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Editor’s Remarks

Just in case our "new" cover design was missed, note that the American Association of Petroleum Geol -
ogists now is assisting our effort in computer applications. With support of our activities by the AAPG, we
enter a new era. Although the COMPUTER CONTRIBUTIONS have been enthusiastically received, we be-
lieve the series can be even better and more widely distributed.

An important area of computer applications in the earth sciences is trend analysis. One reason is that
geologists have long been concerned with mapping trends in connection with locating mineral deposits. Petrol=
eum geologists especially have been interested in "trendology" in defining structures or other features where
petroleum might be trapped. The program presented here is another approach to trend analysis.

Even though many trend=surface programs are available, each one has merit. Choice of which one to
use is left to the investigator and will depend on the problem involved. No one program is "better" than
another, but may be "better" applied to a particular problem. As the authors state in this report "Selection
of the best trend surface equation for separating and describing components of variation in the map data is ...
difficult, and criteria that can be used to select the best equation consist mostly of geologic factors pertinent
to the particular problem. This may require that a number of surfaces (models) be fitted and examined. "

The program described here will be made available on magnetic tape for a limited time by the Geologi-
cal Survey for $15.00. An extra $10.00 is charged if punched cards are required. Other programs described
in the COMPUTER CONTRIBUTION series are listed on the inside back cover.

Users may find the following table of help in selecting a program appropriate to their problem.

METHOD
Contouring Time trend Trend Harmonic Classification Simulation Other
Analysis Analysis
CCl5 =« SDP12 SDP3 SDP24 SDP4 cCl B170-3
CC23 CCi2 SDP11 CC5 SDP9* CE? SDP28
SDP14 CCl16 SDP13 CCI3 CC2
SDP26 SDP15 CC24 CC8
B171 SDP23 CC26 ceii
CC3 SDP27 CCl4
CC10 CC4 CC25
CC27 CC6
CCEl7
CC20
CC21

*ouf-of‘prinf; SDP = Special Distribution Publications; CC = Computer Contributions; B = Bulletins.

* . . % . > e .
Active Member, ° Associate Member, ~Junior Member, American Association of Petroleum Geologists.



STEPWISE REGRESSION AND NONPOLYNOMIAL MODELS

IN TREND ANALYSISl/

by

A.T. Miesch and J.J. Connor

INTRODUCTION

Techniques of fitting regression surfaces to geo~
logic map data have been applied widely during the
last decade, since the work of Krumbein (1956) and
Miller (1956). The procedures, as used in geology,
generally are referred to as trend analysis. Trend
analysis of map data is performed primarily to sepa-
rate and describe various components of variation
that might be present, thereby facilitating geologic
interpretation. Another purpose of trend analysis is
to derive a regression equation that can be used for
interpolation or prediction between control points on
the map. Although there have been numerous appli=
cations of trend analysis to geologic problems since
1956, the general procedure has remained essentially
the same as described by Krumbein (1959), except
for some recent applications of Fourier series as an
alternative to the polynomial models generally used
(Preston and Harbaugh, 1965; James, 1966; Krum-
bein, 1966). This paper describes a somewhat modi~
fied approach to the general procedures of trend

analysis in which a stepwise regression method is used.

Stepwise regression has been used in trend analysis
previously by Agterberg (1964), and a brief descrip-
tion of the technique used here was given previously
by Miesch and Connor (1967).

Trend analysis directed toward interpolating
or predicting values between map control points can,
in many cases, be relatively straightforward. At
least the criteria for judging the suitability of the
regression surface can be clearly stated. The surface
should account for a high proportion of the total sum
of squares in the dependent variable, the deviations
of the observed values of the dependent variable
should not be autocorrelated, and the surface should
"behave well" between the map control points. That
is, there should be no more maxima or minima in the
surface than are called for by the data being analyz-
ed. The best polynomial equation that can be used
for prediction is the lowest order polynomial leading
to nonsignificant autocorrelation in the trend devia=
tions.

Selection of the best trend surface equation
for separating and describing components of variation
in the map data is considerably more difficult, and
criteria that can be used to select the best equation
consist mostly of geologic factors pertinent to the
particular problem. This may require that a number

T/Publication authorized by the Director, U.S.
Geological Survey.

of surfaces (models) be fitted and examined. The
general mathematical forms of the equations must be
chosen on substantive grounds, but following this
they can be refined using either geologic criteria
(if this is possible) or various statistical tests. Most
trend analysis work so far has involved refinement
of polynomial equations up to about fifth degree by
dropping polynomial terms in groups (for example,
dropping fifth degree terms, then fourth degree, and
so forth). By using stepwise regression methods, the
terms to be used in the equation can be selected in-
dividually according to their potential effectiveness
in reducing the total sum of squares in the dependent
variable = and dropped from the equation individually
if they are not effective or if they are redundant.
The terms under examination need not be restricted
to polynomials, however; other terms may be better
in particular problems. Terms selected frequently
depend on the X=Y coordinate system used and by
changing the coordinate system, by entering diffe=
rent kinds of terms into the stepwise procedure, and
by changing the significance level at which terms
are to be entered into or deleted from the regression
equation, a number of different trend surfaces of
about equally good fit to the observed data can be
derived. The relative geologic significance of these
surfaces remains a matter of subjective judgment.

Stepwise regression generally leads to trend-
surface equations which are considerably more effi-
cient than conventional polynomial equations in
that they may account for large proportions of the
total sum of squares with many fewer terms. An
attractive consequence of this is that the matrix
operations performed to derive the coefficients are
less affected by roundoff errors. Moreover, the
derived coefficients are more stable = or less sensi=
tive to small errors in the data.

CONVENTIONAL TECHNIQUES OF
TREND ANALYSIS

Trend analysis is an empirical method for ex-
amining and interpreting the variation of numerical
geologic map data. The total variation is viewed
as having three types of components which are of
varying relative magnitude. One of the components
is a trend which extends over at least the major part
of the study area, and may be thought of as having
resulted from one or more geologic processes which .
acted across the major part of the area. A second
component consists of local deviations from the
trend that have resulted from geologic processes



which occurred within some limited part of the area
of study, but over areas broader than the average
interval between data points on the map. A third
component consists of what has been referred to as
"noise," and includes all variation having resulted
from local geologic factors and from data errors of
various kinds. The local geologic factors give rise
to sampling errors which, in many instances, may
form the major portion of the total noise in the data.
The trend component is estimated by fitting a
regression equation to the observed map data. Ex-
cept for early work based on orthogonal polynomials
(Krumbein, 1956) and some recent work employing
Fourier series which has already been cited, nearly
all trend analysis applications known to us employ
polynomial equations containing terms such as X,

X2, X2, ...X", or where map data are used the
terms based on two independent variables are X, Y,

X2, XY, Y2, X3, ... etc. Using these terms in
the general linear model (Krumbein and Graybill,
1965, p. 301), the trend function becomes

_ 2 2
T—bo+b]X+b2Y+b3X +b4XY+b5Y

+b6X3.... (m

Polynomial equations as in (1) are well suited to geo=
logic trend-surface studies because they are appro=
priate for defining a wide variety of smooth surfaces
that seem intuitively to be reasonable representations
of trend components. The general concept of a trend
component is a smooth continuous surface, which
may have gentle flexure, and which extends across
the entire area of investigation. However, a great
many surfaces of this type might be poorly approxi=
mated by low-degree polynomial equations and other
equally simple terms can be useful for this purpose.
This is demonstrated in Figure 1 which shows the best
fit of a quadratic equation to a hypothetical trend
defined by the equation

T=100x"" +0,2eX . )

The quadratic equation, fitted by the method of
least squares, accounts for 97.7 percent of the total
sum of squares in the dependent variable, but the
deviation of the quadratic from the correct trend
could cause erroneous geologic interpretation in an
actual trend analysis problem.

A number of methods and tests are available
for selecting the particular polynomial terms to use
in defining the trend component. In most applica=
tions the terms are added to or deletad from the
model in groups, such as the second~degree group

of terms (X2, XY, Y2) or the third-degree group
(X3, X2Y, XY2, Y3). The nth degree terms are all

those having exponents which sum to n. The selec-
tion of terms for polynomial models has been done

in many different ways, including inspection of the
proportion of the total sum of squares in the depen=
dent variable that can be accounted for by the terms
(cf. Whitten, 1959, p. 839), testing the statistical
significance of the proportion of the total sum of
squares accounted for (cf. Allen and Krumbein, 1962,
p. 522), observation of the effect of the terms on the
computed variance of the trend residuals (Mandel-
baum, 1963, p. 509), estimating the autocorrelation
in trend residuals (cf. Connor and Miesch, 1964,

p. 121), and consideration of geologic factors alone
(cf. Read and Merriam, 1966, p. 97).

Advantages of polynomial terms are their con-
venience in computation and their independence of
the units of the particular coordinate scheme used to
define X and Y. Either the scale or the origin of the
coordinate scheme may be changed without causing
changes in either the form of the computed surface
or the degree to which the surface fits the observed
data (i.e., the proportion of the total sum of squares
accounted for by the surface). Changes in scale and
origin, however, do affect the polynomial coefficients,
and, therefore, the selection of terms by stepwise re-
gression. This will be demonstrated in a later section.

Another advantage of polynomial terms, par-
ticularly the lower degree terms, is that they gene-
rally define surfaces which are "well behaved" be=
tween map control points. If higher degree poly-
nomial terms, or some other types of terms in X and
Y, are used it is possible, in some instances, to find
on evaluation of the trend equation between map con-
trol points that the surface is far beyond the general
realm of the data. Maxima and minima may be pre-
sent which are uncalled for by either the data or the
underlying geology.

After the trend component has been estimated
the differences between the fitted surface and the
observed map value are determined for each map con-
trol point. These differences are termed the trend
residuals and contain estimates of the second and
third components of variation = the local deviations
and noise - referred to previously. Where the re-
siduals are autocorrelated, indicating that adjacent
values on the map tend to be similar (e.g., clusters
of positive or negative values), the second component
is presumed to be dominant over the third. Where
autocorrelation is low, indicating that adjacent trend
residuals tend to be unrelated, the third component
is presumed to be dominant over the second. Auto-
correlation in trend residuals has been discussed in
several papers by Agterberg (1964, 1966) and by
Connor and Miesch (1964, p. 123).

USE OF NONPOLYNOMIAL TERMS IN
THE GENERAL LINEAR MODEL

The procedure of trend analysis is empirical
primarily because too little is known about the quan=
titative aspects of geologic processes that may pro-
duce trends. Only rarely, if ever, does the geologist



1001 T=100X"' +0.2¢*

80

T=149 -66X +9.4X%
60

40

20 )

Figure 1.- Least=squares fit of a quadratic equation

to the curve T = ]OOX-] + O.ZeX.

have reason to suspect that the variable he is study -
ing will vary across the region of investigation as,
for instance, the square of the distance from some
point, or the log of the distance. If the proper form
of the function were known, it would be a relatively
simple matter to determine the coefficients for the
function by least=squares methods, and no search for
an otherwise adequate or approximate function would
be necessary. Because the correct functional form is
almost never known in real geologic problems, poly=
nomial equations have been widely employed as ap=
proximations and while it is probably true that such
equations are adequate for many of the problems to
which the techniques of trend analysis have been
applied, there is no reason to expect that they are
fundamentally correct or that their use can be justi-
fied in many cases on any sound theoretical basis.
Neither do we have reason to believe that they are
the best or most efficient that can be used. Poly-
nomial terms have been adequate in many problems

because various combinations could be used to approx-

imate a wide variety of other smooth continuous func-
tions that may be more fundamentally correct.

The empirical nature of trend analysis is further
evidenced by the fact that even if the correct func-
tional form of the trend were known, it could not be
properly fitted to the data by least=squares methods
if local geologic effects, distributed over the area
in a nonrandom fashion, were present. The effects
cause the estimates of the trend coefficient to be
biased. The computed trends, in such cases, are
partially dependent on the local components of the
variation, and the degree and nature of these effects
can be neither estimated nor reduced.

There are an almost unlimited number of simple
terms in X and Y, aside from polynomial terms, that
could be used in the general linear equation for trend
analysis procedures. Those with which we have ex-
perimented are listed in Table 1, along with poly-

nomial terms through fifth degree. The approach
we have used is to enter all terms of Table 1 into

a stepwise regression procedure, allowing any of
them to be entered into the trend=surface equation
as independent variables according to the stepwise
test criteria. In this manner, the most efficient
terms are entered into the equation and all terms
which either account for a nonsignificant portion of
the variance in the dependent variable (at a speci=
fied confidence level) or are linearly dependent on
terms already in the equation are excluded. The
trend =surface equation obtained through the stepwise
regression procedure, therefore, is generally more
efficient than one obtained through ordinary poly-
nomial regression in regard to the number of terms
and the portion of the total variance accounted for.
Most polynomial regression equations, arrived at by
adding and testing the terms in groups, contain in=
dividual terms which are superfluous. A second ad-
vantage that may be gained by including nonpoly=
nomial terms in the trend model is that the trend
equation may be derived from a better conditioned
coefficient matrix in the normal equations and,
therefore, will be less sensitive to sampling and
analytical errors in the data or to roundoff errors in
computation.

STEPWISE REGRESSION

The stepwise regression procedure used in this
investigation was programmed in ALGOL for the
B5500 computer (U.S.G.S. program no. W0005),
by D.S. Handwerker of the U.S. Geological Survey,
and follows, in major part, the general technique
described by Efroymson (1960). The algorithm in-
cludes procedures similar to those described by
Fisher (1950, p. 156-166), Anderson and Bancroft
(1952, p. 176-182), and Ostle (1954, p. 202-227).
Part of the ALGOL program was rewritten in FOR-
TRAN 1V for the IBM System 360, by G.l. Selner,
and is included in a general system of statistical pro-
grams used by the U.S. Geological Survey. A modi-
fication of the latter program that can be used inde=
pendently of the general system has been prepared
by Robert Terrazas and is included here in appendix
B.

In the application of stepwise regression me=
thods in trend analysis, we attempt to derive a re-
gression equation containing terms that are each
significant at some prescribed level of confidence.
Significant terms are those which, when included
in the equation, account for sufficiently large por-
tions of the total variance in the dependent variable
so that the relationship is unlikely to have resulted
from chance alone.

The only major difference between the step-
wise procedure in our program and the algorithm
given by Efroymson (1960) is that we specify a prob-
ability level, Q, on input rather than the critical
values of F. Efroymson specified values of F; and F,



Table 1. = Thirty-eight terms in X and Y used in stepwise regression.

Polynomial terms:

Linear . « v v v v v v v v v ., X, Y

. 2 2
Quadratic v v« v ¢ v v v v v v . X%, XY, Y
CUbiC v oo e e X3 XE, xY2, 3

Quaric o . v XA X3y, XBY2, xv3, v

QUInKc v v X0, XYY, XY, X3 Xyt Y

Nonpolynomial terms:

Squareroot . . ... ... ... \/_X—,\/X-Y,\/Y_

X Y 2X X+ 2¢
e ,e ,e", e , €

Exponential . . . ... ... ...

Logarithmic . . ... ... .... log X, log Y, (log X)2, log X * log Y, (log Y)2

Reciprocal .+ . v v v .. XY X2 (xv)! v72
on input and these are used in adding independent Q, probability level at which terms are to be
terms to and deleting them from the regression equa- added to or deleted from regression (usually
tion, In the program we used, the probability of 0.05 or 0.07).
computed F values' occurring by chance is estimated 2, Read data matrix, X <
using approximation techniques and compared with 1<r< N !
the specified value of Q (generally 0.05 or 0.01). 0< c\< 2

Initially, none of the terms is considered to be in

the regression equation. By means of simple linear
correlation coefficients, each is tested then for the X_ 1= X map coordinate

. r

proportion of the total sum of squares of the depen- !
dent variable that it explains. The most significant
term in this respect is then entered into the regression 3. Generate n = 2 functions of the map coordi-
equation. Because the significance of an indepen- nates, X = (X ]) and Y = (X 2), similar to
dent term in the equation will change with the addi- "t .
tion of new terms, each term already in the equation
is tested for significance immediately after the addi-

X 0= observed value of dependent variable

Xr,2 =Y map coordinate

the terms listed in Table 1. A,ugmenfed data
matrix, Xr or oW is Nby (n + 1) with 1<

7
tion of each new term. Such terms in the equation r< Nand 0 € ¢ < n.
shown to be nonsignificant are deleted from the equa= 4. Generate means, Xc’ and standard deviations,
tion. . .
The basic method consists of solving a set of S’ for all columns in augmented data matrix.
simultaneous equations by Gaussian elimination and 0<c<n.
using results obtained at each stage of the elimina= 5. Generate simple correlation coefficient ma-
tion as stepwise test criteria (Efroymson, 1960, p. trix, rooae 0<i,j<n,
. . . 4
192).. l.Equai'lonf, are formed from simple co.rrelahon 6. Set NDF = N - 1, where NDF indicates de-
coefficients derived from the normal equations as rees of freedom
shown by Ostle (1954, p. 202-205); they are dis— 2 :

7. Set VAR = 1, where VAR is proportion of
variance in dependent variable not accounted
for by the regression.

cussed more fully in the section on matrix condition.
The essential features of the procedure are

given here for the convenience of those who ma 7 . s

wish to prepare their own computer programs or Z:ls 8. Set array G = TA<i<n). If ¢ = 1, then
an aid in implementing the program given in appen- the ith term is not in the regression equation.
dix B. If C, = +1, then the ith term is.in the regres-
1. Read N, number of rows in data matrix, and sion equation.



9.  Generate array V. = ri2 0/ri L (1<ign).
4 7
a. Find minimum V among all values where

. >0.00001. If

none of the var|0b|es satisfy fhe criteria with

respect to C and ry ;s goto 9. (NOTE: The
i reduces the possibility of

corresponding C = +'| and M

limitation on .

entering Imearly dependent variables mi'o the
regression equation (Efroymson, 1960,

Set VMIN = minimum V F=

1 and NDF degrees of freedom (see text).
QF > Q, set k =1 of minimum V., ., _increase

VAR Ey VMIN, increase NDF by 1, and go to

If QF<Q, go to %b.

b. Find maximum Vi among all values where
corresponding C = =1 and i
VMAX = maximum V.. F = (VN\AX NDF)/

(VAR = VMAX). Determine QF, the proba-

bility of F for T and NDF degrees of freedom
(see text). If QF L Q, set k =i of maximum
Vi’ decrease VAR by VMAX, decrease NDF

by 1, and goto 10. If QF > Q, go to 11,
10.  Apply the following transformations to those
parts of the Y matrix in Figure 2 having the
4

corresponding equation numbers.

S S Tk Tk

Equation (1) nooer

/1 i rk,k
ok
(2) r - "..l_l_.
ik &k
(3) - _ rk .« ri k
r ii _“r““—“‘
k,k
1
@ n o~ —
k,k i k
no.
) g = b
rl k,k
6) r. .<r. .= Ck Ci . LI
1, I rk,k
r ‘r.
(7) ¢ O(_ r O - klo Izk
i r
’ 7 k’k
r
k,0
(8) r —_—l
k, 0~ rk,k
C *C. *r ‘.
k i k,0 'k,i
@) r om0~ ) ’

195 ).
(VMIN - NDF)/

VAR. Determine QF, the probability of F for

. > 0.00001, Set

Change sign of Ck (CI< = Ck). Go to 9.
11. The column vector, r s Now contains the

standardized parficl regression coefficients
for all variables (1 < i < n) which reduce the
variance in the dependenf variable by a sig-
nificant amount, C for these variables is

equal to +1. The regressmn coefficients are
computed from:

b = 1,0 - 50
i~ s

, for all values of i where

Ci=+]

and the regression equation constant from
by = % - il(bI . Xi), for all values of i where
C.=+1.

i

12, The percent of the total sum of squares in the
dependent variable accounted for by the re-
gression equation is

PSS = ]00;): (ri,0 . rO,i)’ where Ci = +1,

13. Compute regression residuals,
o'r - Xr,O B Tr’
where Tr is computed from the regression

equation for the rth row of the data matrix.
4. Prmt
L0<ii<n

C (1\ i< )

bI (1<€ign), whereCi=+]
by

PSS

T (1<r<N)

d (1<r<N)

A sample calculation is given in Appendix A.

QF in step 9 of the procedure is approximated
by techniques given by Abramowitz and Stegun (1964,
p. 932, 946-947), as follows. If NDF, the number
of degrees of freedom for the variance estimate in the
denominator of F, is greater than 100, the variable
Z is derived from

10 -
z-= . 3)
2 L 23 172
9 9NDF

Then, because the F distribution is approximately
normal for large numbers of degrees of freedom, the
area under the F distribution curve above Z is esti-



mated from

-1

V2r

which is approximated by

2
=Z°/2
QF ~&—— (a]f+a ’r2+a3f3+o4t4+a5f5)

Var 2
(5)

0w .2
&ef/zdf, @)

with
t=1/(1 +0.2316419]Z])

ay =+0.31938 1530

ay = -0.35656 3782
az = +1.78147 7937
ay = -1.82125 5978
ag = +1.33027 4429

If Z as computed from (3) is negative, QF as com=

puted from (5) is replaced by 1.0 = QF. 1f NDF
£ 100 and is an even number
_ NDF
Z= NDF+F ©)

QF=1-T-Z(1+5 +33 22+ ..+

1-3 ... (NDF '3)Z(NDF-2)/2)

24 ... (NDF-2) 7)
If NDF £ 100 and is an odd number,
QF = 1 = a(NDF) (8)
where, if NDF =1
o(NDF) = 22 ©)
or where, if NDF > 1
a(NDF) = { 8 +sin 6 (cose+§c0539+
. (NDF -3) _(NDF -2),,
+7 (NDF-2) © 0) ¢ (10)
and
6 = arctan (F/NDF)/2 (1)

At the conclusion of the stepwise regression
procedure a subset of the upper triangle of the r

matrix contains the elements of the inverse of a sub"
set of the original o matrix of correlation coeffi~

cients. The subset consnsts of all correlation coeffi-

cients among independent variables in the regression
equation (i.e., variables for which Ci =+1 at the

end of the stepwise regression procedure).
The N0 column of the r. . matrix, at the end

of the procedure contains the sfcmdcrdlzed regres -
sion coefficients for all variables with CI =+1; in

some problems a variable may account for a statis=
tically significant portion of the variance in the
dependent variable, and therefore be included in
the regression equation, but the corresponding stan-
dardized regression coefficient may indicate that its
contribution to the regression is extremely small. In
such cases, the user may choose to drop this variable
and recompute a regression equation containing the
other selected independent variables by conventional
regression methods.

MATRIX CONDITION

The algorithm given by Efroymson (1960) con=
tains shortcut procedures for estimation of the re-
gression coefficients, but the end result of the me=
thod is equivalent to solving the following set of
equations for the B's (standardized partial regression
coefficients) after the variables to be included in
the regression equation have been selected.

By trygBy e F B ="10
Byt Bpt e T B =0

(12)

"m1P1 Fim2Bo et B =g

The subscript numbers refer to the m selected inde-
pendent variables and the zero subscript refers to
the dependent variable. The equations in (12) are
represented in matrix notation as

RB=C (13)

where R is the matrix of simple correlation coeffi-
cients among the independent variables and B and
C are vectors representing the unknown coefficients
and the correlations of the dependent variable with
the independent variables, respectively. Solution
of the equations is attempted by the matrix opera=
tion

B=R"IC (14)

where R ! is the inverse of the R matrix. However,
if the R matrix is singular (having no inverse) the
equations cannot be solved. Moreover, if the R
matrix is ill conditioned the solutions for the B's
(represenfed by B) may be very sensitive to errors

in the r's. Also, if R is highly ill conditioned,
although not singular, derivation of the inverse,



0,1 0,2 0,k To,n-1 0,n
p o
1,0 1,1 Bie 1,k T1,n-1 1,n
(7 (1) (@ (3)
b F
2,0 2,1 T2,2 T2,k To,n-1 *2,n
Ty,0 (&) "x,1

Tn-1,0 Tn-1,1

(9)

I‘1'1,0 rn,l

Equation (1)

(2)
(3) 1<i<k-landk+¥l <j<n
() i=kXend J=k
(5) i=%k, k#1 <j <n

(6) k¥l <i <nsandi<js<n
(7
(8) i=k, J

1<i<k-1l, §=0

=0

(9) k¥l <is<n, §=0

Figure 2.~ Partitions of the o matrix to which

14

equations 1 to 9 of step 10 in the stepwise

regression procedure are applied.
R ], may require carrying a very large number of
significant figures in computation. Computer pro=
gramming in double precision arithmetic alleviates
this roundoff problem to some extent, but it may be
encountered again with a still more ill=conditioned
matrix. Krumbein (1959, p. 828) discussed the limi-
tations associated with ill=conditioned matrices in
trend analysis and noted that matrix condition is
poorer where a limited number of control points are
irregularly scattered or clustered on the map. Man=
delbaum (1963, p. 506-508) suggested a method for
improving the condition of a matrix formed from
sums of squares and cross products in the map coordi-
nates.

A number of measures can be used to evaluate
matrix condition, but for convenience we have adopt-
ed one recommended by Booth (1957, p. 85) and
Macon (1963, p. 66). This is the determinant of
the matrix after it has been normalized by dividing
each element in a row by the row sum of squares.

We refer to the determinant of the normalized ma-
trix as the "condition value." Condition values may
range from zero for a singular matrix to + 1.0 for one
that is ideally conditioned.

An alternative and equally good measure of

matrix condition is the ratio of the largest to the
smallest eigenvalue of the R matrix (cf. Fox, 1965,
p. 142). The only advantage of the condition value
is in ease of computation, particularly the fact that
the condition value is less sensitive than the eigen-
value ratio to the number of significant figures carried
in R.

Two factors determine the condition value of
the R matrix in any particular trend analysis problem
employing a given map coordinate system. These are
(1) the distribution of X=Y control points on the map,
and (2) the particular mathematical terms present in
the trend equation. Some elementary examples are
given in Figure 3. At the extreme, the distribution
of map control points is entirely inadequate (Fig. 3A)
for fitting even a first=degree polynomial surface;
condition values for the R matrices of polynomial sur=
faces of degree one through three are zero. The
R matrices for the linear through cubic polynomial
trends are (to two significant figures) shown in Table
2. Singularity of this matrix is obvious from the fact
that each subset (representing linear, quadratic, or
cubic terms) contains duplicate rows and columns.

Il conditioning occurs in other matrices where rows
or columns tend to be linearly correlated. The de-
gree of linear correlation can be high where more
than one high—degree polynomial term is used.

In Figure 3B, the single outlying point provides
some control for fitting a linear surface, but the con-
trol is poor. The low condition values for the quad=
ratic and cubic surfaces indicate that the R matrices
will probably be quite ill conditioned. The distri-
bution of control points is somewhat better in Figure
3C where three poinfs occur as outliers. The condi-
tion values here indicate that linear and probably
quadratic surfaces can be fitted without roundoff
problems. The clustered distribution of control points
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Figure 3.- Condition values of R matrices that would
be used in fitting polynomial surfaces to various
distributions of map control points.



Table 2.~ R matrices for linear through cubic polynomial trends.

Linear Quadratic

X Y x? XY y2
1.0 1.0 0.97  0.97  0.97
1.0 1.0 0.97  0.97  0.97
x2  0.97 0.97  1.00  1.00  1.00
Xy 097 0.97  1.00  1.00  1.00
v2  0.97 0.97  1.00  1.00  1.00
x3 092 092 0.99 099  0.99
X2 0.92  0.92  0.99  0.99  0.99
xy? 092 0.92  0.99 0.9  0.99
v3 092 0,92  0.99 099  0.99

Cubic

x3 x%y  xy2 ¥

0.92  0.92  0.92  0.92
0.92  0.92  0.92  0.92
0.99  0.99  0.99  0.99
0.99  0.99 0.9  0.99
0.99  0.99  0.99  0.99
.00 1.00  1.00  1.00
.00 1.00  1.00  1.00
.00 1.00  1.00  1.00
.00 1.00  1.00  1.00

shown in Figure 3D provides a good basis for fitting
linear and quadratic surfaces, but computation of
coefficients for a cubic surface may be difficult. The
control points in Figure 3E are randomly distributed
over the map area, and lead to slightly better con=
ditioned R matrices. With an increase in the number
of random control points, the condition values of the
R matrices would converge toward those for points on
a grid, as in Figure 3F. The similarity of the con-
dition values for the distributions of 3D, 3E, and 3F
(particularly the linear and quadratic values) suggests
that, at least for low=order polynomial surfaces, the
map control point distribution is critical mostly to the
extent that all major parts of the map should be re-
presented. In particular, Figure 3D strongly indicates
that the "outcrop type" of control point distributions
will probably not adversely affect the condition of
the R matrix for this type of trend analysis.

A high condition value for an R matrix is by no
means the only test of the similarity of map data for
trend analysis. Clustered map control points, as in
Figure 3D, introduce redundancy in data and may
affect determination of the number of degrees of free=
dom available for statistical tests. Also, even though
the condition value of the R matrix used to estimate
a linear trend for Figure 1B is high, it is obvious that
such a surface may be controlled by one data point
only, and therefore may be highly unstable.

Significance of the Condition Value

Condition values of R matrices, or of equiva—
lent matrices (e.g., matrices of sums of squares and

cross products), can serve as indicators of possible
sampling or mathematical problems in trend=analysis
investigations. Among the causes contributing to
low condition values are a poor distribution of con-
trol points on the map or a near linear dependence
among any two or more terms in X and Y used in the
regression surface equation.

The principal consequence of ill=conditioned
matrices is that roundoff in computation is more likely
to result in erroneous regression coefficients. The
minimum condition value that can be tolerated de-
pends on the computer used, the technique used in
computing the coefficients, and the method of pro-
gramming (Fox, 1965, p. 96-97, 136ff). We have
used several methods for deriving the regression co-
efficient estimates, using a B5500 computer which
carries approximately 11 decimal figures in single
precision computations. Matrix computations have
been checked by examining the symmetry of R matrix
inverses and by comparing inverses derived by differ=
ent methods of computation. It has been noted that
at least one (commonly five or more) significant fig=
ure is retained in matrix computations by several
different procedures where the condition value_of
the original R matrix is greater than about 10710,
in absolute valye. Where the condition value is
lower than 10710, in absolute quantity, serious
errors in mafrix computations due to roundoff may or
may not occur, but the probability of such errors
appears to increase with decreasing condition value.
The exact point at which the last significant figure
is lost in matrix computations depends again on the
particular matrix, the computer used, and the pro-



cedures and programming techniques used in the com-
putations.

Another effect of ill conditioning in the R ma-
trix, as indicated by a low condition value, is that
the estimated coefficients, the B's, are unstable.
That is, when the original values of X and Y are per-
turbed slightly by adding to them small random nor-
mal deviates (with zero mean), the estimates of the
coefficients change rapidly. However, the changes
in the coefficients are apparently compensating be=
cause changes in the form of the fitted surfaces are
related only to the magnitude of the perturbations
in X and Y, not to the condition value. This con—
sequence of low condition values, therefore, is of
little importance unless some use were to be made
of individual coefficients.

It should be noted that the condition value is
by no means a complete measure or indicator of error
in the estimated regression coefficients. If the con=
dition value is high, roundoff errors in computation
will probably not cause error in the coefficients, but
the estimates will not necessarily be close to the true
coefficients. The standard error of a regression co=
efficient estimate is given by (See Ostle, 1954,

p. 213-216.):

2+ (1 -t 1
sb, =( 5 (15)

s, * (N=m=1)

i
i,i
where, after the stepwise procedure, r ' is the ith

diagonal element in the inverse of the matrix of
correlation coefficients among the n independent
variables in the regression. If the condition value
of Ris small, r'sImay be large causing sbi to be

large, but sl:>i depends also on the other variables

in (15).
EXAMPLE | - Lost Springs Area, East=Central Kansas

The location of the Lost Springs area is shown
in Figure 4. The structure contour map is drawn on
the top of the "Mississippi chat," an interval of
weathered Mississippian chert generally considered
to be the basal deposit of the Pennsylvanian system
in this part of Kansas (Shenkel, 1955, p. 176). An
oil pool in the "chat" and associated beds (as shown
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Figure 4.= Structure contour map of the top of the "Mississippi chat" in the Lost Springs area, Kansas.



by Merriam and Harbaugh, 1964) is outlined by the
solid black line. The greater detail shown by the
contours within the area underlain by the oil pool is
due to the more dense well control in this area. The
data set used for analysis in this example consists of
81 values of the dependent variable (structural ele=~
vation) read at the X and Y grid locations. The
origin of the grid is arbitrarily placed off the north=~
west corner of the map; values of the X and Y co-
ordinates each range from 1 to 9, increasing from
west to east and from north to south, respectively.

Conventional polynomial regression surfaces
of degree 1 to 5 were fitted to the observed data
and accounted for 94.7, 96.7, 97.2, 97.3, and
97 .6 percent of the total sum of squares in the de-
pendent variable, respectively. The percentage
sums of squares accounted for and analysis of vari=
ance tests both indicate that polynomial terms be-
yond degree 2 do little to improve the regression,
even though the third-degree polynomial terms, as
a group, are significant at the 0.05 level of prob=
ability. The first= and second-degree polynomial
surfaces and the residuals from each are shown by
the contour maps in Figure 5 (A and B).

Condition values of the R matrices used to
compute the polynomial regression surfaces, degree

1 through 5, are 1.0, 3 - 10, 2- 10716, 5 .

10 37, and < 10 46, respectively. On entering
the stepwise regression procedure with the linear
through quartic terms, it was found that the only
terms significant at the 0.05 probability level are

X and X2 (Fig. 5C). These two terms account for
95.8 percent of the total sum of squares in the de~
pendent variable, in contrast to 97.3 percent ac-
counted for by the 14 terms in the complete quartic
equation. The condition value of the R matrix used
to compute the surface based on X and X2 only was

0.025, in contrast to 5 - ]0-37 for the complete

quartic surface, and 3 * 10 3 for the complete quad=
ratic surface.

Although translation of the grid coordinate
system will not affect the form of a polynomial sur=
face fitted to the data, nor the proportion of the
total sum of squares accounted for by the surface,
large changes can occur in the coefficients of the
regression equation (the b's of equation 1 as well as
the B's of equation 12). Translation of the coordi-
nate system, therefore, causes changes in the rela-
tive significance of various terms in the regression
equation. On adding a constant of 10 to each X
and Y coordinate value and entering the stepwise
procedure with newly derived polynomial terms
(again degree 1 through 5) the only term significant

at the 0.05 probability level is X? where in this
case Xt =X + 10. A surface based on Xf3 alone

accounts for 95.7 percent of the total sum of squares

10

in the dependent variable (Fig. 5D). The R matrix
based on this single term, of course, has a condition
value of 1.0. The stepwise procedure was repeated
after adding a constant of 30, rather than 10, to all
X and Y coordinate values. The only significant term

in this case was X:1 where Xt = X + 30, and a surface

based on this single term accounted for 95.8 percent
of the total sum of squares.

Trend and residuals maps derived by means of
stepwise regression, before and after translation of
the coordinate system, are roughly the same as those
derived from fitting a second-degree polynomial sur=
face (Fig. 5B to 5D). The differences are certainly
not sufficient to cause widely differing geologic in-
terpretations. In each case the oil pool, as outlined
by Merriam and Harbaugh (1964, p. 23) occurs al-
most entirely within an area of positive trend resid=
uals.

A stepwise regression analysis was made of the
Lost Springs structural data (Fig. 4) using all poly=
nomial and other terms listed in Table 1. Three
terms were selected by the procedure as significant

at the 0.05 probability level. One of the terms, X2,
is a polynomial; the other two,//Y and log X*log Y,
are not. The surface (Fig. 5E) accounts for about
the same percentage of the total sum of squares as

a second~-degree polynomial (Fig. 5B), but it is de=
rived from an R matrix with a much higher condition

value (0.12 vs. 3 - 10 5). The principal features
of the trend and residual maps are about the same.
The stepwise regression analysis was repeated
using all terms of Table 1, but by selecting those
terms significant at the 0,25, rather than the 0,05,
level of probability. The trend=surface equation is:

t = =974 + 2.43X2 + 2.62XY - 0.023Y°

- 33V5 - 0.0018X3y2

and accounts for 97.2 percent of the total sum of
squares in the dependent variable, identical to that
accounted for by a third-degree polynomial. How-
ever, the condition value of the R matrix used to

(16)

derive equation (16) is 5 * 10 4, whereas that co~
rresponding to the third-degree polynomial is
2-1071,

The stepwise regression analysis using all terms
of Table T was repeated after translation of the co-
ordinate system and again after changing the scale
of the coordinate system. Translation was accom=
plished by adding a constant of 10 to each value of
X and Y. Scale changes were made by multiplying
X and Y by 1.5 and 0.75, respectively. These
changes in the coordinate system are only two ex=
amples of the kinds of arbitrary changes that could
be made.

On translation of the coordinate system, in
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this problem, none of the terms selected prior to

translation (i.e., X2,\/7_, and log X* logY) were
significant at the 0.05 probability level. Instead,
the same surface was obtained that resulted pre-
viously when the stepwise regression procedure was
applied to linear through quartic polynomial terms
(Fig. 5D). That is, the only significant term was

X? , where Xt =X + 10.

After changing the scale on X and Y the same
terms selected prior to the scale change (i.e., X2,
VY, and log X* log Y) were again selected in the
stepwise regression procedure. The regression co-
efficients were different, but the condition value
of the R matrix was nearly the same (0.09 vs 0.12).
The sum of squares accounted for by the surface and
the trend and residual maps were also essentially the
same.

Translation of the coordinate system had large
effects on the condition values of R matrices used
to fit quadratic through quintic polynomial surfaces.
These are summarized below:

Polynomial Before After
surface translation translation
Quadratic 3-107 4-10°8
Cubic 2-10716 4-10%
Quartic 4-107 <1074
Quintic <10746 <1074

These results are in accord with the conclusion by
Mandelbaum (1963, p. 507) that matrix condition
is improved where the origin of the coordinate sys=
tem is placed nearer the center of the map area.

The principal conclusion reached after trend
analysis of the structural data on the "Mississippi
chat" using stepwise regression procedures is that
the residual maps are not highly sensitive to either
the mathematical functions used to estimate the
trends or the coordinate system used to define X and
Y. Moreover, although the R matrices used to de=
rive the stepwise regression surfaces (Figs. 5C to
5E) have higher condition values than the R matrix
used to derive the quadratic surface (Fig. 5B), the
condition value for the latter seems satisfactorily
high. The condition value of an R matrix used to
derive a third=degree polynomial surface, however,
is considerably lower than the surface of equally
good fit to the observed data derived by means of
stepwise regression (Equation 16).

EXAMPLE [l = The Lansing Group, Kansas

Structure contour maps drawn on the top of
the Lansing Group of Pennsylvanian age inKansas
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are shown in Figure 6. The map in Figure 6A, which
shows the entire State of Kansas, is adapted from
Merriam, Winchell, and Atkinson (1958) and is based
on elevation data from thousands of wells. The map
in Figure 6B is based on data from 200 wells used in
trend—analysis studies by Merriam and Harbaugh (1964)
who also made the data available for the study des-
cribed here.

Initially, conventional polynomial surfaces of
first through fifth degree were fitted to the Lansing
data. The percentage sum of squares accounted for
and the condition values of the R matrices corres=
ponding to the linear through quintic surfaces are
as follows:

Surface Percent of total Condition value
sum of squares

Linear 42.4 0.97 -

Quadratic 83.7 8.6 - 10_

Cubic 96.2 2.7 - 10_}15]3

Quartic 96.9 6.5+ 10

Quintic 97.1 <10746
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Figure 6. - Structure confour maps of the top of the
Lansing Group in Kansas.



The cubic terms account for 12.5 percent of A large number of other trend=surface functions

the total sum of squares in the dependent variable were fitted to the Lansing data, most of which were
beyond the 83.7 percent accounted for by the linear  determined by the stepwise regression technique
plus quadratic terms. However, the condition val- using various levels of probability for entering and
ves of the R matrices correspondmg to the cubic and deleting terms, and using various coordinate schemes
higher order surfaces are extremely small. Maps of to define the X=Y map locations. Some functions
the quadratic surface and residuals are given in were selected arbitrarily, however, and were tested
Figure 7A. by fitting them to the observed map data. One arbi-
TREND MAPS RESIDUAL MAPS

9

l e Y
/“" 'g \ { \‘°
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A.Quadratic: Trend=1237-2179X + 280.9Y +404.5 X% + 29.4IXY -82.12Y2. 83.7% sum of squares
accounted for by trend. Condition value of R matrix = 8.6 x 107,

g

B. Arbitrary: Trend = —I897 + 24 57X —515.5Y-13,213LOG X + 2342L0GY. 84.4% sum of squares
accounted for by trend. Condition value of R matrix =40 x 10™%

s8]l

C. Stepwise: Trend = —1037 +562.9Y +230.8X2—1126XY +355.0Y2-35.91X> +190.8X2Y-49.26Y3
96.0% sum of squares accounted for by trend. Condition value of R matrix = 60 x107'2,

Figure 7.~ Trend and residual maps of the structure on top of the Lansing Group. Areas of positive residuals
shown by dots. Contour interval is 250 feet.
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trary function containing X, Y, log X, and log Y
is shown in Figure 7B; a map of the residuals about
the trend surface is also shown. The surface in Fig-
ure 7B accounts for slightly more of the total sum of
squares than does the quadratic polynomial surface,
but the function contains one less independent term
and the R matrix has a higher condition value (4 -

10 4). Residual maps derived from the quadratic
polynomial surface (Fig. 7A) and the arbitrary sur=
face (Fig. 7B) are different in one important respect;
the former displays a northwestward trending "low"
in the western part of the State and the latter dis-
plays a northeastward trending "high" in the same
area. Both maps are equally valid in a mathematical
sense, and although neither may reflect the under-
lying geologic structure correctly, both are worthy
of geologic appraisal.

Stepwise regression performed at various levels
of significance using all or part of the terms in Table
1 and changing either the origin or the scale of the
coordinate system resulted in surfaces accounting for
either a high percentage of the total sum of squares=-
generally greater than 96 percent=or a more moderate
percentage = less than 90 percent. Those maps for
which less than 90 percent of the total sum of squares
is accounted for by the surface show residual con-
figurations similar to either those of Figure 7A or
Figure 7B, and, therefore, convey no additional
possibilities for geologic evaluation. Also, because
they are based on trend equations containing at least
five independent terms, theyare less efficient than
the conventional quadratic or the arbitrarily selected
surfaces (Figs. 7A,7B).

Those residual maps derived from trend surfaces
which account for high percentages of the total sum
of squares show configurations that are not too dis-
similar among themselves but that are different from
those in Figures 7A and 7B. Maps based on one of
the more efficient of the surfaces are shown in Fig-
ure 7C. The condition value of the R matrix is low
but probably acceptable; the seven independent
terms selected from the linear through cubic group
of polynomial terms by the stepwise technique at
the 0.01 level of significance account for only 0.2
percent less of the sum of squares than the entire
cubic trend. Although the surfaces shown in Figure
7 account for 84 to 96 percent of the total sum of
squares in the dependent variable, the configura-
tions of the surfaces are all grossly similar. However,
the minor differences among the trends are sufficient
to cause large differences among the corresponding
residual maps.

The positive and negative values in the re-
sidual maps in Figure 7 are probably clustered strong-
ly enough to indicate at least moderate amounts of
autocorrelation. The residuals, therefore, cannot
be ascribed entirely to noise or to extremely local
variation in the data. They appear to reflect either
local structural features of the Lansing Group or the
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inadequacy of the regression equations in estimating
the actual underlying regional trends. It is probable
that they reflect both to varying degrees. The re-
sidual map in Figure 7C appears to show the loca-
tions of the Central Kansas uplift and the Nemaha
ridge (Fig. 8) more clearly than the residual maps

in Figures 7A and 7B, but the northward= or north-
westward=trending "high" in the western part of the
State does not correspond to any known structural
feature in this region, and we have no good reason
to propose that a new structural feature has been
discovered. It seems more likely that the "high"

is a result of the particular mathematical function
used to define the surface, particularly because
other functions (Figs. 7A, 7B) result in residual maps
displaying a northeastward=trending "high," or a
northwestward=trending "low" in the same area.
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Figure 8.~ Major pre=Des Moines and post=Mississi=
ppian structural features in Kansas.

CONCLUSIONS

Trend analysis has proved to be a useful tool
in the examination and interpretation of geologic
map data and has been applied widely in many dif-
ferent kinds of geologic problems during the past 10
years. The method is comparatively straightforward
where the purpose is to predict or interpolate values
between the original control points on the map. How-
ever, where the purpose is to separate and describe
regional and local components of variation, results
can be sensitive to the mathematical function se=~
lected to estimate the regional trend. This is par-
ticularly true where a large proportion of the vari-
ance in the data can be described by a smooth con-
tinuous surface having only gentle flexure. Small
differences among many such surfaces that may fit
the data equally well can result in large differences
in the configurations of contour maps of the residuals.
If residual maps are examined for relation to local
geologic factors, then the geologic conclusions may
depend in part on the mathematical form of the trend
function and, hence, might reflect subjective de=
cisions made at the onset of the analysis.



This circumstance is caused by two factors:

(1) too little is currently known about the quantita=
tive nature of the geologic processes to select the
proper form of a trend function on subject matter
grounds, and (2) even if the true form of the trend
function were known, its fit to the observed data by
least=squares methods could easily be biased by the
presence of local nonrandom variation. Because of
these factors the procedures of trend analysis may
remain empirical for some time and should be prop=
erly used in an exploratory manner with geologic
factors playing a major part in evaluation of both
the trend and residual maps. The use of trend analy=
sis as a search technique was emphasized recently
by Krumbein (1967, p. 42).

Use of polynomial equations in trend analysis
offers several important advantages over some of the
numerous other models that could be used. The prin=
cipal advantage of polynomial terms is that they can
approximate a wide variety of other functions. How=
ever, where local variation about the trend is small,
the approximations may not be sufficiently good.
Other configurations of trend residuals may be ob=
tained using different, but equally valid, functions
to estimate the trend. As an alternative to conven=
tional use of polynomial equations, and current me=
thods of adding or deleting terms in groups according
to degree, we have used a stepwise regression method
for selecting terms individually. Among the possible
terms to be entered into the trend equation we in-
clude not only polynomial terms up to fifth degree,
but also a number of others (Table 1). The stepwise
regression can be performed at different probability
levels and using different coordinate systems to de=
fine the X and Y map locations. Using these pro=
cedures it is possible to estimate the trend using a
number of different surfaces of almost equally good
fit to the observed data and to compile a number of
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APPENDIX A. = Sample calculation using the stepwise regression procedure.

The raw data used in this example are artificial, and consist of a matrix of pseudorandom normal de=
viates with 1000 rows and 5 columns augmented by an additional column generated as a function of X3, X4,
and X5 according to

Xy =6X5 + 7Xy + 8X;
1., 2., and 3. v The complete data matrix, X, C,consusts of 1000 rows and 6 columns ( 1< N < 1000,

0< c < 5). The population means and standard dewahons of X, through Xg are all zero and one, respec-

tively. Population correlation coefficients among pairs of X ’rhrough Xz are as follows:

X, X, X, X, Xs

X, 1.000  0.500  0.995  1.000  0.000
X, = 1.000  0.500  0.500  0.000
Xy e 1.000  0.995  0.000
X,  mmmm e e 1.000  0.000
Xs 0 mmmmm o mmmmm o mmemm s 1.000

Note that the correlation coefficient between X] and X4 is 1.000, and as the means and standard deviations
are the same, X . = Xr 4 for all r. The probability level, Q, at which terms are to be selected or deleted
is set at 0,05, ' !

4. Starting at step 4 of the stepwise regression procedure, as outlined in the text, the means ()_( ) and the
standard deviations (s ) are estimated as:

c 0 1 2 3 4 5
X c -0. 13451 -0.0093740  0.024055 -0.012381 -0.0093740  0.00067395
S 15.637 0.993 0.998 0.997 0.993 1.035

5. The part of the matrix of estimated simple correlation coefficients (ri:i) of concern is:
i= 0 1 2 3 4 5

i= 0 1.00000 0.84671 0.43406 0.84871 0.84671 0.56457
1 0.84671 1.00000 0.54278 0.99502 1.00000 0.04054
2 0.43406 ~=====-- 1.00000 0.53576 0.54278 -0.02307
3 0.84871 ==mmmmm mmmmees 1.00000 0.99502 0.0449%0
4 0.84671 ======= =====m= —mmeee- 1.00000 0.04054
5 0.56457 ~  =======  ===s=s= mmmmee= —omeee- 1.00000

6. NDF =N ~-1=999

7. VAR=1
|7 Numbers correspond to those in text section on stepwise regression.
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8. Ci=-] fori=1,2,..., 5.
9. V] = (0.84671)2/] =0.71692; C] =-1; = 1.000

V, = (0.43406)/1 = 0.18841; C, = =1; rp = 1.000
Vg = (0.84871)2/1 = 0.72031; Cy=~1; rgg = 1.000
V, = (0.84671)/1= 0.71692; C4 = =1; r, y = 1.000
Vg = (0.56457)2/1 = 0.31874; Cs=~1; rs5=1.000

9a. As all C = =1 at this stage, step 9a is skipped.

9. Maximum Vi =V, =VMAX = 0.72031.

3
F = (VMAX * NDF)/(VAR = VMAX) = (0.72031 - 999)/(1 - 0.72031) = 2572.81

for 1 and 999 degrees of freedom.

QF estimated using equations 3 through 5 in the text is extremely small (QF < Q =0.05). Therefore,

k =3 and

VAR =1 -0.72031 = 0.27969

NDF =999 - 1 = 998

=1+ =1 0.99502 - 0.99502

10. (1) ry; = 1.00000 - UL = 0.0099352
ryp=0.54278 - L1 0235021 0.93976  _ ¢ oo9sg81
ryp = 1.00000 - 117 838376 - 0.93576 g 71296
@) r3= - ?—:%g-gg% = =0.99502
fhy= = J9asss = -0.53576
(3) vy, =1.00000 - 222202 - 029902 _ 9 0099352
= 0.04054 - 2:04490 - 0.99502 _ 5 0041344

"15 T.00000

_ _0.99502 - 0.53576 _
fo4 = 0.54278 T-00000 0.0096881

- - _0.04490 - 0.53576 _ _
fog = 0.02307 T-00000 0.047126

(4) ry5=T-09909 = 1-00000

33

(5) rgy = Fgoo05 = 0.99502

_0.04490 _
"35 = T.00000 - - 04470
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. - - 1 -1-0.99502 - 0.99502
(6) 44 = 1.00000

_0.04054 — —1" 71 0.04490 - 0.99502 _ _ 5041364

45 T.00000
_ - =1+ =1-0.04490 * 0.04490 _
Feg = 1.00000 T-00000 = 0.99798
_ _0.84871 - 0,99502 _
7) "o= 0.84671 T-00000 = 0,0022266
_ _0.84871 - 0.53576 _ _
fog = 0.43406 T-00000 = =0.020645
_0.84871 _
(8) I'30 = mm =0.84871
— ~ =1+ =1-0,84871 " 0.99502 _
©9) r 40 = 0.84671 T-00000 = 0.0022266
_ _ =1 +-1-0.84871 - 0.04490 _
f5q = 0.56457 T-00000 =0.52646
Cy= +1
9. r. . is now:
1,1
i= 0 1 2 3 4 5
i= 0 1.00000 0.84671 0.43406 0.84871 0.84671 0.56457
1 0.0022266 0.0099352 0.0096881 -0.99502 0.0099352 ~-0.0041364
2 =0.020645  ========- 0.71296 -0.53576 0.0096881 ~0.047126
3 0.84871 = =========  —meee——e- 1.00000 0.99502 0.04490
4 0.0022266  ========= - 0.0099352 -0.0041364
5 0.52646 ========= mmsssmmes ssmmmee seemeee— 0.99798

v, = (0.0022266)2/0.0099352 = 0.00049901; Cy = -1; 1y = 0.0099352
V, = (-0.020645)2/0.71296 = 0.00059781; Cy=1; 1,y =0.7129

= 2 = . = -
V4 = (0.84871)%/1.00000 = 0.72031; Cy = +1; ro
vV, = (0.0022266)2/0.0099352 = 0.00049901; C 4= "1; r4 =0.0099352

2
Vg = (0.52646)°/0.99798 = 0.27772; C5 =-1; rss5

= 1.00000

=0,99798

9a. Minimum Vi =V, =VMIN = 0.72031

3
F = (VMIN + NDF)/VAR = (0.72031 - 998)/0.27969 = 2570.24 for 1 and 998 degrees of freedom.

QF estimated using equations 3 through 5 in the text is extremely small, (QF < Q = 0.05). Therefore, go to
%.
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%. Maximum V, =V =VMAX =0.27772
F = (VMAX + NDF)/(VAR = VMAX) = (0.27772 * 998)/(0.27969 - 0.27772) = 140,692
for 1 and 998 degrees of freedom.
QF estimated using equations 3 through 5 in the text is extremely small (QF < Q = 0.05). Therefore
k=5
VAR = 0.27969 - 0.27772 = 0.00197
NDF =998 - 1 =997

10. (1) ry. =0.0099352 - —1 = =1 =0.0041364 * -0.0041364 _ o, 0099181
n 0.997%%8

=0.0096881 - -1 - -1--0.0041364 - -0.047126

1o 03 = 0.0094928
1y = =0.99502 - ~1- 1 00041364~ 0. 04470 = -0.99521
ri4=0.0099352 - ~L_ 1= 20.00C3EL - 20.0041364 _ o go991g1
ry,=0.71296 - 12717 00471261 0. 047126 =0.71073
rpy = =0.53576 - L1~ "0.047126 7 0.04490 = -0.53788
rpq = 0.0096881 - —L—1- 0047126 - 20.0041364  _ ¢ 909498
rag = 1.00000 - ~L1 - 00150 - 0.0490 1 90207
gy = 0.99502 - Lo ~1= 004850 7, 20. 0041364 _ g 995,
ryy = 0.0099352 - Lo =1= 0 F043EL - 200041364 _ ¢ 99181

(2) 5=~ BoyTses =0.0041448
fys =~ ogmsa>  =0.04722]
fa5 =~ G9gTeg = ~0.044991
fys= = ST =0.0041448

(4) I'55= Owlm = ].00202
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(7) o =0.0022266 - 0.52646 - -0.0041364
'I .

tp = ~0.020645 - 23248 R ITI2 — 00042152

- 084871 - 2:52646 - LHHI0 - 0.82502

30
(40 = 00022266 - 0:3284 o0, 0041364 00044087
_ 0.52646 _
(8) I’50 = m = 0.52753
C 5= +1
9. r i is now
= 0 1 2 3 4 5
i= 0 1.00000  0.84671 0.43406 0.84871 0.84671 0.56457
1 0.0044087 0.0099181  0.0094928  =0.99521 0.0099181  0.0041448
2 0.0042152  =======-= 0.71073  -0.53788 0.0094928  0.047221
3 0.82502 -~ 1.00202 0.99521 ~0.044991
4 0.0044087 0.0099181  0.0041448
5 0.52753 ~ ======m-- rmmmmmemmmmmmem mmmeeee- 1.00202

vV, = (0.0044087)%/0.0099181 = 0.0019597; C, = ~1; r;; = 0.0099181
V, = (0.0042152)2/0.71073 = 0.00002500; C,, = ~1; r,, = 0.71073
Vg= (0.82502)%/1.00202 = 0.67929; C = +1; 135 = 1.00202
V= (0.0044087)%/0.0099181 = 0.0019597; C, = 1; ryy = 0.0099181
Vs = (0.52753)%/1.00202 = 0.27773; C = +1; 155 = 1.00202
9a.  Minimum V, =V, = VMIN = 0.27773
E = (VMIN - NDF)/VAR = (0.27773 + 997)/0.00197 = 140,557 for 1 and 997 degrees of freedom.

QF estimated using equations 3 through 5 in the text is extremely small (QF < Q =0.05). Therefore, go to
9%.

%. Because V] = V4, and the fact that V] precedes V4, the maximum Vi where Ci = =1 and o >
0.00001 is taken as V] .
Maximum V. = Vi= VMAX = 0,0019597

F = (VMAX * NDF)/(VAR = VMAX) = (0.0019597 - 997)/(0.00197 = 0.00196) = 195,3822/ for
1 and 997 degrees of freedom.

2/ 1f more decimal places are carried in the demoninator variables this value is much larger.

21



QF estimated using equations 3 through 5 in the text is extremely small (QF < Q = 0.05). Therefore
k=1
VAR =0.00197 - 0.00196 = 0,00001

NDF =997 - 1 = 996

_ 1.0 _
10. (4) I"-” —m =100.83

(5) ryp= % = 0.95712

= 0.

13 = oo = ~100.34
14 = 0-000FTer = 1.00000
15 = 30090t = 0.41790

(6) ryp =0.71073 - 1271 - 0.0094928 * 0.0094928 _ 70164
rpy = =0.53788 - Lt oL 0094928 _ o 41465
rpq = 0.0094928 - Lo L. 00092181 - 0.0094928 _ 49009
rps = 0.047221 - 171 o042 0 043254
rgg=1.00202 - Lo 1 _06?3833151-0'9952] = 100.86
rgq = 0.99521 - ZL- 1= Q.OZIBL: 70.99521 _ ¢ 40000
rg5 = ~0.044991 - ZL- 1= 020348 70.99921 _ g 44089

_ -1 - -1-0,0099181 *© 0.0099181 _
44 = 0.0099181 00005181 = 0,00000

_ _ =1 -1:0.0041448 * 0.0099181 _
45 = 0.0041448 50095 15 = 0.00000

_ _ =1 1-0.0041448 - 0.0041448
= 1.00202 0.0099T8] = 1.00375

55

(8) 110 = B:o00mor = 0.44451

10 7 0.

= - -1 - -1"°0.0044087 - 0.0094928 _
%) rog = 0.0042152 50000181 = 0.00000

= 0.82502 - =1 -1+ 0.0044087 - -0.99521

0.0099181 =0.38264

30
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- 0.0044087 - —1- =1 0.0044087 - 0.0099181

40 0.009918] = 0.00000
_ _ =1-1"-0,0044087 - 0.0041448 _
r50 = 0.52753 50099181 =0,52937
C.I =+
9. ros is now
i = 0 1 2 3 4 5
i= 0 1.00000 0.84671 0.43406 0.84871 0.84671 0.56457
1 0.44451 100.83 0.95712 -100.34 1.00000 0.41790
2 0.00000 W ====—-- 0.70164 0.41465 0.00000 0,043254
3 0.38264  m====== mmmmees 100.86 0.00000 -0.46089
4 0.00000 ——————— ——————— e 0.00000 0.00000
5 0.52937  =======  ======= =s-sssss Smesees 1.00375

v, = (0.44451)2/100.83 = 0.00196; C, = +1; r, = 100.83
_ 2 = s Cn= =1s fon =
V, = (0.00)%/0.70164 = 0.00; C = ~1; rp, = 0.70164
Vg= (0.38264)2/100.86 = 0.00145; C, = +1; 15 = 100.86
V, = 0.00)%/0.00 = undefined® ; C4 = =1 ryy = 0.00000
Vs = (0.52937)2/1.00375 = 0.27919; C5 = +1; 155 = 1.00375
9a. Minimum Vi = V3 =0.00145
F = (VMIN * NDF)/VAR = (0.00145 * 996)/0.00001 = 144,420 for 1 and 996 degrees of freedom.

QF estimated using equations 3 through 5 in the text is.extremely small (QF < Q =0.05). Therefore, go to
%.

%.  The only V. for which C; = -1 and r, . >0.00001 is Vo
Maximum V. =V, = VMAX = 0.0
F = (VMAX * NDF)/(VAR = VMAX) = (0.0 * 996)/(0.00001 - 0.0) = 0.0 for 1 and 996 degrees of

freedom.
QF estimated using equations 3 through 5 in the text is near 1.0 (QF > Q = 0.05). Therefore, go to 11.

1. The standardized partial regression coefficients are contained in the first column of the final r, .
matrix and are By = 0.44451, B, = 0.38264, and Bg = 0.52937. The final regression coeffi= '’

cients are:

b _ 0.44451 - 15.637
17 0.993

=7.00,

§/Division by zero is undefined and results here because of the "built=in" perfect linear correlation of X; and X.
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_0.38264 . 15,637 _
by = 0.997 =6.00,

0.52937 - 15.637 _
b = T.0%5 =8.00,

and

bo =-0.135 - (7.00 - -0.0093740) - (6.00 - 0.012381) - (8.00 - 0.00067395) = 0.00.
12, PSS = 100 [ (0.44451 - 0.84671) + (0.38264 - 0.84871) + (0.52937 . 0.56457) 1 = 100.00.
13. Tr = 7.00X] + <S.00X3 + 8.00X5, which in this case, because X] = X4, is equivalent to
Tr = <S.00X3 + 7.00X4 + 8.OOX5.
The residuals are then derived from

d =X

r r,0 - Tr'

where Xr ois the column of the original data matrix containing the observed values of the dependent variable.
As PSS = 100.00, all values of d_=0. The part of the original i for which C,=+1is:

i= 1 3 5

=1 1.00000  0.99502 0.04054
3 0.99502  1.00000 0.04490
5 0.04054  0.04490 1.00000

and the inverse is

100.83 -100.34 0.41790
-100.34 100.86 -0.46089
0.417%90 -0.46089 1.00375
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APPENDIX B = Computer Program Listing
Card deck set up (all of the following cards must be present)

Header card
Probability level card
Polynomial term card
Square root term card
Exponential term card
Logarithmic term card
Reciprocal term card

CN data cards

Header card

Columns 1 -30 Format A30 Title
39 - 43 Format 15 CN = number of data cards
44 = 46 Format I3 CM =1 + number of independent terms on table 1 to be used.
49 Format |1 Option. If 0, trend residuals will not be computed. If 1, re=

siduals will be computed.

Probability level card: Probability level, Q, usually given as 0.01 (01 in columns 5 and 6) or 0.05 (05 in
columns 5 and 6). Format F7.3. Set Q = 1.0 if selected terms are not to be eliminated by stepwise
procedure .,

Polynomial terms card: Punch the word LINEAR, QUADRATIC, CUBIC, QUARTIC, or QUINTIC (beginning
in column 1) depending on highest order polynomial terms desired. If polynomial terms are not to be
used, leave this card blank.

Square root terms card: Punch the word ROOT (beginning in column 1) if square root terms inTable 1 are
desired. If not desired, leave this card blank.

Exponential terms card: Punch the word EXPONENTIAL (beginning in column 1) if exponential terms in
Table 1 are desired. If not desired, leave this card blank.,

Logarithmic terms card: Punch the word LOGARITHMIC (beginning in column 1) if the logarithmic terms in
Table 1 are desired. If not desired, leave this card blank.

Reciprocal terms card: Punch the word RECIPROCAL (beginning in column 1) if reciprocal terms in Table 1
are desired. If not desired, leave this card blank.

Data cards: Format 3G7.0. Each of CN data cards contains observed values of the dependent variable, and
the X and Y map coordinates, in that sequence.

NOTE: All polynomial and nonpolynomial terms that are selected to be entered and tested for use as inde-
pendent variables are numbered consecutively from 2 to CM according to their sequence in Table 1,
and are referred to by this number on the output. This is different, therefore, from the numbering
scheme used in the foregoing text.
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OO0

OO0

110

120

130

STEPWISE REGRESSION PROGRAM AFTER EFROYMSOM(1960) .

WRITTEN IN FORTRAN IV BY RUBERT TERRAZAS AFTER PROGRAMS BY
DeSe HANDWERKER AND Go.I+SELNERy UsS<GEOLOGICAL SURVEY

THE PROGRAM IN ITS PRESENT STATE REQUIRES APPROXIMATELY

200 K BYTES OF CORE, DUE TO THE STORAGE OF THE Y(500,39) MATRIX
USED IN SUBSEQUENT COMPUTATION OF RESIDUALS. THE STORAGE
REQUIREMENT MAY BE REDUCED SOME 78 BYTES BY USING AN EXTERNAL
DATA STORAGE FILE (TAPE OR DISK).

COMMENTS IN PROGRAM REFER TO DESCRIPTIONS OF PROCEDURE IN
FOREGOING TEXT.

NOTE THAT SUBSCRIPT OF DEPENDENT VARIABLE IS ZERO IN TEXT, BUT
ONE IN THE PROGRAM.

REAL*8 BeQyY9sCMRyRECosVMAXySSQRSyRyZsFRyQF +4DENJRESyCORRyVMIN,
1STDEVyF4V4FAC,SUMsX4PSSy VAR FNDF o PRODy SUMW, SEOUW ¢ MEANS
INTEGER TITLEZCN,CM4OPTIONyRDIN,PROUT,C,CC,yDEGF,BOOL
DIMENSION X(39),CORR(39,39),MEANS(39),STDEV(39),TITLE(8),
1C(39)4CC(39)4B(39)4R(39),Y(500,39),ITRANS(5) 4JTRANS(9),42(3),V(39)
DATA IBLANK/? v/

DATA JTRANS/'LINE','QUAD'y 'CUBT 'y "QUAR', '"QUIN','RO0T*,*EXPO',*L0OGA
1*y*RECI Y/

RDIN=5

PROUT=6

STEP 1 STARTS HERE

READ (RDIN,660,END=650) TITLELCN,CM,OPTION

WRITE (PROUT.680) TITLELCN,CM

READ (RDIN4670) 0O

READ (RDIN,8S0O) ITRANS

DO 120 I=1,CM

MEANS (1)=0.0

STDEV(I)=0.0

DO 120 J=1,CM

CORR(I,J)=0.0

K=4

NSV=CM

11=1

SUMW=0.0

STEPS 2 AND 3 START HERE

READ (RDIN4900) (X(J)sed=1,3)

IF SCALE AND ORIGIN OF COURDINATE SYSTEM ARE TU BE CHANGED,
INSERT TRANSFURMATIONS HERE., TRANSFORMATIONS OF THE DEPENDENT
VARIABLE MAY ALSO BE DONE HERE.

2(2)=X(2)

2(3)=X(3)

SUMW=SUMW+1,

IF (ITRANS(1)}.EQ.IBLANK) GO TUO 140

IF (ITRANS(1).EQ.JTRANS(1)) GO TO 150

THE GENERATION OF INDEPENDENT TERMS FOR THE STEPWISE REGRESSION
PROCEDURE BEGINS HERE. THEY ARE GENERATED IN THE ORDER GIVEN
IN TABLE 1 OF THE TEXT. OTHER TERMS WILL BE MORE APPROPRIATE
FOR SPECIFIC REGRESSION PROBLEMS.,

X(K)=X(2)%*%x2

K=K+1

X(K)=X(2)*X(3)

K=K+1

X(K)=X(3)*x2

K=K+1

IF (ITRANS(1).EQ.JTRANS(2)) GO TO 150

X(K)=X(4)*X(2)

K=K+1
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140
150

160

170

X{K})=X(4)*%X(3)

KsK+1

X(K)=X(2)%X(6)

K=K+1

X(K}=X(3)%X(6)

K=K+1

IF (ITRANS(1).EQ.JTRANS(3)) GO TO 150
XEK)=X(T)*%X(2)

K=K+1

X(K)=X{T7)%X(3)

K=K+1

X(K)=X(4)%X{6)

K=K+1

X(K)=X{2)%X(10)

K=K+1

X(K)=X(10)*X({3)

K=K+1

IF (ITRANS(1).EQ.JTRANS(4)) GO TO 150
X(K)=X(11)%X(2)

K=K+1

X(K)=X(11)*X(3)

K=zK+1

X(K)=X(T)*%X(6)

K=K+1

X(K)=X(4)*%X(10)

K=K+1

X(K)=X(2)%X(15)

K=K+1

X(K)=X(15)4X(3)

K=K+1

GO T0 150

K=K=2

IF (ITRANS(2) .NELJTRANS(6)) GO TO 160
X(K)=Z(2)%%,5

K=K+1

X(K)=X(K=1)*Z(3)%%,5

K=K+1

X(K)=Z(3)%x%,5

K=K+1

IF (ITRANS(3).NE.JTRANS(T7)) GO TO 170
X{K)=DEXP(Z(2))

K=K+1

X(K)=DEXP(Z(3))

K=K+1

X(K)=DEXP(2.%7(2))

K=K+1

X(K)=DEXP(Z(2)+Z(3))

K=K+1

X(K)=DEXP(2.%7(3))

K=K+1

IF (ITRANS(4).NE.JTRANS(8)) GO TO 180
X(K)=DLOG10O(Z(2))

K=K+1

X{(K)=DLOG10(Z(3))

K=K+1

X(K)=X(K=2)%%2

K=K+1
X(K)=DLOG10(Z(2))*DLOG10O(Z(3))
K=K+1

X(K)=(DLOG1O(Z(3)))*x2
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520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
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A 940
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A 980

A1000
A1010

A1030
A1050
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A1070

Al1110



sEeNeNeNel

180

190

200

210

220

230

240 CORR(I4J)=(SUMW%CORR(T45J)=MEANS(T)*MEANS(J))/(STDEV(I)*STDEV(J)*SU
IMWR(SUMW=1,))

250

260
270
280

290
300

K=K+1

IF (ITRANS(5).NE.JTRANS(9)) GO TO 190
X(K)=1./2(2)

K=K+1

X(K)=1,/2(3)

K=K+1

X(K)=1s/2(2)%%2

K=K+1

X(K)=1./(2(2)*Z2(3))

K=K+1

X(K)=1a/Z(3)%%2

K=K+1

STEPS 4 AND 5 START HERE
DO 200 I=1,CM
MEANS(TI)=MEANS(I)+X(1)
STDEV(I)=STDEV(I)+X(1I)%*2
DO 200 J=1,.CM
CORR(T14J)=CORR(TI4J)+X(T)%X(J)
IF (OPTION.EQ.O) GO TO 220
DO 210 J=1,CM

Y(ITI,J)=X(J)

II=11+1

K=4

IF (IT1.LE.CN) GO TO 130

DO 230 I=1,CM

STDEV(I)=DSQRT( (SUMW*STDEV(I)-MEANS(1)%*%2)/(SUMW*(SUMW=1)))

b0 240 I=1,CM
DO 240 J=1,CM

DO 250 I=1,CM

MEANS (I )=MEANS(1)/SUMW

WRITE (PROUT,810)

WRITE (PROUT,800) (MEANS(I),I=1,NSV)
WRITE (PROUT,790)

WRITE (PROUT,800) (STDEV(I)sI=1,NSV)
STEPS 6,74 AND 8 START HERE

THE MATRIX OF CORRELATION COEFFICIENTS (CORR) MAY BE PRINTED
HERE. THE SUBSET OF THIS MATRIX CORRESPUNDING TO THE INDEPENDENT
TERMS FINALLY SELECTED MAY THEN RE EXTRACTED AND NORMALIZED.

THE DETERMINANT OF THE NORMALIZED MATRIX IS THE CONDITION VALUE.

DEGF=SUMW-1

VAR=1.0

€C(1)=999999

DO 260 I=2,NSV

C(l)=-1

D0 280 I=2,4NSV
V(I)=(CORR(TI,41)#%%2)/CORR(I,I)
STEP 9A STARTS HERE
VMIN=0.9999E49

DO 300 I=2,4NSV

IF ((C(I).NE.1)«0OR.(CORR(I4I).LE.0.00001)) GO TO 290
IF (V(I).GE.VMIN) GO TDO 290

K=1

VMIN=V(I)

CONT INUE

CONTINUE

IF (VMIN.EQ.0.9999E49) GO TO 310
F=tVMIN*DEGF)/VAR

INSERT COMP OF OF
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A1220
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Al1660



310

320
330

340

350

360

370
380
390
400

410

420
430

IF (DEGF.GT.100) CALL QOFX (F414DEGF,0QF)
IF (DEGF.LE.100) CALL OOFF (F41,DEGF,0F)
IF (OF.LT.0) GO TO 310

VAR=VAR+VMIN

DEGF=DEGF+1

WRITE (PROUT+840) KeF4DEGF,0F

GO TO 350

START OF 9B

VMAX=0.0

DO 330 I=2,NSV

IF ((C(I)eNEe=1)e0OR.(CORR(IyI).LE.0.00001)) GO TO 320
IF (V(I)._.E.VMAX) GO TO 320

K=1

VMAX=V(I)

CONTINUE

CONT INUE

IF (VMAX) 640,460,340
F=(VMAX*DEGF )/ (VAR-VMAX)

COMP OF QF

IF (DEGF.GT+100) CALL OQOFX (Fy1,DEGF,QF)
IF (DEGF.LE.100) CALL QOFF (F41,DEGF,QF)
IF (QF.GT.Q) GO TO 460

VAR=VAR-VMAX

DEGF=DEGF=-1

WRITE (PROUT4830) KyFyDEGF,.0F

START STEP 10

REC=1.0/CUORR(KyK)

IK=K-1

KI=K+1

IF (IK.LT.2) GO TO 400

DO 390 1=2,1K

FAC=CORR(I,K})*REC
CUORR(I41)=CUORR(I,41)-CORR{K,y1)*FAC

NO 360 J=1,1K

PROD=CORR(J4K)*FAC

IFAC=C(K)*C (J)

IF (IFAC.NE.1l) PROD=-PROD
CORRI(TI4J)=CORR(TI4J)=-PROD

CONTINUE

IF (KI.GT.NSV) GO TO 380

DO 370 J=KI,«NSV

PROD=CORR (K J)*FAC
CORR(I4J)=CORR(I,J)=PROD

CONTINUE

CORR(I,K)==FAC

CONT INUE

IF (KI.GT«NSV) GO TO 430

DO 420 I=KI,NSV

FAC=CORR(K,1)*REC

IFAC=C(K)*C (1)

IF (IFAC.NE.1) FAC=-FAC
CORR(I41)=CORR(TI+1)=CORR(K,y1)*FAC
DO 410 J=1,NSV

PROD=CORR (KyJ)*FAC
CORR(T1,4J)=CORR(T+J)=PROD

CONT INUE
CUORR(K41)=CORR(K,sI)*REC
CONTINUE
CORR{(K41)=CORR(Ks1)*REC

CORR(K 4K )=REC
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440
450

460

470
480

490
500

510

520
530

540
550

IF (C(K).EQ.-1) GO TO 440
C(K)==-1

GO TO 450

C(K)=1

CONTINUE

GO TO 270

START STEP 11

J=2

DO 480 I=2,NSV

IF (C(I).NE.1) GO TO 470
B(J)=(CORR(I41)*STDEV(1))/STDEV(I)
CC(J-1)=1

J=J+1

CONTINUE

CONTINUE

K=Jd-1

KK=K=-1

WRITE (PROUT,850) (CC(I),I=1,KK)
WRITE (PROUT,860) (C(I),1=14NSV)
WRITE (PROUT,870)

DO 510 11=1,KK

I=CC(IT)

DO 500 JJ=11,KK

J=CC(JJ)

IF (IT.EQ.1) GO TO 500
I1I=11-1

DO 490 L=1,111

X(L)=0.0

X(JJ)=CORR(I,J)

WRITE (PROUT,880) (X(L)yL=1,KK)
CONTINUE

SUM=0

J=2

DO 530 I=2,NSV

IF (C(I)«NE.1) GO TO 520
SUM=SUM+ (B (J)*MEANS (1))

J=d+1

CONTINUE

CONTINUE

B{1)=MEANS (1)-SUM

WRITE (PROUT,820)

WRITE (PROUT,800) (B(1)sI=1,4K)
IF (K.EQ.1) GO TO 110

PSS=0

DO 550 I=2,NSV

IF (C(I).NE.1l) GO TO 540
PSS=PSS+(CORR(I,41)%CORR(141))
CONTINUE

CONTINUE

IDFN=J=-2

[K1=SUMW

IDFD=1IK1-1-IDFN

NDF=IK1-1

FAC=1.0-PSS

DEN=FAC*IDFN

FR=PSS*IDFD/DEN

CMR=DSQRT(PSS)

IF (CMR.GT.1.0) CMR=1.0

WRITE (PROUT,720) CMR,IDFN,IDFD,FR
SSQRS=NDF*FAC*STDEV (1) *%2
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560
570

580
590
600
610

620

630

640
650

WRITE (PROUT,730) SSORS
SEOUW=SORT (SSORS/IDFD)
FNDF=SUMW~-1
FAC=SEOQUW/ (STDEV (1 )*SQRT(FNDF))
J=2

DO 570 I=2,NSV

IF (C(I).LT.1) GO TO 560
R(J)=CORR(I,1)

J1=J+99

R(JL)=FAC*SORT(CORR(I,1))

J=Jd+1

CONTINUE

CONTINUE

IDFN=J~-1

WRITE (PROUT,T770)

WRITE (PROUT,800) (R(I)y1=2,IDFN)
WRITE (PROUT,760)

I11=1DFN+99

WRITE (PROUT,800) (R(I),I=101,11)
SUmM=0.0

J=2

DO 610 1I=2,NSV

IF (C(1).LT.1) GO TO 600

11=J+99
R(J)I=STDEV(1)*R(I1)/STDEV(I)}
J=J+1
SUM=SUM+CORR (141 )%(MEANS(I)/STDEV(I) ) *x*x2
Il=1+1

IF (1.EQ.NSV) GO TO 600

DO 590 L=11,NSV

IF (C(L).LT.1) GO TO 580
FAC=CORR (I 4L )XMEANS(I)*MEANS(L)/(STDEV(I)*STDEV(L))
SUM=SUM+FAC+FAC

CONTINUE

CONTINUE

CONTINUE

CONTINUE

SUM=1.0/SUMW +SUM/FNDF
R(1)=SEOQUWXDSORT(SUM)

WRITE (PROUT,780)

WRITE (PROUT,800) (R(1),1I=1,IDFN)
PSS=100.0%PSS

WRITE (PROUT,690) PSS

1F (OPTION.EO.O) GO TO 110

WRITE (PROUT,700)

DO 630 N=1,CN

SUM=000

J=2

DO 620 I=2,NSV

IF (C(I).NE.1) GO TO 620
SUM=SUM+(B(J)*Y(N,I))

J=J+1

CONTINUE

SUM=SUM+B(1)

RES=Y(N,y1)=-SUM

WRITE (PROUT+710) NeY(Ns1)ySUM,RES
CONTINUE

GO TO 110

WRITE (PROUT,910)

STOP
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A3510

660 FORMAT (7TA44A2,8X,15,13,2X,11) A3520
670 FORMAT (F7.3) A3530
680 FORMAT ('1',8Xe'T I T L E*¢y23Xs6Xy'N" 34Xy "M"y2X/1X,TA44A2,12X,1542 A3540
1X,13) A3550
690 FORMAT ('0','PERCENT UF TOTAL SUMS OF SQUARES OF DEPENDENT ',*VARI A3560
1ABLE EXPLAINED = '4,F7.3/) A3570
700 FORMAT ('1',*' ROW OBSERVED COMPUTED Yyt RE A3580
1SIDUAL v/) A3590

710 FORMAT (' '4I15,10X,2Xy1PD13.542X91PD13,5,2X,1PD13.5)
720 FORMAT ('0', "MULTIPLE CORRELATION COEFFICIENT = '"4Flla7,! F VALU A3610

1E FOR ', 13,' AND ',1I5,' DEG OF FR = ',F11.3) A3620
730 FORMAT ('0','WTD SUM OF RESIDUALS SQUARED = '4,D14.7) A3630
740 FORMAT ('0','PARTIAL CORRELATION COEFFICIENTS'/) A3640
750 FORMAT (' ',10F13.5/) A3650
760 FORMAT ('0','STANDARD ERROR OF REGRESSION WEIGHTS!'/) A3660
770 FORMAT ('0','REGRESSION WEIGHTS*/) A3670
780 FORMAT ('0','STANDARD ERROR OF REGRESSION CONSTANT AND ', 'REGRESSI A3680

10N COEFFICIENTS'/) A3690
790 FORMAT ('O',"STANDARD DEVIATIONS?) A3700
800 FORMAT (l10(1X, 1PD12.5))
810 FORMAT ('0','MEANS?') A3720
820 FORMAT ('OREGRESSIUN CONSTANT AND COEFFICIENTS ', ' (CONSTANT FIRST) A3730

1'/) A3740

830 FORMAT ('OVARIABLE '415,' ADDED F +D14.64' FOR 1 AND '41542Xy A3750

=1
1'DEGREES OF FREEDOM',8X,'Q COMPUTED = ',D14.6) A3760
840 FORMAT ('OVARIABLE ',15,' DELETED F = '4yDl4.6,"' FUOR 1 AND ',1542Xy A3770
1*DEGREES OF FREEDOM'8X,'Q COMPUTED = ',D14.6) A3780

850 FORMAT ('OINDEPENDENT VARIABLES IN THE REGRESSION EQUATION'/(10(1X A3790

1,13))) A3800
860 FORMAT ('OC(I) ARRAY'!'/(10(1X,13))) A3810
870 FORMAT ('OINVERSE MATRIX. (UPPER TRIANGLE AND DIAGONAL ONLY)?') A3820
880 FORMAT (10(1X,1PD14.6)) A3830
890 FORMAT (A4) A3840
900 FORMAT (3(G7.0)) A3850
910 FORMAT (*'1t',*'VMAX LT 0.0'/) A3860

END A3870-
SUBROUTINE OQOFF (FyMyN,Q) B 10
COMPUTES AREA OF F DISTRIBUTION WITH M AND N DEGREES OF FREEDOM B 20
FRUM F TO INFINITY B 30
INTEGER MyNyIyJoKyLy INUM, IDEN B 40
REAL*8 AyRyFAC,SINSQyB+Q,ySUM,SINTH,Fy TH,FDEN,CO0SSQ,
1SyDENyFNUM, TERM,COSTH
IF ((F.GE«0.0)e0ORe(M.GEs1l)s0ORe(NsGEs1)) GO TO 10 B 70
0=0.0 B 80
GO TO 190 B 90
10 R=DFLOAT (M)

S=DFLOAT (N)

IF ((MOD(My2)oNELO)ANDL(MUD(N,2) NE.O)) GO TO 20 B 120
X=S/ (S+R*F) B 130
IF (MOD(N,2).EQ.0) GO TO 170 B 140
IF (MOD(N,2).EQ.0) GO TO 150 B 150
COMPUTE O FOR M AND N BOTH 0DD B 160

20 TH=DATAN(DSORT(R*F/S))

IF ((MeLEoO)sOR{M.LELO)) GO TO 30 B8 180
SINTH=DSIN(TH)

COSTH=DCUS(TH)

30 IF (N-1) 50,40,50 B 210
40 A=0.636620%TH B 220
GO TO 70 B 230

32



50

60

70
80

90

100

110
120

130

140

150

160

170

SUM=COSTH

TERM=COSTH

FNUM=0.0

FDEN=1.0
COSSQ=COSTH*COSTH
11=N=-2

DO 60 1=3,11,2
FNUM=FNUM+2.0
FODEN=FDEN+2.0
TERM=TERM*FNUM*COSSO/FDEN
SUM=SUM+TERM

CONTINUE

A=0.636620% (TH+SINTH%SUM)
IF (M-1) 90,80,90

B=0.0

GO TO 140
INUM=(N+1)/2.0
DEN=0.5%S

FAC=1.27324

K=INUM-1

D0 100 J=2,K
INUM=INUM=-1

DEN=DEN-1.0
FAC=FAC*FLOAT (INUM) /DEN
CONT INUE

IF (N-1) 120,110,120
FAC=0.5%FAC

SUM=1.0

TERM=1,0
SINSO=SINTH%®SINTH
FNUM=N-1

FDEN=1.0

K=mM=-3

DO 130 I=2,K,2
FNUM=FNUM+2

FDEN=FDEN+2
TERM=TERMXFNUM*SINSQ/FDEN
SUM=SUM+TERM

CONTINUE
B=COSTH*®N*FAC*SUM*SINTH
Q0=1.0-A+B

GO TO 190

COMPUTATION OF O FOR M EVEN FOLLOWS

SUM=1.0

TERM=1.0
FNUM=N-2
FDEN=0.0
FAC=1.0-X
K=(M=2)/2

DO 160 I=1,K
FNUM=FNUM+2 .0
FOEN=FDEN+2.0
TERM=TERM*FNUM*FAC/FDEN
SUM=SUM+TERM
CONT INUE
Q=X#%%(0+5%N)*SUM
GO 70 190

COMPUTATION FOR N EVEN FULLOWS

SumM=1.0
TERM=1.0
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180

190

10

20

FNUM=M=-2,0

FODEN=0.0

K=(N=2)/2

DO 180 I=1,K
FNUM=FNUM+2 .0
FOEN=FDEN+2 .0
TERM=TERMRFNUM*X/FDEN
SUM=SUM+TERM

CONTINUE
Q=1.0=-(1s0=-X)%%(0,5%M)*xSUM
RETURN

END

SUBROUTINE QUFX (FeM4N,0Q)

COMPUTES O BY COMPUTING X THE NO OF STD DEV FROM THE MEAN
IN THE NORMAL DIST AND THEN COMPUTES THE AREA OF NORMAL

PRUBABILITY CURVE FRUM X TO INFINITY
REAL*8 AeZXsByQsFACyF4TyX

INTEGER MyN

IF ((MeGTo0) eANDW(NeGTL.0) dAND(F.GT40)) GO TO 10
0=0.0

GO TO 20

FAC=F%%0.33333333333

A=0.,22222222222/M

B=0.22222222222/N
X={FAC*(1s0=-B)=(1.0-A))/DSORT(A+B*xFAC*%2)
T=1.0/(1.0+0.2316419%DABS(X))
IX=043989422804%DEXP (=045%X%X)

FAC=((((1.330274429%T-1.821255978)%T+1.781477937)%T-0.356563782)3%

140.319381530) *7T
FAC=FAC:*ZX

IF (X.LT.0) Q=1.0-FAC
IF (X.GE.O0) Q=FAC
RETURN

END
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840
850
860
870
880
890
900
910
920
930
940
950~
10
20
30
40

60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220-



CONTROL CARDS FOR SAMPLE RUN NUMBER 1

LOST SPRINGS AREA,

05
QUINTIC
ROOT

EXPONENTIAL
LOGARITHMIC
RECIPROCAL
CONTROL CARDS FOR SAMPLE RUN NUMBER 2

LOST SPRINGS AREA, KANSAS

1.0
QUADRATIC

BLANK CARD
BLANK CARD
BLANK CARD
BLANK CARD

DATA FOR SAMPLE RUNS

-1010.
'9950
-980.
-945,
‘9300
=905,
‘8900
-840,
-780.
=998,
-980.
-960.
"’9700
=-900.
-880.,
-835.
"790.
-1010.
-995,
-985 3
-9650
-1000.
-880.
-840.
-830.
-790.
-1020.
-995,
-980.
-965.
=940,
-880.
“8650
_820.
-780.

OO NOCVNEWNEOOENOVPUN OO NP WONROINOWTNPWN-

PRPLLPLPDLAPUVLLULUWWWWWUNNNNNNNNN e e e e b

KANSAS

81 39

81 6

1

-10450
-1020 .
’9950
—910.
-9100
-865.
"820.
-770.
-10400
-1035.
-1020.
-990.
-9400
-880.
~-860.
"810 .
-780.
-1030.
-1015.
-9G90.
=-960.
"8900
-900.
-860.
-830.
-780.
~1060.
—1040.
-1000.
"9500
-930.
-9000
"870Q
-820.
~780.
-1070.
-1050.
-1000.
-940.
-930.
-910.
-865.
’8200
=790.
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ROW

WONTUVPWN -

OBSERVED

-1.010000
=9.950000
-9.800000
-9.450000D
~9.30000D
-9,05000D
~8.90000D
-8.40000D
-7.80000D
-1.01000D
~9.980000D
-9.80000D
-9.,60000D
-9.70000D
-9.00000D
-8.80000D
-8.35000D
=7.90000D
-1.01000D0
-9.,95000D
-9.85000D
-9.650000
-1.00000D
-8.80000D
-8440000D
~8.300000
=7.90000D
-1.02000D
-9.95000D
-9.800000
=9.650000D
=9.40000D
~-8.80000D
-8.65000D
~8,20000D0
~7.800000
-1.04500D
-1.02000D
=9.95000D
-9.70000D
-9.100000
-9.100000
-8.650000
-8.20000D
=7.700000
=1.04000D
=1.035000
-1.02000D
-9.90000D
-9.40000D
-8.800000
-8.,60000D
~-8.,10000D
-7.800000
~-1.030000
~1.015000D
-9.90000D
-9.60000D
=-R.90000D
=9.00000D
-8.60000D
~-8.300000
~7.80000D
~1.06000D
=1.040000
=1.000000
-9.50000D
-9.300000
-9.00000D
~8.70000D
-8.,20000D
=7.800000
~1.07000D
-1.050000
-1,00000D
=9.40000D0
=9.30000D
-9.10000D
-8.65000D
-8.20000D
=7.90000D

03
02
02
02
02
02
02
02
02
03
02
02
02
02
02
02
02
02
03
02
02
02
03
02
02
02
02
03
02
02
02
02
02
02
02
02
03
03
02
02
02

02
02
02
03
03
03
02
02

02
02

03
03
02
02
02
02
02
02
02
03
03
03
02
02
02
02
02
02
03
03
03
02
02
02
02
02
02

37

COMPUTED

-1.001740D
=-9,94160D
-9.81524D
-9.63833D
-9.41088D
-9,13289D
-8,80436D
-8.42528D
~7.99565D
-1.014050
-9,981370
-9,80628D
-9.59481D
~9.34055D
~-9,04065D
-8.693590
-8.29846D
~-T7.85468D
-1.02349D
-1,00271D
~9.82349D
~-9.59179D
~9,32184D
-9,00913D
-8.651230
-8.,24672D
=7.79466D
-1.03145D
-1,007210D
~9.84830D
-9,.,602260D
-9,.,32118D
-8499937D
-8.63379D
-8,222620
~7.76469D
-1.,038460
-1.01154D
-9,87594D
-9,61877D
-9,32906D
-9,00020D
-8.62865D
-8.21231D
~-7.74982D
-1.04481D
-1.01569D
~9.904620D
~9,63836D
-9,34160D
-9,00697D
-84.63055D
-8420999D
~T7.74378D
~1.05064D
~-1.,01967D
~9.93357D
=9,65962D
~9.35AR9D
-9.01740D
-8.63686D
~8.21273D
~7«74337D
-1.05606D
~1.02349D
~9,96241D
~9.68180D
=-9.373910
-9,030190D
-8.64608D
~8.,21887D
=T7.74678D
-1.,06116D
~1.02718D
=-9,99095D
~9,70447D
=9.39202D
-9,04458D
=-8465732D
~8.,227380
=7.75289D

03
02
02

02
02
02
02
02
03
02
02
02
02
02
02
02
02
03
03
02
02
02
02
02
02
02
03
03
02
02
02
02
02
02
02
03
03
02
02
02
02
02
02
02
03
03
02
02
02
02
02
02
02
03
03
02
02
02
02
02
02
02
03
03
02
02
02
02
02
02
02
03
03
02
02
02
02
02
02
02

RESIDUAL

-8.258780 00
~8.40380D-01
1.52362D0 00
1.88332D 01
1.10884D 01
8.28921D 00
-9.56439D 00
24527610 00
1.95652D 01
4,04749D 00
1.36607D-01
6.28291D-01
=5.19073D-01
=3.59453D 01
4.06461D 00
-1.06414D 01
~5.15396D 00
~4.53172D 00
1.34904D 01
7.70722D 00
=2.65122D 00
~5.82077D0 00
-6.78155D 01
2.09128D 01
2.51232D 01
-5.32798D 00
=1.05337D 01
1.14512D0 01
1.22110D0 01
4.83038D 00
~4477394D 00
-7.88160D 00
1.99374D 01
-1.62092D 00
2.26189D 00
~3.53122D 00
=6.53526D 00
~8.45684D 00
~7.40601D 00
-8.12323D 00
2.29059D 01
-9,.,98040D 00
~2.13507D 00
1.23118D 00
4.98243D 00
4.80549D 00
-1.93070D 01
=2.95377D 01
=2.61643D 01
~5.84045D 00
2.069700 01
3.05509D 00
1.09993D 01
=5.62177D 00
2.06364D 01
44671570 00
3435725D 00
5.96193D 00
4.5A894D 01
1.73961D 00
3.68575D 00
-8.72692D 00
=5.66272D 00
=3.936300 00
=1.65057D 01
-3.75868D 00
1.81800D0 01
7439094D 00
3.01908D 00
-5.39162D 00
1.88659D 00
=5.32187D 00
-8.83888D 00
~2.282370 01
-9.045380-01
3.04467D 01
9.20202D 00
=5.54213D 00
7.324000~-01
2.73795D 00
~1.471100 01



OUTPUT FROM SAMPLE RUN NO. 2
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ROW

CONOUM PN -

OBSERVED

~1.01000D
=9.95000D
~9.80000D
~-9.45000D
-9.30000D
-9.05000D
~8.90000D
-8.40000D
-7.80000D
-1.010000D
-9.98000D
~9.800000D
-9.60000D
=9.,700000
-9.,00000D
~8.,800000
-8.35000D
~7.900000
~1.01000D
=9.950000
~9.850000
-9.65000D
=1.000000
-8.80000D
-8.40000D
~8.30000D
~7.90000D
-1.020000D
-9.95000D
-9.80000D
=9.65000D
=9.400000D
-8.80000D
-8.,650000
~8.20000D
=7.800000
~=1.045000
-1.02000D
=9.95000D
-9.70000D
=9.10000D
=-9.100000D
-8.65000D
-8.200000
=7.700000
-1.040000D
=1.03500D
-1.02000D
=-9.90000D
~9.40000D
-8.80000D
-8.,600000D
~-8.10000D
~7.800000
~-1.030000
-1.015000
=9.90000D
=9.600000D
-8.90000D
-9.00000D
-8.60000D0
-8.,30000D
=7.800000
-1.060000
-1.040000
=1.000000
=9.500000D
-9.30000D
=9.000000D
-8.70000D
-8.,200000
-7.80000D
-1.070000
-1.05000D
-1.000000D
-9.40000D
-9.30000D
-9.10000D
-8.65000D0
~8.20000D
~7.900000D

03
02
02
02
02
02
02
02
02
03
02

02
02
02
02
02
02
03
02
02
02
03
02
02
02
02
03
02
02
02
02
02
02
02
02
03
03
02
02
02
02
02
02
02
03
03
03
02
02
02
02
02
02
03
03
02
02
02
02
02
02
02

03
03
02
02
02

02
02
03
03
03
02
02
02
02

02

39

COMPUTED

-1.01527D
~9.99397D
-9.80318D
-9.58038D
~9.32555D
-9.03870D
-8.71983D
-8.36895D
~7.98604D
-1.01880D
-1.00181D
-9.81625D
-9.58233D
-9.31640D
-9,01845D
~8.,68848D
-8.32648D
~7.93247D
-1.02286D
~-1.,00476D
-9.83463D
-9,58961D
-9.31257D
-9,00351D
-8.66243D
-8.28933D
-7.88422D
-1.02745D
-1.00824D
-9.85832D
-9.60220D
-9.31406D
-8.99389D
-8.64171D
~8.25750D
-7.84128D
-1.032570D
-1.012250
~-9.88734D
-9.62011D
-9.320860
-8.98959D
-8.626300
-8.23099D
~7.80366D
-1.03823D
-1.01680D
~9.92167D
-9,64334D
-9.33298D
~8.990610D
-8.61621D
-8.209800D
-7.77136D
-1.044410
-1.02187D
-9.96132D
-9.67188D
-9.35042D
-8.99694D
~8.61144D
-8.193920
~7.74438D
-1.05113D
~1.02748D
~1.00063D
~9,70574D
~9.37318D
-9.00859D
~8.61199D
-8.18336D
-7.72271D
-1.05838D
-1.033620
-1.00566D
~9.744920
~9.40125D
-9.02556D
~8.61785D
-8.17812D
-7.70636D

RESIDUAL

5.27354D 00
44396900 00
3.182490-01
1.30376D 01
2.554880 00
=1.12983D 00
~1.80166D 01
-3.10532D 00
1.86039D 01
8.800940 00
3.81375D 00
1.62455D 00
~1.76668D 00
=3.835990 01
1.84480D 00
-1.11525D 01
~2.35180D0 00
3.24687D 00
1.28601D 01
9.76235D 00
-1.53741D 00
-6.03920D 00
~-6.87430D0 01
2.03512D 01
24624330 01
-1.06654D 00
-1.57842D 00
7.45100D0 00
1.32427D 01
5.83238D 00
~4477996D 00
-8.59432D 00
1.93893D 01
~-8.29105D-01
5.75047D 00
4.12803D 00
~-1.24264D 01
=7.74521D 00
-6.266090 00
~7.98899D 00
2.20861D 01
-1.10408D 01
=2+36979D 00
3.09923D 00
1.036620 01
-1.77197D 00
~1.82014D 01
~2.78328D 01
=2.56663D 01
=6.70173D 00
1.50608D 01
1.62127D 00
1.09797D 01
-2.86382D 00
1.44142D 01
6.87420D 00
6.13222D 00
7.188210 00
44504220 01
-3.05863D-01
1.14407D 00
-1.06080D 01
=5.56213D 00
-8.86795D 00
-1.25185D 01
6.28990D-01
2.05744D 01
T7.31785D 00
8.592420-01
-8.80138D 00
-1.66402D 00
=7.72869D 00
-1.16183D 01
=1.63794D 01
5.65751D 00
3.44924D 01
1.01253D 01
=7.44391D 00
-3.21508D 00
-2.18828D 00
~1.93635D 01



KANSAS GEOLOGICAL SURVEY COMPUTER PROGRAM
THE UNIVERSITY OF KANSAS, LAWRENCE

PROGRAM ABSTRACT

Title (If subroutine state in title):

Trend analysis using stepwise regression and polynomial and/or nonpolynomial models

Date:  August 7, 1968

Author, organization:  Robert Terrazas, U.S. Geological Survey

Direct inquiries to: _Author or A.T. Miesch, U.S. Geological Survey

Name: Address: Federal Center

Denver, Colorado 80225

Purpose /description: To search and examine map data by fitting least=square surfaces.

Mathematical method: Stepwise regression.

Restrictions, range: Number of data points cannot exceed 500 unless dimension statement for Y is adjusted.

See comments in program,

Computer manufacturer: IBM Model: 360/65

Programming language: FORTRAN IV
220 K

For CN=81 and CM=39, Go Time = 15 sec.

Memory required: Approximate running time:

Special peripheral equipment required: None

Remarks (special compilers or operating systems, required word lengths, number of successful runs, other ma-
chine versions, additional information useful for operation or modification of program)

Basic technique after Efroymson (1960). This program is a modification of previous programs by D.S.

Handwerker and G.l. Selner, U.S. Geological Survey.
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Computer Contribution

COMPUTER CONTRIBUTIONS

Kansas Geological Survey

University of Kansas
Lawrence,

Kansas

Mathematical simulation of marine sedimentation with IBM 7090/7094 computers, by J.W,

Harbaugh,

1966

A generalized two-dimensional regressmn procedure, by I R Dempsey, 1966 .

FORTRAN IV and MAP program for computation and plotting of trend surfaces for degrees 1

through 6, by Mont O'Leary, R.H. Lippert, and O.T. Splfz, 1966

FORTRAN 11 program for multivariate discriminant analysis using an IBM 1620 c compufer, by
J.C. Davis and R.J. Sompson, 1966

FORTRAN 1V program using double Fourier series for surface ﬁf’rmg of lrregularly spoced
data, by W.R, James, 1966 .
FORTRAN 1V program for estimation of ClCIClISl‘IC relahonshlps usnng the IBM 7040 by R L

Bartcher, 1966 .

Computer oppllcohons in the earth sciences:
edited by D.F. Merriam, 1966
Prediction of the performance of a solution gas drive reservoir by Muskat's Equcmon, by

Apolonio Baca, 1967
FORTRAN 1V program for morhemohcol srmulahon of mcrme sedlmenfcmon with IBM 7040
1967 .

or 7094 computers, by J.W. Harbaugh and W.J. Wahlstedt,
Three-dimensional response surface program in Fortran |l for the IBM 1620 compufer, by
R.J. Sampson and J.C. Davis, 1967
FORTRAN 1V program for vector trend analyses of directional dcfc, by W. T Fox, 1967
Compufer applications in the earth sciences:

Merriam and N.C, Cocke, 1967 .

FORTRAN |V computer programs for Markov cham experlmenfs in geology, by W C

Krumbein, 1967

FORTRAN 1V programs to determine surfoce roughness in fopogrcphy for fhe CDC 3400

computer, by R.D. Hobson, 1967 .

FORTRAN Il program for progressive lmeor fit of surfaces on a qucdrohc base usmg an IBM
1620 computer, by A,J. Cole, C, Jordan, and D.F, Merriam, 1967
FORTRAN 1V program for the GE 625 to compute the power spectrum of geologlcal surfoces,
by J.E. Esler and F.W. Preston, 1967 .
FORTRAN 1V program for Q-mode cluster ono|y5|s of nonquanflfohve do’ro usmg IBM

Colloquium on classification procedures,

Colloquuum on trend analysis, edited by DJE.

7090/7094 compufers, by G.F. Bonham—Corfer, 1967
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