

Sample-Gathering Procedure

The procedure for selecting the samples wili
differ depending on the sampling plan, and the opera-
tional procedure will consist of the measurement of
pebbles,

Selection of pebbles for measurement is com=
mon to all sampling procedures. Select the first
(white) pebble at random and then take the next con-
tiguous four white pebbles as a sample. The selection
of the first pebble usually introduces some bias, that

and to ensure a random sample each operator selects
pebbles from each heap, i.e. channel (Table 2).

In stratified sampling an operator selects a peb-
ble (say a white one) at random from one layer. The
next four contiguous white pebbles are taken within
the layer and observations are made on the five (Table 2),

Spot sampling consists of a 3-foot span taken
successively at increments of approximately 22.5°
across the outcrop and an operator selects pebbles
along the span. There will be (s) spot samples per
operator consisting of (p) pebbles, that is, each oper-
ator measures (s) spots x (p) pebbles = (sp) pebbles for
the spot sampling plan. Because there are (q) opera-
tors this leads to a total of gsp (white) pebbles (Table 2).

Channel Sampling

Select five, six or eight channels, depending on
the design assigned, across the (existent) population.
Each operator samples one channel by collecting 36,
50, or 75 pebbles respectively from the entire length
of the channel. In the experimental design where
eight channels are selected for sampling, each opera-
tor samples two channels, that is four operators form



the team, The operators forming teams to measure the
pebbles in the sampling designs composed of five and
six channels, select at random from the top tenth or
fifteenth of the channel a white pebble. They then
collect the next four white pebbles, this comprises a
set of five pebbles, Take the next tenth or fifteenth
and repeat the performance and so forth to complete
the channel, The operators forming the team to meas=
ure pebbles in the sampling design composed of eight
channels follow the above procedure, however, col-
lect a white pebble and the next three white pebbles,
in each channel there are (Z x B) pebbles, where Z
is the number of sets per channel and B is the number
of pebbles collected within a set. In the present exper=
iment, therefore, there are either 9 x 4 =36, 10 x5=
500r 15x5=75 pebbles per channel. Assemble each
of the 36, 50, and 75 pebbles into individual groups.
Each of the five operators (four operators in the
example of eight channels) measures nine, ten or fif-
teen pebbles chosen at random from each group (chan=
nel). Thus, each operator measures 72, 60 or 75 peb-
bles; because one sampling design has six channels,
each operator samples a single channel and the sixth
channel is sampled by each member of the team. Each
operator collects from the sixth channel two sets of
5 pebbles or 2 x 5 x 5 = 50 pebbles. Total number of
pebbles measured for this design is 6 x 10 x 5 = 300
(see Table 2).

Stratified Sampling

A total of "' layers (I = 10, 15, 25) are select-
ed and each of five operators selects a single pebble
and "r" contiguous pebbles (r = 6, 4, 2 respectively)
within the same layer. The operators assemble the
pebbles for each layer and sampling design and place
them in a heap for measurement, In the sampling
designs composed of 10, 15, 25 strata, each operator
of each team measures 6, 4 and 2 pebbles respectively
from each heap or layer,

Spot Sampling

Select a vertical line 3 feet long and choose a
white pebble at random within this span of 3 feet,
Select the next five or six white pebbles. Repeat this
sampling within each spot.

Select the next line "f" feet away and at an
angle of 22,5° clockwise from vertical and repeat the
sampling; proceed with this sampling procedure for
10, 15, 25 spots depending upon the experimental
design (Table 2). For channel and stratified sampling
designs the operators assemble the pebbles for each
spot in a heap for measurement. In sampling designs
composed of 10, 15 and 25 spots each operator of each
team and sampling design measures 7, 5 and 3 pebbles
respectively for each heap or spot.

Experimental Procedure and Data Recording

Columns 2 through 18 on Port-a-Punch cards are

reserved for identification (Fig. 6). In columns 2-6
record the replicate number (Table 2), this number

is assigned based on the experimental design to which
the operator has been designated. The operator num-
bers (columns 8-10) range from 1 to 5 within a par-
ticular experimental design and are assigned prior to
the experiment. Each member of the experiment may
be numerically identified based on operator number
and experimental design of which he is a member,
The number of the channel, strata or spot and the peb-
ble measured within these are recorded in columns
12-14 and 16-18 respectively.

in the present experiment for the measurement
of size and shape of pebbles the length, breadth and
thickness is measured in inches and eighths of an inch
by means of a steel tape marked off in 16ths, The
size data are recorded on the Port-a-Punch card in
columns 24-30 inclusive for the intermediate b axis,
in columns 34-40 inclusive for the long a axis and
in columns 44-50 inclusive for the short ¢ axis
(Fig. 6).

Selection of the axes must be standardized and
the following procedure is advocated. Allow the peb-
ble to attain its stable position on a flat surface. It
will expose usually its maximum projection area.
Select the shortest diameter across the maximum pro-
jection of the pebble and complete the tangent rec-
tangle around the image of the pebble (Fig. 7). This
will yield the intermediate b axis and the long axis
respectively; turn the pebble until its image yields
the minimum projection area, approximately perpen-
dicular to the maximum, and again choose the short-
est diameter; this yields the ¢ axis. The a, b, and
c axes are at right angles to each other, The proce-
dure has been used on clay particles (in electron
micrographs), sand particles, as individual grains and
in thin section (Smith, 1966) and on pebbles (Griffiths
and Rosenfeld, 1950, Griffiths and Smith, 1964,
Griffiths, 1959). It is a standardized procedure, not
necessarily the best, but one which has been tested
on a large number of different populations. It will
lead to three axes in which a>b > c.,

DATA ANALYSIS

Data may consist of numbers with a continuous
range of variation such as measurement of pebble axes
or of numbers in discrete steps, for example counts of
pebbles of various colors, If sampled correctly both
continuous and discrete data follow constant prob-
ability models. Continuous variates exhibit normal
distributions and discrete data result generally in
binomial or Poisson distributions. The computer sci-
entist recognizes the difference between data by refer-
ring to continuous data as floating point and to dis=
crete data as fixed point. Although only continuous
data are used in the experiment both types are dis=
cussed. Two computer programs are required for data
analysis, SYSTEMS PROGRAM ONE (Fig. 1 and appen-
dix) and ANOVA (Analysis of Variance, Fig. 1).
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Figure 6.~ Sample Port-a=Punch data card. All entries are right justified and no decimals are punched.

Data for this investigation consist of the triaxial
measurements of pebbles recorded with a Port-a-Punch
in the field, Theoretically Port-a=Punch cards can be
"read in" a computer in the same manner as conven-
tional Hollerith cards. In practice, however, high-
speed readers usually mutilate the Port-a-Punch cards.
Therefore prior to data analysis Port-a-Punch cards Intermediate b
are passed through low=speed computers or card repro=
ducers and converted to Hollerith cards,

The Hollerith cards are listed and checked for
recording errors such as double punches, field shifts
or errors causing a print check. Verifying avoids
serious problems arising with high=speed computing
equipment,

SYSTEMS PROGRAM ONE (Univariate Analysis;
Pebble Size)

Tangent Rectangle
To " Pebble Image "

The verified grain=size data are ready for anal-
ysis. SYSTEMS PROGRAM ONE converts field units
(inches and eighths) to millimeters, calculates the
axial ratios in millimeters for b/a, c/a, c/b and
transforms millimeters to phi (¢) units. The logarith-  Figure 7.- Selection and relationship of pebble
mic transformation is used because frequency distri- axes.



Table 3.-Frequency and cumulative frequency percent of a, b, c, axes in phi units for channel and stratified
sampling plans applied to Montoursville gravel 1960-61,

CHANNEL
A-AXIS ¢ B-AXIS® C-AXIS¢
Cum.  Cum. Cum,  Cum. Cum,  Cum.
Class Limits Freq. Freq. Freq. % Freq. Freq. Freq. % Freq. Freq. Freq. %
-8.00 to -7.50 1 1 0.19 0 0 0.00 0 0 0.00
-7.50 to -7.00 16 17 3.23 3 3 0.57 0 0 0.00
-7.00 to -6.50 39 56 10.67 20 23 4,38 2 2 0.38
-6.50 to -6.00 71 127 24,19 41 64 12,19 23 25 4,76
-6.00 to =5.50 96 223 42.48 77 141 26.86 41 66 12.57
-5.50 to -5.00 126 349 66.48 103 244 46,48 75 141 26.86
-5.00 to -4.50 101 450 85.73 128 372 70.87 123 264 50.29
-4.,50 to -4,00 53 503 95.82 91 463 88.20 109 373 71.06
-4,00 to -3.50 11 514 97.92 38 501 95.44 80 453 86.30
-3.50 to -3.00 8 522 99.44 14 515 98.11 41 494 94.11
-3.00 to -2,50 3 525 100.01 8 523 99.63 25 519 98.87
-2.50 to -2,00 0 525 100.01 2 525 100.01 3 522 99.44
-2,00 to -1,50 0 525 100.01 0 525 100.01 3 525 100.01
TOTAL 525 525 100.01 525 525 100.01 525 525 100.01
STRATIFIED
A-AXISP B-AXIS¢ C-AXIS®
Cum.  Cum, Cum. Cum, Cum.  Cum.

Class Limits Freq. Freq. Freq. % Freq. Freq. Freq. % Freq. Freq. Freq. %
-8.00 to -7.50 0 0 0.00 0 0 0.00 0 0 0.00
-7.50 to =7.00 7 7 1.56 0 0 0.00 0 0 0.00
-7.00 to -6.50 31 38 8.44 12 12 2,67 0 0 0.00
-6.50 to =6.00 56 94 20.89 30 42 9.33 10 10 2,22
-6.00 to -5.50 71 165 36,67 70 112 24,89 39 49 10.89
-5.50 to =5.00 105 270 60.00 72 184 40.89 57 106 23.56
-5.00 to -4.50 99 369 82.00 121 305 67.78 92 198 44,00
-4,50 to -4.00 60 429 95.33 92 397 88.22 105 303 67.33
-4,00 to -3.50 14 443 98.44 34 431 95.78 74 377 83.78
-3.50 to -3.00 5 448 99.55 15 446 99.11 50 427 94,89
-3.00 to -2,50 1 449 99.78 3 449 99.78 18 445 94.89
-2.50 to -2.00 1 450 99.99 1 450 99.99 3 448 99.55
-2.00 to -=1.50 0 450 99.99 0 450 99.99 2 450 99.99
TOTAL 450 450 100.00 450 450 100.00 450 450 100.00
butions in terms of raw measurements are highly For pebble axes the data are classified into quarter
skewed and the means are related to the variances., (0.25) phi classes, for example =1.00 to =1.25, etc.,

The transformation tends to normalize, or at least in-  and for the axial ratios a class interval of 0,05 is desir-
crease symmetry of the frequency distribution and make able. Selection of small class intervals (0.25 and

the means independent of variances. Theoretical 0.05) permits "folding" of classes if the frequency dis-

recommendations for the log-normal frequency distri-  tribution appears ragged or choppy, that is frequency

butions are discussed in Griffiths (1967, p. 271). classes may be added together to increase the class
The systems program calculates for each sam- interval to 0,50 and 0. 10respectively and to smooth

pling design the frequency distribution of each of the  the distributions. Table 3 is an example of a 0.50
six variables (a, b, c axes phi, b/a, ¢/a, c¢/b mm). class interval for the Montoursville gravel data. Oper-
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ators will draw frequency histograms and cumulative
probability curves of the data (see Fig. 8 and 9 for
examples from Table 3). Frequency histograms should
be drawn with class intervals of both 0,25 and 0.50
units for comparison,

From earlier discussion about results of the
experiment, it was decided to obtain "best estimators"
from known frequency distributions; the frequency dis-
tributions are constant probability models. In other
words it is expected that frequency distributions will
approximate specific types of models,

Measurement data may be calibrated against
phi or log=normal models; count data may be cali-
brated against the binomial model for common con-
stituents and the Poisson model for rare constituents.
Sampling conditions that give rise to these models re-
quire random sampling from homogeneous populations,
Also sampling procedures are arranged to fulfill the
requirements as far as possible without specific know=
ledge of the arrangement of variation in the popula-
tion. [t is necessary to test for the fulfillment of the
requirements and where not fulfilled to adjust the sam=
pling arrangements until they are fulfilled. This is
the only guarantee that the statistics will be "best
estimators, "

Consider for example the binomial model, it
is required that the outcome of an event (experiment)
be classifiable into two states, success or failure,
white pebbles or nonwhite pebbles, etc. Probability
of the occurrence of a white pebble then is constant
from event to event, The fact that a white pebble has
occurred is independent of the preceding or following
event for all events,

The condition of sampling leads to a constant
probability binomial model. If the conditions are
fulfilled and a binomial distribution is generated then
distribution of white pebbles in the population is a
random event. Thus the occurrence of a white pebble
is homogeneous throughout the population.

The mean of a binomial distribution is a suffi-
cient estimator and as the sample size increases the
binomial converges on the normal, Similar features
characterize the Poisson model.

The entire analysis of the data is, in effect,
an attempt to find why the sampling departs from ran-
domness or why the observed frequency distributions
do not match the required constant probability models.
Two series of tests are concerned specifically with the
form of the frequency distributions. The first, moment
analysis, describes the shape of the curve. The ex-
pected moment values for constant probability models
are known (Table 4).

Statistical estimators may be calculated from
the observed data by the method of moments and com-
pared with equivalent parametric values; the moment
values are calculated by SYSTEMS PROGRAM ONE,
(An example of the calculation of moment statistics
by desk calculator is given in Table 5 for one set of
the Montoursville gravel data.) The sampling distri-
bution of statistical estimators of asymmetry (\,/b—]) and
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gravel; stratified and channel sampling design, 1960-61; 0.50 class interval.

Tabie 4.-Expected values of parameters for constant probability models.

Parameter Mean Variance Standard Deviation Asymmetry Peakedness
Normal u P o \/['3—] =0.0 82 = 3.0
Binamisl " " o B, =(q-p)° B, =3+ (1-6pq)
P Pq Pq 1 - 9°P 2 P9
npq npq
Poisson np np vnp B] =1/np 52 =3+ 1/np

where n = sample size, p = probability of event occurring and q =1 - p.
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Table 5. Data sheet for calculation of first four moments of frequency distribution. Montoursville gravel
1960-61; S tratified Plan 1.

Sample Number: 2 Computations by: J.C.G.: A¢
Definitions: X = mid-point of each class X = arithmetic mean

X' = assumed mean = -5.75¢ ¢ = class interval = 0,509

d=X-X' f = frequency

c
Class Limits X f 4 df o%f i df (-1 (-1
-7.50to -7.00 =7.25 7 -4 -28 112 -448 1792 4375 625
-7.00 to -6.50 -6.75 31 -3 -93 279 -887 2511 7936 256
-6.50 to -6.00 -6.25 56 -2 -112 224 -448 896 4536 81
-6.00 to -5.50 -5.75 71 -1 =71 71 =71 71 1136 16
-5.50to -5.00 -5.25 105 0 0 0 0 0 105 1
-5.00 to -4.,50 -4.75 99 1 99 99 99 99 0 0
-4.50 to -4.00 -4,25 60 2 120 240 480 960 60 1
-4,00 to -3.,50 -3.75 14 3 42 126 378 1134 224 16
-3.50 to -3.00 -3.25 5 4 20 80 320 1280 405 81
-3.00 to -2.50 -2.75 1 5 5 25 125 625 256 256
-2.50t0 -2.00 -2.25 1 6 6 36 216 1296 625 625
TOTAL 450 -12 1292 -186 10, 664 19,658
S sdf Sd?F s ozdf mE-nt

Moment Calculation

CHARLIER CHECK ON TOTALS: S(d-1* = Sd*-43d% + 65d% - 4df+ 3¢

19,658 = 10,664 + 744 + 7752 + 48 + 450

3:

ARITHMETIC MEANS OF COLUMNS: n% =0.000711; n 4

0.000019; ny = 0.000001

ny = Sdf/SF=0.026667; n,- 3 d6/3f = 2.87111; ny = 5 d3/3 F = -0.413333;
n = sdt/s 6= 23.697778

ARITHMETIC MEAN OF DISTRIBUTION: X = X' + cn; = =5.25 - (0.5 x 0.026667) = =5.251
VARIANCE:  m, = c(n, = n%) = 0.25 (2.871111 - 0.000711) = 0.717600 = & 2

STANDARD DEVIATION: & = V82_-0.847113

THIRD MOMENT: mg = c‘?’(n3 - 3n2n] +2n:]3) =0.125(-0.413333 + 0.229692 - 0.037926) = 0,027696

FOURTH MOMENT: m, = c(n, = 4n_n + énon,, - 3n7) = 0.0625(23.697778 - 0044089 + 0,012248

- 0.000003) = 1.479121
o50rVby =my/ 87 =0.04556; 5 °=0.607888 a orby=m,/8%=2.872; 8% =0.514950
SKEWNESS: Sk = @,/2 = 0.02278 KURTOSIS: K = b, - 3=-0.1276

X =-5.251; &2=o.718; 6 =0.847; \/b]=0.046; b, =2.872
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peakedness (b2) around their corresponding parametric
values (\/—B_] and Bz) have been tabulated for the norm=

al distribution by Pearson and Hartley (1954, p. 183-
184). A graph may be drawn showing variation in
asymmetry and peakedness due to inadequacies of the
sampling arrangement, that is due to nonrandomness
(Fig. 10).

As the sample size "n" increases for the binomial
and Poisson, the parametric values of both approach
those of the normal model. The value of "n" appears

in the denominator and for samples of 200 or more,

departures from normality are small. With a sample
of size n =200, for example, asymmetry and peaked-
ness in a binomial distribution changes as shown in
Table 6. Departures from values expected in a normal
distribution are small, This is an example of converg-
ence following the central limit law. The normal
model therefore is a basis for comparison in most of
our experimental investigations.

Results from successive sampling of the Montours-
ville gravel by various sampling designs is shown in
Figure 10, Channel sampling (C) generally yields
estimators which fall within the limits of sampling

MONTOURSVILLE GRAVEL
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Figure 10,-Graphical representation of test for nonrandomness by means of moment measures for Montoursville

gravel (1957-1965).
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Table 6.,-Values of asymmetry (B]) and peakedness ([32) in a binomial with sample size n = 200.

P q pa (P’ npg 8 6pq 1-6pq  (1-6pq)/(npq) B,
0.5 0.5 0.25 0.00 50 0.0000  1.50 -0.50 -0.,001 2.999
0.4 0.6 0.24 0,04 48 0.0008 1,44 -0.44 -0.009 2.991
0.3 0.7 0.21 0.16 42 0.0040  1.26 -0.26 -0.006 2.994
0.2 0.8 0.16 0.36 32 0.0110  0.96 +0,04 +0.001 3.001
0.1 0.9 0.09 0.64 18 0.0356  0.54 +0.,46 +0,026 3.026

error and are truly unbiased estimators, Estimators
from the stratified sampling (L) range widely. By ad-
justments in number of layers and pebbles per layer,
it is possible to cause convergence on unbiased esti-
mators of the moment measures [see L3, the 60-61

data and L4 (red), the 64-65 data in Figure 10 and

Tables 7 and 8], If stratified sampling plans yield
estimators of the third and fourth moments that do not
differ significantly from those of the channel plan, the
mean and variance of the stratified plan are unbiased
estimators. The correct weighting of pebbles per lay-
er and number of layers has then been achieved, that
is the patterned variation or structure of the popula=
tion now is explicit.

Spot sampling (S) also yields biased estimators
(Fig. 10, and Table 7, 8). Although it is possible to

adjust the number of spots and pebbles per spot to
achieve unbiased estimators, results do not yield in-
formation of comparable geological value to those
from the stratified plan. Spots are not related to
subpopulations in any obvious manner, therefore the
correct weighting achieves the same level of informa-
tion as channel samples but at much greater expense.
Convergence of spot sampling toward unbiased esti=
mators is slow; total sample sizes of n > 15,000 may
be necessary (Griffiths, 1967, p. 96).

The data set labelled (F) in Figure 10 repre-
sents stratified sampling and measurement in the field
by a single operator. The sample size (n = 104) is
too small to yield satisfactory results, Note that a
axes yield unbiased estimators but both b and ¢ axes
depart widely from unbiasedness,

A second test procedure, the chi-square test,

Table 7. Sampling arrangements for Montoursville gravel; 1957-1965,

Layers or
Sampling Year Number Operators ~ Channels Pebbles Total  Remarks Normal
58-59 (2) 6 6 9 324 C, OK
60-61 (3) 7 5 15 525 C, 3setsof 5
Pebbles oK
Channel (C) 64-65 (4) 6 10 4 240 ¢, Biased
64-65 (4) 6 10 4 240 Cy Red OK (?)
57-58 (1) 4 8 10 319 L] 1 missing
value Biased
58-59 (2) 6 8 7 336 Ly Biased
Stratified (L) 60-61 (3) 6 15 5 450 L oK
64-65 (4) 6 20 2 240 Ly Biased
64-65 (4) 6 20 2 240 Ly Red OK (?)
Spot (S) 58-59 (2) 5 15 4 300 S, Biased
Field (F) 57-58 (1) 1 random (?) 104 F] talus slope Biased
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Table 9.-The chi square test for normality, goodness of fit of normal and observed distribution. Montoursville
gravel 1960-61; a -phi; statified sampling 0.50 class interval.

X =-5.251 & =0.847

1 2 3 4 5 6 7 8 9

() (x) Area (E) , (052
Class Limits X=X ) ¢ (1) Diff. n x Diff. Observed 0-E (0-E) E
-8.5 to -8.0 -2,749 -3.246 .999415 .000585 0.26 0
-8.0to -7.5 -2.249 -2.655 .996034 .003381 1.52 0
-7.5t0 -7.0 -1.749 -2.065  .980537 .015497 6.97 | 8.75 7 -1.75 3.06 0.3
-7.0to -6.5 -1.249 -1.475 .929891 .050646 22,79 31 +8.21 67.40 2,96
-6.5 to -6.0 -0.749 -0.884 .811649 . 118242 52,21 56 +2.79 7.78 0.15
-6.,0to -5.5 -0.249 -0.294 .615620 . 196029 88.21 71 -17.21 296.18  3.36
-5.5t0 5.0 0.251 0.296 .616384 .232004 104,40 105 +1.60 2.56 0.02
-5.0to -4.5 0.751 0.887 .812458 . 196704 88.23 99 +10.77 115.99 1.31
-4,5 to -4.0 1.251 1.477 .930160 117702 52.97 60 +7.03 49,42 0,93
-4,0to -3.5 1.751 2.067 .980632 .050472 22.71 14 -8.71 75.86 3.34
-3.5 to -3.0 2.251 2.658 .996069 .015437 6.95 5 -1.95 3.80 0.55
-3.0to -2.5 2,751 3.248 .999419 .003350 1.51 } 1.77 1 2 +0.23 0.05 0.03
-2.5t0 -2.0 3.251 3.838 .999419 .000581 0.26 1 }
TOTAL 1.000000 449,99 450 +1.01 622,10 13.00= X2
n = 450

D.F. = No. of classes -3=10-3=7 P=.10>P> .05

1 D.F. lost for mean
1 D.F. lost for o P 10° 12.017 P 05 = 14,067
1 D.F. lost for total ° °

The items in column 3 are found by subtracting from 0.5000 the figures found for each =(X - X)/ &

for each +(X = X)/& from table of normal integral.
Capital X equals lower class limit; small x equals (X = X).

and adding to 0.5000 the figures

is independent of shape of the curve. It is concerned
therefore with a different type of departure from ran-
domness than that dealt with by the moment measures.,
In this procedure, class=by-class comparison of fre=
quencies of an observed distribution with those ex-
pected from a specified theoretical distribution leads
to clearer pinpointing of the excesses and deficien-
cies due to nonrandom sampling. SYSTEMS PRO -
GRAM ONE calculates the individual chi-square
class=by-class contributions for each of the variables
measured per sampling design.

The theoretical model for measurement data is
the (log) normal distribution. By equating derived
mean and standard deviation from moment measures
to parametric values, the expected frequencies of a
normal distribution may be calculated from tables
(Pearson and Hartley, 1954, p. 104-110), In Fig-
ure 8(a) the ¢ class interval is 0.25, the observed mean
(X) and standard deviation (&) equals =5.251 and
0.847 respectively, therefore the expected frequen=
cies for a normal distribution with mean (u) =-5.251
and standard deviation (6) = 0.847 is calculated in
Table 9. The resulting normal curve is shown in Fig=-
ure 8. In this figure excesses (EXP. > OBS.) are
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hachured on the right and deficiencies (EXP < OBS)
are hachured on the left. The calculated value of

the chi-square criterion is (X2) = 48.13; degrees of
freedom are 3 less than the number of classes or (d.f.)
=c-3=17-3= 14, The loss of three degrees of
freedom arises from equating areas under the curve
(the zero moment), the means and standard deviations.

.Expressing the test as a null hypothesis Ho:

These data are random samples from a normal model
with area, mean and standard deviation given.

It would be expected therefore that if the null
hypothesis were true, a chi-square value with 14
degrees of freedom would exceed 23.685 about five
times in every 100 such samples and a chi-square
value of 36.123 would occur about one time in 1000
(Arkin and Colton, 1950, Table 14).

If the null hypothesis is accepted, this sample
represents an event that occurs much less than one
time in 1000; so we decide to reject the hypothesis
and now may question any and all of the assumptions
underlying the test. Because we expect the normal
model, the item under suspicion is the randomness of



the sampling. It is, of course, reasonable to chal-
lenge the model, but it is necessary then to substitute
another and test against this new model. What is the
alternative model and how is one to be chosen?

If we use a 0,50 ¢ class interval, the chi-

square value becomes (X2) = 13.00 with 7 degrees of
freedom (Table 9) and leads to a probability state-
ment of .10 >P > ,05, In other words, if the null
hypothesis is accepted, this is an event which would
arise by chance in random sampling a normal distri-
bution with the given area, mean and standard devia-
tion between five and ten times in every 100, This

is not an unusual event,

Evidently it is not the model which is at fault
but the measurement procedure (a sampling procedure)!
The results suggest that a 0.25 phi unit class interval
is too small and therefore grouping errors are too large
at this level to yield a normal distribution, Class-
by=class frequency fluctuations with a 0,25 phi in-
terval are greater than atiributed to chance. There
is evidently some bias introduced into the measure-
ments causing a nonrandom fluctuation which is re-
duced by smoothing to a 0.50 phi unit class interval,

It should be noted that in both instances the
moment measures are not statistically significant,
illustrating that the moments and chi-square testing
do not necessarily yield the same results, They esti-
mate different types of departure from normality. We
have found generally the sensitivity to be in the
smaller class intervals, Fluctuations, or errors, in the
measurements are too sensitive using the 0,25 phi unit
as a basis for classification into a frequency distribu-
tion.

Fisher (1948, p. 51) states that errors of group-
ing are (1/A/12n)c, where n = sample size and ¢ =
class interval. This value should be less than 1/10 of
the standard error or less than ]/1052. We may

write this as an inequality
(IA120)c > 1/10 65 = &/10Vn
where n =450, ¢ = 0,25 and 0.50, and & = 0,841

and 0,847 respectively, then,
0.841/10/450

0.25//12 x 450 #
0.50//12x 450  # 0.847/10,/450 .

Cancelling the common 450 from both denominators

0.25//12. # 0.841/10

0.50//12 # 0.847/10

0.25x 0.3015 # 0.0841

0.50 x 0.3015 # 0.0847
or

0.0754 # 0.0841

0.1507 # 0.0847 .

It seems we are losing information by using the
0.50 phi unit class interval but if we use the 0,25 phi
interval we introduce a sampling bias.,

Results of testing frequency distributions from
different sampling arrangements is summarized in
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Table 8. The objective is to obtain nonsignificance
in both the moment measures and the chi-square test-
ing. Any departure is an indication of nonrandomness
in the sampling procedure and requires an adjustment
in the sampling arrangement

There is one disturbing result that is common
and concerns the erratic behavior of the ¢ axis, Where
a and b axes are nonsignificant the ¢ axis seemingly
changes independently. This is important on two
counts, First, it means that different sampling arrange-
ments are required to obtain "best estimators" for the
a, b, and c axes. This is not feasible and suggests
we may be studying the wrong variables, Secondly,
it warns us to expect different relationships through-
out the analysis for the three axes. In particular, if
a is compared with b the results may differ from a
compared with c. In other words, shape may change
independently of size. In subsequent experiments
aimed at isolating this feature we have generally
found that information on shape is contained in varia-
tion among the a and c axes (Griffiths and Smith,
1964; Hulbe, 1957; Griffiths, 1959). In boulders
from the Tuscarora scree (Griffiths, 1959) the rela-
tionship implies that the jointing which controls a and
b axes plays a role different from the bed thickness
which controls the ¢ axis. The relationship among the
axes seemingly persists throughout the life=history of
individual boulders and pebbles of quartzite,

The theoretical model for count data is the
binomial distribution for common pebble types and the
Poisson for rare pebble types. The same procedure
outlined for measurement data above is followed in
analysis of count data, Frequency distributions are
analysed for their statistical estimators based on the
moments. The observed estimators may be compared
with those expected, that is calculated from the formu-
lae in Table 4. We expect convergence towards a
normal model with increasing "n" therefore departures
from the expected distribution model may be used in
the same way as in the case of measurement data (i.e.
as a measure of the nonrandomness of the samples),
except that generally the statistical testing is not exact.

The chi-square goodness of fit test also may be
applied. Expected frequencies for a binomial model
with set size 5 may be calculated using the National
Bureau of Standards Table (1950), Similarly, the
expected frequencies for rare elements may be calcu-
lated by means of the Poisson distribution with Molina's
(1942) tables. In both instances the areas under the
observed and theoretical curves are made equal and
the model parameter u= np also are equated. There
is, therefore, a loss of 2 degrees of freedom in the
chi=square comparison for a binomial and Poisson
model| but otherwise the test proceeds along similar
lines.

SYSTEMS PROGRAM ONE (Bivariate Analysis;
Pebble Shape)

The concept of shape is independent of size.



Table 10. Summary of representation of axial-ratio shape (a vs b axes) of pebbles measured directly.

AXIAL-RATIO SHAPE

Define a = long axis, then log a = X,
Define b = intermediate axis, then log b =Y.

Shape is expressed in Millimeters Logarithms
b = ka™ Y =k'=mX

Case 1: Ifm=1

(Shape is constant over size) b =ka Y=k'+1X
Case 2: fm>1, saym=2

(Shape changes; elongation increases with )

increase in size) b =ka Y=k'+2X
Case 3: Ifm< 1, saym=1/2

(Shape changes; circularity increases with

increasing size) b = kc:]/2 = kva Y =k'+ 1/2X

We may now set up models in the form of hypotheses for testing as follows:

Hypothesis: Hoi shape in phi units

For constant circular shape

For constant shape

For circularity increasing with size
For elongation increasing with size

The test statistic is (g - m)/&m, and it follows Student's "t" wit

Y=pX+a
B=1 and a=0
p=1 and o = positive value
p< 1
B>1
h degrees of freedom n - 2,

There are spheres and ellipsoids of all sizes and the
character of a sphere or an ellipsoid is maintained in=
dependently of the size of the body. Nevertheless,
it is difficult to operationally measure size and shape
separately. Usual measurement procedures result in a
variate (P) in which both size (s) and shape (sh) are
confounded, or symbolically

P = f(s,sh).

It is feasible to design an experiment in which,
by subsequent mathematical analysis, the variate call-
ed size may be separated from the variate called shape.
The preceding univariate analysis represents a study
of pebble size in which any of the three axes may be
chosen to represent the variate with different results
for different axes (Hulbe, 1957). One measure of
shape that maintains the effect of size may be perform=
ed through bivariate analysis in which variations in
pairs of axes are considered simultaneously. This may
be extended to multivariate analysis in which varia-
tions in all three axes are considered together. Bivar-
iate analysis will be used in the following example.

If any two axes are plotted in a scatter dia-
gram in terms of direct measurement scales such as
millimeters, inches or microns, the resulting graph
shows that the spread of variation increases with in-
creasing size in both dimensions. The variation thus
shows heteroscedasticity (Griffiths, 1959, 1967)., The
use of an axial ratio, such as b/a, is frequently advo-
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cated to avoid this heteroscedastic result but the vari-
ation in both axes is confounded in a single figure and
therefore variation in value of the ratios are difficult
to evaluate, Alternately if any pair of axes is plot-
ted in a scatter diagram in terms of logarithmic scales
(or phi units) the scatter is homoscedastic, or the var-
iance tends to be homogeneous (Griffiths, 1959, 1967).
This is most desirable for bivariate statistical analysis
and the variation in the two axes may be considered
separately. Both correlation and regression analysis
of each of the fifteen paris of variables ‘:n variables
= 6; variable pairs = n x (n-1)/2] are calculated as
part of SYSTEMS PROGRAM ONE for each sampling
design in this experiment.

The model used is the straight line, Y =a+
BX. It may be argued that the points need not fol-
low a straight line and indeed for individual pebbles
the scatter around a line may be large. For means of
sets of pebbles, however, it may be shown empirical-
ly and checked by statistical testing that the straight
line is indeed an adequate representation. Theoreti=
cally if all pebbles were spheres any pair of axes
would plot as a straight line bisecting the scatter dia-
gram (assuming that the scales used on both axes are
in the same units), Similarly, if the relationship be-
tween pairs of axes are constant for the size range
observed, the points representing pairs of axes would
fall on a straight line parallel to, but not necessarily



coincident with, the bisectrix. 1f, on the other hand,
"sphericity increases with increasing size” all points
may fall on a line that converges on the bisectrix as
the size increases, and, of course, vice versa for
sphericity increasing with decreasing size (Table 10),
As a study of shape, therefore, in terms of
pairs of axes in phi (logarithmic) units the two para-
meters of the linear model, B measuring the slope of
the line and @ measuring the (Y) intercept, or dis-
tance from zero along the (Y) axis, adequately char-
acterizes the change of shape with size. Because
the values of the parameters for the bisectrix are B =
1 and @ =0, it is possible to test the departures of
observed sets of points from the parametric values.
The observed sets of points may be analyzed by simple
linear regression (Krumbein and Graybill, 1965,
pe 221) to yield statistical estimators 8 of B and & of
@ and the observed line is symbolized as

Y=4+BX +¢,

where € represents unaccounted variation or error,
The model representation and appropriate statistical
test are summarized in Table 10,

A third parameter that characterizes the re-
lationship among the points in a bivariate scatter dia-
gram is the correlation coefficient, p. This is a meas-
ure of how closely the points cluster about the line;
for p = 1 the points are on the line and for p = 0 the
points do not cluster about the line. The statistical
estimator of pisr, the sample correlation coefficient,

For our purpose, because we used normality
as a model for each of the three variates, the bivari-
ate normal model is adequate for the three pairs of
axes, Because we defined the axes as a~ b >c in
millimeters, however, the results in phi units (a nega-
tive log transform) lead to a<b<c, In both instances
this results in a cut-off in variation of the axes and
because b < a only half the scatter diagram will be
used. The relationship induces some degree of associ-
ation among the variate pairs and so there exists some
degree of pseudocorrelation in the association of
pairs of axes, C.M. Smith of the Pennsylvania State
University Computation Center analyzed, by Monte
Carlo sampling on a computer, the effect of this
ordering of the axes and found that a maximum associ-
ation of 0.66 may be induced. In statistical testing
of our observed correlation coefficient, r, therefore
this value is used as a comparative basis, |f r < 0,66
no association is present among the variates. As will
be seen from the results, the values of r which occur,
are nearly all greater than 0,90 so that there is no
doubt about the association if means of sets of axes
are used to represent the shape changes. This is not
necessarily true of the association among axes for
individuals, particularly for a versus c axes ( Grif-

fiths and others, 1955).

The parametric correlation coefficient, p, or

. 2 . . .
its square, p~, is a valuable measure of linear associ-
ation among the pairs of axes and the sample estima-
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tors, r and r2, are included in the studies. Because
p is dimensionless this may be considered a measure
of "shape" independent of "size". It may be extend-
ed by partial correlation to three axes with interest-
ing results (Griffiths, 1959),

Some results of this type of bivariate analysis
applied to data from the sampling experiments per-
formed on white quartzite pebbles and red sandstone
pebbles from the Montoursville gravel are illustrated
in Table 11 and Figures 11, 12, and 13. The data
comprise the means of the set of pebbles in each
sampling unit, layers, channels and spots and in Fig-
ure 13 grand means of each experiment are plotted,

The straight line appears to be an adequate
representation because the points are close to a
straight line (r = 0.9 in all but one instance and
greater than 0.95 in all but three instances). Where
r is below 0.95 for the b versus c and a versus ¢ axes
for the grand means (Table 11, last two rows), the
value is lowered by the presence of two sampling ex-
periments on red pebbles. If we confine attention to
white quartzite pebbles only, one out of fifteen r
values falls below 0,95, This is possibly an accident
of sampling which we expect to occur under the null
hypothesis one in every twenty times.

The next step is to test whether the lines
show any evidence of departure from parallelism with
the bisectrix. We may test the observed B against the
parametric value of B =1, Results of the test are
summarized in the last column of Table 11 and only
one out of eighteen is significantly different, Evi-
dently the shape of pebbles is constant across the size
range studied. This is a feature we have found in
quartz grains measured directly (Hulbe, 1957), in
thin section (Griffiths and others, 1955) and boulders
(Griffiths, 1959). It should be emphasized that the
conclusion applies to means of sets of pebbles and
grains not necessarily fo individual pebbles or grains.

n general we have found that a and b axes
are related and the degree of relationship increases
from that of individual pebbles to means and means of
means etc. The a and ¢ axes may be independent if
the data treated represent individuals but again, as in
the present instance, the means of relatively small
sets tend to associate and the association grows with
increasing sample size.

The shape of quartzite pebbles tends to be
ellipsoidal and constant through a wide range of size.
There is no evidence of increasing sphericity with in-
creasing or decreasing grain size. We have too little
evidence to generalize dabout the shapes of pebbles
of other compositions but the two sets of red pebbles
in Figure 13 are of a different shape from that of the
white pebbles, Both are ellipsoidal and the relation-
ship among the axes differs in white quartzite from
red sandstone,

Ideally if the red sandstone pebbles occur on
straight lines, this offers a powerful tool for the study
of shapes of grains and pebbles. We could test first
to determine if red (or other types of pebbles) occur




Table 11. Relationship between pairs of axes in Montoursville gravel, Montoursville, Pennsylvania.

Sampling Axial Regression Correlation %Coefficient Test
Year Design Pairs Equation Coefficient Determination  (1-B)
58-59 Stratified avshb Y =1.028X-0.518 0.997 99.4 NS
b vs c Y = 0.972X-0.393 0.997 99.5 NS
avsc Y = 0.997X-0.886 0.992 98.5 NS
Channel avsb Y = 1.106X-0,972 0.988 97.7 NS
bvsc Y = 0.963X-0.402 0.942 88.8 NS
avsc Y = 1.096X-1.503 0.959 91.9 NS
Spot avsb Y = 0.936X-0,041 0.994 98.9 NS
bvsc Y = 0.835X-0.290 0.989 97.8 NS
avsc Y = 0.783X-0.248 0.985 97.0 *
60-61 Channel avsb Y = 1.010X-0.452 0.992 98.3 NS
bvsc Y = 0.780X+0.597 0.971 94.3 NS
avsc Y = 0.803X+0, 159 0.982 96.5 NS
Stratified avsb Y = 0,997X-0.376 0.99%97 99.3 NS
bvsc Y =0.993X-0.467 0.987 97 .4 NS
avsc Y = 0.993X-0.867 0.986 97.3 NS
All Various avsb Y = 0.987X-0.361 0.995 99.0 NS
(57-65) b vs c Y = 0.922X-0,220 0.934 87.1 NS
avsc Y = 0.880X-0.385 0.897 80.4 NS

NS = not significantly different from B=1.0

* = significantly different from B = 1,0 at the 5 percent level

on a line parallel to the bisectrix which would imply  Analysis of Variance (ANOVA)

consistency in shape through the size range investi-

gated. This would be a test of the slope of the line The succeeding data analysis by means of
against a parametric value of B = 1; then we could analysis of variance, quality control graphs etc. are
test B for the red pebbles against that of the white. further tests of nonrandomness of sampling against

If these are similar the &'s should be tested as a meas-  different arrangements of sources of variation, Thus

ure of difference in ellipsoidicity. the entire analysis amounts to setting up certain con-
Such an analysis is a rigorous test procedure stant probability models which are presumed to rep-
and may be made sensitive by increasing sample size,  resent distribution of variation in the population; then
It would represent a comprehensive determination of to interpret the deviations which are statistically,
shape changes of boulders, pebbles and grains, Here  and therefore geologically, significant as implica=
again experimental design and balanced sampling is tions about the pattern of variation.
essential to obtain unbiased estimators and reproduci- Once the requirements are fulfilled and the
ble results, samples are shown to be random samples from homo-
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Figure 11,-Relationship between axes of white quartzite pebbles in Montoursville gravel, Montoursville,
Pennsylvania; 1958-59 data; means of sampling units.
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Channel n=5 (p=105)
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Figure 12.-Relationship between axes of white quartzite pebbles in Montoursville gravel, Montoursville,
Pennsylvania; 1960-61 data; means of sampling units. "p" represents number of pebbles per
channel or layer-

Various Designs & All Years
n=9 White; 2 Red

L b =X, ; .
-3 -4 -5 6 -3 -4 -5 -6
PHI UNITS
Y = 0.987X-0.361 Y = 0.922X-0.220 Y = 0.880X- 0.385
r, = 0.995 r, = 0.934 r.= 0897

Figure 13.-Relationship between axes of white quartzite and red sandstone pebbles, Montoursville gravel,

Montoursville, Pennsylvania; 1957-1965 and various designs (channel, stratified, spot); grand
means,
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geneous populations, which yield constant probability
models, the successful sampling arrangement leads to
a definition of what constitutes random sampling from
the populations. The pattern of variation, therefore,
in the population is defined and the structure, equated
to the pattern of variation, also is defined.

Depending on the required results (Fig. 2), the
entire population may be homogeneous (defined by
means of channel sampling) and the characteristics
represented by the mean and variance (or standard
deviation) are sufficient statistics. On the other hand
if the population is composed of homogeneous subpop-
ulations, for example layers, then stratified sampling
is required to yield the characteristics of the layers
(again the means and variances are sufficient). The
only criterion for deciding if the stratified sampling
has been successful is by comparison and agreement
with the results of channel sampling that have been
shown to be random samples of the population.

These features arise from the process of forma-
tion of the population and its subunits, Thus varying
current velocity and changing its range from time to
time results in layers, Each period is characterized by
constant conditions and yields a homogeneous popula-
tion (sedimentation unit of Otto, 1938). The mean
and variance are sufficient statistics for the descrip-
tion of the subpopulations.

This is why the data analysis emphasizes tests
for nonrandomness. The advantage of the present
approach is that it is consistent internally and yields
criteria to decide when the objective has been
achieved, Without this type of analysis different in-
vestigations by different investigators may, and gen-
erally do, yield different results and there is no
method of deciding which is "right,"

The next step in the analysis is to examine the
effects of operators and to determine if the results
from different operators may be combined. If the re-
sults from different operators are compatible, we may
examine the realtionships between the different sources
of variation arising from "natural causes.” This vari-
ation is within and among channels, layers and spots,
and we decide which is the most efficient sampling
arrangement,

Each sampling experiment leads to a similar
structure; thus each observation contains variation
from at least six separate sources which may be ident-
ified, and using the present design (Fig. 3, 4, 5),
five of these may be isolated, This is expressed sym-
bolically as

Xiik =K 0+ Bi +a8ii + [Yk(ii) + eiik 1,
where X represents the variate; Xiik a single observa-

tion of that variate; U is the population mean, an un-
known fixed constant; a. is a contribution from opera-

tors around |; and B. is a contribution from different

sampling units around i, such as channels or layers or
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spots. Operators do differ and in the absence of cri-
teria for deciding which one is "right" we would like
them to differ consistently; a. measures the degree of

consistent difference, whereas OLBI' estimates whether

the operators are inconsistent from sampling unit to
sampling unit., We expect OLBii =0, but, ifitis

significant, differences among operators cannot be
separated from differences among sampling units.
There are differences also among pebbles (Yk)

within each operator and sampling unit (ij). There
are many other possible sources of variation of un-
known importance called "errors" which are desig-
nated eiik' The "errors" source will be included in

differences among pebbles in the present design. It
could be isolated by each operator repeating the
measurement on each axis on each pebble but this
would double the effort in gathering the data,

The form of the analysis of variance table for
each sampling design is illustrated in Figures 3, 4, 5
for stratified, channel and spot sampling respectively.
We expect channel means not to differ significantly,
that is the variation from differences among channel
means should not significantly exceed differences
among pebble measurements and error combined (be-
cause we expect aBii also to be zero), On the other

hand we expect layer means to differ significantly,
that is to show variation significantly Targer than
variation among pebbles, If this source is not signifi-
cantly larger than the pebble variation we cannot
detect layers (in terms of this variate). Ideally, dif-
ferences among spot means should not exceed differ-
ences among pebbles within spots, As an example,
the results for the a-¢ axis of white quartzite peb-
bles from the Montoursville gravel, using channel

and stratified sampling designs, are illustrated in

Table 12,

Channel Sampling

First note that the total variation or sum of
squares is 370,997 (Table 12). Variation among in-
dividual pebbles, set means plus "error" is 315,858
or some 85 percent of the total variation. This is
typical and indicates that we need a large number of
degrees of freedom at this level to control the varia-
tion if we are to find significant differences from any
other source,

The pebbles are grouped into sets and if we in-
clude this item it changes the structure of the experi-
ment to

Kot =4 +0; + B 0B+ 8y o+ Dy v 1

Then variation among set means may be compared
with that for "error" (including pebble to pebble vari-

ation) as an F ratio, Fo vov. = 1.328/0.531 =
4
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Table 12.-Analysis of variance for long a axis of white
quartzite pebbles from Montoursville gravel
(1960-61); channel sampling and stratified

sampling.

Channel Sampling
Source of Degrees of Sum of Mean F
Variation Freedom Squares Squares Ratio
Operator 6 10.031 1.672 1.28N5
Channels 4 6.800 1.700 1.046
Operator ( 2.52;:5
by Channel 24 39,022 ].626 . 1.22
Sets 70 92,953 1.328 2.50"*
Pebbles plus
"Error" 420 222,905 0.530726
TOTAL 524 370,997 0.708
Pooled 490 315,858 0.644608

Stratified Sampling
Operator 5 1.957 0.391 0.806NS
Layers 14 74,973 5.355 5,355"*
Operator NS
by Layer 70 45.018 0.643 1.32
Pebbles plus (
"Error" 360 174.561 0.485
TOTAL 449 296,509 0.660
Pooled 430 219.579 0.511

2.50 which with Vi = 70 and v, = 420 degrees of free-

dom is significant beyond the 1 percent (@ percent)
level (Arkin and Colton, 1950, Table 13). Evidently
the sets are more variable than the pebbles plus error.

Compared with variation among set means, the
discrepance is not significantly larger, nor are the dif-
ferences among channel means or operator means, On
this basis the deposit_apparently is homogeneous and
the channel means (X) are unbiased estimators of the
population mean (4).

If, however, the grouping into sets is ignored
by pooling sets with "error" then using this as a basis
for comparison the discrepance (operator by channel)
is significantly larger, That is the F ratio = 1,626/
0.645 = 2.52 which with 24 and 490 degrees of free-
dom is significantly larger than the tabulated value
of 1.84 for 24 and 400 degrees at the 1 percent level
(Arkin and Colton, 1950, p. 120).

The differences among channel means and oper=
ator means are not significantly larger than the dis-
crepance, however, if the operators are inconsistent
across the channels then this tells little., [t does sug=
gest that the experiment is out of control. It is essen-
tial that the discrepance shall be nonsignificant,

G,B;i =0, or else no firm conclusions may be drawn

about operator or channel means. Obviously it is
necessary to randomize operators across sets and to
remove this effect if the experiment is to be in
control .

It is not possible on the basis of this experiment
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alone to isolate the reason for this unfortunate result
of significant operator by channel interaction. Com-
pared with channel sampling experiments that achieved
their goal, this experiment has several features which
should be avoided, First, from experience, it appears
that 4 to 6 operators are ideal and less than 4 or

more than 6 introduces variation out of proportion to
the degrees of freedom involved, This coincides with
the findings of team experiments in psychology and
sociology. Secondly there are too many pebbles and
too few channels to balance the design. Seemingly,
there is a delicate balance in the arrangements just

as there is in stratified sampling and too few or too
many channels or pebbles per channel are equally
critical, One may deduce also that the large vari-
ation among pebble measurements is not stabilized by
using set means where a set is 5 pebbles but at least

15 pebbles per set are needed to achieve stability,

Finally, it is necessary to randomize operators
across sets to remove an interaction that may arise
at this level. Fortunately, the results of other exper-
iments using channel sampling with different weight-
ing indicates that the difficulties may be overcome
(Table 7).

The relatively wide range of variation in num-
bers of sampling units and numbers within sampling
units in the experiment should show how critical this
balance is in all types of sampling design.

Stratified Sampling

Here again the largest source of variation is at
the pebble plus "error" level. This accounts for some
59 percent of the total variation in contrast to the
channel experiment with 85 percent. As would be
expected, variation within layers is usually less than
within channels. This may be tested as an F ratio,
using the largest variance in the numerator as follows

FCL,\)]’\)2 = Fal490' 360 = 0.645/0,485=1,336,
which is significant at the 1 percent level.

If the "error" source of variation is tested
against discrepance (operator by layer) the F ratio is

v

[Vy T T.05, 70, 360 = 0.643/0.485 = 1.326,

which is not significant. Formally this implies that
error plus discrepance is no greater than error alone
so that the inconsistency of operators across layer

means is effectively zero i.e. OLBii =0 as required.,

a,v

Then, using either error or discrepance as a con-
servative test (larger value of mean square and less
degrees of freedom), the differences among layer
means are highly significant, Foc,\)],vz = FOL, 14, 70

=5,355/0,643 = 8.327. This most assuredly brings
out the presence of layering.

On the other hand the contribution of operator
mean differences are not significant if tested against

discrepance or error, Fa,v],\, = Fa,5, 360 ~
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Table 13.-Analyses of variance of A, B and C axes in
using three sampling arrangements (1958-59

phi units for quartzite pebbles from Montoursville gravel
data) (computer results).

A B cé
Number of  Source of Degrees of  Sum of Mean Variance Sum of Mean Variance Sum of Mean Variance
Plan Items Variation Freedom Squares Square Ratio (F) Squares Square Ratio (F) Squares Square Ratio (F)
6  Operators 5 22,1441 4.429 2,625 28.6303  5.726 3.523" 14.9544 2,991 1.739M8
< 6 Channels 5 11.4381  2.288 1.361"15 14,1738 2.835 1.744":5 40.4359  8.087 4,702::
£ 3  OpsxChan. 25 42,0143 1.681 4,549 40.6350  1.625 4.490 43.0035  1.720  4.475
S 9 Error 268 106.4040  0.369 104,2672  0.362 110.6967  0.384
324 Total 323 182,0005  0.563 187.7063  0.581 209.0905  0.647
6 Operators 5 26.1774  5.235  10.515"" 28.7704  5.754 8.832"" 28.5687  5.714 7.873
- 8  Layers 7 38.0239  5.432  10.910" 39.7595  5.680 8.718"" 33.4626 4780 6.587"
B 48 Opsxlayer 35 238372 0.675  1.418N8 22.8021  0.651 1.478N3 25.4006  0.726 1.419MS
2 7 Error 288 117.1852  0.476 126.9335  0.441 147.2900  0.511
< 3%  Total 335 225.0237  0.671 218.2655  0.652 234.7219  0.701
"k £ 2 * &
5  Operators 4 6.6435  1.661  3.500 6.6649 1,686 3.338 8.5192 2130 4.470
15 Spots 14 51.6285  3.688  7.700 45,4327 3.245 6.502"" 32.6069  2.329  4.g88"
2 75 OpsxSpots 56 2.2182  0.397 <1 18.8088  0.33 <1 19.8853  0.355 <1
@ 4 Error 225 106.7890  0.475 12,3019 0.499 107.2133  0.477
300 Total 299 187.2795  0.626 183.2083  0.613 168.2247  0.563

0.391/0.485 =<1, Because operator discrepance is
effectively zero this suggests that differences among
operator means are independent of differences among
layer means, a desirable result.

The total variance from the two experiments may
also be compared as an F ratio where

F =0.707/0.695 = 1,073 with v, =523 and
v, =449,

and these are not significantly different, From this

it should be clear that by careful attention to experi-
mental design and sampling arrangement it is possible
to control interfering sources of variation and isolate
those of real interest, By the same token if this is not
done, any differences which emerge are difficult to
assign without ambiguity. Comparison of the two
experiments shows that whereas the total variation is
similar, the arrangement or apportionment of the vari-
ation is not the same. Thus it is possible to determine
the presence or absence of a structural arrangement,

Comparison with Other Experimental Results

A more extensive series of results, using the
same sampling designs plus spot sampling and all three
axes, is displayed in Table 13, These may be taken
to typify the general results except that, based on
these experiments, somewhat better control was
achieved in the 1960-61 investigation,

Generally operator means are significantly dif-
ferent suggesting that experimental design is required
to ensure that discrepancies among different operators
do not vitiate the achievement of the objective. It
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suggests also that results of experiments performed by
single operators may yield different results because
the operators differ, and without testing for consist-
ency among operators, it is difficult to assign dif-
ferences unequivocally to "natural causes, "

Channel means generally do not differ although
the c axes in Table 13 do show significant differences.
This emphasizes that the ¢ axis does not behave like
the a and b axes.

Operator by channel interaction (discrepance)
is a common occurrence and careful balance in the
design is required to remove it. From the successive
experiments it is our opinion that this interaction is
not solely an operafor effect but is a function of the
number of channels and number of pebbles per chan-
nel. Usually more channels and less pebbles per
channel are required to induce a8.. = 0 as a stable
result, 'l

The discrepance among operator by layer means
is generally nonsignificant whereas both operator and
layer means (main effects) are significantly different
for all three axes. Similarly differences among opera-
tor by spot means is not significantly larger than
"error" in the experiments, The variations in the dis-
crepance are illustrated in Figure 14, If operators
are different but consistent (discrepance not signifi -
cant), the lines on a graph such as that in Figure 14
are parallel, [f discrepance is significant, there are
usually many crossovers among the lines, In some
instances discrepance becomes significant if the lines
diverge without-crossing. It is difficult to detect
differences among the sampling designs in Figure 14,
but the layers and spots possess no significant discrep-
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Figure 14.-Operator by sampling unit interaction in different sampling designs (Montoursville gravel, Mon-
toursville, Pennsylvania, A@-axis, 1958-59 data).

pance. The channels by operators, however, are
significantly greater than their appropriate errorterm.

Again, the differences among channel means,
and layer means, for the experiments of 1958-59 and
1960-61 are illustrated in Figure 15, in the form of
a quality control graph. The spot means for the 1958-
59 experiment is included also in the figure. Solid
lines represent the grand means of each sampling de-
sign. The dashed lines represent confidence belts at
+3 standard deviations from the means, |f the means
for the sampling units, plotted as points, are random
samples from homogeneous populations only 3 in 1000
should occur outside the limits,

In both channel samplings the sample means
occur within the limits implying each channel mean
is a random sample from a homogeneous population.
Some means for layers and spots occur outside the
limits. This is expected for the layers because their
means should be significantly different. If this hap-
pens for spots, however, it implies that we need
either more spots or more pebbles per spot or both.

It is clear also that in the 1958-59 data gll
three sampling designs yield significantly different
grand means. If we assume the channel samples to be
in control then the other estimators are biased in op-
posite directions,

In 1960-61 both channel and stratified sampling
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yield grand means that are not significantly different;
both estimators therefore are adequate. Note that in
both series of experiments the spread for the layer
means is larger than that for the channel means. As
would be expected layer means differ more than
channel means,

Spot samples also show large variation and
would require an increase in the number of spots and
pebbles within spots to reduce the variation, This
type of sampling seemingly is less efficient than chan-
nel sampling and less informative than stratified
sampling.

The above experiments indicate that to obtain
"best estimators" requires carefully controlled sam-
pling. It is appropriate also to observe that if the
experiment is not properly arranged, the sources of
variation contribute their quota to the total varia-
tion. It is not possible then to decide what source
is contributing most and thus geological conclusions
are open to equivocation (and controversy).

In our experiment a modified version of the
Pennsylvania State University Computation Center
library program (AOV) analysis of variance factorial
design is used for the analysis of variance of the peb-
ble measurement data., There are four main sources
of variation; among replicates, among operators,
among channels, layers or spots and among pebbles.



CONCLUSIONS

On the basis of the sampling experiments it has
been found that to achieve satisfactorily unbiased or
(more demanding) "best estimators" of the population
means and variances of the gravels, it is necessary to
use a combination of channel and stratified sampling.
The former is used to obtain unbiased estimators of
the population mean and variance. If the latter yields
estimators that do not differ significantly from the
estimators based on the channel sampling, then we
may conclude that the estimates of the mean and vari-
ance based on stratified sampling also are unbiased
and "best estimators," The channel sampling is,
therefore, used as a calibration standard.

The stratified sampling establishes the presence
of layers, that is defines the structural arrangement,
It yields estimates of the number of different layers

(the weighting which yields population estimators
that are unbiased) and the means and variances of the
layers yield the characteristics of each subpopulation.

Studies of shape by bivariate analysis supplies
information on the relationship among axes and thus
indicates whether shape is constant or changes with
changes in size. The regression values and associated
correlation coefficients suffice to define shape and its
relationship to size.

The total number of measurements ( = number
of pebbles) required to stabilize the estimates is about
300 or more pebbles for the Montoursville gravel;

200 is too few and 400 is about optimum,

The balance of number of pebbles per channel
or per layer and number of layers (or channels) is
critical. Generally five channels with 70 pebbles in
each is adequate (for Montoursville gravel), Similar-
ly 15-20 layers of 30-20 pebbles in each represents
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Figure 15.-Quality control graph to illustrate variation
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the limiting numbers for stratified sampling. In other
words, a 400-450 total sample size is required, pro-
portioned according to the number of layers by num-
ber of pebbles per layer,

Spot sampling seemingly requires too many spots
and pebbles to compete with the channel sampling
and does not supply information on structure thus
fails to compete with the stratified sampling design,

DISCUSSION

Reviewing achievements that result from exten-
sive experiments indicates they are esoteric. The
results include best estimators for the population mean
and variance and similar estimators for the layer
means and variance, From the results the most effi-
cient sampling design may be adopted to find subse-
quent estimators for similar gravel deposits. From
experiments on the Homewood Quartzite and on
Tuscarora scree the recommendations seemingly are
of general use in sampling deposits.

In the absence of knowledge on the existence
of layering it is advisable to assume layering is pres=
ent. From the results of the investigation then it is
possible to decide whether the population is homo-
geneous (massive) or structured (for example layered).

The results by themselves are not informative
geologically. It is possible, however, by examining
other grave{deposifs, to compare and contrast esti-
mators and to establish whether there are any differ-
ences with changes in geographical direction or with
stratigraphic direction, that is changes with time,
This remains at the descriptive empirical level with
perhaps some implications that may be applied in
engineering, To see what the results really indicate
in a geological sense, it is necessary to decide why
size and shape are measured in the first place.

The conventional model for the petrogenesis of
detrital sediments commences with a source material
(or source area). This initial detritus is subjected to
various processes such as weathering, erosion, trans-
portation, deposition and diagenesis ultimately to
produce a detrital sedimentary rock (Fig. 2). We
may generalize this model as (Griffiths, 1966)

Product (Stage)"

The estimators determined in the sampling ex-
periments are presumed to characterize certain aspects
of the processes in this model. Thus, given a medium
which is eroding, transporting and depositing detritus,
it will follow in general a relationship between ve-
locity of current and size of material of the form of
Stokes Law or the Impact Law, where

Process

Source Area

*The Northwestern school (see Krumbein, W.C. and
Graybill, F.A,, 1965; and Whitten, 1964) use a pro-
cess—response model for this representation but it
seems fo us to require a starting material as well to
complete the model.
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V= Cr2, or V2 = Cr, respectively.
The relationships are log linear, that is

log V=log C+2logr, or2logV=log C+logr,

which indicates a one-to-one mapping between log
velocity and log size. This, of course, supplies
some theoretical basis for using the log tansform (or
the phi transformation).

On this basis, any conclusions regarding size
of materials also refers to the current velocities char-
acteristic of the carrying medium, This is why we
measure size and shape to obtain information of geo-
logical interest, It is possible with this background
to translate the "structure" of the material as defined
in the sampling experiments into a description of the
behavior of the carrying medium.

For example, suppose the medium fluctuates in
velocity around some constant (average) velocity,
the size range will show analogous variation. This
will result in a homogeneous (massive) deposit., On
the other hand, if the current velocity fluctuates in
discontinuous steps through time where for relatively
short periods of time it fluctuates around a low (aver-
age) velocity and later at a higher velocity and so
on, the process will tend to develop an analogue in
size variation in the deposit; it will be layered. A
similar model may be constructed for graded bedding
wherein the average changes continuously with time,
and of course, two or more of these may be super-
imposed (Dahlberg and Griffiths, 1967),

In all instances the only evidence we possess
concerning the behavior of the process is represented
in the fluctuation in the size and shape of specific
constituents, This is the motivation behind the sam-
[:()Iing experiments, |t is critical to the result that we

now the "structure" to describe the fluctuations in
velocity and therefore to describe aspects of the
paleogeography. Any mistake in the experimental
analysis will result in a mistake in the inferred pale-
ogeography.

It is necessary to realize that indirect measuring
techniques (for example sieving) which treat all the
constituents as if they were similar in behavior will
confuse the interpretation, Similarly, attempts to
measure "size" which really measure something else
as well, will confuse the interpretation (Griffiths,
1961, 1967). Again if white quartzite pebbles yield
information on process and all red sandstone pebbles

are equivalent hydraulically they will not add new

information on process.

If after adjusting the variation in size and
shape of white quartzite pebbles and red sandstone
pebbles for their hydraulic equivalence, there remains
a residual variation, it may reflect the effects of
other factors than process, for example change in
source material, Because relative proportions of dif-
ferent pebble types (or mineral types that is mineral
composition) are affected by the processes, it is nec-
essary to remove the process effect on the variables
to "see" the effect of change in factors that preceded



the carrying processes.

In fact the only way to "see" the effect of
changes in source material is to first remove the ef-
fect of interfering sources of variation such as that in-
duced by process (Griffiths, 1966). A mistake in
estimating the effects of processes, and this is equiva=
lent to a mistake in estimating the sizes and shapes
of materials, will confuse the entire petrogenetic
story.

The sampling experiments set up the most effec=
tive method of measuring the effect of processes in
the petrogenesis of detrital sediments. The resultsare
critical in deciding the petrogenesis of the material
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as well as in determining its industrial usefulness.

The continued coniroversy about petrogenetic
episodes is likely to be in no small part due to the
lack of reproducibility of experimental investigations
which are not adequately designed to achieve their
objective. The sampling experiments and their accom-
panying experimental designs exemplify what is re-
quired if the experimental results are to be repro-
ducible and meaningful. Much literature in this
field is based on inadequate sampling, poorly de-
signed experiments and lack of control so that, for
more effective results, some improvement in carrying
out the experiments is necessary.
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APPENDIX
Description of SYSTEMS PROGRAM ONE

The following program is a composite of five
1620 computer programs linked together, revised and
adapted to the IBM System/360 Model 67, The pro-
gram is designed to accept grain-size data (a, b and
c axes) from either Port-a=Punch or Hollerith cards,
convert field units to phi units for a, b and ¢ axes
and obtain the ratios of b/a, ¢/b, c/a in millimeters.
The six variables are classified into frequency dis-
tributions, moment measures calculated, and expect=-
ed normal derived for each observed distribution
based on the observed mean and standard deivations.
A regression analysis for each of fifteen paris of
variables also is given,
The program includes the following options:
1. Accepts Port-a-punch (40 punched column
cards) or Hollerith cards.
2, Punches the six variables on cards for AOV or
other analysis
3. Bypasses the log (phi) transformation and ratio
determination and accepts any six variables
for the above analysis.
Card 1 Contains the number of individual sets of
data (15).,
Card 2 Contains five parameters, in order of appear-
ance on the card they are: multiplication
factor for field units to millimeters (F10.5),
sum of frequencies for all six variables
(F10.5), number of variables () (14), read-
ing option (see READING OPTION) (F5.,0),
punching option (see PUNCHING OPTION)
(F5.0). FORMAT for Card 2 therefore is
(2F10,5, 14, 2F5.0),
If the reading option is 5 or 8 the card con-
tains the format to which the data will be
read in, otherwise the card immediately after
Card 2 is considered as Card 4,
Card 4 Contains the lower class limits, class interval
plus and number of classes desired from the lower
5 cards class limit ( <40). FORMAT of Card 4 there-
fore is (2F7.3, 14). The card is replicated
for each of the six variables.

Card 3

Data Cards

If the reading option punched on parameter
Card 2 was 5 or 8, data cards will be conventional

Hollerith cards. A format card submitted with the
run by the user (input parameter Card 3) will state
the format in which the data are punched, Alter-
natively, if the reading option selected on Card 2
is "BLANK", data will be read in on Port=a=Punch
cards according to a fixed format, A description of
that format follows:

Columns
2-6  Replicate number (see Table 2)
8-10  Operator number
12-14  Number of channel, strata or spot
16=18  Pebble number

(Actually any series of 4 sequence numbers will suffice)

20

Punch a 2 in this column as a check on
alignment of fields on each card,

24-30 b=axis (inches and eighths)
34-40 a-axis (inches and eighths)
44-50 c-axis (inches and eighths)
58-60 Design number (see Table 2)

All entries to the Port-a-Punch cards must be right
justified.

Last Data Card contains a 999999 across the
entire card,

Cards=Data + 1 through 6 Contains titles of each of
the six variables in order of appearance on
data cards (columns 1 through 36).

Repeat cards 2 through (Data + 1 through 6) based on
the number on Card 1,

Reading Option

On Card 2 the fourth parameter controls the
reading of the cards, Leave columns 28-29 blank to
accept Port-a-Punch cards for a, b and ¢ axes (phi
conversion); punch a 5, to accept Hollerith cards for
a, b and ¢ axes (phi conversion); punch an 8. to by~
pass log transformation and accept any six variables
for analysis, The format must be of the form (41X,
6FX.X).

Punching Option

On Card 2 the fifth parameter controls
whether or not the converted data are punched, Leave
blank if no punched cards are desired; punch a 3. in
columns 33-34 if punched output is desired. Data
are punched in the Format (413,6F10.5).



OO0 OO0

10

15

20
25
30
35
40

45

5¢
55

60

EEEE 5555560853558 355P555E55T5SE5S53SSSLPEEEE58S65885588885YS5P
ook ok ook ook kokok kxR kR SYSTEMS PROGRAM QN 3k ok e s ol e sk o s ookl ook ok ok ok ok SY SP
SEEEEEEESE5E55 555858555535 TSTESSPFI55ES5SHE55655885658563885YSP
THE FOLLOWING PROGRAM 1S A COMPOSITE OF FIVE 1620 PROGRAMS LINKED SYSP
TOGE THER,REVISED AND ADAPTED TO THE 360/67 BY CHARLES W. ONDRICK SYSP
FERB. 1968, IT IS DESIGNED TO ACCEPT GRAIN SIZE DATA(A,B,AND C AXESSYSP
FROM EITHER PORTA-PUNCH OR HOLLARITH CARDS-CONVERT FIELD UNITS TO SYSP
PHI UNITS FOR A,B,AND C AXES AND OBTAIN THE RATIOS OF B/A,C/B,C/A SYSP
IN MILLIMETERS., THESE SIX VARIABLFS ARE THEN CLASSIFIED INTO FREQUSYSP
ENCY DISTRIBUTIONS,THE MOMENT MEASURES CALCULATED AND THE EXPECTEDSYSP
NORMAL DERIVED FOR EACH DOBSERVED DISTRIBUTION BASED ON THE OBSER- SYSP
VED MEAN AND STANDARD DEVIATION. A REGRESSION ANALYSIS FOR EACH DFSYSP

15 PAIRS OF VARIABLES IS ALSO GIVEN. SYse
A NUMBER 2 MUST APPEAR IN COLUMN 20 FOR EACH DATA CARD{PORT-A- SYSP
PUNCH CARDS ONLY) SYsp
DIMENSION X(6) 4FREQ(6440) 4CLINT(6),XLCL{6)4NOCL(6) Sysp
DIMENSION T{10) yNCLASI6) 4UCLI40),CLMP(4D) syse
DIMENSIGON KTOP(6) ,L0OW{6) Sysp
DIMENSION FD(40),FD2(40),FD3(40),FD4(40),FD5(40),D(40) Syse
DIMENSION FREQEX(40),CONTB{(40),BZ1(40),AREA{40),DIFF(40) sSysp
DIMENSINON FMT(20) Syse
READ 5,KIDD SYsp
FORMAT (15) Syse
DD 390 LLD=1,KIDD SYSP
PRINT 365 Syse
PRINT 10 SYsp
FORMAT {1H ,21X,T78HUNITS OF MEASUREMENT TO MILLIMETERS TO PHI-FREQSYSP
1UENCIES PLUS SUMMARY STATISTICS//) Sys»
PRINT 15 SYsSp
FORMAT (31X,7HKANSAS S7HGEOLOGICAL SURVEY SHORT COURSE ON SAMPL INGSYSP
1 DECEMBFR 1968 //) Sysp
READ 204P4QsNVAR,FIVE,THREE SYsp
FORMAT (2F10.5,14,42F5.0) SYSP
IF (FIVE-5.0) 35,25,25 Syse
READ 30,FMT SYsp
FORMAT {20A4) SYsSp
PRINT 40,NVAR syse
FORMAT (1H ,43X,21HNUMBER OF VARIABLES =,13) SYSP
PRINT 45 Sysp
FORMAT {1H ¢//30X414HIDENTIFICATION,2X y5HA=PHI,5Xy SHB—PHI,5Xs5HC~P SYSP
1HT 45Xy 5H B/A 35Xy5H C/B 45X,5H C/A ) SYsP
DO 55 I=1,NVAR SYSP
READ 50 XLCL{I),CLINT{T) NOCL(T) Syse
FORMAT (2F7.3,14) Syse
CONTINUE SYse
ZERD OUT FRFQ ARRAY SYsp
N0 60 I=1,NVAR syse
JOKE=NOCLA(1I) SYse
DO 60 J=1,JOKE SyYsp
FREQ(I,J)=D.0 Syse
CONTINUE Syse
LAA=0,0 Sysp
ZAB=0.0 Syse
IAC=.u SYyse
ZAD=0.0 syse
ZAE=0,0 syse
ZAF=0.0 SyYse
ZAAB=0,0 Syse
ZAAC=0.0 syse
ZAAD=0.0 Syse
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10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

S

95
1C0
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
18C
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
3C0
305



65
70

ZAAE=0.0
ZAAF=0.0
ZABC=0.0
ZABD=0.0
ZABE=0.0
IABF=0.0
ZACD=0.0
ZACE=0.0
ZACF=0.0
ZADE=0.0
ZADF=0.0
ZAEF=0.0
CO0AA=0.0
C0BB=0.0
cocc=0.0
C0o0D=0.0
COEE=0.0
COFF=0.0
READ PORTA PUNCH CARDS
IF {(FIVE-5.0) 70,85,100
CONTINUE

Sysp
Sysp
Syso
Sysp
Sy sp
SyYse
SYsp
Sysp
Syse
Sys»
Sysp
Sysp
Syse
SYSP
Syse
Sysp
Sysp
Sysp
sSysp
Sysp
SysSsp

READ 754IX291X491X69IXBIX105IX12,IX149IX164IX18,I1X20y IX24,1X26,IXSYSP

128y IX3041X34,1X36,1X38,1X40,1X44,1X46,1X48,1X50

SYSp

75 FORMAT (1XI141XT141XI1IXT1gyLXT1glXT1epIXTLyIXT1yIXTILy1XE1,3XIk, 1XISYSP

80

85

99

95

100

105
110

T191XI191XT193XI19y1XT1y1XI1y1XI193XT1y1XT1,1XI1,1XI1)

IF (IX20-2) 15C,80,150
IB=1X24*%100+IX26%10+1X28
XB=I8

X30=IX30

B=( XB+X30/8.0) %P
TA=1X34%100+1X36%10+1X38
XA=1A

X40=1X40

A={ XA+X40/8.0) %P
IC=IX44%100+1 X46%10+1X48
XC=1C

X50=IX50

C={XC+X50/8.0)%p
I=IX2%100+1X4%10+1X6
J=1X8%10+I X10

K=IX12%10+1IX14
L=IX16%10+1X18

GO 71O 95

READ FMT,14J9KyLyXAA,XAB,XAC
IF (XAA-9999.0) 90,150,150
A=XAA*P

B8=XAB*P

C=XAC*p

AC={1.0/AL0G(2.0))
X{1)==({ALOG(A) }*AL)
X{(2)=={(ALOG(B) ) *AC)
X(3)=-({ALOG(C) I*AC)
X{4)=B/A

x{5)=C/8

X{6)=C/A

GO TO 105

READ FMT,I,J4KsL, XAL1) 9 XU2) 3 X {3) 3 X{4) X (5),X{6)
IF (X(1)-9999.0) 105,150,150
PRINT 11097 9JsKsL o X{1)yX (219X {3)4X{4)4X(5),X16)
FORMAT {1H ,26X+413,6F10.5)
IF (THREE-3,0) 125,115,125

Syse
Syse
SyYse
SYsp
Sysp
Syse
SYSP
SYSP
Sysp
Sysp
Sysp
Syse
Sysp
Syse
SYsp
Sysp
Syse
Sysp
syse
Syse
Sysp
syse
Sysp
SYsp
SYsp
SYSP
Syse
SYse
SYysp
SYsP
Sysep
Sysp
Sysp
SYyse
Sysp
Sy se
sysp

310
315
329
325
330
335
340C
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
595
510
515
520
525
530
536
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610



115
12¢
125

135

140
14¢

150

155

160
165

PUNCH 12051 9J9KaLyX{1)4X(2)4X{3) X [4)4X{5),X(6)
FORMAT (413,6F10.5)
ZAA=ZAA+X{1)

ZAR=ZAB+X(2)

ZAC=ZAC+X(3)

ZAD=7AD+X{ 4)

ZAE=ZAE+X{5)

LAF=ZAF +X(6)
ZAAB=7AAB+X(1)%X{2)
ZAAC=ZAAC+X{ 1)*X{3)
ZAAD=ZAAD+X( 1) %X(4)
ZAAE=ZAAF+X{1)%X(5)
ZAAF=ZAAF+X{ 1) %X(6)
ZABC=ZABC+X{2)*X{3)
ZABD=ZABD+X(2)*X{4)
ZABE=ZABE+X(2)%X{5)
ZABRF=ZABF+X(2)%X{6)
ZACD=ZACD+X(3) *X{4)
ZACE=ZACE+X{3)*X{5)
ZACF=ZACF+X{31*X(6)
ZADE=ZADE+X{4)*X(5)
ZADF=7ADF+X{(4)%X(6)
ZAEF=ZAEF+X({5)*X{6)
COAA=COAA+X{1)*X{1)
COBB=COBB+X{2)*X(2)
COCC=COCC+X(3)%X(3)
CODD=CODD+X{4) %X {(4)
COEE=COEE+X(5)%X(5)
COFF=COFF+X(6)%xX{6)

ARUILD FREQUENCY DISTRIBUTIONS
DO 145 I=1,NVAR
JOKE=NOCLI(I)

DO 140 J=1,JO0KE

z=J

OP=XLCL(II+ZxCLINT(])

IF (X(I)-QP) 135,135,140
FREQ(I,J)=FREQ{I,J)+1,

GO 10D 145

CONTINUE

CONTINUFE

GO TO 65

CONTINUE

ELIMINATION OF EMPTY CLASSES ON BOTH ENDS
LOWER END

PRINT 365

DO 370 L=1,NVAR

READ 1555T{1)4T{2)4T(3)3T{4),T{5),T{6),T(T),T(8),T(9)
FORMAT (9A4)

NCLAS{L)=0

JOKE=NDCL(L)

DO 160 J=1,J0KE

IF {(FREQ(L,J4)) 160,160,165
CONTINUE

LoWiL)=J

Z=L0W(L)

NEW LOWEST BNUND

XLCL{L) =XLCLIL) #7Z%CLINT(L) -CLINT (L)
UPPER END

DO 170 J=1,JNKE
K={JOKE-J)+1

IF {FREQ{L,K)) 170,170,175

37

Sysp
sSyse
SYsp
Sysp
Syse
Syse
Syse
Syse
SYsP
Syse
sysp
syse
Sysp
SYsp
SYsp
syYsp
SYsp
SyYsp
SYsp
SYSp
Sysp
Sysp
Sysp
SYsp
Syse
syse
Sysp
Sysp
Sysp
Syse
Sysp
syse
Sysp
SYysP
Sysp
Syse
Sysp
SYSP
Sysp
sysp
Sysp
SYsP
SYse
Syse
SyYse
SYSP
Syse
syse
Syse
SYsp
SYSp
SYsp
Syse
Syse
SYse
SYSpP
Sysp
Sysp
SYsp
SYSP
Sysp

615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
125
730
735
740
745
750
755
760
765
770
775
780
785
790
795
8C0
805
810
815
82°2
825
830
835
84¢C
845
85¢C
855
860
865
870
875
880
885
89¢C
895
900
905
910
915



170 CONTINUE SYsSp 92¢
175 KTOP{L) =K SYse az2s
NCLASIL)=(KTOPIL)-LOW(L))+1 SYSP? 930
COLLECT NEW CLASSES, LIMITS AND FREQUENCIES SYsSP 93§
KOP=KTOP (L) SYSP 940
LOP=LOW(L) SYSP 645

180

185

190
195

205

210

215

220

225

PUNCH OUT UPPER CLASS LIMITS AND NDBSFERVED FREQUENCIES FOR NVAR VARISYSP 950
PRINT 180y T(1)yT(2)+TU3)3T(4),T(5),TI{6),TIT7)»T(8),T{9),CLINTIL),NCSYSP 955

1LAS(L) SYSP 960
FORMAT (1H 426X y9A%4,5X46HINT = ,F7.3,2X,14,8H CLASSES/) SYSP G965
PRINT 185 SYSP g79
FORMAT (1H 432X,12HCLASS NUMBER,5X,11HUPPER LIMIT,5X,8HMINPDINT,5XSYSP G675
14 19HFREQUENCY{DBSERVED)) SYSP 98¢
2=0.0 SYSP 985
DO 195 J=L0OP,K3P SYSP ©9p
1=7+1. SYSP ©95
UCLEJ)=XLCLIL)+ZXCLINT(L) SYsSP1700
CLMP(J)=UCL(J)-(CLINT{L))/ 2. SYsSPicaos
PRINT 190,Z,UCL{J)yCLMP(J),FREQ(L,4) syspio1loe
FORMAT (1H 335X 3F5.098X3F10e445X3F10.499%X,F10.0) SYSP1015
CONTINUE Syspl1io2o
CONTINUE SYSP1025
®SUMSTATPHI* PROGRAM TO DERIVFE MOMENTS FOR FREQUENCY DISTRIBUTICNSSYSP1N3(Q
DERIVED BY *FREQPHI * SYSP 1035
N=NCLAS(1) SYSP1N40
C=CLINT{L) SYSP 1045
SELECT CLASS WITH MAXIMUM FREQUENCY SYSP 10750
YMAX=FREQ{L,LOP) SYSP1055
KK=LOP SYSP 1160
KLOP=LOP+1 SYSP 1165
ILOP=KLOP+N SYSP1CT70
DO 210 K=KLOP,LILOP,1 SYSP12075
IF (YMAX—=FREQIL 4K)) 205,210,210 Sysei1n8an
YMAX=FREQ{L,K) SYsSP1Q85
KK=K-L0OP+1 SYSP1CsSo
CONTINUE SYSP1CG5S
PRINT MAX. FREQ., CLASS ND., VALUE OF X AT THIS CLASS syspPiicn
PRINT 215 SysP 1105
FORMAT (1H ,/740X,1 THMAXIMUM FREQUENCY y5X,5HCLASS,y5X, BHMIDPOINT) SYSP111Q
I1JOL=KK+L0OP-1 SyYsP111s
PRINT 220, YMAX,KK,,CLMP{IJ0OL) Ssysei12n
FORMAT (1H 442X yF7.0913X,14,5X,F8.3) SYSP1125
ASSIGN D SCALE SYSP1130
DO 225 I=1,I1L0P SYSP113s5
DII)={CLMP{I)-CLMP{IJOL))/C SYSP1140
CONTINUE SYSP1145
SF=0.0 SYSP1150
SD=0.0 SYSP1155
SD2=0.0 SYSP1160Q
SD3=0,0 SYSP1165
SD4=0.0 SYSP117¢C
SD5=0,0 SYSP1175
ND 230 I=1,IL0P SYSP11R(C
FDUI)=FREQ(L,I)*D(1I) SYsP1185
SD=SD+FD(I) SYSsP119¢
FD2(T)=FREQIL,1)*{D{I)*%2) SYSP1195%
SD2=SD2+FD2{(1) SYysp1200
FD3(I)1=FREQIL,I)%{(D(I)%*%3) SYSP1205
SD3=SD3+FD3( ) SYSP1210
FD4UII=FREQ{LyI ) %(D{I) *%4) SYsP1215
SD4=SD4+FD4( 1) Ssysp1z22¢

38



230

235
240

245
250

255

260
1

265

270

275

280
1

285

290

FDS(I)=FREQIL,T)*{(D(I)-1,01%%4)
SD5=SDS5+FD5S(1)

CALCULATE TOTAL FREQUENCY, SF
SF=SF+FREQ{L,1I)

CONTINUE

CALCULATE GRAM-CHARLIER CHECK AND TEST
GCK=SD4-{(4.0%SD3) +{6.,0%SD2)~(4,0%SD)+SF
IF {GCK-SD5) 235,250,235

PRINT 240

FORMAT (1H ,/43X%X,12HGRAM CHECK,3X,10H SUMF4)
PRINT 245,GCK,SD5

FORMAT (1H 448X,F10.645X,F10.6)

GO TDO 255

CALCULATE MOMENTS AROUND ASSUMED MEAN
AMOM1=SD/SF

AMOM2=SD2/SF

AMOM3=5D3/SF

AMOM4=SD4/SF

CALCULATE MOMENTS AROUND TRUE MEAN
TMOM1={ AMOML ) *C
TMOM2=(C**2) *{ AMOM2-{ { AMOM1 ) %%2))
TMOM3=(C *%3) *{AMOM3 - (3 . 0%AMCM2 *AMOML ) + (2. 0* (AMOM1%**3)))
PT4A={ AMDOM4— (4, DEAMOMI XAMOM]L ) 4+ (6, 0% (AMOML**2 )% AMOM 2) )
PT4B=PT4A-(3.0%(AMOML *%4))
TMOM4=(C *%4) *( PT4B)

CALCULATE SUMMARY STATISTICS
AVEX=CLMP(TJOL)+TMOM]L

VAR=TMOM2

STDV=SQR T{ VAR)

RTB1={ TMOM3 /{ {SQRTIVAR)) *%3))

B2={ TMOM4/( TMOM2%%2) )

PRINT SUMMARY STATISTICS

PRINT 2690

SYspP1225
Syse123c¢
SYsp1235
SYSP1240
SYSP1245
SYSP125C
SYSP1255
SYsSP1260
SYSP1265
sSyseiz27¢
SYsP1275
SYsSP1280
SyspP1285
SYspP 1290
SYSP1295
SYspi3co
SyYsSP1305
SYSP1310
SYSP1315
SYsP132¢
SYSpP1325
SYSP 1330
SYsSP 1335
SYSP1340
SYSP1345
SYSP1350
SYSP1355
SYSP 1360
SYSP1365
SYSP1370
SYSP1375
Syse1380
SYSP 1385

FORMAT (1H /40X, THAVERAGE »3X,8HVARIANCE,3X,18HSTANDARD DEVIATION)SYSP139C

PRINT 265,AVEXsVAR,STDV
FORMAT (1H 439X3FBe341X,F11.544X,F8.4)
PRINT 270

FORMAT (1H /38X, THROOT B1,8X,2HB2,8X,18HSUM NF FREQUENCIES)

PRINT 275,RTB1,82,5SF
FORMAT {1H 337XsF8.3,5X+F8.3,10X,F8.0//)
PRINT 280

SYsP13s5
SYSP 1400
SYSP 1405
SYSP 1410
SYSP1415
SYSP14290
SYSP1425
SYSP 1430

FORMAT (1H 920Xy 80H sdokodskook ok ok dokok ok sk ek ofokok ook ook ek ok ok X okokok SYSP 1435

e e e e o e Sk oo kolofek ko S sl Sl ol ok e koo ok ok / /)
PRINT 285

FORMAT (1H ,50X,30HFIT TO THE NORMAL DISTRIBUTION//)
A1=0.09979268

A2=0.04432014

A3=0.00969920

A4=—0.0C009862

A5=0.00058155

SOBFQ=0.D

TIM=NCLAS{L)+1

NDF=NCLAS(L)-3

DO 290 J=L0OP,KOP
SOBFQ=SNBFQ+FREQ( L, J)
BZI(J)1={UCL{J)-AVEX)/STDV

CONTINUE

SDIFF=0.,0

SEXPF=0.0

CHISY=r.0

39

SYSP 1440
SYSP 1445
SYSP 1450
SYSP 1455
SYSP 1460
SYSP 1465
SYSP147C
SYSP 1475
SYSP1480
SYsP1485
SYSP14S0
SYSP1455
SYSP 1500
SYspP 1505
SYSP1510
SYSP1515
sSysp152¢C
SysP1525



295

300

305

310

315

320

325
330

335

1JK=0

IKO=L0P-1
AREA(IKD)=0.0

DO 335 I=L0OP,KOP
I1v=I-1

IF (BZI(1)
AVT=-BZ I{1
GO TO 305
AVT=BZI(1)

) 295,300,300
)

AREA({T) =1, 0+AVT*{ AL +AVTH{A2+AVT* (A3 +AVT* {A44+AVT*AS5))))

AREA(I)=0.5/{AREA(]) *%8)
IF [(BZT1(1)) 310,315,315
DIFF({I)=AREA(I)-AREA(IIV)
GO TN 33n

[IK=TJK+1

IF (I1JK-1) 320,320,325

DIFF{I)=1.0-AREA{I)-AREA{IIV)

GO TO 330
DIFF{I)=AREA{IIV)-AREAL(I)
SNIFF=SDIFF+DIFF{I)
FREQEX({I)=DIFF(1I) *SF
SEXPF=SEXPF+FREQEX{1I)

CONTBULI)={{FREQIL,yI)-FREQEX{I))*%2)/FRFQEX (1)

CHISQ=CHISQ+CONTBI(1I)
PRINT 340

SYsP 1530
SYSP1535
SYSP1540
SYSP 1545
SYSP15E0
SYSP1555
SYSP 1560
SYSP 1565
Syse1s70
SYSP1575
Sysp1580
Sysp1585
SYSP1590
SYSP 1595
SYse1éco
SYSP 1625
SYsP161¢0
SYSP1615
SYSP1620
SYSP 1625
SYsSpP1630
SYSP1635
SYSP 1640
SYSP 1645
SYsSP165¢0

340 FORMAT (1H 430X ,11HUPPER LIMIT,5X, 19HFREQUENCY (OBSERVEDN),5X, 19HFRESYSP1£55

345
350

355

360

365
370

DO 350 I=L0OP,KOP

PRINT 345,UCL(I)FREQ(IL,1),FREQEX(I),CONTBR(T)
FORMAT (1H ,30X,F10.4+5X,F10.0+14X,F13.3,11X,F10.3/)

CONTINUE

PRINT 355, SOBFQ,SEXPF,CHISQ
FORMAT (1H 425X ,5HTOTAL415X,F10.0414X+F13.3,11X,F10.3//)

PRINT 360,NDF

FORMAT (1H ,25X,15,19H DEGREES OF FREEDOM)

PRINT 365

FORMAT {1H1)

CONTINUE
BABY={COAA-{ZAAX%2/Q))
CHOOK={COBB-(ZAB*%*2/Q))
HELP={COCC-(ZAC*%2/Q))
TRAMP={CODD-(ZAD%%2/Q))
STICK=(COEE-{ZAE*%*2/Q))
BEER={COFF-(ZAF*%2/Q))
CREEP={ZAAB-(({ZAA*ZAB)/Q))
GRIFF=(ZAAC-{{ZAAXZAC)/Q))
THORN=( ZAAD-{(ZAA%XZAD)/Q))
ARNY=(ZAAE-{{ZAAXZAE}/Q))
SUHR={ZAAF-({ZAA%XZAF)/Q))
GENE={ZABC-({ZAB*ZAC)/Q))
GUE SS=(ZABD-({ZAB*ZAD)/Q))
WHAT={ZABE-((ZAB%ZAE)/Q))
YOYO={ZABF-((ZAB%*ZAF)/Q))
BLOAK=(ZACD-(({ZAC*ZAD)/Q))
CROAK={ZACE-{(ZAC*ZAE)/Q))
PRIDE=(ZACF-({ZAC*ZAF)/Q))
ACNE=(ZADE-{(ZAD*ZAE)/Q))
DOOR=(ZADF-{{ZADXZAF)/Q))
SAND=(ZAEF-{{ZAEXZAF)/Q))
ASK=CREEP/BABY
BAT=GRIFF/BABY

1QUENCY(EXPECTED) ,5X 410HCHI SQUARE//)

40

SYSP1é6C
SYSP1é€eS
SYsSP1670
SYSP1675
Sysp1s680
SYsP1685
SYSP1690
SYSP1695
SYSP170¢C
SYSP1705
SYSP1710
SYSsP1715
Sysei1720
SYSse1725
SysPi73¢0
SYSP1735
SYSP1740
SYSP1745
SYspP17s50
SYSP1755
SYSP1760
SYSP1765
SYSPL1770
SYSP1775
SysP1780
SYsSP1735
SYsSP179¢0
SYSP1795
SyYsP18ce
SYSP18C5
SYSP1810
Sysp1815
SYsp1s20
SYsSP1825
SYSP1330



CAT=THORN/BABY
DOZ=ARNY/BABY

EAT=SUHR /BABY
FAT=GENE/CHONK

GAG=GUE SS/CHOOK
HAT=WHA T /CHOOK
PAT=YDYO/CHOOK
QAT=BLOAK/HELP
RAT=CROAK/HELP
SAT=PRIDE/HELP
TAT=ACNE/TRAMP
UAT=DONR/TRAMP
VAT=SAND/STICK
FUNNY=(ZAB—-(ASK*ZAA))/Q
BUNNY={ZAC-{BAT*ZAA))/Q
GUNNY=(ZAD-{CAT*ZAA))/Q
HUNNY=({ZAE-{DOZ*7AA))/Q
PUNNY={ ZAF-{EAT*ZAA))/Q
QUNNY={ ZAC-(FAT*ZAB))/Q
RUNNY=(ZAD-(GAG*ZAB))/Q
SUNNY={ ZAE-(HAT*ZAB))/Q
TUNNY=( ZAF-{PAT*ZAB)})/Q
VUNNY={ZAD-(QAT*ZAC))/Q
WUNNY={ ZAE-(RAT*ZAC))/Q
XUNNY=(ZAF-{SAT*ZAC))/Q
YUNNY=({ ZAE-( TAT*7AD))/Q
JUNNY={ZAF-( UAT*ZAD))/Q
DUNNY=({ZAF-(VAT*ZAE))/Q
AVEX1=ZAA/0

AVEX2=ZAB/Q

AVEX3=ZAC/Q

AVEX4=ZAD/Q

AVEXS5=ZAE/Q

AVEXA=ZAF /Q
VARA=BABY/(Q-1.0)
VARB=CHOOK/{Q-1.0)
VARC=HFLP/(Q-1.0)
VARD=TRAMP/{Q-1.0)
VARE=STICK/{Q-1.0)
VARF=BEER/{Q-1.0)
STDVA=SQRT(VARA)
STDVB=SORT{VARS)
STDVC=SQRT{VARC)

STDVD=SQRT (VARD)
STNVE=SQRT{VARE)
STDVF=SQRT(VARF)
R21=(CREEP*¥*2) /(BABY*CHONK)
R22=(GRIFF**2) /{BABY*HELP)
R23={ THORN*%2) /{BABYXTRAMP)
R24=(ARNY**2)/{BABY *STICK)
R25=(SUHR*%2) /{ BABY*BEER)
R26={GENE**2) /{CHOOK*HELP)
R27={GUF SS*%2) / {CHOOK*TRAMP)
R28=(WHAT*%2) /(CHOOK*STICK)
R29={YDYD**%2) /{ CHDOK*BEER)
R210=(RLOAK*%*2) /{HELP*TRAMP)
R211={CROAK**2) /{HELP*STICK)
R212=(PRIDE*#*2) /IHFELP*BEER)
R213={ACNE**2) /{TRAMPXST[CK)
R214=(D00R*%%*2) /{ TRAMP*BEER)
R215=(SAND**2) /{STICK*BEFR)

41

SYSP1835
SYS?1840
SYSP 1845
SYsP1850
SYSP1855
SYSP 1360
SYSP1865
syse187¢
SYSP1875
sysp1e890
Sysp18ess
SYsP1890
SYSP1895
SYsSPi9g0e
SYSP19C5
Sysp191l10
SYSP1915
syse192¢
SYSP 1925
SYsP1930
SYSP1935
SYSP 1940
SYSP1945
SYSP195C
SYSP1955
SYSP1960
SYSP1965
sSyse197¢0
SYSP 1975
SYsP 1980
SYSP 1385
SysP19s0
SYSP1995
SYsp2coo
SYSP2CCS
SYsSpP 2010
SYsP2015
SYsp2902¢
SYSsp 2025
SYsp2903c
SYsSP2035
SYSp2040
SYSP 2045
SYSP2050
SYSP 2055
SYSP2260
SYSP2065
syse2070C
SYspP2075s
SYsp 2080
SYspP2085
SYsp2090
SYsP 2095
SYsP2100
SySpP2105
SYSP2110
SYyspP2115
SYsp2120
sSysp 2125

sysp213¢C
SYsP2135



375

380

R1=SQRT(R21) SYSP2140

R2=SQRT{(R22) SYSP 2145
R3=SQRT(R23) SYSP?215¢C
R4=SQRT(R24) SYSP 2155
R5=SQRT(R25) SYspziece
R6=SQRT{R25) SYSP 2165
R7=SQRT{R27) SYSP2170
R8=SQRT(R28) SYSP2175
R9=SQRT{R29) ’ Syse218¢e
R10=SQRT{R210) Sysr 2185
R11=SQRT{R211) Syse2190
R12=SQRT(R212) SyspP 21985
R13=SQRT(R213) SYsSP22¢0
R14=SQR T(R214} SYSP22C5
R15=SQRT{R215) SYsP2210
PRINT 375 SYSP 2215
FORMAT (1H ,///60X,19HREGRESSTION ANALYSIS//) Sysp222¢
PRINT 380 SYsp2z25

FORMAT (1H ,1X,8HIDENTIF.,2X,12HSUMSQ DEV{X)y2X,y 12HSUMSQ DEVIY),2XSYSP2230
1, 11HSUMPR DEVXY 42Xy B8HAVERAGEX 32X 4 8HAVERAGEY 1 2Xy THSTANDVX, 2X, THSTANSYSP 2235
1DVY,3Xy SHSLDPEy2X 3 SHINTERCEPT 42Xy 12HCOEFF DETERM, 2X, BHCORRELTN) SYSP224C

IVAN=1 SYSP 2245
MARG=2 SYsp 2250
PRINT 385, IVAN,MARG BABY ,CHCOK,CRFFP4AYFX 1,y AVEX2,STDVA,STDVR,ASK,FSYSP 2255
1UNNY,R21,R1 SYSP22 &0
MARG=3 SYSP 2265
PRINT 385,1VAN, MARG,BABY sHELP,GRIFF,AVEX1,AVEX3,STDVA, STDOVC,BAT,BUSYSP 2270
INNY ,R22,R? SYSP2275
MARG=4 sysp228n
PRINT 385,1VAN,MARGyBABY yTRAMP, THORNy AVEX 1y AVEX4, STDVA, STDVD,CAT,GSYSP 2285
1UNNY,R23,R3 SYsSP 2290
MARG=S SYSP2295
PRINT 385,1VAN, MARG ,BABY ,STICK,ARNY ,AVEX1, AVEXS,STDV A, STOVE, DOZ ,HUSYSP 23010
INNY ,R24,R4 SYSP 2395
MARG=6 SYSP2310
PRINT 385, VAN,MARG ,BABY ,BEER,SUHR, AVEX1,AVEX6,STDVA,STOVF, EAT,PUNSYSP2315
INY,R25,R5 SYSP23220
I VAN=2 SYSP 2325
MARG=3 SYSP2320
PRINT 385,1 VAN, MARG yCHOOKHELP,GENFE,AVEX2, AVEX3, STOVR, STDVC, FAT,0USYSP 2335
INNY 4R26,4R6 SYSP 2340
MARG=4 SYSP 2345
PRINT 385,I VAN, MARG ,CHOOK, TRAMP, GUESS y AVEX2, AVEX%4, STOVB,STDVN, GAG, SYSP 2350
1RUNNY,R27,R7 SYSP 2355
MARG=5 SYSP 2360
PRINT 385,1 VAN, MARG yCHOOK ,STICK 4WHAT y AVEX2, AVEX5,STDVB, STOVE,HAT,SSYSP 2365
1UNNY,R28,R8 SYSP 2370
MARG=6 SYSP237s5
PRINT 385,1VAN,MARG,CHOOK, BFER,YNOY D, AVEX2, AVEX6, STDVR, STDVF,PAT, TUSYSP22380
INNY,R29,R9 SYSp2385
TVAN=3 SYSP2390
MARG=4 SYSP 2395
PRINT 385,1VAN, MARG,HELP,TRAMP,BLDAK,AVEX3,AVEX4, STDVC, STDVD,QAT,VSYSP24( 0
1UNNY,R210,R10 SYSP 2405
MARG=5 SYSP2410
PRINT 38541 VAN, MARG,HELP,STICK,CROAK,AVEX3,AVEX5, STDVCySTDVE,RAT,WSYS? 2415
1UNNY,R211,4R11 SYSP 2420
MARG=6 SYSP2425
PRINT 385,IVAN, MARG,HELP,BEER,PRIDE,AVEX3y AVEX6Hs STCOVC, STDVF, SAT, XUSYSP 2430
INNY,R212,4R12 SYSP 2435
I VAN=4 SYSP 2440

42



MARG=5 SYSP 2445
PRINT 385,IVAN,MARG,TRAMP,STICKyACNE,AVEX4, AVEXS, STOVD, STDVE,TAT,YSYSP 2450

1UNNY,R213,R13 SYSP 2455
MARG=6 SYSP 2460
PRINT 385, 1VAN,MARG, TRAMP,BEER,DOORy AVEX4, AVEX6,STDOVD, STOVF,UAT,ZUSYSP 2465

INNY,R214,R14 SYSP2470
TVAN=5 SYSP 2475
MARG=6 SYsP2480
PRINT 385,IVAN,MARG,STICK,BEER,SAND,AVEXS, AVEX6,STDVE,STDVF,VAT,0USYSP 2485

INNY,R215,R15 SYSP 2490

385 FORMAT (1H 3/ 91294H VSey1242X9F12.692X3F12.692X3F11.593X,F9,441X,FSYSP24G5

19491 XsF B4y 1 XeF8eb4 9yl XyFTa3492X9FF0544X3FT.595%X4F6.5) SYSP250¢C

390 CONTINUE SYSP 2505

C RETURN T} NEXT ELEMENT OR STOP IF LAST RUN SYSP2510
STap SYSP 2515

END SYsp2520
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5040
«50

2544
-13.00
«13,00
-13.,00

40

40

«50
50
«09

40
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0.0
0.0
0.0

40

«09
«09
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UNITS OF MEASUREMENT TQ MILLIMETERS TOD PHI-FREQUENCIES PLUS SUMMARY STATISTICS

KANSAS GEOLOGICAL SURVEY SHORT COURSE ON SAMPL ING

IDENTIFICATION

1¢
10
10
10
10
10
10
10
10
10
10
10
10
10

VAV NI N NDIDEDDDLDIDPDDLPWWLWRWRWWOWWWNNNMNNDNDNNNN P e e s e e

1

N VD PWRNNEEAORERTOWNNE= AN PWWNNE= ANDEPWWUNNARUS DLW NN -

N o 1N b N = N bt () b 1N bt PN et PN b (N et TN bt N bt N gt DN bt N Bt N P DN et DO PN R TN et DN N R N N DN e N e

NUMBER OF VARIABLES = 6
A-PHI B-PHI C-PHI
-8.66675 -8,05907 -7.85658
-8.92414 -8.57364 -6.95216
-9.09302 -8.87621 -7.83668
-8.96137 -8.38100 -7.332918
=-3.05907 -8.05907 -6.47411
-9.18245 -8.,40822 -7.95216
-8,84666 -8,1903?2 -7.,15861
-8.,95216 -T7.68912 -6.91468
-8,93354 -8.57364 -T7.62095
-9, 70567 -9.44811 -8,14249
-9,15057 -B.51224 -7.64403
-8.31061 -B.2666T7 -7.57364
-6.83668 -6.62095 -6.57364
-T7.79604 -6,95216 —-6,75422
-8,17455 -7.87621 -7.33918
-8.79604 —-B.42164 -5.91468
-8,20591 -7.83668 -6.91468
-8.88592 -8.00660 -T7.62095
-8.98868 -7.81650 -6.75422
-8.57364 -8.05927 -6.,9521¢6
-8.35325 -7.87621 -6.75422
-8.36719 -7.89557 -7.15861
-8.33918 -8,04179 -6.47411
-9.84168 -7.85658 -7.31061
-8.,71115 -7.8165C -7.77528
-9.,27408 -8.32496 -B.10970
-8,85658 -8.42164 -6.98868
-8.63254 -6.98868 -5.66675
=8.60927 —T7.62095 —7.39467
-8.70018 -8,00660 -6.95216
-8,62095 ~7.19032 -6.71115
-7.71115 -T7.28146 -6.75422
—7.83668 -7.59749 -T7.44811
-9.57964 -8.,43494 -6,33668
-8.36719 -7.85658 -6.98868
-8,48693 -7.98868 -6.36719
-8.75422 -7.44811 -7.09302
-8.,05907 -7.22134 -7.02431
-7.54940 -6.47411 -6.05907
-8.33918 -6.71115 -5.98868
-8.32496 -7.25172 -7.12619
-8.28146 -7.12619 -T.02431
~T.87621 —-T7.64403 -7.19032
-7.836683 -T.47411 -6.95216
-7.93354 -7.52474 -T7.25172
10.49648 -10.35325 -8.19032
-9,79087 -B.86643 -T7,62095
—-3,2666T7 —-8.14249 -7.54940
-8.64403 -7.85658 -7.44811

45

8/7A
0.565625
0.78431
0.86046
0.66879
0.50000
0.53371
0.58470
C.63448
Cetl667
D.77222
C.8365C
Ceb4246
L.970C0
0.86111
0.55714
0.8131¢
0.77143
C.T7419
054362
D.44375
Q. 70000
0.71845
0.72115
0.81373
0.25260
C.53788
0.51795
0. 73973
0.,32000
C.50406
0.61832
0.37097
DeT4242
C.84722
D.45228
0,77192
D.71796
0.40441
C.55952
0.47458
0.32353
0.47525
0.44898
0.85135
Q77778
0.75325
0.97549
C.52688
£.91753
0.57937

DECEMBER 1968

c/8
0. 862905
0.32500
0. 48649
0.48571
0.33333
0.53684
0.72897
C.48913
0.58462
0.51667
0o 40455
0,54783
0.61856
0.96774
0.87179
0.68919
0.35185
0.52778
0.76543
0.47887
Q.46429
0.45946
C.60000
De33735
0.68493
0.,9718732
C.86139
0.37037
0.40G00
0.354384
0.48148
0.71739
0.69388
N.90164
0.33028
C.54795
0.3250%2
0.78182
0.87234
C. 75000
C.60606
0.91667
£.93182
C.73C16
069643
6.82759
0.22330
0.42177
C. 66292
0, 75342

C/A
057231
0425490
0,41860
0.32484
0.16667
0.28652
0.42623
0.31034
0.24359
0.40260
Ce3334D
0.35196
0. 0700
C.83333
0.48571
CeBHN44
0,27143
0.4C360
De41611
£.,21259
Cs32500
C.33210
£.43269
C.27451
2.,17301
0.52273
Ce44615
0.27397
0.12800
C.43789
0.29771
0.265613
0.51515
0.76389
C.147338
C.3R462
Ca230093
0.31618
0.48812
0.35592
0.19608
0.43564
0.41837
0.62162
Ne54167
0.62338
0.20220
0.22222
C.60825
0.43651



A-AXIS PHI TEST BEAR MEADCWS INT = 0.500 8 CLASSES

CLASS NUMBER UPPER LIMIT MIDPOINT FREQUENCY{QOBSERVED)
1. -10.0000 -10.2500 1.
2. -9.5000 -9.7500 4.
3. -9.27200 -9,2500 6.
4. -8.5000 -8.7500 18.
5. -8.0000 -8,2500 13.
6. =7.5000 -7.75C0 7.
7. -7.0200 -7.2500 0.
8. -6.5000 -6.7500 1.

MAXIMUM FREQUENCY CLASS MIDPOINT
18, 4 -8.750
AVERAGE VARTANCE STANDARD DEVIATION
-8.610 0.42040 C.6484
ROOT B1 B2 SUM OF FREQUENCIES
-0.034 3.510 50.

e 3 e e e X e e e ok e e ok e o e ok sk o 36 e s ol e e o ade e e sfe e o sfe e e e e o e ofe e ok ik ok ek e ok ok ek e ok S e ok ol ok e e % ke okl sk ok e K ok ok

FIT TO THE NORMAL DISTRIBUTION

UPPER LIMIT FREQUENCY {CBSERVED) FREQUENCY(EXPECTED) CHI SQUARE
-10.0000 1. 0.801 0.050
-9.5000 4. 3.446 0.089

-9.0000 6. 9.441 1.254
-8.5000 18, 14.680 0. 751

-R, 0000 13. 12.962 0.000

-7.5000 7. 6497 0.039

-7.0000 0. 1.848 1.848
-6.5000 1. 0.296 1.669

TNTAL 50. 45.971 5.700

5 DEGREES 0OF FREEDOM



B-AXIS PHI TEST BEAR ME

CLASS NUMBER
1.
2.
3.
4.
5.
6.
7.
8.
9.

MAXTMUM FR
16.

AVERAGE
-7.910

ROOT B1
"Oo 351

ADCWS

UPPER LIMIT

-10.0000
-9.5000
=9.000C
‘805000
-8.0000
-7.5000
-7.0000
-6,5000
-6.0000

EQUENCY
VARTANCE
048440

a2
4.439

INT = £.507 9 CLASSES
MIDPOINT FREQUENCY{ORSERVED)
-10.2500 1.

-8.75¢C0 Do
-9,2500 l.
-8.7500 5.
-8.2500 16.
-707500 15.
-7.2500 T.
-6.7500 40
-6.2500 1.
CLASS MIDPOINT
5 -8,250
STANDARD DEVIATION
N.6960
SUM 0OF FREQUENCIES

50.

e e o sk ek ek sk ko ko o e sk ook ek e s s sl ke sl e o e sl e ok e e el ik ok ok ok ok ok ol sl e e ik e sk sk ol sl etk Sk sk o ok ok ok o ok ok e sk ok

FIT YO THE NORMAL DISTRIBUTION

UPPER LIMIT FREQUENCY (OBSERVED)

-19.0000 1.
-9.5000 2.
-9.,0000 l.
-8.5000 5
-8.0000 16.
-7.5000 15.
-7.0000 7.
=-6.5000 4,
-6.0000 1.
TOTAL 50.

6 DEGREES OF FREEDOM

47

FREQUENCY{EXPECTEN)

0.067
0.491
2.375
6.981
12.513
13,677
9.119
3.707
0.918

49,848

CHI SQUARFE

12.965
0.491
N.7G96
04562
C.972
N.128
Net92
0.023
0. 007

l6.437



C-AXIS PHI TEST BEAR MEADOWS

CLASS NUMBER UPPER LIMIT M
1. -8.0000
20 -TOSOnO
50 "6-{‘?00
6. -5.5200

MAX I MUM FREQUENCY CLASS

16, 4

AVERAGE VARTANCE STANDA

-7.110 0.34040C 0

RONDT B1 B2 SUM
C.122 2.770

INT = 0.500 ¢ CLASSES
IDPOINT FREQUENCY{DOBSERVED)
-8,2500 3.
-7.75C0 10.
-7.25CC 15.
-6.,7500 16,
-6.2500 4.
-5.,7500 2.

MIDPNINT

-6,750

RD DEVIATION
«5834

OF FREQUENCIFS
50,

e e ok o 2 e 3k ok e ok ol el ko e e sl kol sk ok sl s sk okl e ik sk ke i e kol ol e ok sk sjeli el s sk i sk sk ol e ofe e e ek ok kR R ek ok ok k

FIT TO THE NORMAL DISTRIBUTION

UPPER LIMIT FREQUENCY (OBSERVED)

-8.17000 I
-7.50C0 10.
~-7.C200 15.
-6.5000 16.
-6.0000 4.
~-5.5000 2.
TOTAL 50.

3 DEGREES OF FREEDOM

48

FREQUENCY(EXPECTEN)

3.179

Q.417

16.142

13.867

5.967

1.283

49.855

CHI

SQUARF

£.010
0.C36
0.0821
0.328
0.648
0.401

1.504



B/A TEST BEAR MEADOW

CLASS NUMBER

S

UPPER LIMIT

1. C.2700
2. C.3600
3. 044500
4o N.5400
5 0.6300C
6. 0.7200
T. 0.8100
8. C.2000
9. 0.9900

MAXTIMUM FREQUENCY

9.
AVERAGE VARTANCE
0.639 0.03240

ROOT BR1 B2

-0.192 2.175

INT = CL.000 G CLASSES

MIDPODINT FREQUENCY(DBSFRVED)
0.2250 l.
043150 2.
C.4050 5.
0,4950 3.
C.5850 6.
056750 8,
0.7650 9.
0.3550 7.
N.9450 3.

CLASS MIDPOINT
4 D495

STANDARD DEVIATION

0.1800

SUM OF FREQUFENCIES

50,

S e S v o 3 e e e ok e e S ok e e S e o e ot oo ke e e ote sl e e e o o e e e ek e ok e e o e sk i R R e ok ofe e e sk o g e o i ok R R R R ok koK

UPPER LIMIT

0.2700
0.3600
0.4500
0.5400
0. 6300
0.7200
0.8100
0.9200
C.99C0

TOTAL

FIT TN THE NORMAL DISTRIBUTION

FREQUENCY (OBSERVED)

6 DEGREES OF FREEDOM

49

FREQUENCY(EXPECTED)

1.009
2.020
4.314
T.216
G445
S.679
T.766
4.876
2.398

48,721

CHI

SQUARE

C.n00
2,000
N.109
Ce44]
1.256

0.291

C.196



C/B TEST AEAR MEADOWS

CLASS NUMBER
1.
2.
3.
4.
5'
6.
Te
8.
9.

UPPER LIMIT

0.2700
0.3600
0.4500
0.5400
D.6300
c.7200
0.8100
0.9700
0.99300

MAXIMUM FREQUENCY

192.

AVERAGE
C.614

ROOT 81
0.038

VARTANCE
0.04129

B2
1.923

INT = 0.090 9 CLASSFS
MIDPOINT FREQUENCY(DBSERVED)
0.2250 1.
0.3150 6.
0.4050 4
C.4950 12.
0.5850 LIS
0.6750 6
Q. 7650 6.
0.8550 6
0.9450 5.
CLASS MIDPOINT
4 0.495
STANCARD DEVIATION
0.2032

SUM OF FREQUENCIES

50.

3k e e ool e e el o st sk o e e e skl s kol sl e sk o e ok e st e s st ool e e e ke kol st sl ok ol i sk e ik ki ok ko e sk sk sk ok kol sk ok e ke ok

UPPER LIMIT

0.2700
0.3600
0.45C0
0.5400
0.56300
0.7200
0.8100
0.9000
C. 9900

TOTAL

6 DEGRFES 0OF FREEDDM

FIT TO THE NORMAL DISTRIBUTION

1.

FREQUENCY {OBSFRVED)

50

FREQUENCY(EXPECTEN)

2.267

3.025

5.213

7.408

8.677

8.380

6675

4,381

2.372

48,397

CHI SQUARE

N. 708
2.926
0.282
0,907
0.826
0.676
L.068
6.598
2.911

9.902



C/A TEST BEAR MEADCWS INT = 2,090 9 CLASSES

CLASS NUMBER UPPER LIMIT MIOPOINT FREQUENCY{OBSERVED)
1. 0.1800 0.1350 N
2. 0.27002 t.22%0 8.
3. 0.3600 N0.3150 13.
4, £.4500 0.4C50 12,
5. 0.5490 2.495C 4
6. 0.6300 0.5850 7.
T. 0.7209 N.6750 D
8. 0.8109 N.7650C 1.
. 0.9000 2.8550 1.

MAXIMUM FREQUENCY CLASS MIDPOINT
13, 3 24315
AVERAGE VARTANCE STANDARD DEVIATION
0.380 C.02431 D.1559
RONT B1 B2 SUM OF FREQUENCIES
0.735 3.563 50.

A Ak e deok o ok e e ok ook e e sk ok e s ok okl o e st e ol e Skl e s o o e ode ol ol sl e s sl e ok ok el ook ofe e o ik ok ok koKl ek okl sk ok

FIT TO THE NORMAL DISTRIBUTION

UPPER LIMIT FREQUENCY (CBSERVED) FREQUENCY( EXPECTED) CHI SQUARE
C.1800 4 5.002 C.201
0.2700 8. 7.031 0.134
0.3600 13, 1C.441 D627
0.4500 12. 11.212 0. 055
0.5400 4. 8,709 24546
0. 6300 7. 4,891 0.910
0.7200 0. 1.987 1.287
0. 8100 1. C.583 N.299
0.9000 1. C.123 6.233

T0TAL 50. 49,978 12.991

6 DEGREES OF FREEDOM

51



6101L"
18926°
el81°
8620¢°
€6991°
gleve*
1618¢°
61209°
2902%°
6%SL9°
98199°
%6626 °
9L812°
8618%°
6698L°

N17338403

LEH0S°0 2LH0°0
€6LLC°0 €%80°0

G1sg0°0 Y€6L°0

08160°0 28el°0—
98L20°0C LILTO
60L11°0 Sly1°0-

Ly6L0°0 6168 °0
¥929¢°Q %600°¢
C69L1°0 9€02°0-
6299%°0 0GE6°C—
908¢c%°0 waLl 1
¥8082°0 0L%0°¢
98L%0°0 984%1°1
Gecec*o 18e9°e~-
$e619°0 L9%9°0~-

W43130 43303 1d3Jd3LINI

156°0
€ely°0
L12°0~
180°0~-
¢90°0~
git*o-
%93°0
9L1I®)
901°0-
0es*0
191°0
S91°0
663°0
S0%°0
€¥8°0

3d07S

els1°C
€LST°0
6202°0
€L5T1°C
6202°0C
EGLT"C
ELGT*0
$¢02°0
ESLT"O
¢s%5°0
€Ls1°0
6202°0
£GL1°C
43401
Y963°C

AAQNVIS

6202°C 668¢€°0
€SL1°0 658€° 0
€SL1I°0 1619°0
¢a%6°0 6s8€°0
2a%s° 0 1619°0
2a%5*0 6LlE9°0
¥%69°0 648€°0
¥%59°0 1619°0
Y9590 6L£9°Q
¥%69°C L9e1° L~
€8%9°0 668€°0
€890 1619°0
€8%79°C 6LE9°0
€8%¥9°Q L9e1°L-
€8%9°0C 1e26° L~

XAGNVLS A39Vd3AV

1619°0

6LEG°0

6L£9°0

L9eT L~
L9€1° L-
L9eT* L~
1ec6° L~
1€26°L-
1€26°L-
1e26° L~
G2e9°8-
6le9° 8-
62e9°8-
G2e9° 8-
62e9°8-

X3OVdE3Av

SISATYNV NOISS3d¥93d

1o0t11°1
6021L°C
1992¢€° 0~
Geell1-
$8%06 °0—
89209 ° 1~
#1636°1
88LG1°Y
8€606° ¢~
6L6249°21
1080€°¢
9291%° ¢
1e81c¢°1
L1Llye*s

0909¢e°L1

AXA3IQ ddKNS

268212°1
ce8c1e*1
1eLlio e
68212°1
TeLL106°¢
63%9056°1
c68212°1
lelL10°¢
609906 °1
¥91296°91
ce8eie 1
TeLL10°¢
63%306°1
kA2 A 1 A

€56929°€2

(AIA3IQ OSWAS

TeLLi0"¢

60%905°1

60%90s°1

AALRAL DL Y
YyLi3a°H 1
¥HLeoetyl
£66929°e¢
€66929°c¢
€669¢9°c?
£569¢29°t¢
L%6565°0¢
LY6565°0¢
L%6565°0¢
LY6566°02

LY6965°0¢

(X)}A30 OSKWNS

w

~+

+ w0 M

2

*SA
°SA
*SA
*SA
*SA
*SA
°SA
*SA
*SA
*SA
°SA
°SA
*SA
*SA

*SA

¢ 41 IN3QI

52



KANSAS GEOLOGICAL SURVEY COMPUTER PROGRAM
THE UNIVERSITY OF KANSAS, LAWRENCE

PROGRAM ABSTRACT

Title (If subroutine state in title):

SYSTEMS PROGRAM ONE

Date: 1 December 1968

Author, organization:  John C. Griffiths, The Pennsylvania State University and

Charles W, Ondrick, Kansas Geological Survey

Direct inquiries fo: _ Authors, or

Name: Daniel F. Merriam Address: Kansas Geological Survey

Univ, of Kansas, Lawrence, Kans, 66044

Purpose /description: Computes frequencies, summary statistics, expected normal distribution, chi-square

and linear regression-correlation for six variables. An option is provided to accept either Port-a-Punch

or standard Hollerith cards.

Mathematical method:

Restrictions, range: The number of sets of data processable is limited only by the time and/or records

available to the user on a particular system,

Computer manufacturer: IBM or  GE Model: 360/67 or 625

Programming language: FORTRAN IV

Memory required: 10 K Approximate running time:

Special peripheral equipment required:  none

Remarks (special compilers or operating systems, required word lengths, number of successful runs, other ma-
chine versions, additional information useful for operation or modification of program)

Port-a-Punch cards should be repunched in peripheral card reproducers to avoid card jam on high

speed ( >300 cards/minute) card readers.
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12.
el
14.
15,
16.
17.
: 18,
19,
20.

22,
23,
24,
25.
26.
97,
o

- 29,

Sl

. Computer applications in the earth sciences: Colloquium on classificotion procedures,

COMPUTER CONTRIBUTIONS
‘ ‘ R Geological Survey
Mathemahcul simulation of marine sedimentation with IBM 7090/7094 computers, by J.W.

Harbaugh, 1966 . . .
A generalized two-drmenswnql regressron procedure, by J R. Dempsey, l966

- FORTRAN |V and MAP program for computation and plotting of trend surfaces For clegrees 1

through 6, by Mont O'Leary, R.H. Lippert, and O.T. Spitz, 1966

.- FORTRAN ll program for multivariate discriminant analysis using an IBM 1620 computer, by :

J.C. Davis and R.J. Sampson, 1966 7. -

FORTRAN 1V program using double Fourier series for strface f|ttmg of |rregularly spcrced
data, by W.R. James, 1966 .

FORTRAN 1V program for estimation of cladnshc relatronshrps usmg the IBM 7040 by R L
Bartcher, 19667 500 i 7
edited by D.F. Merriam, 1966 . : s

Prediction of the performance of a solution gas drive reservoir by ‘Muskat's Equotlon, by
Apolonio Baca, 1967. . .

FORTRAN 1V program for mathemotrcal srmulatron of marine sedrmentatron W|th lBM 7040
or 7094 computers, by J.W. Harbaugh and W.J. Wahlstedt, 1967 .

. Three-dimensional response surface program in FORTRAN |1 for the IBM 1620 computer, by s

R.J. Sampson and J.C. Davis, 1967 .

'JFORTRAN IV program for vector trend analyses of drrectronol dcto, by W T Fox, 1967

Computer applications in the earth sciences: Colloquium on trend analysis, edited by D.F.
Merriam and N.C. Cocke, 1967 ki

FORTRAN |V computer programs for Markov chain experrments in geology, by W C Krumbeln,
1967 iy .

FORTRAN IV programs to.determine surface roughness in topogrclphy for the CDC 3400
computer, by R.D. Hobson, 1967 . . . s

FORTRAN Il program for progressive linear fit of surfaces o on a quadrcmc base usmg an 1BM
1620 computer, by A.J. Cole, C. Jordan, and D.F. Merriam, 1967 . . S

FORTRAN 1V program for the GE 625 to compute the power spectrum of geologrccll surfoces,
by J.E. Esler and F.W, Preston, 1967. ., . .

FORTRAN 1V program for Q=mode cluster analysis of nonquantrtatrve data usmg IBM 7090/
7094 computers, by G.F. Bonham= Carter, 1967 .

Computer applications in the earth sciences: Colloqurum on time=series anclysrs, D F.
Merriam, editor, 1967 . .

FORTRAN M tlme-trend package For the IBM 1620 computer, by J C Davis and Rl
Sempson; 1967 U5,

Computer programs for multlvarlote ancrlysrs in geology, D Es Merrrom, edrtor, 1968

.. FORTRAN 1V program for computation and drsplay of prmcnpal components, by W.J.

. Wahlstedt and J.C. Davis, 1968
Computer applications in the earth sciences: Colloqunum on srmulatron, D.F. Merriom

and N.C. Cocke, editors, 1968 . . . o

- Computer programs for automatic contounng, by D. B Mclntyre, D D Pollard qnd

RySmith, 1968,
Mathematical model and FORTRAN lV program for computer srmulatron of deltaic sedimenr

tation, by G.F. Bonham=Carter and A.J. Sutherland, 1968 . oy
FORTRAN 1V CDC 6400 computer program for analysis of subsurface fold geometry, by
oM T Whitten ) 1968 i oy TG

.FORTRAN 1V computer program for srmulatlon of transgressron and regressron wrth contlnuous-

‘time Markov models, by W.C. Krumbein, 1968 . .
Stepwrse regression and nonpolynomlal models in trend anclysrs, by A.T. Mlesch and J J
Connor, 1268 . .. :
KWIKR8 a FORTRAN 1V progrom for multrple regressmn and geologlc trend anclysrs, by
JoEo Esler, PoF. Smith; and J.C.Davis, 1968 . .
FORTRAN 1V program for "harmonic trend analysis using double Fourrer series and regularly
gridded data for the GE 625 computer, by J.W. Harbcugh and M.J. Sackin, 1968 . .
Sampllng a geological population (workshop on experrment in scmplrng), by 3o C oG
and C.W. Ondrrck 1268 " :
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$1
$1
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$1
$1
$1
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$0.
4 &

610)
75

75

.00
.00
.00
.00

75

.00
.00,
.00

.00

.00
$1.

$1.00
.00
.50
.00
.00
.00
.00
.00
.00

.00

.00

.00 .






	img000a
	img000b
	img001
	img002
	img003
	img004
	img005
	img006
	img007
	img008
	img009
	img010
	img011
	img012
	img013
	img014
	img015
	img016
	img017
	img018
	img019
	img020
	img021
	img022
	img023
	img024
	img025
	img026
	img027
	img028
	img029
	img030
	img031
	img032
	img033
	img034
	img035
	img036
	img037
	img038
	img039
	img040
	img041
	img042
	img043
	img044
	img045
	img046
	img047
	img048
	img049
	img050
	img051
	img052
	img053
	img054
	img055
	img056
	img999a
	img999b

