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Editor’s Remarks

We are very pleased and proud to announce that the American Association of Petroleum Geologists is
now helping to support our effort in computer applications in the earth sciences. We look forward to long and
continued cooperation between our two organizations. Partial sponsorship of publication of the COMPUTER
CONTRIBUTIONS by the largest geological organization in the world indicates the growing importance of
computer applications in petroleum exploration and exploitation.

More than 50,000 computers are presently in use and organizations in the mineral sciences are major
consumers of these services. Earth scientists have been using programs adapted from other disciplines, espe-
cially in areas of correlation, classification, and trend analysis. The Kansas Geological Survey, however,
has been publishing computer programs in a regularly numbered series for about three years. Joint sponsorship
of the series now insures better distribution and availability to earth scientists everywhere.

The high editorial standards of the series will be maintained, and active, associate, and junior members
of the Association who are on the editorial board are indicated. In publishing this series, we are working
closely with the Editor and Managing Editor of the Association to improve our effort. Through the years we
have found the series extremely useful and valuable to earth scientists and in particular to those engaged in
the petroleum industry .

With cooperation of the American Association of Petroleum Geologists, we now will be able to make
the series available to more individuals and organizations interested in this important field. For those interest=
ed in back issues of the COMPUTER CONTRIBUTIONS, an up-to=date list can be obtained by writing the
Editor, Computer Contributions, Kansas Geological Survey, The University of Kansas, Lawrence, Kansas 66044

It is most appropriate that the first publication in this joint effort be one by William C. Krumbein, a
pioneer in computer utilization. The program, "FORTRAN 1V Computer Program for Simulation of Transgression
and Regression with Continuous-time Markov Models" will be of interest to stratigraphers, sedimentologists,
and structural geologists to help unravel some of their problems in sedimentary basin analysis. As stated in
the text, this paper is "...concerned with a stochastic simulation model in which the pattern of lithologic
succession is examined in terms of the length of time that the system remains in a given state, once it has
entered that state. The model is also based on transgressive-regressive motion of a strandline, with the re-
sulting lithologic units developing as responses to the movement of sedimentary environments laterally and
through time."

For a limited time, the Kansas Geological Survey will make available a magnetic tape of the program

BOREHOLE as described in this publication for $15.00. An extra charge of $10.00 is made for a punched
deck of cards.

* Active Member, ° Associate Member, *Junior Member, American Association of Petroleum Geologists.



FORTRAN IV COMPUTER PROGRAM FOR SIMULATION OF

TRANSGRESSION AND REGRESSION WITH CONTINUOUS-TIME MARKOV MODELS-V

by

W. C. Krumbein

ABSTRACT

Continuous=time Markov models based on lateral movement of shallow marine and nonmarine environ=
ments during transgression and regression through continuous time can be adapted to a variety of lateral=shift
processes, such as progressive facies changes across a sedimentary basin, onlap-offlap relations among strati=
graphic rock bodies, etc. In this report a clastic-wedge model is used to generate equally spaced borehole
or outcrop sections that show the type of deposits formed as the environments shift back and forth.

The states of the transgressive-regressive system can be defined in terms of the position of the strandline
through time, with the accumulating sediments representing responses to particular environments as they suc=
cessively occupy a given monitoring station. Simulations are performed with a transition-rate matrix instead
of the conventional transition=probability matrix, although the latter can also be adapted to lateral =shift
processes. These two kinds of matrices can be transformed from one to another, and a computer program for
this purpose is listed in this report. The main simulation program is illustrated with an experimental example,
and the body of the text discusses some of the implications involved in structuring Markov models as continuous=

time, discrete-state mechanisms.
INTRODUCTION

Simulation models for stratigraphic analysis can
be structured in a variety of ways to produce sections
ranging from completely deterministic sequences to
completely random successions of beds. The states of
the system can be defined as the lithologic compo=
nents that make up the stratigraphic body, or they
can be defined in terms of the underlying geological
process that controls the types and successions of rock
types present. Simulation models also can be classi-
fied according to their emphasis on the vertical ar-
rangement of beds in a single section, or on lateral
relations among adjacent vertical sections, where
one or more marker beds are present. In addition to
these different ways of defining states and focussing
on vertical or lateral relations, simulation models
can be structured so that changes of state are con=
trolled by transition probabilities or transition rates.

This paper is concerned with a stochastic simu=
lation model in which the pattern of lithologic suc-
cession is examined in terms of the length of time
that the system remains in a given state, once it has
entered that state. The model is also based on trans-
gressive-regressive motion of a strandline, with the
resulting lithologic units developing as responses to
the movement of sedimentary environments laterally
and through time. A preliminary report on the model
used here was published as part of the Kansas Geo~

T/ This work was supported by the Geography Branch,
Office of Naval Research, under Contract Nonr=
1228(36), ONR Task No. 389-150. Reproduction

in whole or in part is permitted for any purpose of
the United States Government.

logical Survey's fourth Computer Colloquium (in
Merriam and Cocke, 1968, p. 11-21). Some excerpts
from the preliminary report are included later for
completeness, in part with respect to the development
of a stochastic simulation model from a deterministic
counterpart.

There is a fairly close relationship between
transition probabilities and transition rates, and some
implications involved in selecting one or the other
for simulation studies are developed. Two computer
programs are listed in the Appendix, one for transform=
ing transition probabilities into transition rates, and
the other for simulating a transgressive-regressive
process.

Computer programs listed in the Appendix are
illustrated with a conceptual transgressive-regressive
clastic-wedge model, in which transition rates are
arbitrarily (though in part realistically) selected to
develop sedimentary cycles of varying lateral extent,
and with varying duration in time. This example is
in the category of "geological experimentation" as
advocated by Harbaugh (1966; see also Harbaugh and
Merriam, 1968, Chapter 8). In these studies the ex-
perimental parameters may be varied to give insight
into geological processes that are only partly under-
stood, or into processes for which critical quantita=
tive data may not yet be available.

The topic of using actual stratigraphic data for
setting up transition-rate matrices, both for the late-
ral=shift model and for simulation of single stratigraphic
sections, is developed later. Other topics, such as
ways to define states, the use of transition probabili=
ties instead of rates in lateral=shift models, and the
application of rate matrices to simulation of single
stratigraphic sections, also are discussed in the last



part of this paper,
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RELATIONS BETWEEN TRANSITION PROBABILITIES
AND TRANSITION RATES

In a conventional first=order, discrete-state,
discrete=time Markov chain, transitions occur at
fixed discrete=time intervals At = (’rr - fr_]). Thus

a transition occurs at every tick of a conceptual
"Markovian clock." The transition may be from a
given state to itself, or from one state to another,
The probability that the system will be in state | at
time fr, given that it was in state i at time fr"l’ is

expressed as the transition probability Py The di-
agonal probabilities, Pt/ control the within=state
transitions, and the off-diagonal probabilities P;:

(where | # i), control the between=state probabili=-
ties.

The transition probabilities of the discrete=
time model are not explicit functions of continuous
time inasmuch as they are based on observations of
state at discrete clock ticks. In a continuous—time
Markov model, on the other hand, these probabili-
ties may be expressed as pii(f), which is the probabi-

lity that the system will be in state | af time t, given
that it was in state i at time zero. Coleman (1964,
p. 129) points out that pi.(f) sums up all the paths

by which the system may have come to state | from
state i, including all the times between zero and t
at which jumps were made. Thus, inferest in a
continuous=time model shifts from the probability

of a state change, Pii (where j #1), to the rate of
transfer, i from state i to state j. It has been
shown (Doob, 1953, p. 239) that the qii's are the

derivatives of the p..(t)'s with respect to t as t
p'l P

approaches zero.
The transition rate matrix, with elements q;:

(where | #1), can be set up directly if rates of sedi-
mentation are known. However, it is commonly more
convenient in practice (for initial investigations at
least) to transform the discrete=time [p;: 1 matrix to

its corresponding continuous=time [qi. 1 matrix. This

may be done in several ways, and | am indebted to
Dr. John Hartigan of the Statistics Department at
Princeton University for the following transformation
equations,

The probability Pis that a system with k states

is still in state i at time t is:

k
~L q.. At
i (M
Pii = ¢
where

k
I q.. is the rate of leaving state i for some
i# "' other state j.

The probabilities Pii (where i # i) that the
system is not still in state i at time t are:

k
At

q.. L. 9
P = e [1-e 2)
ta i A

We note from equation (2) that the expression in

parentheses on the right is (1 - p“) by substitution

from equation (1), and this quantity is identically
k

i;fi pii' inasmuch as Pyt I Pii = 1. By substitu=

ting this last relation in equation (2), we have:

. k
N
T R L Py

£ @)
i# |

P 4)

r
i?f' k
The quantity I %
i#1i
diagonal elements in the [qi. 1 matrix. We shall

is the sum of the off-

simplify the notation by calling this M., the rate at
which the system leaves a given state * i for some



k
other state j. Similarly, the quantity I Py

i#i
sum of the off-diagonal elements in the [pi. 1 ma=

is the

trix. We may call this quantity P, = (a- pii)' the

probability that the system leaves state i for another
state j. With these notational changes, equations
(1), (3), and (4) become simply:

“M. At
Pi; = ¢© l (Ta)
- ;4 3
pii = M":_ pi P (3a)
9 = E.'_L M i £
i 5 : i#i. (4a)
[

In transforming a [pii 1 matrix to its equiva-
lent [qi. 1 matrix, the first step is to solve equation

(1a) for Mi:
~log_p..
- e’ii_ .
M = —ar— ©)
Application of these equations for transforming
a [pi. 1 matrix to its equivalent [qi. 1 matrix is illu=

strated by the following example, where the states

A, B, C, and D are sandstone, shale, siltstone, and
lignite, respectively, in a vertical stratigraphic sec=
tion. Table 1, top, is the 4 x 4 transition probabili=
ty matrix based on observations of the state of the
system at vertical intervals of five feet. The first step
is fo compute N\i (i=1, 2,3, 4) for each row. The

problem here is to choose At. In the observations,
vertical distance s was used instead of time t, so that
in the transition=rate model the deposition is con=
tinuous, with state changes occurring at random thick =
ness intervals rather than at random time intervals.

It would be desirable to have information on
the relation between time and thickness in these mo-
dels. How much time is required for deposition of
five feet of sediment? The answer may be different
for different lithologic components and for different
sedimentary environments. Moreover, if compaction
effects are included, perhaps the observations of
state need to be spaced at different intervals for each
lithologic component in the system, in order to equa=
lize the time increments. As a practical compromise,
with an arbitrary assumption that five feet of sedi-
ment require a fixed but unspecified unit of time, the
At in equation (5) can be considered as 1.0, Thus,
the implication in the corresponding rate matrix is
that for each As = At = 1,0, five feet of sediment
will accumulate. Although such a compromise may
be "reasonable" at present, it indicates that con=
siderably more thought needs to be given to ways of
structuring stratigraphic observations in order to

apply transition=rate matrices rigorously. Similar
problems arise in developing matrices for lateral
strandline movement, as will be seen.

During the remainder of this paper the word
"time" will be used in discussing the transition-rate
matrix with the understanding that the word "thick -
ness" may be substituted for stratigraphic purposes
where appropriate. Where the distinction is neces-
sary, it will be brought out in the context.

For state A in Table 1, M, = ('IogeO.62)/1 .0

= 0.478; for state B, M2 = 0.462; for state C, M3 =
1.109; and for state D, M4 =1.967. These are the

total "rates" for leaving the designated states. They
have dimensions (1/T), and may be interpreted as
the reciprocal of the time (thickness of deposition)
required to leave the state. Thus, the expectation
of the system remaining in state A, after entering it,
is 1/0.478 = 2,09 time units, equivalent in this
example to 2,09 x 5 = 10,45 feet,

Once the Mi 's are computed, the off=diagonal

elements for each row are obtained by equation (4a).
From the first row of Table 1, top, we have Ay =

(0.14/0.38)(0.478) = 0.176; q13 also is 0.176; and
914 = (0.10/0.38)(0.478) = 0.126. Similar compu=
tations for the other three rows yield the [qi. 1 ma-

trix of Table 1, bottom. The diagonals have been
left blank, with the total rates of transfer, Mi's,
entered in the row margins.

The elements qii/ X <:|ii in equation (2) can
i7Z1

be interpreted as conditional probabilities that a

transition occurs out of state i to state | (Karlin,

1966, p. 228). The probabilistic element is thus

preserved in the [qii 1 matrix, in that the probabili=

ties of moving from state A to state B, C, or D are
proportional to their relative probabilities in the
untransformed [pi. 1 matrix. Moreover, the proba-

bility that state A reverts directly to itself is zero
in the [qi. 1 matrix, and it can only be re-entered

by way of states B, C, or D.
The transformation of the Pii's (where j #1)

to their corresponding q:'s has in effect eliminated

the diagonal elements, inasmuch as interest has been
shifted from transitions within a given state (i.e.,

to itself), to the time required for the system to
leave the given state. Inasmuch as the probability
for a given state to revert directly to itself is zero
in the [qi. 1 matrix, a zero can be entered in each

diagonal element of Table 1, bottom. This is appro=
priate for the present model, although for some types
of Markov models with continuous time the negative
of M, is entered (Karlin, 1966, p. 225). For pre-



sent purposes zeros are placed in the main diagonal
when the transition matrix is prepared as computer
input,

Transformation of the [qi. 1 matrix to its corres=

ponding [pi. 1 matrix can also be accomplished with

equations (la) to (4a). The first step is to compute
Pi; for each row of the matrix in equation (la). For

’rhe top row in the [q 1 matrix of Table 1 (where
At =1.0), this is P = O 478 =0.619, or 0.62

rounded off. The sum of the off-diagonal probabili=
ties in the top row is (1.00 - p”) =0.,38. From

equation (3a), where (1 = p”) =p., the individual
Pii‘s (i #i) are respectively the rate ratios (0.176/

0.478),
plied by P; = 0.38. This yields the values P1p =

0.14, P13 = 0.14, and P14 = 0.10, in agreement
with the original [pii 1 matrix at the top of Table 1.

Computations shown in the preceding example
are used in computer program PEQUMAT, listed in
the Appendix. Details for using the program and for
choosing At also are included there.

Table 1. = Transformation of [pii 1to [qii 1.

Transition Probability Matrix,
with as = 5.0 feet

) A B c D 1 j;zéipij
A 0.62 0.14 0.14 0.70 0.38
B 0.06 0.63 0.20 0.11 0.37
C 0.19 0.31 0.33 0.17 0.67
D 0.21 0.48 0.17 0.14 0.86
Transition Rate Matrix from above,
with at = 1.0
A B C D M,
A [ 176 176 .126 ] .478
B .075 .250 .137 .462
C .315 512 .282 1.109
D .480 1.098 .389 1.967

A-Sandstone, B-Shale, C-Siltstone, D-Lignite

(0.176/0.478), (0.126/0.478), each multi-

The distribution of time intervals during which
the system is in any given state i is the exponential
distribution with parameter Mi (Karlin, 1966, p. 228).

Thus, a typical realization starting in any state i
involves taking an observation from the exponential
distribution which determines the "waiting time" in
state i (that is, the time required to leave state i
after having once entered it). At the end of that
time the system shifts to state j, with probablllfy
/M where | #i. A second observation is then

drcwn from the exponential distribution having as
parameter the tofal rate applicable to the new state.
This in turn determines the random length of time
that the system is in the second state, and so on
through a succession of realizations,

In computer simulation it is convenient to use
uniform (i.e., rectangularly distributed) random
numbers, and to convert them to their exponential
equivalents. This is done by choosing a random num-
ber U in the range 0.0000 to 1,000, and setting it
equal to the integral from 0 to fe of the exponential

frequency distribution with parame’rer M, for the
state involved, and solving forf :

t )
§° M. e "Mt gt =U. ©)
0 1

Here f_ is the time required (the waiting time) for

the system to leave state i for some state j, and the
number U is a random area under the frequency curve,
the total area of which is 1.000. This expression

can be simplified to the following, where t is found

simply by taking the natural log of the reciprocal of
the random number, and dividing it by the rate M.:

log_(1/V)
c T M )

An example from the bottom matrix of Table 1
illustrates the procedure. Suppose the system starts
in state A, Draw a random number U. Say it is

0.6623. Loge(l/0.6623) =0.4121. This is divided

by the marginal rate for state A, 0.478, to give
0.862 time units, or 5 x 0,862 = 4,31 feet of sand=
stone. The state to which the system shifts next is
controlled by the conditional probability 9, /M

(where j # 1), which for a shift to state B is (O 176/
0.478) = 0,368, to state C is the same, and to state
D is (0. ]26/0.478) =0.264. A uniform random
number in the range 0.001 to 1.000 is now selected.
If it is in the range 0.001 to 0.368, the system shifts
to state B; if it is in the range 0.369 to 0,736, the
shift is to C; and if in the range 0.737 to 1.000 the



shift is to D. Thus the simulation procedure requires
drawing two random numbers for each realization, the
first to determine the random time interval during
which a given state is occupied, and the second to
determine which state succeeds the one just vacated.

Simulation program BOREHOLE in the Appen-
dix uses this procedure, as described later. The ma-
terial is included here to complete the mathematical
portion of this paper.

EXPERIMENTAL LATERAL-SHIFT MODEL

We start with a completely deterministic mo=
del, and introduce stochastic elements into it. Some
portions of the preliminary report (Krumbein, 1968)
are included here with modifications that make the
mode| somewhat more realistic. The model involves
lateral migration of three environments that produce
a band of littoral sand in the shore environment, with
marine mud (shale) on its seaward side, and undiffer=
entiated nonmarine deposits (lagoonal silts, lignitic
shales, alluvial sands, etc.) on its landward side.
Observation stations are placed at convenient lateral
positions to monitor the forward and backward motion
of the three environments.

In this model the width of the shore sand belt
is assumed to remain fixed during the cycles. This is
not extreme for a clastic wedge, inasmuch as differ=-
ences in thickness between transgressive and regres=
sive sands express themselves in the angle at which
the strandline sand cuts the time lines. This angle is
controlled by the rate of shoreline movement; small
angles are associated with high transition rates and
thin sand.

Figure 1, top, modified from the preliminary
report (Krumbein, 1968) shows one way in which the
states may be defined for a simple model in which
the rate of shoreline movement is constant. The land-
ward and seaward limits of the band of littoral sand
are shown as successive segments at equally spaced
time intervals, so placed that the position of the sand
is unambiguously stated with respect to the three
monitoring stations. These positions are boundaries
between zones labeled A, B, C, and D from left to

right. The state of the transaressive-regressive sys=
tem is now defined as the position of the littoralsand
withi h Thus, the first state
(at the bottom of the diagram) is designated as AA
because both sand limits lie in zone A. The second
state is designated as AB because the sand limits
straddle monitoring position | and hence the sand lies
in both zones A and B. This procedure is followed
through the cycle, with the regression states indicat=
ed as CD', CC', etc. This means that once state
AA' is reached, the system moves to state AA for the
next cycle,

For each state in the system there is a definite
lithology associated with each monitoring position.
In state AA all three stations receive nonmarine de=
posits. In state AB position | receives littoral sand,

and nonmarine beds continue at stations Il and 1I1.
In state BB marine shale occurs at position |, but the
littoral sand has not yet reached position I, so that
this station and station 111 still receive nonmarine
deposits. Thus, in a simulation experiment three
stratigraphic sections or boreholes can be generated
as the cycle proceeds, and each station receives an
unambiguous deposit for each state of the system.

The manner in which the states of the system
are related to the monitoring stations can be ex-
pressed in various ways, In Figure 1, two inter-
mediate states (BB and CC) represent conditions dur=
ing which the strandline sand lies between monitoring
stations. An alternative to this is also shown in’
Figure 1, bottom, in which the shoreline sand is al-
ways present at one of the monitoring stations, ex-
cept at the extremes of the cycles. The designation
of states, as shown at the left, is now reduced from
14 to 10, for the same number of stations as in Fig=
ure 1, top. In this arrangement the states are still
unambiguously defined with respect to the deposits
formed at each monitoring station. These alternative
ways of setting up the model control the size of the
transition matrix required to implement the model.

We may use Figure 1, top, as a basis for the
initial model. In its deterministic form the model
states that the rates of transgression and regression
are equal, but field and subsurface observation
suggests that in general transgression is much more
rapid than regression. Thus the rates of leaving
successive states in transgression can be chosen as
some multiple of the rates in regression, say 4 to 1.
The deterministic path of a cycle can be shown dia=
grammatically as in Figure 2, top. Here the arrows
representing transgression rates are all 4.0, and
the regression rates are all 1.0.

A stochastic element that permits reversals at
any stage of the cycle can now be introduced in
either or both of two ways. The first, illustrated in
the preliminary report, assumed that although the
total rate of moving from one state to the next is
4.0, the probability of a reversal to the preceding
state is 0.25, whereas the probability of continuing
in the deterministic path is 0.75. This distributes
the total rate of moving out of a state into two por=
tions, one of which is three times as large as the
other. This is shown in the center of Figure 2. It
is perhaps more realistic to indicate reversal by
crossing from forward progress of the cycle to its
counterpart in the backward movement of the strand =
line. This will automatically produce cycles having
variable lateral extent. In this scheme the forward
rate in fransgression is 3.0, and the arrow with rate
1.0 crosses the diagram to its corresponding regres=
sive state in the bottom diagram of Figure 2. Simi-
larly, during regression the reversal changes over to
its comparable state with rate 1/4, whereas the rate
for continuing regression is 3/4. This also implies
a probability of reversal of 0.25,

The diagrams in Figure 2 contain deterministic
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Figure 1.- Two versions of continuous—time, discrete-state deterministic lateral=shift models, showing suc-
cessive positions of strandline sand in relation to three monitoring stations. See text for discussion.

elements at the extremes of the cycles. Thus, in the

bottom diagram the path from state DD to DD!' is fix=

ed with a rate of 4.0 and the passage from DD to
CD! is also fixed with a transition rate of 1.0. In
similar manner, at the start of the cycle the path
from AA to AB is fixed at a rate of 4.0, and the last
stage of regression from AA' to AA is fixed with a
rate of 1.0. These are introduced to assure direct

reversal when the extremes of the cycles are reached.

There is, of course, much flexibility in the way the
paths may be structured.

The transition rate matrices for the two lower
diagrams in Figure 2 are given in Tables 2 and 3.
For the simple reversal to the preceding state in the
cycle, the individual q;:'s move diagonally down-

ward through the matrix on both sides of the main
diagonal, as in Table 2. In the reversal pattern that

switches from transgression to regression or vice versa,

the individual q..'s form a cross pattern through the
q'l P

transition rate matrix in Table 3.

One advantage of a change from state CD to
CD' rather than back to state CC, for example, is
that successive simulations vary in their lateral ex=
tent from one cycle to the next, as mentioned. An
even more interesting variant can be introduced by
weighting the rates so that the occurrence of maxi=
mum laferal extent of transgression is less probable
than cyclical movements of intermediate or short
lateral extent. Thus, in the classical Mesa Verde=
Mancos case there are relatively few sands that ex-
tend to the eastern end of the Book Cliffs; the bulk
of the transgressive -regressive phases is clustered

relatively closer to the Price area near the western
edge of the Book Cliffs.

IMPLEMENTING THE SIMULATION MODEL

Conceptual clastic-wedge models that yield
"reasonable" simulations of real-world cycles re=
quire a considerable amount of preliminary experi-
mentation. The transition rates may be chosen
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Figure 2. - Diagrammatic transgressive —regressive

models. Top, completely deterministic scheme

with transgression rates four times as great as
regression rate. Center, simple pattern of
state reversals superimposed on deterministic
model. This adds a stochastic component by
permitting reversals to the previous state with
probability 1/3 that of progressive movement
through the cycle. Bottom, alternative way
of superimposing stochastic elements. In this
diagram progression through the cycle permits
a switch from transgression to regression and
vice versa, thus generating subcycles of vary=
ing lateral extent within the major cycle.

artibrarily, or based on observed stratigraphic sec
tions. We shall use the [qii 1 matrix from Table 3

for the simulation experiment. As stated, the rela=
tive total rates in this matrix, and the conditional
probabilities, based on the off-diagonal qi.'s, have

been arbitrarily chosen to establish different rates
of transgression and regression, as well as different
probabilities for continued progress or reversal.

The exponential time distribution of equation
(6) may need to be truncated to avoid extreme dura=

tions of the system in any one state. If the range of
the random numbers that control t. in equation (7)

is from 0.0000 to 1.0000, the time in any given state
can range from zero to infinity. In practice the cost
of machine time suggests setting limits that constrain
the thicknesses of the transgressive and regressive
sands. This can be illustrated by the example in
Table 4. There the truncated limits to the random
numbers are 0.0100 and 0.9900. The reciprocals of
these are 100,0000 and 1.0101, and their natural
logs are 4.6052 and 0.0099, respectively. These
extremes are divided by the fastest and slowest rates
(4.00 and 1.00) to obtain the minimum and maximum
time intervals in any given state, which from Table
4 are 4.6052 and 0.0025 units. Hence, if one line
of output is assigned to the shortest interval, it will
require (4.6052/0.0025) = 184 lines (about three
pages of output), if the random number happens to
be 0.9900 for any state with rate 1.00.

The simulation program has a built=in proce =
dure for specifying the time interval to be associated
with each unit of sediment thickness (i.e., one line
of output), with the condition that every state must
be represented by at least one line of output. The
interval of time to be associated with one line of
output is controlled by the relation:

1 thickness unit = <, |°ge(]/umax) time units
max (8)
where UmCIx is the upper limit of the range of ran=

dom numbers (0.9900 in the previous example), and
M ox 1 the maximum marginal rate for any state

(4.00 here). The constant C] is a conversion factor

which can be specified on the control card.

Although the time interval required to deposit
unit thickness of a given type of sediment in a given
type of environment is in general not quantitatively
known, the relation in equation (8) can be used as
a convenient control for maximum thicknesses in ex=
perimental simulations. This control is the same for
each lithologic type, which implies the assumption
that the depositional site is subject to a uniform rate
of subsidence, with deposition controlled by some
prevailing base level. Under this assumption the
stratigraphic sections developed as output could be
thought of as "equal time sections." If these in turn
are "corrected" for relative compaction of the differ=
ent lithologies, the "time section" can be converted
to its corresponding "thickness section, ™

The manner in which the program allocates an
appropriate number of output lines for the time inter=
val associated with each state deserves comment here.
In the particular simulation example given in the
Appendix, the exponential time distribution was ar-
bitrarily truncated at values of 0.3000 and 0.8000.
By the method illustrated in Table 4, the limiting
time intervals in any given state are 0.0558 and



Succeeding State, j
AMA AB BB BC CC CD DD DD' CD'" cCC' BC' BB' AB' AA' MARGIN

M X 40 0O 0O O 0 0O 0 0 0 0 0 0 0 4.0
A 1.0 X 3.0 0 o 0 0 0 0 0 0 0 0 4.0

BB 0 1.0 X 30 0 0O O 0 0 0 0 0 0 0 4.0

BC 0 O 1.0 X 30 0 0 0 0 0 0 0 0 0 4.0

cc o 0 0 1.0 X 30 0O O 0O 0 0 0 0 0 4.0

. e o0 o0 o0 0 1.0 X 30 0 0 0 0 O 0 0 4.0
g%gig’ Db o 0 0 O 0 0 X 40 O 0 0 0O 0 0 4.0
i o 0o 0 O0O 0 0 O 0 X 1.0 0 0 O 0 0 1.0
c 0 0 0 O 0O 0 0 1/4 X 34 0 0 0 0 1.0

¢ 0 0 O 0 0 O 0 0 1/4 X 34 0 0 0 1.0

BC' 0O O O O O O O 0 0 1/4 X 34 0 0 1.0

BB 0 O O O O O 0 0 0 0 14 X 34 0 1.0

M' 0 0O O O 0 0 0 0 0 0 0 1/4 X 3/4 1.0

M' 1.0 0 0 O O 0 0 0 0 0 0 0 0 X 1.0

Table 2.~ Transition=rate matrix for transgressive-regressive model with reversals, 1.

Succeeding State, j

ABA AB BB BC CC CD DD DD'" CD' cCC' BC' BB' AB' AA' MARGIN
AA X 4.0 0 0 0 0 0 0 0 0 0 0 0 0 4.00
AB 0 X 3.0 0 0 0 0 0 0 0 0 0 1.0 O 4.00
BB 0 0 X 3.0 0 0 0 0 0 0 0 1.0 O 0 4.00
BC 0 0 0 X 3.0 O 0 0 0 0 1.0 O 0 0 4.00
cC 0 0 0 0 X 3.0 O 0 0 1.0 O 0 0 0 4.00
. CD 0 0 0 0 0 X 3.0 0 1.0 O 0 0 0 0 4.00
glgig’ om o 0 0 0 0 0 X 40 0O 0O 0O 0 0 0 4.00
i DD 0 0 0 0 0 0 0 X 1.0 O 0 0 0 0 1.00
co' o0 0 0 0 0 1/4 0 0 X 3/4 0 0 0 0 1.00
cc' o 0 0 0 1/4 0 0 0 0 X 3/4 0 0 0 1.00
BC' O 0 0 1/4 0 0 0 0 0 0 X 3/4 0 0 1.00
BB' 0 0 1/4 O 0 0 0 0 0 0 0 X 3/4 0 1.00
AB' 0 1/4 O 0 0 0 0 0 -0 0 0 0 X 3/4 1.00
AA' 1.0 O 0 0 0 0 0 0 0 0 0 0 0 X 1.00
Table 3.- Transition=rate matrix for transgressive-regressive model with reversals, II.
1.2030 (arbitrary) units. 1f one line of output is If it were decided to limit the thickest sand to ten
allocated to the shortest time interval, there are output lines, C; would be found by substituting
(1.2030/0.0558) = 21.56 output lines for the fong= (1.2030/10) = '0.1203 in the left of equation (8),
est interval. This is not particularly an extreme as representing the thickness accumulated during
ratio, and from equation (8) C, comes out as 1.00. one time unit. This is equated to C, times the



Extreme Random Waiting time for Waiting time for

Number, U Loge(l/U) lowest rate (1.00) highest rate (4.00)
0.0100 4.6052 4.6052 1.1513
0.9900 0.0099 0.0099 0.0025

Table 4.~ Maximum and minimum "waiting times"
for changes of state.

minimum time interval, 0.0558 units. This gives
0.1203 = 0.0558 C, which yields the value 2.16
for the constant.

When C, is greater than 1.0, there will be
transitions that occur at intervals smaller than the
time interval allotted to each line of output. The
program is so arranged that it assigns a minimum of
one line of printout for each state occupied, in order
to provide a complete output record of all state tran=
sitions,

The decision to choose C] at some value grea-

ter than 1,0 is normally based on the amount of print=
out anticipated from a given simulation. These vary
rather widely, depending in part on the interplay of
the forward and backward motions of the strand as
displayed in the bottom diagram of Figure 2. A com-
paratively short simulation from program BOREHOLE
is shown in Figure 3. This is the graphic output of
an experiment described in the Appendix in connec=
tion with Tables A=7 and A=8. The figure is intro-
duced here to provide a text example that shows
some features of such simulations. At the left are
the times on the program's internal continuous "clock
mechanism" that notes when a given state was enter=
ed, and the length of time (as represented by the
corresponding number of printout lines) that the sys=
tem remains in that state. The state symbols are also
listed; in this case the symbol # indicates regression
states, and the arrow at the leading edge of the belt
of strandline sand indicates the direction in which
the strand is moving. The dashed lines represent ma=
rine shale and the slashes are undifferentiated non=
marine deposits.

The simulation represented in Figure 3 isbased
on the model shown in the bottom diagram of Figure
2, using the [qii 1 matrix of Table 3, with C] =1.00.

The complete cycle, from AA through DD and back
to AA# required an interval of 10.16 time units, with
one line of output representing 0,06 time unit. The
simulation shows a short subcycle from AA to BB and
back, terminating at time 1.74. Then follows a lar-
ger subcycle which proceeds to state DD at time 3.35,
followed by regression with minor switches, such as
at time 4.41, when there is a momentary change to
transgressive motion, followed again by regression at
time 4.53. Although the strandline sand "piles up"
in some states, this means that duration in that state
is longer than for states with only one or a few lines
of printout. The distance between the three bore-
holes (edged by blank spaces) is considered to be

equal, but the actual spacing in the output is con-
trolled by the width of the printout sheet. It pro-
vides an interesting study to cut out the logs from

a simulation, repaste them at a greater distance from
each other, and draw "correlation lines" on the
strandline sand. This illustrates graphically the dif-
ference between a lateral =shift model and a series
of independent simulations of vertical stratigraphic
columns, such as are obtained from conventional
[pii 1 matrices based on transitions along a single

vertical section.

CONCLUDING REMARKS

The reader interested primarily in the program
and its operation may refer directly to the Appendix
at this point. This section of the text is designed to
bring up several points that are involved in design-
ing simulation models in a process=response framework,
the difficulties involved in structuring real-world
data for either lateral or vertical continuous=time
models, choices between transition probabilities or
transition rates, and developing relations between
thickness and time.

Process and Response in Simulation Models. =
If the states of a stratigraphic system are defined as
its lithologic components, the model is essentially
a response model. That is, the transition probabili=
ties are expressed in terms of the rock succession it-
self, rather than directly from considerations of the
inferred process that produced the stratigraphic se-
quence. The transition probability matrix indirectly
reflects the process by the relative magnitude of its
probabilities, which act as the "driving forces" on
the simulations. Each simulation of a stratigraphic
section from a transition probability matrix is an
independent event, however, in that successive
simulations may display widely different arrange-
ments of individual lithologies and thicknesses. This
is unlike a lateral succession of outcrops or bore=
holes in the real world, where marker beds occur
that permit direct stratigraphic correlation.

Despite these limitations, the transition prob-
ability matrix insimple response models is a useful
descriptor of the stratigraphic succession on which
it is based. This aspect of stratigraphic analysis de=
serves detailed study for comparisons among different
types of cyclic deposits, for estimation of the degree
of "variety" (statistical entropy) inherent in the sec-
tion, and as a basis for identifying the underlying
process elements,

One advantage of stratigraphic models that
define the system in terms of underlying processes is
that lateral continuity can be readily built into the
model. Thus, if the model is set up in terms of sedi-
mentary environments that temporally succeed each
other at a given geographic point as the system shifts
to and fro laterally, the types and thicknesses of
deposits formed become responses to a specified pro-
cess model. Where such models can be set up con=
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ceptually and implemented with realistic transition
probabilities or rates of state change, simulations can
be used more effectively to test the adequacy of the
process model for generating particular types of rock
successions,

Process models can be developed deterministi=
cally from differential equations, as in the evaporite
model of Briggs and Pollack (1967). On this sort of
model can be superimposed such stochastic elements
as may be required to introduce random fluctuations
in the ensuing responses. In fact, a complete spec-
trum can be discerned from purely deterministic simu-
lation models, to stochastic models with a determinis=
tic core, leading to completely stochastic models in
which complex feedback mechanisms within the sys-
tem itself (Oertel and Walton, 1967) give rise to
rhythmic patterns of sedimentation without direct con-
trol by any one external factor such as tectonic oscil~
lations, etc. This last avenue has considerable po-
tential for exploring complex geological systems.

The lateral=shift model| emphasized here uses
transition rates rather than transition probabilities,
to permit setting up the model in continuous time.
This provides a more realistic approach to the process
without a corresponding increase in mathematical
complexity.

Transition rates can also be used in convention—
al simulation studies of single stratigraphic sections,
in which the states are the lithologic components of
the stratigraphic unit. In this case the sediments
accumulate continuously through time, with the
several lithologies occurring as discrete states, As
in conventional Markov chain experiments, vertical
distance (thickness) may be used instead of time,
which gives rise to continuous accumulation through
the vertical dimension. It is possible to include
erosional episodes in such models if desired.

Use of observed data for strycturing rate ma=
trices. - Simulation experiments based on a concep-
tual model may lead to interesting and instructive
results. However, the adequacy of such experimen-
tal models for describing real-world transgressive =
regressive deposits must in the long run be tested with
actual stratigraphic data. Similarly, the relation of
the model to the mechanisms that produce cyclical
deposits in nature needs to be evaluated with real-
world data examined in the light of underlying theory.

The use of measured outcrop or borehole sec=
tions for setting up transition matrices for lateral-
shift models poses a number of problems. [nasmuch
as the characteristic marker beds in transgressive=
regressive sequences transect time lines at an angle,
the first problem is the identification of one or more
time lines within a stratigraphically correlated unit
arranged as a cross section normal to the strandline,
The stratigraphic section is then redrawn with the
time lines arranged horizontally. Conceptually,
this changes the thickness axis to a time axis.

In cyclical deposits a principle developed by
Sears, Hunt, and Hendricks (1941) can be used to
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identify time lines. The principle asserts in effect
that if the stratigraphic position of the deepest water
portion of a given cycle can be determined, this
stratigraphic position may be accepted as a time=
equivalent horizon in a succession of outcrops or
boreholes.

A second procedure that may lead to identi-
fication of time=equivalent horizons is the format
concept introduced by Forgotson (1957). In this
approach stratigraphic correlation is conducted by
carrying one or more characteristic mechanical log
pips (i.e., a marker defined unit) through a cross
section even in the presence of lateral facies chang=
es. In this way it is sometimes possible to infer which
beds are time=transgressive, and are thus useful as
marker beds for defining the states of a transgressive=
regressive system,

Broad regional studies (Weimer, 1960) show
that four Upper Cretaceous transgressive-regressive
cycles can be recognized over a large area from
New Mexico to Montana, with numerous smaller
cyclical episodes within the major cycles. The
time-transgressive nature of the sands is well shown
in Weimer's diagrams, but a practical difficulty
arises when more limited segments of the cross sec-
tions are assembled for detailed study. The angle
at which the time=transgressive marker beds cut the
time lines is so small that it cannot be detected in
practice, and the limited segments do not include
the whole lateral sequence of movement. Even for
the definitely cyclical events seen in the Mesa
Verde~Mancos (yUpper Cretaceous) sections along the
Book Cliffs in Utah, there are difficulties, within
any practical range of vertical exaggeration, to
develop a transition matrix with enough tally en-
tries to give a reasonable picture of the actual cy=
cles.

For major episodes of transgression and regres=
sion on a continental scale, it is even more difficult
to detect any but the major cyclical events in a seg-
ment of limited lateral extent. In this situation it
may also be questioned whether broad environments
follow each other systematically in a lateral sense
across the craton.

Another situation that deserves mention is the
extraordinarily widespread extent of thin cyclothem
members in parts of the North American Midconti=
nent Pennsylvanian., These suggest the almost in-
stantaneous occupation of large areas by a given
sedimentary environment, with relatively abrupt
changes to other equally widespread environments
through time. The structuring of such data into a
model that involves lateral movement of successive
environments obviously also presents numerous dif-
ficulties.

The decision to use a conceptual model with
"reasonable" transition rates in this paper was based
largely on a lack of sufficient data on time=trans-
gressive sands that could be clearly related to time
lines in relatively limited areas.



A second problem, mentioned earlier, concerns
relations between time and thickness in sedimentary
deposits. If observational data are structured into a
diagram with time as the vertical axis, and lateral
distance as the horizontal axis, it is not difficult to
compile a transition probability matrix. This can be
transformed to its corresponding transition rate matrix
providing an appropriate At is known for equation
(5). 1t will be recalled that in the example given
for conversion of the pii's to qii's, At was set to 1.0

undefined time unit that represents 5 feet of sediment
accumulation, The effects of compaction after sedi-
mentation are ignored here, however, with the re-

sult that the q;:'s are really transformations involving

an interval of As instead of At.

What these remarks sum to is that in some as-
pects of geological simulation, conventional ways of
structuring stratigraphic data lag behind the require=
ments of the models. Although this lends some sup=
port to the use of frankly experimental models, it
emphasizes the need for development of field and
subsurface procedures that furnish the kinds of obser=
vational data needed to test the newer kinds of mo=
dels being introduced into geology. There is also
need for structuring the conceptual models on under-
lying physical processes of sedimentation. One con=
tribution of experimental models, especially compre=
hensive ones like that of Harbaugh (1966) is that they
point out the need for critical information of types
that are rare or absent in the geological literature,
as well as the need for better understanding of the
theory of sedimentary processes. These considerations
also involve the interplay among purely deterministic
models, deterministic models with an overlay of
stochastic elements, and purely stochastic models
without a core of determinism. The model given in
the Appendix has such a core in that the system fol=
lows a prescribed path, with departures controlled
by the probabilistic elements in the model.

Transition probabilities vs, transition rates. -
Although the experimental transgressive-regressive
model used in this report is based directly on arbi—
trarily selected transition rates, lateral=shift models
also can be based on transition probabilities. If the
transition=rate matrix of Table 3 is converted to its
corresponding transition=probability matrix with At
= 1.0, the model becomes a discrete-time, discrete=
state model. Program BOREHOLE, developed for
transition rates, cannot be used directly for simula=
tions with the Up;: 1 matrix, but it is comparatively

easy to convert program MARCHAIN (Krumbein, 1967)
into a lateral=shift model by simply changing the in-
put matrix and the auxiliary control cards. It is to

be emphasized that in the continuous=time model the
thickness of the sediments is controlled by a random
time element, whereas in the discrete=time model

the thicknesses are controlled by the magnitude of

the diagonal elements in the [pii 1 matrix.
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This is brought out by Table 5, which lists the
[pii 1 matrix corresponding to Table 3, with At cho=

sen as 1.0. 1t will be noted that for all transgressive
states, where Mi =4.0, the pii elements are 0.018,

whereas for the regressive states they are all 0.368.
The off-diagonal nonzero probabilities are in the
same relative proportion as are the off-diagonal q;:'s

in Table 3. That is, if the total rate is high, the
diagonal probabilities are low, and vice versa. As
a result, simulations with the lateral =shift model tend
to have thin transgressive sandstones in comparison
with the regressive sandstones. In Table 3 the rela=
tive rates are 4 to 1, whereas in Table 5, the rela-
tive probabilities are 0.368 to 0.018, or about 20.4
to 1. Nevertheless, the relative probabilities for
continued progressive movement through the cycles
as opposed to a cross over to the corresponding
reverse path are still 3 to 1.

Just as the lateral=shift model can be imple=
mented with either kind of matrix, so the simulation
of single stratigraphic sections can be performed
with either kind of matrix. For example, the [qii ]

matrix of Table 1 represents a single stratigraphic

section, and program BOREHOLE can readily be

adapted to generate a single rock column instead of

a system based on lateral migration of a strandline.
This interplay between simulations based on

transition rates and transition probabilities is illus—

trated in Figures 4 and 5. Figure 4 is part of a

lateral =shift simulation obtained with a slightly modi=

fied version of program MARCHAIN. It uses the

I:pii 1 matrix of Table 5, which corresponds to the

[qi’ 1 mairix of Table 3, as mentioned. In this simu-

lation, the thickness in any given state is controlled
by the diagonal probabilities, and the changes of
state are controlled by the off-diagonal probabilities.
The form of input that was used in MARCHAIN for
Figure 4 is shown in Table A=10 of the Appendix.
Figure 4 may be compared with Figure 3, in-
asmuch as they have the same basic model activated
by the same driving force as represented by frans=
forming the matrix of Table 3 to its counterpart in
Table 5. It may be seen that the individual stages
of the cycle appear to "move faster" in Figure 4;
that is, one sees fewer thick accumulations of strand~
line sand in the boreholes generated by the discrete=
time model. [t seems likely that the two outputs can
be made equivalent inasmuch as the information con-
tent of both matrices is the same. Ultimately, how-
ever, when sedimentation rates are better known,
it may be that simulations based on rate matrices as
in Figure 3 will be regarded as tj i
whereas those based on fransition probabilities as in
Figure 4 may be expressed as the corresponding

Just as lateral shift models may be treated in
these two ways, so the generation of single strati=
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Figure 4.~ Part of a transgressive-regressive cycle using the transition probabilities of Table 5. This is a
discrete~time in contrast to Figure 3, which is a continuous-time simulation.
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Succeeding State, j

M\ AB BB BC CC CD DD

A 018 982 0 0 0 0

AB 0 .018 .736 0 0 0

BB 0 0 .018 .73 0 0

BC 0 0 0 .018 .736 0

cc o 0 0 0 .018 .73 0

. e 0 0 0 0 0 .08 .73
ggig DD o o0 0 0 ©0 o0 .08
i o 0 0 0 0 0 o0 0
e 0o 0 0 0 0 .15 0

€« o 0 0 0 .15 0 0

BC' 0 0 0 .15 0 0 0

BB 0 0 .18 0 0 0 0

M 0 .18 0 0 0 0 0

M’ 632 0 0 0 0 0 0

pp'  cb' cc' BC' BB' AB' AA! SUM
0 0 0 0 0 0 0 1.000
0 0 0 0 0 .26 O 1.000
0 0 0 0 .246 O 0 1.000
0 0 0 .246 O 0 0 1.000
0 0 .246 O 0 0 0 1.000
0 .246 0 0 0 0 0 1.000
.982 0 0 0 0 0 0 1.000
.368 .632 0 0 0 0 1.000
0 .368 .474 O 0 0 0 1.000
0 0 .368 .474 0 0 0 1.000
0 0 0 .368 .474 O 0 1.000
0 0 0 0 .368 .474 0 1.000
0 0 0 0 0 .368 .474  1.000
0 0 0 0 0 0 .368 1.000

Table 5. - Transition=probability matrix transformed from transition=rate matrix of Table 3.

graphic columns can be handled in continuous or
discrete time. Figure 5 shows simulations based on
the two matrices of Table 1, which represent a por=
tion of the Oficina Formation in Venezuela. | am
indebted to Wolfgang Scherer for use of his I:pii 1

matrix (Scherer, 1968), which was used with program
MARCHAIN to develop the vertical section in the
right-hand side of Figure 5. The left~hand column
was obtained by using program BOREHOLE. The in-
put matrices and state symbols used in these simula=
tions are given in Appendix Tables A=11, A-12, and
A-13.

No attempt was made to find "matching” se=
quences in the simulations; Figure 5 shows the start=
ing portions of the two simulations, with the time
scale and states along the left margin of the first
column, and the succession of transitions and states
along the left margin of the right=hand column. The
continuous—time simulation was started in state A,
and the discrete=time simulation began in state D,
where the state definitions are those at the bottom
of Table 1. As with Figures 3 and 4, Figure 5 is
introduced to show the variety introduced if one has
a choice of two ways for studying the same phenome =
non.

The program adaptations in BOREHOLE and
MARCHAIN were made during the final stages of
preparation of this manuscript, so that Figures 4 and
5 are inserted mainly for the ideas they may give
readers. | have not yet fully sorted the implications
of using continuous versus discrete time in stratigra=
phic simulation models, or the possible advantages
of one model over the other in specific cases. It is
possible, by adjustments in At and in the constant
C] mentioned earlier, that the two versions of the
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model could be brought into closer apparent agree =
ment. In my opinion such comparisons are more mean=
ingful if examined in their relation to real-world
data. For the present, the intention here is to em-
phasize that lateral =shift models can be treated on

the basis of transition probabilities as well as transi=
tion rates,

What emerges from these remarks is that simu-
lation studies based either on discrete time or con=
tinuous time, and involving either a lateral=shift
process or the generation of a single stratigraphic
column, can all be performed with two basic pro=
grams. It is my belief that continuous=time models
will be in the long run more meaningful in stratigra=
phic analysis than discrete~time models, though final
judgment can come only from comparison of these two
models with real =world situations. One advantage
of the continuous—time model appears to be the grea-
ter ease with which erosional episodes can be intro=
duced into the process model. This can be done by
having an additional random control on "clock re-
versals,” that is, random time intervals during which
the depositional clock runs backward and wipes out
part of the previously deposited sediments. This ran=
dom control could be made operative at the end of
each cycle, or anywhere within a cycle. In the first
instance, the net effect would be to insert disconfor=
mities between the basal sand of the new cycle and
the uneroded remnants of previous cycles.

It is apparent that many more questions can
be raised than can be presently answered in the do=
main of geological simulation. The remarks, opinions,
and speculations in this concluding part of the paper
suggest (1) how wide open the field of geological
simulation is for continued study and research, (2)
the need for analytical (as opposed to descriptive)
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Figure 5. Single-section stratigraphic simulations. Left column generated by program BOREHOLE with [
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simulation models that include the underlying physi=
cal theory of the process being simulated, and (3)
the need for developing new ways of examining and
recording natural data for testing the adequacy of
the many simulation models proposed in the geologi-
cal literature. This adequacy refers not only to
agreement of the model with theory and observed
earth phenomena, but concerns its potential useful-
ness as a predicting device in the search for oil,
gas, and ore.

i f k dels, =

Several additional points that deserve comment with
respect to Markov models in stratigraphy include the
implications of the exponential distribution of wait=
ing times for state changes in the continuous=time
model. When time is converted to thickness by
equation (8), the thickness distribution will also be
exponential. This suggests in effect that the thick=
ness distribution of beds is a one=parameter Gamma
distribution. Most sedimentological studies strongly
suggest that bed thickness distributions are lognormal.
An interesting question is raised by this point, in
that the conventional discrete-state, discrete~time
Markov chain that corresponds to its equivalent [qii]

matrix has a geometric distribution of discrete states
(bed thicknesses) controlled by the magnitude of the
diagonal transition probabilities, P

Potter and Blakely (1968) use an embedded
Markov chain in which the transitions from one lith=
ology to another are recorded, with a separate re=
cord kept of bed thicknesses. In their model the
p;;'s are identically zero, so that the matrix gives

the sequence of states through which the system
passes without regard for the length of time required
for the state transitions. Thus there may be no nec-
essary relation of the embedded model to any partic=
ular kind of waiting=time distribution, inasmuch as
“M.At

Py = 0, rather than Py =€ as in the equal-

intercept Markov chain, where the diagonals re-
flect transitions from a given state to itself. These
considerations raise interesting and challenging
questions regarding the kinds of "practical" bed-
thickness (and hence waiting=time) distributions that
can be used with Markov models based either on
discrete or continuous time.

The arbitrary practice of limiting the exponen-
tial waiting=time distribution to fixed limits (as in
using random numbers from 0.3 to 0.8, instead of
from 0.0 to 1.0) also bears on this problem. In the
absence of pertinent field data an arbitrary but "rea-
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sonable" choice was made. However, problems raised
by such truncation are not unique to the exponential
distribution. Even with the lognormal distribution
there is a finite probability that a given bed may be
a mile or more thick. Field data, however, on act -
val bed thicknesses permit the setting of reasonable
limits on the maximum thickness allowable in simu=
lations. It would be interesting to examine the point
at which nature truncates the lognormal probability
distribution of bed thicknesses; similarly, factual
data are needed on the maximum waiting time that
nature permits in the exponential waiting=time distri-
bution.

Another element that bears on the question of
an optimum Markov model for stratigraphic simulation
is the influence of the constant C, in equation (8).

As stated, this is a conversion factor between time

and thickness. Inasmuch as the quantity Ioge(l/Uqu)

/Mmax has the dimension time from equation (7), and

the thickness had dimension length, it follows that
C] has the dimensions (L/T), and hence is a rate,

assumed constant for all lithologies as emphasized
earlier in the text. How good is this assumption for
clastic wedges? Even the choice of At in equation
(5), or more conveniently As for thickness, comes
into the picture. If As is taken as very small, there
will be virtually no state transitions in a simulation
of reasonable length; if As is taken as very large,
details may be lost. Until relations between time
and accumulated thickness are better known, the
choice here is also arbitrary.

Finally, there is the question of the adequacy
of first—order Markov models as simulation devices
in stratigraphy. Schwarzacher (1967) has convinc=
ingly shown that stratigraphic Markov models should
be at least of second order, with a two=step memory
that need not necessarily involve the two immediately
preceding steps. In the Kansas Pennsylvanian he
found that the state of the system at time t_was con-

trolled by events at time foagpand t _q. | have not

had an opportunity in this study for comparing second -
order chains with their equivalent continuous-time
equivalents.

All of these questions illustrate an interesting
contribution of models to conventional stratigraphic
procedures, suggested to me by Paul Potter of Indiana
University. 1t is "That one sees here the feedback
contribution of models - a reappraisal of the field
that would perhaps not otherwise come about. "
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APPENDIX
INTRODUCTION

The two programs listed here are written in a
modified version of FORTRAN |V for the CDC 6400
computer. Normally, there is relatively little diffi-
culty in making these programs compatible with stan=
dard FORTRAN V. Fortunately, the two programs
are fairly short,

Most programs in the Geology Program Library
at Northwestern University have anunderlying simi=
larity in their organization, and in the types of data
formats used. These similarities involve the use of
project numbers, four title cards, and at least one
major control card. Programs also are arranged so
that several data decks can be placed one behind
the other, rather than using the program deck sepa-
rately with each set of data.

The following comments apply to both pro=
grams in this Appendix:

[itle Cards, = Provision is made for four title
cards, so that the specific problem can be complete=
ly documented. These are of the following form:

Card 1. Enter the digit 1 in column 1, and

leave column 2 blank. The initial digit is a

carriage control, so that the title is repeated

as new segments of output are printed. Col-
umns 3 to 70 inclusive may be used for any
appropriate title.

Cards 2, 3, and 4. Enter a zero in column 1,

leave column 2 blank, and proceed as with

card 1 in columns 3 to 70. If only two cards
are required for the title, for example, in-
clude two blank cards that have a zero entered
in column 1, to fulfill the requirement for four

cards .

= These furnish the computer
with specific details regarding a particular problem,
such as size of matrix to be read in, format of the
data cards, etc. The control card for each program
is described in detail later.

loput Matrices, = Program PEQUMAT is design=
ed to accept input matrices up to 20 x 20, but these
dimensions can readily be enlarged. Program BORE-
HOLE accepts matrices up to 41 x 41, Input formats
for reading the matrices differ in these programs, as
is described more fully for each program. The spe-
cial input format for BOREHOLE was designed to
facilitate making changes in the rate matrices for
experimental purposes without requiring that the en-
tire matrix be repunched.

Computing Center Lead Cards. = The sequence
of lead cards for programs differs at different instal=
lations. Inasmuch as every computing center has
somewhat different lead cards, details are not in=
cluded here.

t = Lead cards
are followed by assemblies for the data decks. These
are as follows:
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The input assembly for program PEQUMAT
consists of:

4 TITLE CARDS, format as described for title

cards above,

CONTROL CARD, as described later,

INPUT MATRIX, read in by rows,

END-OF-RECORD CARD,

END-OF-INFORMATION CARD.

The input assembly for program BOREHOLE
consists of:

4 TITLE CARDS, as described above

CONTROL CARD, as described later,

INPUT MATRIX, read in as described later,

BLANK CARD, ‘

STATE-NAME CARDS, as described below,

LITHOLOGIC STATE SYMBOL CARDS, as

described below,

END-OF-RECORD CARD,

END-OF-INFORMATION CARD.

If more than one problem is to be run conse-
cutively, the additional input data decks are each
followed by an end-of-record card, with the end-
of=information card inserted behind the last problem.

PROGRAM PEQUMAT

The original version of this program was writ=
ten for the CDC 3400 in 1966, and modified for the
CDC 6400 in 1968. | am indebted to Mrs. Betty
Benson for preparing the program on the basis of
text equations (1a) to (4a), and to Wolfgang Scherer
for later modifications. The program consists of two
interlocked parts, one of which converts a Cp;: ]

matrix to its corresponding [qi. 1 matrix, and the

other for the reverse operation. Thus, the initial
input can be a transition probability matrix or a
transition rate matrix.

The program first lists the input matrix and
records the value of At used, then makes the appro=
priate transformation, which is printed out in un-
rounded and rounded form. The unrounded form is
kept in storage, and the program automatically takes
this transformed matrix and re-transforms it to the
original input matrix. The sequence thus is a loop,
depending upon which matrix is used as ifput:

[q..]—>[pi-|]—-> [qii] QP loop
The example of input and output given in

Table A=2 is the transformation of the rate matrix

in text Table 3 to the transition probability matrix

of Table 5 via the QP loop. This uses equation (1a)

directly to obtain the diagonal probabilities p;; for

each state (i.e., for each row of the rate matrix ).
This diagonal probability is used to obtain (1 = p“)
= Pi' the sum of the off=diagonal probabilities in



1 KRUMBEIN PROJECT 01 0254 BOREHOLE RESEARCH
0O P(IsJ) MATRIX FROM HYPOTHETICAL T-R MATRIX
0

[¢]
0102540141 1400(10Xs14F442)
010254000104004400040004000¢000+4000¢00040004000+40004000+0004000400
010254000204000¢00340004000400C«0000004000+00040004000+0014000400
010254000304000¢000¢003¢000+000¢000¢000+4000+00040004001¢0004000400
01025400040400040004000¢003000¢00C¢C004000¢000¢0014C0040004000400
0102540005040004000¢000400040034000¢00040004001400040CG0+000+000400
01025400060¢0004000¢000¢00040004003¢0004001¢000¢000¢00040004000400
01025400070¢00040004000+0002000¢000¢004+000+000400000040004000400
010224000804000.00040004000¢000¢000+000400140004000+0004000¢000400
010254000904000400000040004000¢25040004000+000¢750400040004000400
01025400100400040004000+000¢250+4000+40004000¢00040004750+40004000400
0102540011040004000¢0004250¢0004000+4000¢00040004000400047504000400
0102540012040004000025040004000¢0000004000¢000¢000000+000¢750400
01025400130400042500000400040004000¢00060004000¢0004000+4000+000475
01025400141+0004000¢000¢0004000¢000¢000¢000+000¢0000006000+000400

Table A=1.= P(l,J) matrix from hypothetical T-R
matrix.

each row. Equation (3a) is then used to obtain the
individual pii's where | # i, by multiplying Pi by the

ratio of the corresponding off-diagonal qii's to the
total rate for the state, Mi'

The PQ loop uses text equations (5) and (4a)
as described in detail in the illustrative example of
text Table 1.

The control card for PEQUMAT has the follow=

ing form:

Columns

01-06  NPROJ, the problem project number in for-
mat (A6). In the example this is 010254

07-09 N, the size of the input matrix in format

(13). For the example given, this is 014
10 INDIC, a code to indicate the kind of in-
put matrix. If the input is a [pi. 1 matrix,

enter 0. If itisa [qi. 1 matrix, enter 1.

11-16  DELT, the desired value of At in format
(F6.2). See the text discussion of equation
(5). For many purposes this will be selected
as 001.00.

17-80  FMT, the format in fields of (8A8), used in

reading the input matrix. This matrix is
read in by rows for PEQUMAT, and the in-
put example of Table A=1 has the input for=
mat (10X, 14F4.2).
Input for matrix cards in this program is as
follows:

Columns

01-06  Project number in (A6) format, example
010352

07-10  Row number of matrix in (14), example 0001

11-70  Input fields of any convenient size. If prob-
abilities or rates are entered to two or three
decimal places, fields can be kept uniform,
say from 3 to 6 digits each, with format
F3.2, F6.3, or the like.

71-80  Blank.

Table A=1 is a direct listing of the complete
set of input cards for the example given here. This
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deck carries project number 010254 and the row
number for the input matrix. These are not read in,
and hence the 10X. The input deck in the Table
also illustrates the use of only two title cards with
information; therefore, it includes two blank title
cards with a zero punched in column 1. The titles
are followed directly by the control card, which
carries the code INDIC =1, to indicate that the
input is a [q.. 1 matrix. The 14 matrix cards follow

the control card, one card per row.

The complete output for PEQUMAT in the ex-
ample is shown in Table A=2. The title cards are
listed first. These are followed by a printout of the
input deck for subsequent comparison with the re=
check on the matrix transformation. The calculated
[pi. 1 matrix is printed out in unrounded and rounded

form, the latter for visual check with the original
input matrix.

The double printout of the transformed matrices
was originally designed as part of some larger loops
that permitted the use of several At's on the same
matrix, to see how this choice influenced the trans-
formed matrices. Most users will probably wish to
simplify the program by deleting the unrounded print=
out, to obtain output that shows the input matrix,
the rounded transformed matrix, and the rounded re-
check matrix. Table A-=3 lists program PEQUMAT.

PROGRAM BOREHOLE

This program is written in a modified version
of FORTRAN 1V for the CDC 6400 computer. The
original version, written by Paul Tukey at Princeton
in 1966, used the IBM 7094; subsequently some de=
tails of input and output were modified by Mrs. Betty
Benson. The version listed here was finalized in
May, 1968, with some alterations by Wolfgang
Scherer.

In its structure the program is straightforward,
in that it first reads and prints four title cards, and
then reads a control card that specifies the size of
the [qii I matrix, the upper and lower limits of the

random numbers used in the simulation, the value
of the constant C] in equation (8) of the text, etc.

It also reads the input matrix, the state names, and
the stratigraphic symbol cards, one for each state in
the system. These initial cards and the input matrix
based on text Table 3, are described next.

The control card for BOREHOLE has the follow=

ing form:

Columns

01-05 DIM, the dimensions of the [qii 1 input
matrix. This has format (15), and in the
example is 00014

06-10 NTRIAL, in format (15), the number of



Table A=2,= Output for program PEQUMAT.

KRUMBEIN PRCJECT ul U254

BCKEHOLE KESEARCH

P(leJ) MATRIX FRCM HYPCTHETICAL T=R MATRIX

—
DODNENE W

—-

X*EN)

~OCTNDU L W

12

-
w

14

DSOeE®ENT P W N

wN -

14

D ODNT U W N

w N

14

—————
WN—=O OB~ AU E W N

14

1
0400060
0,000V00
0,00000
0,00000
0,U0000
0,00090
0,00000
0,00000
0,00000
0,00000
0.00000
0,UNV0V
0.,00000
1,00000

1

+01832
0,00000
0,00000
0,0n000
0,00000
0,00000
0,00000
0400000
0400000
Ve UNLLY
002000
0.0nG0OV
0400000

63212

1

01800
0400000
0,Un000
0,00000
0,09000
0.000920
[PRY*HIVIVY
Ve 00000
000000
0,LOV0V
0,00000
0,00000
0e0NVO0

«63200

1
0,00000
0,00000
0,00V00
Qe 0NOOO
0.0n0G00
Ve GNLOV
0400000
Ve UNLOG
0e0NVOL
0.00000
0,uNV0OG
0,00000
0,00U0C

«99967

1
0,00000
0.00U00
0400000
Qe L0ODO0O
0,00000
0,00000
0,00600
0,060000
0e0OLOY
0. 00000
040000V
0eUNVOY
0,00000
1,00000

2
4400000
ULQ0000
U, 00000
v,.00C00
C400000
CLG0000
Uo00u00
Ue 0000
G4 00000
U400000
V. 0000v
V400000

«25000
V400000

2
+9B168
201832
Ue00000
U400000
Ue 00000
V400000
V400000
Je 00000
Ve 00000
UeOUOQO
Je00U00
Ve 000CO
15803
Ue 00000

2
«98200
<0180V
©400900
Ve 00u0U
V,00000
Le QOO0
Ve 20000
Ve 0000C
veO0UUNO
Ue 00
Ue00000
U.00000
«15800
Ve 00ULO0

2
4,01738
SRy lalelolV}
V,00000
PRYIIV)
UeD0000
Ve 00000
VeDO0OY
Va0D00OL
Ve C0LOY
L0000V
Ve 00000
U,00000

« 24992
Ve0dOOV

2
“.01700
Ve 02000
Ve 00000
Ve 00000
Je00000
V400000
Ve 00000
ve DUNOU
UeNDOOU
Ve 00000

Ve 03000

Ve 00000
«25000
V400000

3
¢ 00000
3,00000
(00000
G, 00000
[V )
C.00000
V400000
0,U0000
0,00000
0,00000
0,00000

225000
0,00000
0,00000

3
0400000
. 73626
L0183¢2
[ORIVAT]
0,90000
0,90000
U400000
RRUTNEL]
0430000
[PRVIEIVIsIs)
Ce00V0OV
15803
G 400000
0400000

3
0400000
« 13600
LU1BD0
000000
0, VGUOV
VeUOUOL
PRSI
e00UNUY
JeVOUOY
[ORVIVIo)
0,00000
15800
CeUUOU
Ve dOUOU

3

0, 00000
3,0lu9Y
0.00600
JeUUUOY
RNV
UeVLLUOU
40000
Ve BYVOG
[NV
U,00000
CaUNTUO0

24992
04,0000
Je0VO0

3
[EIRVISIVIS IV
3,0l100
Ge 0L
0400000
U,a00uU0v
N ,00000)
) 400GNY

RVl
00D

«EDUNY
7,00000
0LuNuY

DELTA T = 1.00

Q(TeJ) MATRIX

4 5
0400006 0,00000 0
0400000 0400000 0
3,00000 0,00000 O
0400000 4,00000 0
04006000 0,09000 3
0.000NG 0.00000 0
0.00000 ©,00000 0
0400000 V.00000 ©
Ue0NON0 U,00000
0.00000 425000 0
+25000 U.00000 O
0400000 U,00000 U
0400000 0,00000 0
U.00000 0,00000 0

P(I+J) MATRIX

4 5
€+00000 U,00000 O
0.00000 U.00000 0O

«73626 0,00000 0

01832 ,73626 0
0.00000 L,01R32
000000 0,00000

6

«006000
«00000
«00000
00000
«00000
« 00000
« 00000
« 00000
+25000
«00000
+00000
00000
200000
«00000

6

+00000
+00000
00000
400000
L73626
,01832

0e00000 0,00000 0,00000

0eGO0N0 0400000 O
000000 000000
0400000 +15803 0
+15803 0.00000 O
0200000 V00000 0O
0«00000 V00000 0
000000 V«00000 0

P(IsJ) MATRIX (RCUNDED)

«00000
«15803
+00V00
«00000
+00000
2+ 00000
«00009

7
0,00000
0,00000
0,00000
0,00000
0,00000
3,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000

7
0,00000
0,00000
0.00000
0,00000
0,00000

.73626

L01832
0.00000
0.00000
0,00000
0.00000
9,00000
0.00000
0400000

“ 5
0+00000 0400000 0
0e00000 U400000 ©

«736G0 0,00000 0

01500 .73600 0
0,00000 .01800
000000 000000
0400000 0400000 0
000000 0400000 O
0400600 0¢00000
0.00000 +15800 0

«15800 0,00000 O
0+00000 0,00000 O
0+0C000 0.00000 0O
Ue00NC0 0400000 O

Q(Isd) MATRIX

“ 5
0400000 0.00000 0
0400000 0,00000 ©
3,01099 0,00000 0
000000 3.01099 0
000600 0406000 3
0e00000 V200000 0
000000 0.0000U 0
0s00000 Ue0N00D O
000000 0.00000
V.00000  ,24992 0
224992 0V,00000 O
1400000 0,00000 0
040GODD 0,00000 0
0400000 U«00000 0

Q(lsd) MATRIX (RCUNDED)

6

200000
00000
«00000
200000
.73600
«01800
00000
« 00000
15800
« 00000
00000
+00000
«00000
+ 00000

6

«00000
« 00000
« 00000
«00000
«0109Y
«00000
«00000
«00000
«24992
«00V0O0
2 0OVO0
L00000
+00000
«0N000

4 5
0400000 U,00000 O
0e000UL0 0.00000 ©
3.01100 0.00000 0
000000 3.01100 0
000000 0,00000 3
De00G00 0,00000 0
0400006 0,00000 0
0400000 L,00000 0
Ge00000 U«00000
0e00000 25000 0

«25000 0400000 0
000000 000000 0
Ua00000 0,00000 0
0400000 0,00000 0

6

00000
+ 00000
00000
« 00000
201100
+ 00000
«00006
+00000
+25000
«00000
+0N0VO
+00000
«+00000
»00000

7
Ue00UD0
0,00000
0,00000
0,00000
0,00000

. 73600

.01800
0.00000
040U000
0,00000
0.,00000
0,00000
0,00000
0.00000

7
0,00000
0,00000
0,00000
0.00000
0.00000
J.0109Y
0,00000
V00000
0.00000
v,00000
0,00000
0,00000
0,00000
0. 00000

7
0,00000
0,00000
0.000V0
0.00000
0,00000
3,01100
0,00000
0,00000
0.00000
0.00U00
000000
0.00000
U.U000Y
0,00000

8
0,00000
0,00000
0,00000
0,00000
0,00000
©,00000
4,00000
0.00000
0.0V000
0,00000
0.00000
0,00000
0,00000
0,00000

8
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000

,98168

.36788
0400000
0,00000
0.00000
0400000
0.00000
0.00000

8
0400000
0400000
0.0v000
0,0UV000
0,00000
0.00000

+98200

+36R00
2400000
0,00000
0,0V000
0,00000
0400000
0.00000

8

0,00000
0,00000
0,0u000
0400000
U4 0V000
0400000
4.01738
0400000
V.00000
0,00000
0,00000
0,00000
0,00000
0400000

8
0,00000
0,00000
0400000
0400000
0,00000
0,0V000
4,01700
0,00000
0400000
0400000
0.00000
0400000
0,00000
0,00000
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9
0.00000
0.00000
0,00000
0,00000
0.00000
1,00000
0.00000
1.00000
0400000
0.00000
0.00000
0.00000
0,00000
0,00000

9
0400000
0,00000
0.,00000
0,00000
0,00000

L24542
0.00000

.63212

+36788
0400000
000000
0400000
0400000
0400000

9
0+00000
0400000
0.00000
0400000
0.,00000

«24500
0+00000

63200

36800
0400000
0.00000
0,00000
0400000
0400000

9
0,00000
0,00000
0,00000
0400900
0400000
100230
0+00000
«99967
0.00000
0.00000
0,00000
0,00000
0,00000
0400000

9
0400000
0.,00000
0.00000
0400000
0,00000
1.00200
0400000
1.00000
0400000
0400000
0400000
0+00000
0,00000
0,00000

*
0400000
0400000
0400000
000000
1,00000
0,00000
0400000
0400000

«75000
0400000
0400000
0,00000
0000000
000000

*
0400000
0400000
0,00000
000000

.24542
0400000
0.00000
000000

47409

«36788
0+00000
0+00000
000000
0400000

.
0+00000
000000
0400000
0400000

+24500
000000
000000
000000

W 47400

#36800
0400000
0400000
0¢00000
0400000

+
0000000
0400000
0,00000
0400000
1.00230
000000
000000
000000
« 74975
0.00000
0+00000
0400000
0400000
000000

+
0400000
0400000
0000000
0400000
1.00200
0400000
0400000
0.00000
+ 75000
000000
0400000
0400000
0400000
0,00000

0.00000
0.00000
0,00000
1,00000
0400000
0400000
0,00000
0,00000
0400000

«75000
0.00000
0400000
0,00000
0,00000

000000
0,00000
0,00000

24542
0,00000
0,00000
0,00000
0400000
0400000

47409

+36788
0400000
0400000
0+00000

000000
0400000
0.00000

+24500
0,00000
0400000
0400000
0400000
0400000

+47400

«36800
0,00000
0400000
0400000

0400000
0,00000
0400000
100230
0400000
0400000
0400000
0400000
0400000
« 74975
0400000
0,00000
0,00000
0+00000

0.00000
0.00000
000000
100200
0400000
0,00000
0.00000
0400000
0400000

«75000
0400000
000000
0.00000
0,00000

-

0,00000
0,00000
1,00000
0,00000
0400000
0,00000
0.00000
0,00000
0,00000
0.00000
. 75000
0,00000
0,00000
0.00000

“
0.00000
0,00000

.24542
0,00000
0,00000
0,00000
0,00000
000000
0400000
0400000

«47409

«36788
0400000
0400000

-
0400000
0+00000

+24500
0,00000
0,00000
0400000
0400000
0400000
0+00000
0,00000

47400

.36800
0400000
0.00000

*
0,00000
0,00000
1,00230
0400000
0400000
0.00000
0.00000
0400000
0400000
0,00000

274975
0,00000
0,00000
0400000

*
0.00000
0.00000
1.00200
0400000
0.00000
0,00000
0,00000
0,00000
0400000
000000

+75000
0+00000
0,00000
0,00000

/
0,00000
1,00000
0400000
0,00000
0.00000
0,00000
0400000
0,00000
0,00000
0,00000
0400000

+75000
0,00000
0,00000

’
0400000

L24542
0400000
0400000
0,00000
0400000
0400000
0400000
0400000
0400000
0400000

47409

+36788
0400000

/
0400000
«24500
0,00000
0.00000
0,00000
0400000
000000
0400000
0400000
0.,00000
0,0n000
47400
+36800
0+00000

/
0.00000
1.00230
0.00000
0400000
0.00000
0400000
0400000
0400000
0.00000
0400000
0400000

o 74975
0400000
0400000

/
0400000
1.,00200
000000
0400000
0400000
0,00000
0,00000
0,00000
000000
000000
0400000

+75000
0,00000
0400000

(
0400000
0,00000
0,00000
0,00000
0400000
0,00000
0.00000
0.00000
000000
0.00000
0400000
0400000

«75000
0.00000

t
0,00000
0400000
0.00000
0,00000
0,00000
0,00000
0400000
0400000
0400000
0400000
0400000
000000

«4T409

«36788

«
000000
0400000
0400000
0.00000
0.00000
0400000
0400000
0+00000
0400000
0.00000
0.00000
0400000

«47400

+36800

¢
0.00000
0.00000
0,00000
0400000
0400000
0400000
0400000
0400000
0400000
000000
0,00000
0400000

. 74975
0400000

(
0400000
0+00000
0400000
0400000
000000
0.00000
0.00000
0.00000
000000
000000
0400000
0400000

+75000
0,00000

M6

4400000
4400000
4400000
4400000
4,00000
4400000
4400000
1400000
100000
1400000
1400000
1.00000
1.00000
1.00000

MG
1400000
1400000
1400000
1.00000
1.00000
1,00000
1400000
1400000
1400000
1400000
1400000
1400000
1400000
1400000

MG
1400000
100000
1.00000
1+00000
1.00000
1400000
1400000
1400000
1400000
1400000
1.00000
1.00000
1000000
1.00000

M6
4001738
4,01738
4,01738
4401738
4401738
4401738
4401738
299967
+99967
299967
+99967
299967
.99967
499967

MG
4401700
4401700
4401700
4401700
4401700
4401700
4401700
1400000
1400000
100000
1400000
1400000
100000
1,00000
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PROGRAM PEQUMAT (INPUT,TAPE60=INPUT»QUTPUT)

FOR WILLIAM Ce KRUMBEINs GEOLOGY eeeeeeeAUGUST 19665 BETTY BENSON
REVISED FOR CDC 6400s BETTY BENSONs APRIL 1968
ADDITIONAL MODIFICATIONSs We SCHERERs MAY 1968

COMMON /AA/ P(20920)5Q(20520) sPMARG(20) s GQOMARG(20) s LABELP s LABELQ
COMMON /BB/ TITL(36)sFMT(8)sNsDELT

LABELP=6HP(1+J)

LABELQ=6HQ( 1)

3 READ 100sTITL
IF (EOFs60) 455
4 sSToP
5 READ 101sNPROJsNs INDICyDELTsFMT
100 FORMAT (9A8)
101 FORMAT (A6s135119F6e258A8)
IF (INDIC) 10510520

10 CALL IN (PsPMARGsLABELP)
CALL PTOQ
CALL QTOP
GO TO 3

20 CALL IN (QsQMARGsLABELQ)
CALL QTOP
CALL PTOQ
GO TO 3
END
SUBROUTINE PTOQ
COMMON /AA/ P(20520)9Q(20520)sPMARG(20) s QMARG(20) s LABELP s LABELQ
COMMON /BB/ TITL(36)sFMT(8)sNsDELT

DO 10 I=1sN
QMARG(I)= — ALOG(P(IsI))/DELT
SUMOTRO = PMARG(I)-P(I,1)
P(IsI)=0.0
DO 10 J=1,N
10 Q(Isd) = (P(1sJ)/SUMOTRO) * QMARGI(I)

CALL OUT (QsQMARGLABELQ)
CALL ROUND (Q»sQMARGs LABELQ)
RETURN

********************************************************

ENTRY QTOP
DO 20 I=1,N
P(IsI) = EXP((-QMARG(1I)}*DELT)
SUMOTRO = 140-P(Is1)
DO 20 J=1sN
IF (I-J) 21,20,21
21 P(IsJ) = SUMOTRO # (Q(I,J)/ QMARG(I))
20 CONTINUE
DO 12 I=1»sN
PMARG(1)=0e0
DO 12 J=1sN
12 PMARG(I)=PMARG(I)I+P(IsJ)
CALL OUT (P»PMARGs LABELP)
CALL ROUND (PyPMARG»LABELP)

22



106

6

100
102
103
104
105
116

11-14

RETURN
END

SUBROUTINE IN (MATRIXsMARGsLABEL)
COMMON /BB/ TITL{36)sFMT(8)sNsDELT

DIMENSION MATRIX(20920)sMARG(20)sJLABEL(20)

REAL MATRIXsMARG

DATA (JUMARG=2RMG)

DO 3 J=1,20

K=J+33B
ENCODE(10+1069sJLABEL(J)Y) K
FORMAT (8XR2)

DO 5 I=1sN
READ(60sFMT)
DO 6 I=1sN
MARG(I1)=0.0
DO 6 J=1sN
MARG(I)=MARG(I) +

(MATRIX(IsJ)sJd=1sN)

MATRIX(IsJ)

ENTRY OUT

PRINT 100sTITL
PRINT 116s DELT
PRINT 102sLABEL
GO TO 4

ENTRY ROUND

DO 8 I=1sN
MJ=1000e * MARGI(1)
AARG(I)=MJ / 1000
DO 8 J=1,N
MIJ=1000. * MATRIX(IsJ) +e5
MATRIX (IsJ) = MIJ / 1000
PRINT 105sLABEL

+e5

PRINT 103s(JLABEL(L)sL=1sN)sIMARG
DO 7 I=1sN

PRINT 104sIs(MATRIX(IsJ)ysJ=1sN)sMARG(I)

RETURN

FORMAT (9A8)

FORMAT(/30XA7 s *MATRIX* / 30Xs13(1H-)/)
FORMAT (4Xs16(XR295X))
FORMAT (14516F845)
FORMAT (///30XA7s*MATRIX
FORMAT (30Xs*DELTA T =
END

*F6e2//)

simulations (trials) desired. Each simula=
tion starts in state AA, passes through state
DD, and continues until it terminates in
state AA. This assures that the output will
include all states, with a varying number
of subcycles, as shown in text Figure 3,

further described below, If only a single
trial is desired, enter 00001 in this field.

HILIM, in format (F4.2). This is the upper
limit of the uniform random numbers to be

15-18

19-22

23
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(ROUNDED)* / 30X923(1H~-)/)

used for setting the random times in states.
This limit was chosen arbitrarily for this
example as 0.80.

LOLIM, in format (F4.2). This is the
lower limit for the random numbers used
for setting random times in states. This
number was chosen as 0.30 for the present
example.

C,, in format (F4.2) is the constant re-
ferred to in text equation (8). The value



1.00 was chosen for the example, so that
one line of printout is associated with the
minimum time in any state, 0,06 units.
Se)e the text discussion following equation
(8).

PRINT, with format (L5). This control sets
the starting point for RANSET(T), which is
a standard computing center pseudorandom
number routine used in the program, If the
letter T is entered in this field, right justi-
fied, the computer will use its clock time
to set the series in operation. Table A=5
shows how the initial program output re-
cords this time.

NPROJ, the problem project number, in

a field of (A10). In the example this is
0000010254

UNIT, in a field of (F10.0). This is an
unused option in which a selected value

of the total right~hand side of equation (8)
may be entered. This is now taken care of
by the C, entry in columns 19-22; hence

23-27

28-37

38-47

this last field is normally left blank.
Blank .,
The four title cards (three of them blank ex-
cept for the initial zero) and the control card are
shown in the top five lines of Table A-4, Table
A-=5 shows how the program displays the controls
and the starting time of the random numbers for
waiting times in each state. Note that the entry
T in the (L5) field of PRINT uses the computer clock
as the starting point for the random number sequence.
The material in Table A=5 constitutes the first por-
tion of BOREHOLE output.

The control card is followed by the input ma-
trix. The procedure for reading this was designed
to provide maximum flexibility in modifying experi=
mental matrices without repunching the entire ma-
trix. Inasmuch as the [qi. 1 matrix of text Table 3

48-80

contains mainly zero elements, the machine first
zeros a matrix of size DIM (here 14 x 14), and the
nonzero entries are then read in one at a time. Thus,
reference to text Table 3 shows that the first line

has 4.0 in its second column; the second line has
3.0 in its third column, and 1.00 in its thirteenth
column; and so on. The matrix input cards are pre-
pared for each nonzero entry as follows:

Columns

01-05

Row of matrix in format (15), example

00001 for first row

06-10  Column of matrix in format (15), example
00002 for second column

11-15 qii in format (F5.0), example 003.0

16-80  Blank.

It would not be difficult to change this to
direct readin of the complete matrix by rows, as in
PEQUMAT, but for experimental studies, where only
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one or two qii elements are changed, the present

scheme permits convenient insertion of rate changes.
The full set of these input cards in the example is
shown in Table A-4, starting on line six.

Once the Lq;; 1 matrix is read in, the pro=

gram reads the symbols for all states in the system.

In accordance with the bottom diagram in text Figure
2, the system starts with AA, followed by transgres-
sive states through DD, succeeded by regression states
DD' to AA'. These state symbols have the format
(12A6). Table A-4 includes these state symbols at the
end of the matrix input. Two additional titles are read
which head the main output sheet and identify the
monitoring positions. These are shown in Table A-4
directly after the state label cards.

An important set of input cards shows the gra=
phical representation of each transgressive and re=
gressive state. These are listed as the last items in
Table A-4, but their form can be seen more clearly
in the program output of Table A-7. Therefore,
discussion at this point will move to another aspect
of program BOREHOLE that is relatively unique. This
is the "clock mechanism" in the program, and it
deserves special attention. As mentioned, the simu-
lation starts in state AA, and as the system shifts from
this to other states, waiting time in each state is
cumulated until the total time for the simulation is
recorded. The relation given in equation (8) is then
used to determine the time allocated to one line of
printed simulation output. The specified condition
is that every state which is occupied during the simu-
lation must have at least one line of printed output.

This condition is imposed because progress
through the [qii 1 matrix is such that no states can

be skipped during any given part of a cycle. Thus,
if the system starts in state AA and proceeds to state
CD before a reversal occurs, the output must show
all intermediate states AB, BB, BC, and CC. The
time allotted to one line of output is controlled by
the upper and lower limits of the random numbers,
the magnitude of the largest rate Mqu, and the

constant C] . Af C] is chosen as 1.0, the minimum

time in any given state controls the time interval
associated with one line of printout. See the text
discussion on Table 4 for details. |If C] is greater

than 1.0, some of the time intervals associated with
a given state may be less than that allotted to a
single line. In this case one printout line is assign=
ed fo that state, and the time deficit is absorbed by
adjacent states.

Table A=6 shows the timing procedure for a
simulation in which the shortest waiting time in any
state is 0.06, but in which C] was chosen as 2. 16.

The clock timing for successive lines of printout in
this case is 0.12 unit. The first column of Table A=6
lists a set of states and the waiting time in each.
These waiting times are cumulated to the end of each



Table A-4.- Input for example problem.

1 PROJECT 01 0254

0

0

0
14 204800430
1 2 4.0
2 3 3.0
2 13 1.0
3 4 3.0
3 12 1.0
4 5 3.0
4 11 1.0
5 6 3.0
5 10 1.0
6 7 3.0
6 9 1.0
7 8 4.0
8 9 1.0
9 6 0.25
9 10 0475
10 5 0625
10 11 075
11 4 0.25
11 12 075
12 3 0e25
12 13 075
13 2 0425
13 14 0.75
14 1 1.0

AA AB BB
-AB -AA

14X14 Q(1sJ)

1.0

BC

BOREHOLE RECORDS

N OF SANDSTONE

AA
YNNIV N IV
AR
YV NIYIYY.
BB
YV YYY
BC
I IIIIIIIIIII
e
/

cD
X ®X//[1111111177
DD
- -3k 33 33 ¥ 3 K3 3 % K
DD-
- == () 3 36 36 3636 3 36 3 36 36 3 %
cb-
X KR/ 1IIIII11077
cc-
NNV IV
BC-
YNNI IYITY
BB-
VNN VIY
AB-
L 1IIIIIIIIII T
AA-
/1111017171771

LR 22 S22 2L L e

OFHHXREXRAXNN//

T

de

MATRIX FOR T-R

010254

cb DD -bD

1177077077 7777777

*%/ /1111717777777

— =N X HHHHKRRRXKRK )/

O AERREERXRERKRK )/
*K)LSIIITI100070 7

1111771777 7777777
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MODEL

11

11777

17177

/11777

3 %3 % *

17777

1717/

11777

3 BOREHOLES

-BC -BB
BLOCKED CROSS-SECTIO
111
11117770777 7777 1177
117077777770 777777 1777
1171710007020 7777 1777
RXSLSIIIIILL00077 4177
——HARRARRRRRRXRS ) )/
............... XX XHXR
_______________ O%  **x%
— QR ERRXRRRRRR/ S [/ /)
XXSSLSIIIAS L0 0 S Y
1177707700777 7777 /177
11177777777 777777 1777
11111107120 7777777 1777



Table A=5. = Initial output of BOREHOLE, listing

program controls.

CONTRNLS
DIM=z 74
HILIM=  ,R0
LﬂL!Mq e300
Cis 1.00
TRTAL® 2
PRINTs T

STARTING TIME FOR RANDOM NUMRERS =2#347024.0000

state, as shown in the third column of the Table.
The last two columns show the individual times at
which output lines occur. At the beginning of the
simulation, the clock selects an initial printing time
of less than 0.12, to pick up state AA if its waiting
time is less than 0.12 units. In the example given,
the first line was printed at time 0.01, the next line
at 0.13, and so on, at intervals of 0.12,

As Table A=6 shows, two states, CC and DD,
have waiting times shorter than 0,12, but they are
given one line each. In this example, the cumula-
tive time limits for each state happen to include the
clock times at which the lines are printed, and they
are thus automatically picked up.

a .~ Table A=5
shows the initial output of the program, and Tables
A-=7 through A=9 show the rest of the output for the
example displayed. Table A-7 lists the [qii lin-

put matrix, based on the line entries in the input
deck of Table A=4. This is followed by the state
symbols for the system, which are also listed in Table
A-4. Table A-7 also shows the cumulated probabili=
ties for state changes. It is to be emphasized that
this cumulated matrix is obtained directly from the
[qi. 1 matrix, without transforming it to its corres=

ponding [pii ] matrix. That is, the cumulated ma=

trix of state probabilities shows that in state AA,

for example, the transition to state AB has probabili=
ty 1.0 or certainty. This is obtained by taking the
CID value of the top matrix and dividing it by the

marginal rate: 1.00/1.00 = 1,00. The second line

Table A=6.= Segment of BOREHOLE printout, show=
ing time allocation to printout lines.

State Time in Cumulated Time to Passage of Time Printout
State End of State on Clock State

co' 0.475 6.022 5.92 cD'
5.80 cD'
5.68 cD*
5.56 cp'

DD! 0.345 5.547 5.44 DD'
5.32 DD'

oD 0.099 5.202 5.20 DD

cD 0.260 5.103 5.08 cD
4.95 cD

cC 0.073 4.843 4.83 cc

cc’ 0.902 4.770 4.7 cc'
4.59
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of the cumulated state probabilities matrix is ob-
tained from the q;: values in the second line of the

top matrix. The probability of moving from state

AB to BB is 3.00/4.00 = 0.75, and the probability
of moving to state =AB is 1.00/4.00 = 0.25, in ac~
cordance with the text discussion following equation
(5). Thus the cumulated values jump from zero to
0.75 for state BB, and rise to 1.00 for state =AB.
These probabilities are used with uniform random num-
bers in the range 0.00 to 1.00 for determining which
state succeeds a given state. See the text discussion
in the paragraph following equation (7) for the pro-
cedure in selecting the state to which the system
moves after its waiting time in a given state has
elapsed.

The actual sequence of steps in a simulation is
shown by the summary output material in Table A-8.
The first column of this table shows that this "trial"
(simulation) required passage through 24 states to
complete the whole cycle. The second column in=
dicates the state names, and shows that in this ex-
ample the system progressed from state AA to state
BB, then switched over to regression state ~BB, and
regressed to state —AA, after which it resumed trans=
gression. State DD was reached on the fifteenth
step, with only one switch to regressive state =CD,
and from event 16 through 24 regression was con-
tinuous except for one switchover to state CD at
18. Reference to the bottom diagram of text Figure
2 makes clear the path followed in this simulation,

The third column of the summary at the top of
Table A-8 lists the actual random number in the
range 0.30 to 0.80 that was associated with each
state. The next three columns show the reciprocal,
its natural log, and the transition time (waiting
time) for each state, Column 7 has these times cu-
mulated to a total time interval of 10.160 units
for the simulation. The last two columns of the
table show the second (uniform) random number used
to select the succeeding state. Thus, the first num=
ber is 0.0331, which falls in the cumulated value
of 1,00 listed in the first line of the state probabili=
ty matrix of Table A=7. The second number is
0.3348, which falls within the 0.75 value in line
2 of the state probability matrix, indicating forward
progress from state AB to BB.

The compilation at the bottom of Table A-8
summarizes the total time in each state and its
percentage value, Although some states are occu-
pied more than once, it is evident that in this simu=
lation the percentage of time spent in transgressive
states is considerably smaller than that in regressive
states. This is of course expected from the much
higher rates for transgression than for regression.

The graphic display of the simulation summa=
rized in Table A=8 is shown in text Figure 3. In
preparing the graphic display, the machine simply
picks up the appropriate state symbol from the array
in the center of Table A=7. These symbol lines



Table A-7.- List of [qii] input matrix, based on line entries in input deck of Table A-4.

PROJECT nl 0254

AUGLIST 29 1964

AA
AA 00 &
AR n 00 0
PR noo 0
RC noo o
re noo o
ch noo n
nn n oo o
DD n 00 o0
-cD 000 A
-rc oo 0
-aC noo o
=RR 000 0

=AR o 00

=AA 1e00 o

aA

a8

R8

gC

cc

rD

no

nh#

cD#

eC#

RC#

RB#

AB#

AA%

14X14 Q(TeJ) MATRIX FOR TeR MCDEL

3 RORFHOLES

13 SN)]
=CD  .CC =BC =BR =AB
000 000 000 000 O OO
000 000 000 0 00 1.00
000 000 000 1,00 0 00
000 n 00 1.00 0 00 0 00
000 1,00 000 000 0 00
1¢00 000 000 0 00 0 00
000 000 000 000 O 00
1,00 000 000 000 0 00
000 475 000 000 0 00
000 000D ,L75 0 00 0 00
000 000 000 75 0 00
000 000 000 nop 75
000 000 000 0 00 0 00
000 000 000 000 0 00
11
L1120 110177107 0770007/7
11717 11177707 427011777
11007 1111 7072720122700¢7
wawes  8>/////////1/7/777

——--
——---
cCrmew
mowmwe

LA L LT

Ganun
/7777

11777

«DD STATE ADDED
MATRIX OF TRANSITIAN RATES,
AR B8R BC ce cD Dp  «DD
00 000 0D OO0 000 0 OO 0 N0 O 00
00 3.00 0 00 0 00 0 OG0 0 00 O 00
00 0 00 3,00 0 00 0 00 0 A0 0 00
00 0 00 0 00 3.00 0 00 0 00 0 00
00 000 000 0 00 3,00 0 A0 0 00
00 0 00 0 00 0 60 0 00 3,00 0 00
00 0 00 000 0 00 000 0 00 4,00
00 0 od 000 00D 0 OD 000 O 00
N0 0 00 0 00 0 00 25 0 00 0 00
0O 00D 0 00 <25 0 00 0 00 O 00
00 0 00 4,25 0 00 n 0O 0 A0 0 00
00 25 0 00 0 N0 0 00 O 00 0 00
.25 000 000 000 000 0 00 0 00
00 000 000 000 000 0 00 O 00
1
BaRURBBRRRUES L) S 7)) JIIIIIIIII111777
e sttt WG8B%  w>//////1/1117177
e rt et ctrane wemen ewbfEosaRlasssd>//
- - - - - - BT LTy L 2.
L Yy apu—— )
T T R LI T TY I YT YT YY)
et nemnnneadt  RUBBE 80,/ /71111771777
CHURRROBRONRD/ ) [)/1)) 1111110101117 7027

27

/17747

. 2 Y2 Y Y I T P
[ —— Y"1
P
recorenccanare=ndl
cakBRBRRORUBAND /)
wL[1111720001777
L1117777777277777
L1177 1271777770777
L11124177770777707777

-AA

o o O
o
=3

(=]
o
=]

o O
o
o

=] D O
o
>

1717/
1777/
17777
117714/
172244
Ty
cwme
LYY
1777/
2244
122344
17717
17177

L1111 1127777777
17/11077774777/7
1171777717777 727
1/111/777477777
1171711777777 77

O/ 1111117777/

Y I YYTT Y
P Y YT YT Y )
“R/ 111177111777
111177277 772777
11127177772/ 777
1171717 771777777
L117401707777777
11710121 7772777



AA
AR
RR
RC
cc
D
nn
=DD
=CD
»cC
=RC
-B8
=AR

=AA

L]

0
0

1

AA
00
00
00
00
00
00
00
0o
00
00
00
00
00

00

n 00
n 00

o 00

>

00
00

o

o 00
6 00
o 00

25

100

0 00
0 00
0 00
0 00
0 00
0 00
0 00

25

25

100

MATRIX OF STATE PRNBABILITIES FROM Q(1,J) MATRIX

L LT TP L ey

BC cc cD b))
1,00 1.006 1,00 1,00
W75 WTE L7875
275 W75 LTS ,75
0 00 75 75 ,75
000 00p 7S ,75

0 00 000 o 00 »75

000 000 000 0 AO
000 000 000 0 00
000 000 ,25 25
0 00 425 ,25 435
e25 425 4,25 42?5
.25 ,2%5 ,2% ,?5
25 225 .25 .55
1,00 1400 1,00 1400

Table A-8.- Sequence of steps in a simulation.
TRIAL 2

PROJFCT

?‘.

STATF

AA
AR
AR
BC
cc
[ols]
pn
-QD
=-CD
=CC
=RC
«RB
=AR
=AA

STATE

0102

AA
AB
BB
-B8
«-AB
=AA
Aa
AB
BB
8c
cc
co
=-CD
co
DD
»DD
«CD
Cco
«CD
=CC
-BC
-8B
»AB
=AA

TOTAL TIME IN STATE

0164
436
.180
2240
J104
«430
.069
+250
?2.106
790
14034
1,483
14356
1.818

RANDA

«T184
04168
06160
6228
+6329
6794
7237
4171
« 7907
«3824
+6605
«5446
«5487
+5670
« 7594
« 7786
24831
«5787
#4590
.4536
»3555
#3643
04073
3227

1.0/RANDA

103929
2.3820n
1,6234
1,6056
1.5801
1.,4720
1.3817
2.3972
1.2648
2.6150
1.5141
1.836)
1,8228
1,7636
1,3168
1.28413
2,0698
107280
2.1787
2,2044
2.8133
27451
2.4551
3,0991

(LoG E)

33073
«B6T04
048451
4T348
065747
«38640
«32331
87432
«23488
«96125
0‘1‘82
«60763
+60020
56737
0275?~
+25023
« 72743
+54696
77872
. 79045
103476
1.00988
89818
1,131718

0/0 TIMe IN STATE

1+6
4.3
1.8
2.4
1.0
4,2
o7
2.5
2n.7
T8
In,2
14,6
12.3
14.9

TRANSITION TIME

28

«DD
1.00
o785
.75
«75
75
75
1,00
0 00
25
25
«25
25
25

1.00

o785
75
1.00
1.00
1.00
.28
.25
25
25
.25

1.00

+083
217
o121
473
0457
387
«081
219
«N59
.ggo
0104
0152
0600
0142
«069
«250
o727
0137
0779
«790
len34
le010
+R98
1,131

-CC

=BC
1.00
75
« 75

1400

«083
«300
421
«894
1.352
1,738
1.819
2,038
2.096
20337
2.440
2.592
3.193
3,334
3,403
34653
4,381
4.518
8,296
6,087
7121
8,131
9.029
10,160

-BB
1,00

o 75
1.00
1,00
1.00
1.00
1.00
1.00
1,00
1,00
1.00

.25

25

1.00

TIME CuM,

«AB

1.00
1.00
1.00
1.00
1,00
1.00
1,00
1.00
1,00
1.00

1.00
1,00
25

1.00

RANDR

«033)
«9980
368
9075
1264
«5112
+6379
01024
1604
2977
AT72
.123g
3712
.7314
1939
1967
«R6T8
+5300

-AA MARGIN

NEXT STATE

AB
BB
-8R
-AB
=AA
AA
AR
:]:]
BC
cc
cb
«CD
co
oD
=DD
=CD
cb
=CD
=CC
«BC
-BB
~AB
-AA
AA



are so arranged that they show the three boreholes
edged with blank spaces, so that as simulation pro=
ceeds the corresponding log in each well is built up.

Some remarks are needed here to explain the
seeming change in state symbols as given in the text,
in the input deck of Table A=4, and in output Table
A-8 and various text figures. During preparation of
these experimental runs the CDC system at North=
western University had just changed from 3400 to
6400, and occasional system inconsistencies appeared
in the output. These should not interfere with the
program, except that in reading this report, it is
necessary to accept the complete equivalency of such
regressive state symbols as AA', =AA, AA%, etc.
These are partially due to different symbols associated
with IBM keypunches 026 and 29,

Table A=9 lists program BOREHOLE, and
completes the formal body of this Appendix. However,
some remarks are appropriate on the simulation ex-
periments in text Figures 4 and 5, which were ob=
tained by making a few changes in BOREHOLE, and
by using MARCHAIN directly as described in Krum-
bein (1967). Tables A=10 to A=13 are included here
to show the types of input used in these special simu-
lations. The tables are taken directly from the ini=
tial outputs, which list the input material and hence
show the form of the lithologic symbol cards, ma-
trices, etc.

Table A=10 is part of the initial output of
MARCHAIN from which text Figure 4 was made. The
table lists the lithologic symbol cards used as input,
which have the same form as the input symbols for
BOREHOLE in the center of Table A=7. The I:pii 1

matrix of Table 5 is listed and the matrix just below
this is the cumulated matrix as used with the uniform
random numbers drawn for MARCHAIN. The lower
part of Table A=10 shows the last part of the actual
simulation, of which the lower part was used in text
Figure 4.

In order to adapt BOREHOLE to the simula-
tion of a single stratigraphic column, some internal
changes need to be made. As stated earlier, a simu-
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lation run (a "trial") is specified internally as passage
from AA through DD back to AA', These instructions,
which are covered on the second page of Table A-9,
can be changed to a request for a simulation contain=
ing say 25 or 50 state changes. With this modifica-
tion, the [qi. 1 matrix of text Table 1, with litho=

logic symbols similar to those used in MARCHAIN
can be used as input.

Tables A=11 and A=12 show the controls, the
[qii 1 matrix input, the lithologic symbol cards, and

the matrix of state probabilities for changes of state.
The symbol cards for generating the single strati-=
graphic column are the characteristic cards for
MARCHAIN as shown in Table A=13, The simula-
tion instructions called for 50 states, which came
to a total time interval of 46.77 units. Table A-12
shows the last part of the simulation, of which the
early portion, extending to about time 25.00, was
used on the left side of Figure 5. The controls at
the top of Table A=11 indicate the random number
limits as well as the chosen value of the constant
C;.

] Table A=13 is included here to complete the
input story. This table shows the initial characteris=
tic output of program MARCHAIN, which lists the
input of lithologic symbol cards, the Cp;: 1 matrix

from text Table 1, its cumulated version, and the
end of the 500 transitions called for in the simula=
tion. Roughly the first 100 of these transitions were
used in preparing the right-hand column of text
Figure 5.

This adaptability of programs BOREHOLE and
MARCHAIN to lateral=shift models and to genera=
tion of single stratigraphic sections, means that the
experimental stratigrapher now has programs avail=
able for comparative experiments based either on
transition probabilities or transition rates. One is
reminded of the widened horizons opened for com=
parative map studies several years ago when the
conventional polynomial model was augmented by
the double Fourier series.



Table A=9. = Program listing for BOREHOLE.

PROGRAM BORHOLE(INPUTsQUTPUT s TAPES=INPUT s TAPE6=0UTPUT)

C .
C ORIGINAL PROGRAM BY PAUL TUKEYs PRINCETONs 1966
C IODIFIED BY BETTY BENSONs JULYs 1966
C CONVERTED TO CDC 6400 BY BETTY BENSONs APRIL 1968.
C CONTROL CARD CHANGES BY WOLFGANG SCHERERs MAYs 1968
C
DIMENSION TMTX(41s41)sMARGI(41)
COUMMON /AA/ PRINT sUNIT
COMMNON /BB/ KSTATE(501)sTIM (500)sKsLBLI41) sKTRIAL sEMAX
COMMON /CC/ TITL(36)
EQUIVALENCE (KSTATE(501)sTIMEO)
C
INTEGER DIM
REAL MARG,LOLIM
LOGICAL PRINTsVV
C
C INITIALIZE
TIMEO=040
T=FLOAT(TIME(O)) $ CALL RANSETI(T)
C

READ 99 TITL
READ 100sDIMsNTRIALSHILIMsLOLIMsCLloaPRINTsNPROJSUNIT
PRINT 99,TITL
WRITE(69303) DIMsHILIMsLOLIMsCLsNTRIALSPRINT
PRINT 10027

99 FORMAT (9A8)

100 FORMAT (21593F4425L55A109sF1060)

303 FORMAT(//% CONTROLS*/1Xs8(1H=)//%* DIM=#,15/% HILIM=%4F54,2/
o* LOLIM=¥%,F54,2/% Cl=%sF5e2/%*NTRIAL=%*9][5/% PRINT=%,0L5)
DO 90 I=1sDIM
DO 90 J=1+DIM

90 TMTX(IsJ)=0

MID = (DIM+1)/2
C
CALL RDMTX (TMTXsLBLIDIMsMARG)
CALL RDBCD(DIM)
EMAX=MARG(1)
DO 7 I=1sDIM
IF(MARG(1)eGT «EMAX) EMAX=MARGI(I)
7 ZONTINUE
IF (UNIT «GT.0) GO TO 5
UNIT = C1 # ALOG (le0/HILIM) / EMAX
C
C CONVERT TMTX TO RATIUS (LUMULATIVE)eeePRINT
5 DO 2 1=1sDIM
IF(MARG(I)eEQe0e0) GO TO 2
DO 3 J=1sDIM
3 TMTX(J s I)=TMTX(Js 1)/ MARGI(I])
DO 6 J=2,DIM
6 TMTX(J s 1) =TMTX(JsI)+TMTX(J=1s1)
2 CONTINUE
WRITE(69304) TITL
304 FORMAT (4(9A8/) / 30Xs
o *MATRIX OF STATE PROUBABILITIES FROM W(IsJ) MAIRIX¥* / 30Xy
R e — * . %)
CALL KRIS (TMTXsLBLsDIMIMARG)
C INITIALIZE FOR THIS TRIAL
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KTRIAL=0
4 KTRIAL =-KTRIAL +1
IF (PRINT) WRITE(6+300) NPROJSKTRIAL
TCUM=0.0
VV=oFALSE
ISTATE=1

(@)

FIND TIME FOR THIS STATE
DO 20 K=1+500
IF (ISTATE.EQeMID) VV=,TRUE.
IF (MARG(ISTATE) «EQe0) 12913
le TIM (K) = RLOG=RINV=RANDA=0.0
GO TO 14
13 RANDA = RANF(-1)
IF (RANDAGLT<LOLIM «ORse RANDACGTSHILIM) GO TO 13
RINV=140/RANDA
RLGOG = ALOG (RINV)
TIM (K) = RLOG/MARG(ISTATE)
TCUM=TCUM+TIM (K)
C FIND NEXT STATE
14 KSTATE(K) = I0OLD=ISTATE
RANDB=RANF (-1)
DO 15 J=1sDIM
ISTATE=J
IF (RANDB oL Te TMTX(JsIOLD)) GO TO 16
15 CONTINUE
16 1F (PRINT) WRITE(69301) KsLL(IOLD) RANDASRINVIRLOGTIM (K)o
o TCUMsRANDBSLBL(ISTATE)
IF (IOLD+EQeDIM «ANDe VV) GO TO 10
20 CONTINUE
K=500
C THIS CYCLE IS FINISHED
10 CALL CUMUL (TCUMsDIM)
CALL OUTPUT (DIM)
IF (KTRIAL oLT. NTRIAL) GO TO 4
STOP
C
1000 FORMAT (120X4HSEC=F10+4)
1001 FORMAT (110X4HRANDI4sXF10e3)
1002 FORMAT (1Xs*STARTING TIME FOR RANDOM NUMBERS =%,F12.4)
300 FORMAT (*1PROJECT*4AB93X5HTRIALI3/// 10X5HSTATE »7X5HRANDAS
¢ 3X9H1e0/RANDA3X9H (LOG E) 93X1I5HTRANSITION TIMEs3XIHTIME CUMe s
e TX5HRANDBs3XTOHNEXT STATE/)
301 FORMAT (I491Hes5XA692F 11e49F12e594X32F13e39F134495XA6)
END
SUBROUTINE RDMTX(TMTXsLBLsDIMsMARG)
DIMENSION TMTX(41s41)sLBL(41)sMARG(4])
COMMON /CC/ TITL(36)
INTEGER DIM

REAL MARG

C

C NOTE DATA FOR MATRIX MUST TERMINATE WITH A BLANK CARD
WRITE(69301) TITL

4 READ(59100) JsISsENTRY
IF(JeEQeO) GO TO 3
TMTX(IsJ)=ENTRY
GO T0O &4

3 CONTINUE

READ(59200) (LBL(I)»>I=1,DIM)
100 FORMAT(Z2I59F1044)
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[aNANA)

200

FORMAT (12A6)

301 FORMAT (4(9A8/) / 30X

300
400

100
101
200
201

¥MATRIX OF TRANSITION RATESs Q(IsJ)* / 30X
e _——— * )

DO 2 I=14sDIM

MARG(I)=040

DO 2 J=1sDIM

MARG(I) = MARG(I) + TMTX(JsI)

ENTRY KRIS

IF(DIMeGT«19) RETURN

LBLMARG = 6HMARGIN

WRITE(69300) (LBL(I)sI=1sDIM)sLBLMARG

DO 1 I=1,DIM

WRITE(69400) LBLII)s (TMTX(JsI)sJd=1sDIM)sMARGI(I)
RETURN

FORMAT (1HO»9X920A6)

FORMAT (1HOsA6393X920(F4,4,292X))

END

SUBROUTINE RDBCD(DIM)

DIMENSION TITLEL(16)sTITLE2(L16)sLINE(4L1916)
COMMON /BB/ KSTATE(501)sTIM (500)sKsLBL(41)sKTRIALSEMAX
COMMON /AA/ PRINT sUNIT

IN TEGER DIMsTITLELSsTITLE2

LOGICAL PRINT

READ(549102) (TDTLEL(J)y J=1y16)
READ(5+102) (TITLE2(J)y J=1416)
DO 20 I=1»DIM

READ (55102) (LINE(IsJ)s J=1s16)
FORMAT (10AB8/6A8)

WRITE(6s200) TITLELlsTITLEZ

DO 22 1=1,DIM

WRITE (65103) (LINE(IsJ)sJd=1s16)

FORMAT (1HO»9X 9 15A83A4)

RETURN

FORMAT (10A8)

FORMAT (6A8)

FORMAT (%1 INPUT FOR GRAPHS eee® // (1HO»9X3s15A8sA6))
FORMAT (1HOs9Xs15A8sA6)

3633 3 33 3 3 3 30 3 3 33 363 K 3 3K 3 3 3 I 3 3 36 3305 3 I 3 36 3 3 33 336 3 H 36 2 336K 3 KKK

ENTRY QUTPUT

DO 2 I=2sK

TIM (I)=TIM (I)+TIM (I-1)

IF (PRINT) WRITE(6s400) TITLEL1sTITLE2
ENOUGH = TIM (K) = 10004%*UNIT

CLOC =TIM (K)

DO 3 II=1,K

I=K+1-11

ISTATE=KSTATE(I)

IF (PRINT) WRITE(69500) CLOC s (LINE(ISTATEsJ)sJ=1s16)
CLOC =CLOC -UNIT

IF(CLOC «LTENOUGH) GO TO 6

IF(CLOC «GTeTIM (I-1)) GO TO 4

CONTINUE
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C

400

5C)

501
600

10

100

WRITE(6s501)

RETURN

LEFT=CLOC /UNIT
IF(PRINT)WRITE(69600) LEFT
RETURN

FORMAT (1H1/10Xs15A89A6///4X4HTIME»2Xs15A89A6// /% (%)
FORMAT (XsFT7e¢292Xs15A84A6)
FORMAT (%#)%)

FORMAT(////%PRINTING TERMINATED FOR EXCESSIVE OQUTPUT.#*s14s% LINES

1REMAIN TO BE PRINTEDe¥*/%)%*)

END

SUBROUTINE CUMUL (TCUM,DIM)

DIMENSION TOT(41)sPCT(41)sCUMTOT(41)sCUMAVE(41)sFREQ(500)
COMMON /AA/ PRINT UMNIT

COMMON /BB/ KSTATE{501)sTIM (500)9sKsLBL(41)sKTRIAL »EMAX
INTEGER DIMsFREQ

LOGICAL PRINT

DATA (CUMTOT=41(0.0))
DATA (ACUMT=0e0) s (NSTATES=0) 9 (FREQ=500(0))
DATA (KHI=0)
GET TOTALS AND PERCENTS THIS CYCLEeeePRINT
DO 10 1=1sDIM
TOT(1)=0.0
DO 1 I=1sK
ISTATE=KSTATE(I)
TOT(ISTATE) = TOT(ISTATE))+ TIM (1)
DO 2 1=1yDIM
PCT(1) = 100. * TOT(1)/TCUM
IF (PRINT) WRITE(69100) (LBL{I)»TOT(I)sPCT(I)sI=19sDIM)
ACCUMULATE INFORMATION FOR THIS CYCLE TO OVERALL TOTALS
FREQ(K)=FREQ(K)+1
NSTATES = NSTATES +K
KHI=MAXO(KHI sK}
DO 5 J=1sDIM
CUMTOT(J) = CUMTOTI(J) + TOT(J)
ACUMT=ACUMT+TCUM
RETURN
FORMAT//7/% STATE*s4Xe#TOTAL TIME IN STATE#s4Xs%0/0 TIME IN STATE®*

L //7(XA596XF943913XF941))

END
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Table A-10.- Part of initial output of MARCHAIN from which text Figure 4 was made.

PRCJECT 01 0254

TEST RUN FCR PROGRAM GEOMARK

ZMCXCQC=IDTMMITOI>

500
499
498
497
496
495
494
493
492
491
490
489
488
487
486
485
484
483
482
481
480
479

ZEXZrXC=IOQMMTOT D>

ZXrXC—=IOMMOoOO T P>

cb

cD#
DUy
pU#
pL#
DU

cu#
L=
1%
co
co#
cb=
DD#
no
cu

BC
21:}
AR
AA

laxle P(leJd) MATKRIX FCR T=R MCDEL

3 BCREHCLES

122444
/11177
17777
1177/
1117/
LT
Hana
17777
11777
1117/
11117/
17777

M
04000
« 246
0.000
0.000
0000
0,000
0.000
0,000
0,000
0,000
0+000
4l
368
0+000

1.000
1.000
1,000
1,000
1,000
1.000
1.000
1.000
1,000
1,000
1.000
1,000

526

632

LITHCLCGIC SYMBCLS = INPUT
RERBGRNERURRD LS [))) ASIIIIIIIIIIIIII JIIIS 2ILIIEIII0070007
Semmemesmemcen® DGR MDLLL)1)IIIIIIIIT JIIIT SIIIIIIII 002007
Semmeemseamemes e o BURWRORUBRRED L) 1)) 11111111177 70077
B e T T R L L T IR S Y Y VY VT4
e b I R L Nl 1 2 2 2 TSI,
- - - - - - - LR T T Y T pesppapp—— X"
- - - - - Ll T TP e P pape—" £ 2
e e e a - ——-——— m——CRURBRGRRRBUR/ )
Mo meeemcmmmeses  cemce meccmecmammanecR USRS R0 1170777000707
S s emmsamanen  mceem o KUABRRRBGRERG ) LL1) ) LI IIIIIIIIIIII T
Semmmmemmma K ® RURU RGS[))))1II1111F 1III) 1IN 10217707
SUGRBURRURURRY )LL) SIIIVIIIIIIIIILI 1IIIE 1P IIIIII 107077
TRANSLTION PRCBABILITY MATRLIX INPUT
A 3 C 0 F G H I J K L
018 a982 0,000 0eD0V 0400V 04000 0,000 04000 04000 0,000 0.000
0e00V 40138 .736 UeLOV 04000 0a000 04000 04000 0+000 0.000 0.000
UeUOU 04000  LULB 0¢00U 04000 04000 02000 0e000 04000 0,000 o246
V00U 0eD0V D,000  ULB 4736 04000 04000 0V40N0 04000 0000 o246 00000
0e0NU DeuhU D000 Je000 #4018 o736 0,000 04000 06000 246 04000 04000
0s00U Vet200 L0V UG 000U o018 4736 U.000 ¢246 00000 04000 04000
0¢00V 04000 2,000 D4000 0000 0,000 U8 4982 0,000 04000 0,000 0,000
0eUNU 04u00 LLU00 Us0D0 9,000 0,000 0,000 L3688 ,632 0.000 0,000 0,000
De00U 0sU0U (1,000 Us0D0 04000 +158 04000 0.000 368 +474 0,000 04000
000U Va0V VLU0V UeU00 o158 04000 04000 G000 04000 368 474 0,000
0«00V 02000 0,00V «158 04000 U000 04000 0.000 000D 0s000 o368 L474
UelOU 0eDOU o158 Ue00U 04000 0+000 0400V 0.000 04000 00000 04000 o368
VeOU 4158 0,U0U UsOUO 0e000 04000 04000 U000 Ve000 04000 04000 0,000
2632 04000 0,000 0e0O0 04000 04000 0,000 02UQ0 VOOV 0+000 0000 0.000
CUMULATED PROBASILITY MATRIX
<018 1,000 1,000 1,000 14000 1,000 1,000 1,000 1.000 14000 1,000 1,000
0400V L01B 754 G754 754,754 ,754 7564 754 ,754 ,754 ,7154
Vo0V 000U L0188 4754 754 4754 4754 /%6 754 o754 754 1,000
Ve00U 04000 UeULD  «0LB o754 o754 o754 754 o754 «754 1.000 1,000
0s00U 04000 V,000 VeDVO 018 4754 ,754 .754 ,754 1.000 1,000 1.000
0e00U 04000 0,000 V000 0,000 018 ,754 754 1,000 1,000 1,000 1,000
Ge00U 020GV DOV 0000 0000 04000 018 14000 14000 14000 1,000 1.000
VeUCV 04000 GO0V Ue0D0 0000 04000 04000 368 14000 14000 14000 1.000
0e00V 0e00U 040GY Va0 Va0V «158 4158 4158 4526 14000 1.000 1.000
0e00V 000U D4V0L Ve0H0 158 158 4158 158 158 +526 1.000 1.000
0000V 02000 (4UIL 198 <158 4158 158 L158 L1858 +158 .526 1,000
0sDOU 06000 4158 #4158 4158 4158 L1558 L1588 ,158 +158 L1858 ,526
0e00V 158  ,153 ,158 4158 4154 4158 158 L158 158 L,158 ,158
e632 #6532  .632 <632 «632 4632 4632 1632 4632 632 4632 632
CLCCK=#55590.979
TRANSTITICNS= 200
START= A
I IT
- e ———— - L TR pppppapm——— 1.2
- - = - - ————- Elal L T PP e, ]
- " - - - - - -
- - - - - - -
- - - - - - -l
- - - - - - - - - Ll LT TP —" ¥}
- ™ - - - LD T T T " 3.1
- " - - - - - - - - - - - - - -
- o - - - - ———- - - -
e em e — - —mmen  a=dfddstapstnes//
Seememmmaceses  mecce  cmccmccacnmamnatl  BUSRE 8371171771170 777
TEmSmeSesesases  mecao  wcHURERQUURUREDS ) (/1)) JIIIIIIIIIIIIII07
mmmmee a8 MRMBE WS LSL)))IIIIIII IIII) FIIIIIII1710077
REBRAGDCGRUED ) L1[)) SLIIIIIIIIIIILII] IIIIS 1IIIIIIII1000407

34

1I1100070027777
1100001707017177
110000177007777
110700170177777
110000170007277
#>/700100701177
Y LT 2T TSN
PPl I TR Y )
8111010001010 7
1110001700077277
110000007000777
111100077017 077
II0170000000707
110000000000177

N
04000
0.000
04000
0.000
04000
0.000
0,000
0,000
0.000
0.000
0.000
04000

2474
368

1,000
1.000
1,000
1,000
1,000
1,000
1.000
1.000
1.000
1,000
1,000
1,000
14000
1.000

O>/LI1111177177
®>//1111/00707//7
w11 1170777777
——CHBGRGBORER S
——CHRGRRRGBE DD
UGB ER NSV N
B T YR T2 L 22 3
/1111100010777
w1 11010007777
m——CHRaRRBERRENY
BRI TR LYY T TP
wS/111110777777
w8 41110071077/
wR/111101077777
PRS2 T I LT LTS
—adtbbuttaaantany
/11717017777
117001007077 777
1111700007777 77
1111117177777/ 7
1111177777777 77
117111717072 407/



Table A-11.- Controls, [q.. I matrix input, lithologic symbol cards and matrix of state probabilities for
changes of state. i

KRUMBEIN PRCJECT NCs Ol 0254 (SCHERER WELL NCe 3}
4 X 4 Q(I,J) MATRIX USED IN PRCGRAM BCREHCLE

CCNTRCLS
DIM= %4
HILIM= 80
CLIM= «30
Cl= 2.16
TRIAL= 2
PRINT=

STARTING TIME FCR RANDCM NUMBERS =#239376.0000

MATRIX CF TRANSITION RATESe Q(Is.))

prppeppny g YL LT T L L L DL L bl L L et odndiad o

A B8 C b MARGIN
0 00 18 «18 13 048
«08 0 00 25 olé4 046

o) (] w >

048 110 «39 0 00 197

INPUT FCR GRAPHS ese

A 22 TS
B F—
c XXX
D w/ =)=/

MATRIX CF STATE PROBABILITIES FRCM Q(IsJ) MATRIX

A B c D MARGIN
0 00 37 T4 1,00 48

ol6 ol6 70 1400  L46

28 o T4 «74 1400 1010

o o ® P

024 .80 1,00 1,00 1,97



Table A-12. Last part of simulation, of which the early portion was used for left side of Figure 5.

4677 8 mmen=n
46452 B ——————
46028 B —m————
46403 B m——————
45,79 D =)=/
45.54 B —memme
45430 8 ——————-
45.05 B —————
44481 B m——————-
464456 B ——e—e-
94.32 C evtesee
44407 C evevee
43483 A I
43,58 A whRBen
43e34 A Hitenty
43.09 A wRRB s
42.85 A LT
Q2.60 A L2 2 2% 213
42436 [ XEREX)
42011 C see0se
41eRT B e m———
4162 B ———————
4138 B -
4113 B8 ——————
40489 C etennse
40064 C eetsnee
4040 C sesees
404,15 C evnoee
39.91 B ——————
39.66 B —me———
3942 B m——————
39.17 B e m————
38.93 8B e m—e——
38.68 B _——————
38.44 B m——————
38.19 8 ——————
37‘95 C LR N XN
37.70 C svenee
370“6 C e®aeee
37«71 C steece
36+97 B ———————
3672 B ————
3648 B e ——
3623 B m——————
35.99 b ——————
35.74 D -l
35450 D =/=/=/
35.25 C eesces
35.01 C ececee
3476 C DR Y
34.52 C esesnns
34427 A L2222
34.03 A B 222
33.78 D -l=)=/
33.54 L -r=/=/
33.29 D -/ =)=
33.05 A LA AL
32,80 A BRBEGS
32.56 A P
32+31 A L2 L 220
32,07 A veape
31.82 A whBEY
31.58 A L322 T
31433 A T
31.09 m——————
30.84 B ———————
3060 B ————-—
30.35 C soeene
30.11 C ecesee
29.86 C svecee
2962 C eteces
2937 B —m————
2913 B ———e——
28¢88 B ome———
28.64 C eteene
2839 C evscne
28«15 C esesne



Table A=13. - Initial characteristic output of program MARCHAIN.

KRUMBEIN PRUJECT NCo U1l 0254 (SCHEREK WELL NCe 3)

4 X & P(lyd) MATRIX USEL IN PROGRAM GECMARK

o0 P

500
499
498
497
496
495
494
493
492
491
490
489
488
487
486
485
484

O0OX P

TOXT P

TSSO D >

TTTTTID>DPOO>>PPP PP P

LITHCLCGIC SYMBZLS = INPUT

'X-2-1-1°%

-l/=/=/

TRANSITION PROBABILITY MATRIX INPUT
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CUMUILATED PRCBABILITY MATRIX
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« DRV e 690 «B890 1.000
« 190 «500 ,L,330 14000
«210 4690 L8600 14000

CLCCK=#55590.979

TRANSITIQONS= 500

START= D

3 30 48 6 30 3
ob Sh 3r db dp i
35 3 33 3k 3p 40
4830 g 3 3p $F
22X 2
pibdpdbar it
R 2121
PL 22 -1
a%0 0
TN RN N
X X0
222 2% )
- -
-/=/=/
-/w/=/
Py X
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KANSAS GEOLOGICAL SURVEY COMPUTER PROGRAM
THE UNIVERSITY OF KANSAS, LAWRENCE

PROGRAM ABSTRACT
Title (If subroutine state in title):

FORTRAN 1V computer program for simulation of transgression and regression with continuous-time Markov

models

Date: Final versions, May 1968

Author, organization: W.C. Krumbein, Department of Geology

Northwestern University, Evanston, Illinois

Direct inquiries to:  Author, or

Name: D.F. Merriam Address: Kansas Geological Survey

University of Kansas, Lawrence

Purpose /description: _ PEQUMAT transforms a fransition probability matrix to its corresponding transition

rate matrix and vice versa. BOREHOLE simulates lateral-shift phenomena, such as transgression and

regression with a continuous-time discrete-state Markov model.

Mathematical method: PEQUMAT is based on mathematical relations between the elements of a Lp,.] matrix
T

and its corresponding [q..] matrix for a given At, as described in the text. BOREHOLE uses random numbers
1

Restrictions, range: for waiting times and state changes.

Computer manufacturer: Control Data Corporation Model: 6400

Programming language: Modified FORTRAN 1V

Memory required: K Approximate running time:

Special peripheral equipment required:

Remarks (special compilers or operating systems, required word lengths, number of successful runs, other ma-
chine versions, additional information useful for operation or modification of program)
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COMPUTER CONTRIBUTIONS

Kansas Geological Survey

University of Kansas
Lawrence, Kansas

Computer Contribution
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22,
23,
24,
25,
26,

Mathematical simulation of marine sedimentation with IBM 7090/7094 compurers, by J.W.

Harbaugh, 1966 .

A generalized two-dimensional regressron procedure, by J R Dempsey, 1966
FORTRAN 1V and MAP program for computation and plotting of trend surfaces for degrees 1

.

through 6, by Mont O'Leary, R.H. Lippert, and O.T. Spitz, 1966

FORTRAN lI program for multivariate discriminant analysis using an IBM 1620 compufer, by

J.C. Davis and R.J. Sampson, 66 i

FORTRAN 1V program using double Fourier series for surface flfhng of |rregu|crIy spaced

data, by W.R. James, 1966 . . .

FORTRAN 1V program for estimation of cladlshc relahonshlps usmg the IBM 7040 by R. L

Bartcher, 1966 . . .

Computer oppllcaflons i the earth sciences: CoIquuium on classification procedures,

edited by D.F. Merriam, 1966 . .

Prediction of the performance of a solution gas “drive reservoir by ‘Muskat's Equahon, by

Apolonio Baca, 1967 . .

FORTRAN 1V program for mofhemohcal srmulohon of marine sedlmentahon with IBM 7040

or 7094 computers, by J.W. Harbaugh and W.J. Wahlstedt,

Three=dimensional response surface program in FORTRAN || for the IBM 1620 compurer, by

R.J. Sampson and J.C. Davis, 1967 . .

FORTRAN 1V program for vector trend analyses of dlrechonaI dafa, by W. T Fox, I967
Computer applications in the earth sciences: CoIquurum on trend analysis, edited by DiF:

Merriam and N.C, Cocke, 1967 . . >

FORTRAN 1V computer programs for Markov chain experrmenfs in geology, by W C

Krumbein, 1967 S

FORTRAN |V programs to defermme surfoce roughness in ropography for fhe CDC 3400

computer, by R.D. Hobson, 1967 . . .

FORTRAN Il program for progressive I|near fit of surfclces on a quodrohc bose usmg an IBM
J. Cole, C. Jordan, and D.F. Merriam, 1967
FORTRAN |V program for the GE 625 to compute the power specrrum of geologrccl surfaces,

1620 computer, by A.J
by J.E. Esler and F.W. Preston, 1967 . . .

FORTRAN IV program for Q-mode cluster analysis of nonquanhtahve data usmg IBM

7090/7094 computers, by G.F. Bonhc:m-Ccrrfer, 1967 .

Computer applications in the earth sciences: CoIquurum on time-series cmaIyS|s, D F.

Merriam, editor, 1967 .

FORTRAN Il time=trend packoge for the IBM 1620 compufer, by J C. Davis and R. J

Sampson, 1967 . . .

. Computer programs for mulhvorlofe ano|y5|s in geoIogy, D. F Merrlam, edlfor, 1968

1967 .

.

FORTRAN 1V program for computation and display of principal components, by W.J.

Wahlstedt and J.C. Dovrs, 1968 -l

Computer applications in the earth sciences: Colquurum on 5|mula'r|on, D.F. Merriam

and N,C, Cocke, editors, 1968 . . .

Computer programs for automatic conrourlng, by D.B. Mclnfyre, D D PoIIard and

R. Smith, 1968 ol

Mathematical model and FORTRAN v progrom for computer Simblafion of deltare

sedimentation, by G.F. Bonham-Carter and A.J. Sutherland,

FORTRAN 1V CDC 6400 computer program for analysis of subsurface foId geomefry, by

E H T Whlffen, ]968 . . ° . . . . .

FORTRAN IV computer program for simulation of transgression and regressron wn'h

continuous-time Markov models, by W.C. Krumbein, 1968

1968

.$1.00
. $0.50

. $0.75
. $0.50
.$0.75
.$1.00
.$1.00
.$1.00
.$1.00

. $0.75
«$1.00

.$1.00
.$1.00
.$1.00
.$1.00
. $0.75
.$1.00
»$1.00
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