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Editor’s Remarks

This colloquium, fourth in a series on "Computer applications in the earth sciences”, deals with simu=
lation. To simulate is to "feign" or "imitate". Attempts at simulation by earth scientists, however, have
not been particularly successful until recently. Prior to the development of computer simulation, geologic
modeling was confined to small-scale physical models. Inherent in these models were problems of scaling
material strengths and responses, and the problem of geologic time.

In other fields such as business, medicine, physiology, and the social sciences, simulation is in an
advanced state. Geologists may do well then to adapt techniques already developed by other workers. A
wide range of these techniques, presently available in engineering, geophysics, geography, and mathe=
matics, is demonstrated here in the proceedings for the Colloquium on Simulation.

Although geologic modeling still is in an early stage of development, it offers a promising area of
future research in earth science. Applications discussed in this colloquium include logging methods, salt-
dome development, stochastic processes in stratigraphic analysis, sedimentation rates, and delta building.
Little imagination is required to find other equally valid applications.

G. Bonham=Carter and J.W. Harbaugh state "The objectives of simulating natural systems are nor=
mally to test alternative models and to see how they react under various conditions; the natural system itself
cannot be changed (unless it is partly man=influenced), only the model". Harbaugh (Mathematical simula=-
tion of marine sedimentation with IBM 7090/7094 computers: Kansas Geol. Survey Computer Contr. 1, 1966)
was especially successful in developing a model to imitate the process of sediment transport and deposition
within a sedimentary basin. Many other geological models were reported subsequently in the literature.

It is hoped that this colloquium will serve as a stimulant to those engaged in simulation and as an
introduction to the technique for others. The colloquium is structured to allow maximum interchange of
information between participants. We believe, as J.W. Harbaugh does, that "Mathematical simulation
with digital computers offers important opportunities for geologists, opening the door to an experimental
approach in fields where experimentation has, heretofore, been difficult or impossible" (Harbaugh, Com=-
puter simulation as an experimental tool in geology and paleontology, in Essays in paleontology and
stratigraphy: Dept. Geol., Univ. Kansas, Sp. Publ. 2, 1967).

We are pleased to acknowledge help of our co=sponsors==the Computation Center, R.G. Hetherington,
director, and R.J. Robinson, deputy director; and University Extension, R.F. Treece. J.C. Davis and
O.T. Spitz of the Geological Survey and G.D. Shilling of the Computation Center have assisted with the
preparations; Mrs. Laquetta Karch and the Geological Survey helped with the typing; W.E. Kukuk and
R.W. Jaeger of the University Printing Service provided assistance in preparing the proceedings for publica-
tion.

Proceedings of other colloquia have been published as Geological Survey Computer Contribution 7
(classification), Computer Contribution 12 (trend analysis), and Computer Contribution 18 (time-series
analysis). A list of Computer Contributions may be obtained by writing the Editor, Computer Contributions,
Kansas Geological Survey, The University of Kansas, Lawrence, 66044,
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PATTERNS AND INFORMATION

by

Preston C. Hammer

Pennsylvania State University

INTRODUCTION

The electronic and computer age has led to
many new interpretations of words previously in the
language. The words gnalog, imitation, simulation,
emulator, copy, model, reproduction, and duplica=
tion have more or less obvious relationships to each
other in the present jargon. It would be interesting
to try to sort out the rather large number of words
tagging such concepts. Although | do not propose
to attempt this here, | will illustrate how certain
mathematical terms relate to the broad area of simu-
lation. It is unfortunate, in my opinion, that the
intuitive meanings of mathematical concepts have
been swallowed by the day formalisms of algebra,
logic, and ill=chosen axioms.

Despite numerous opportunities we have ne=
glected in our work to show the relationships among
the different fields of science and, as a result, there
is a lack of transfer of information. In the space
allocated, | will try to give an indication of what
| mean.

APPROXIMATION SPACES AND SIMULATION

Topology, in one interpretation, may be call=
ed the study of closeness. Thus a neighborhood of
a point contains all points considered to be close to
the point. In simulation practice, for example,
there is the system to be simulated and there is the
system designed to simulate it. If you should ask
how well the simulation imitates the original sys=
tem, you have asked, equivalently, how close the
simulation is to the original. Topological spaces
have been axiomatized in such a fashion that they
are insufficiently general to discuss simulation prob=
lems.

Any problem in which an object (e.g. a sys-
tem, e.g. the universe) is to be modeled, simulated
or imitated | choose to call an approximation prob=
lem. Usually, there is a set of objects to be approx-
imated. Let me call such a set E. Now suppose
p is an object in E and we wish to discuss approxi-
mations to it. At the outset, | find it convenient
to be liberal so that you may adopt my sysiem to
your needs. Thus | will initially concede that any
object q, of your choice, may be considered an
approximation to p. For example, p may be the-
solar system and q may be a set of differential equa-
tions with appropriate initial values to be used to

approximate the location of objects in the solar sys-
tem. Here we have problems of patterns and infor-
mation,

In our delightfully sloppy language | can say
"solar system" and each of you will conjure up mean-
ings for that pair of words. In one way we all know
what the solar system is; in another, we have little
information concerning its detailed structure. Thus
your differential equation model will not be a model
of the solar system but of the pattern you have dis-
cerned. This pattern may be called an gbstraction
from the solar system and is in itself only a shadow,
or projection, of the "real" system. This pattern,
while already too complex to treat by the differen=
tial equation approach is itself an approximation to
the solar system. Thus the differential-equation
system represents a simulation of an abstraction. If
we convert the differential system into a form suit-
able for computation, yet another simulation takes
place. When we enter the data and program into
a computer, we have yet another approximation
because the computer only simulates arithmetic
operations. There are, naturally, many equation
systems which may be used to approximate the solar
system. When is one better than another?

Now | return to the set E of objects to be ap-
proximated and | ask: When will q be a good approx-
imation to p? The following criteria are suggestive.

1. g must contain the essential information in
p.) (i.e. g must adequately preserve the pattern of
p .

2. q must be within reach economically.

3. q must be better than p for the purposes in
hand.

Of these criteria the first requires a criterion
of closeness, information-wise. The second cri-
terion is obvious and the third sometimes occasions
raised eyebrows. Yet who looks for an approxima=
tion when the original will serve? It is obvious why
a differential~equation system may be considered
better than the solar system for purposes of fore=
casting eclipses and so on.

Being reasonable, practical people, we now
say let v(p) be the set of all objects q which we
wish to consider as possible approximations to p.
The binary relation [(p,q) :p€ E, g € v(p) ]

| then call an gpproximation system. | do not yet

call it a space because no criterion of preference
is yet available to help choose an approximation
for p. | hence assume an order (preference) relation



T(p) in v(p). If (q], q2) € T(p) then | will say "9,
is at least as good an approximation to p as q, is. "

Because each q € v(p) is just as good as q as an ap-

proximation to p, | may assume that T(p) is a reflex-
ive, i.e. (q,9) € T(p) for each q € T(p). | will also
make the assumption that (q;, 9) €T(p) and (q2,q3)

ET(p) implies (q], qS)ET(p) ie. "qy better than
q, and a9 better than 93 implies a better than 93"

This is the property of transitivity (order). | call the
ternary relation

A =1L, qy, 9y :PEE, (@y,9,)

an gpproximation space.

Concerning approximation spaces which are so
simply defined, one might think that nothing can be
said. On the contrary, every topological space is
an approximation space but rather few approximation
spaces are topological spaces. There are many trea-
tises written on topological spaces. Are approxima=
tion spaces too general? | say that this definition,
which | decided on last year after discussions with
Professor D. G. Moursund, is the most specialized
collection of systems which can be adapted to your
needs but that for particular needs additional re-
strictions are easily inserted. The theory of these
spaces and applications has barely begun.

The ideas apply to the approximations which
are called language translations, and to simulations
of all kinds. In many cases, as in language transla-
tion, the establishment of a precise preference rela-
tion is difficult.

Incidentally, in the above framework an ap-
proximation 99 is v(p) is a best approximation pro=

T()1]

vided (qo, q) € T(p) for every q € v(p). Note that

it is only a matter of interpretation to change from
"at least as good as" to "at least as bad as" and |
also have worst approximation defined by the same
system.

FILTERS A LA MODE

Although approximation spaces have their roles,
it often happens that conditions or criteria are given
which select objects but which are not suitably in-
terpreted as "closeness" conditions. Finding myself
dealing with such criteria led me to generalize the
concept of filter, using filters of chemistry, ciga=
rettes, and electronics as the guide.

A filter, F, in a set M is any device which

accepts or rejects each element of M, Then if A

is the set of elements accepted by F then cA =M A
is the set of elements rejected by F and (A, cA) is
called the action of F.

Examples of filters abound in mathematics. Thus
any set=property is a filter because it accepts ele-
ments of the set. Every equation or inequation is a
filter accepting numbers, vectors, or functions which
satisfy it. The Sieve of Eratosthenes is a filter. It
accepts prime numbers and rejects composite num=
bers. A function is a collection of filters, (x,f)
accepts fx from the range of f. A computing ma-
chine is a filter, (I, M) accepts M(l) = 0, the out=
put, where | is the input.

It is seen easily that two filters F,and F, in

M produce the conjunction filter which accepts
A] n A2 if F] accepts A, and F, accepts A2

Simultaneous equations and axiom systems are con=
junction filters. It is also readily seen that Fyr Fy

produce an eguivalence relation in M where p is
equivalent to q provided p and q are accepted or
rejected together by F, and F,. Every equivalence

relation can be generated by a suitable collection
of filters.

Although | will not here go into details, | may
now point out that filter theory embraces approxi-
mation spaces because for a given p, an approxima=
tion space accepts sets close to p and rejects others.
| have shown that the theory of filters also includes
finite projective planes as well as topological spaces.
The theory of filters, again, is open and on it a
theory of machines may be based.

Of what importance can a theory of filters be
in simulation? The approximation space aspect is
obvious. However the process of making a model
is a filtering process. The information we have
concerning the solar system has been filtered whether
we wish it or not, and the patterns we recognize
are not by any means the only ones possible. They
are mostly the patterns we have been trained to see.
You doubt it?

Consider the word nowhere. Almost inevitably
if you have been trained as | have you will read it:
no where. But why not now here? The latter pat=
tern is just as present in "nowhere" but many people
| have asked have never seen it. Patterns which we
recognize are the only ones we can use and we tend
to recognize only those which we have been told
to see. This is perhaps one reason why punning is
such an important device of language learning -
new patterns are brought out.



SIMULATION OF GEOLOGIC SYSTEMS: AN OVERVIEW

by

Graeme Bonham=Carter and John W. Harbaugh

Stanford University

ABSTRACT

Systems philosophy provides the theoretical framework linking diverse applications of computer simu=
lation. Natural systems and man-made systems may be regarded as end members of a spectrum of system types.
Simulation of man-made systems employs operations research techniques; the objectives of simulation are to
optimize system design, and to test the performance of models under differing parameter settings. Simulation
of natural systems cannot readily utilize specialized simulation languages, as these are designed primarily
for industrial and business applications. The objectives of simulating natural systems are normally to test
alternative models and to see how they react under various conditions; the natural system itself cannot be
changed (unless it is partly man=influenced), only the model.

INTRODUCTION

With the explosive rise of simulation appli-
cations in a wide variety of fields (e.g. IBM, 1966),
there is a need to sit back and take stock. A num-
ber of questions arise regarding the utility to geology
of concepts and specific models developed in areas
such as operations research and sociai science. For
instance, can geologists make use of SIMSCRIPT or
DYNAMO, two of many specialized simulation lan=
guages? Much of the simulation literature is con~
cerned with topics such as queuing, inventory,
routing of vehicular traffic and so on. Is the philo-
sophy behind these studies similar to that employed
say, in a simulation of deltaic sedimentation?

It seems to us that the common thread linking
these diverse applications is the systems philosophy.
Even if not explicitly stated, computer simulation
of any process or collection of processes entails
three basic steps: the definition of a system; the
construction of a model; and the use of the model
to imitate the behavior of the system (Fig. 1). Let
us examine these steps a little more closely.

SYSTEMS, MODELS AND SIMULATION

We may define a system as a set of dynami-
cally interrelated parts. If we change one part of
a system, repercussions are felt in every other part
ot the system. Thus the planets form a system; the
atmosphere and lithosphere are both systems. A
factory is a system and so is a supermarket. Each
system must be defined by specifying its boundaries

and identifying its components. Systems may be
nested one within the other, depending upon how
each is defined. For example, Figure 2 is a diagram
illustrating a coastal system which might include
components such as beaches, streams, deltas, and
cliffs. Within this general system, one might want
to consider a delta system, or on an even smaller
scale, a single delta distributary as a system.

Systems may be either 'open® or 'closed!
(Von Bertalanffy, 1950). Closed systems are those
which have boundaries across which no import or
export of energy or materials occurs (Von Bertalanffy,
1951). Systems are more commonly open, being
continually affected by external factors, and in a
state of dynamic equilibrium. Factories have inputs
(e.g. raw materials) and outputs (e.g. finished pro-
ducts); their performance adjusts to the market need
for products and the rate of inflow of materials.
Similarly, a coastal system has inputs (e.g. streams,
longshore currents) and outputs (e.g. turbidity cur=
rents); its performance, embodied as beaches, deltas,
lagoons and so on is continually being adjusted to
'external® changes such as rates of sediment input,
eustatic fluctuations and storms.

Because a system consists of an assemblage of
complexly interrelated parts, it may be exceedingly
hard to predict the effect of altering the state of a
particular variable, or of changing the system struc-
ture. Man has first to simplify the system concep-
tually and to represent it with a model. Models are
themselves artificial systems that attempt to portray
the characteristics of some real system. Here we
exclude iconic models, such as miniature aircraft.

SYSTEM

MODEL >

SIMULATION

Figure 1.~ Three basic steps necessary for simulation of any process or collection of processes.
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Figure 2.- Nesting of systems.

There are many types of models, such as conceptual
and graphic models, but probably the most powerful
and flexible way of representing a system is with
mathematical or logical models. Mathematical
models may be analytic and seek complete and pre-
cise solutions to certain aspects of systems; or they
may be used for computer simulation, in which case
'solutions’ are obtained by observing the model's
'performance’ on a computer.

Simulation is the operation of the model of
a system in such a way that the behavior of the sys=
tem is reproduced as it moves through time. Simu-
lation in operations research, social science, and
natural science are all similar in that the basic
steps of system definition, model construction, and
model operation (simulation) are common to each.
However, an important distinction can be made be=
tween man-made and natural systems, as these dif-
ferent typesresult in rather different computer models
and objectives of study.

MAN-MADE VS. NATURAL SYSTEMS

A man-made system may be defined as a
system created and controlled by man. An example
is a factory whose components and structural organi-
zation are decided entirely by man, probably spe-
cialists in system design. If poorly designed, fEe
factory may be hopelessly inefficient; the flow of
materials and information must be routed so that
delays and queues are cut to a minimum. A holdup
in one part of a factory may have repercussions in
every other part; a strike by the men in one depart-

ment may freeze production throughout the plant.

A natural system is simply a system in which
man plays no part. For example, the solar system
is, so far, unaffected by any of man's activities. It
operates under natural 'laws'. A delta is a geologic
example of a natural system, although in this case
man is able to modify the system if he wishes. In
its untouched condition, a deltaic system operates
under natural controls.

Between these end=members of 'natural' and
'man-made' systems, a whole spectrum of hybrid sys=
tems exists. These hybrids are very commonly the
objects of simulation studies. Probably the best ex=
ample is the study of man's influence in ecology.
Natural ecological systems are delicately balanced
by an exceedingly complex interlock of relationships.
Simulation can help to answer questions about the
possible repercussions of man's intrusion on this bal-

ance (Watt, 1966).
Simulation of Man—made Systems

Simulation studies of man=made systems are
normally concerned with two basic types of question:

(1) How efficient is the structure of the system
for handling the tasks for which it is constructed?
The simulation seeks answers to these questions by
making changes in system design and testing each de-
sign in a series of simulation experiments. Each new
system configuration is tried by adjusting the model
structure to match the system change and simulating
the system behavior to see if performance is improved.
For example, a city planner may wish to know the
effect of excluding all passenger traffic from a city's
center, With existing traffic loads, where would
congestion points form, and what design would be
best for minimizing holdups? Using a simulation
model, alternative strategies may be explored thor-=
oughly without going to the expense of real-life
experiments. Notice, however, that changes in the
real system structure are explored using the model;
man—made systems can be changed, whereas pure
natural systems cannot.

(2) The second type of question is related to
the performance of a particular system under a variety
of conditions. For instance, the city planner may
want to know how the existing traffic control system
in his city will perform under an increased traffic
load. With a model of the system, a wide variety
of computer experiments may be made to test the
sensitivity of the system to changes in the controlling
parameters.

A number of recent books have appeared that
deal mainly with simulation of man-made systems,
e.g. Mize and Cox (1968), Martin (1968), Evans,
Wallace, and Sutherland (1967), and Naylor and
others (1966).

Simulation of Natural Systems

The simulator of a natural system is faced



with slightly different problems. A natural system,
if it is to remain so, cannot be altered or optimized
by man. The purposes of simulation studies here
are:

(1) To test alternative models of the system.
Although the system design cannot be altered, it

may be very instructive to try various model designs,

to see which best approximates the system's behav-
ior.

(2) Given a particular model, to explore the

possible variations produced by altering or 'tuning'
the input parameters. This objective is the same
as (2) for man-made systems.

The process of trying alternative models is
an iterative one. Normally during the course of
model development, a number of alternatives will
be tried, with a gradual improvement at each step.
By the time a particular study is finished, earlier
models may be forgotten because of their short-
comings, but they comprise an essential stage in
this 'learning' process, in which the system/model
fit is improved progressively .

GEOLOGIC SIMULATION: NATURAL SYSTEMS

A delta is a natural geologic system that
has been studied by computer simulation (Bonham-
Carter and Sutherland, 1967). The system to be
modeled was defined as being that area in front of
and including a single river distributary mouth, and

thus constituted only a small subsystem of a whole
deltaic complex. The main factors considered were
the rates of river discharge, both water and sedi-
ment, the channel dimensions and the geometry of
the marine basin into which the sediment settled.
Offshore energy, tidal fluctuations, and other fac-
tors were not considered.

The principal objectives of the study were
twofold:

(1) To assess the variations in deltaic depo-
sition produced by altering the input parameters.
For instance, how sensitive is the system to an in=
crease in river depth, or to a change in grain size
of the sediment? (2) To test Bates' (1953) hypo-
thesis that a river flowing into the sea has a velocity
structure similar to that found in a plane jet.

Initially, a static model was constructed
that calculated the rate of deposition of sediment
at each of a number of points in front of the channel
mouth, using fixed rates of discharge, and a fixed
composition of the sediment load. The total sedi-
ment load was represented by a number of nominal
or statistical particles that were assumed to be
traveling first parallel to the channel bottom then,
having passed out of the channel mouth, to be
following downward trajectories (Fig. 3). When
these particles settled to the bottom, they fell into
the cells of a horizontally placed accounting grid
that recorded rates of deposition. The slope of the
settling trajectories was assumed to be w/v, where

RIVER MOUTH GRID

NOMINAL PARTICLE
TRAJECTORY

ACCOUNTING
GRID

Figure 3. = Structure of delta simulation model, showing vertical river grid and horizontal accounting grid.
Statistical particles issuing from center of each river grid cell are traced along settling trajectories until

they settle into accounting grid cells.



w is the downward component of velocity (equal to
minus the fall velocity of the particle concerned)
and v is the forward velocity. The value of w was
supplied as input; v could be determined at any
point in front of the mouth assuming a model of flow
that incorporated both Bates' plane jet hypothesis
and variation in velocity with depth due to shear
along the floor of the channel.

The sensitivity of this model to changes in
grain size, river depth, river slope and sther para-
meters was tested in a series of runs (Fig. 4). It was
found that a narrow depositional area was produced,
with very low angles of 'foreset' slopes, about 1/2°,
It was argued that the narrowness of the 'fan' might
have been caused by the rigid nature of the jet
nozzle, like a fixed hose pouring water into a tub.
Maybe in the natural system the flow direction os=
cillates from side to side, thus spreading sediment
more widely. The computer model was modified
accordingly to incorporate this effect (Fig. 5), al-
though this 'rotation' effect is probably not the only
mechanism responsible.

Variation of Grain Size

5?0 METERS

KRR
Bat

Figure 4. - Results from computer experiments using
static model of delta. Fine points are terminal
coordinates of statistical particles as they settled
into horizontal accounting grid cells. River chan=
nel dimensions are 100 meters wide and 10 meters
deep with average current velocity of 2m. /sec.
Three diagrams plotted by CALCOMP plotter,
and record sensitivity of model to grain-size
changes. Sediment diameters: 0.3 mm (upper),
0.2 mm (center), 0.1 mm (lower).

More serious, however, was the realization
that this model was unable to explain the formation

Fan Produced by Rotation

o 280 560 METERS

L A ::"
Al

3837

hevay s
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Figure 5.= Parameters for simulation run identical
to those that produced lower diagram in Figure
4, except that main axis of flow rotated from
side to side, using random number generator to
determine each rotation position.

of distributary mouth bars or submerged natural levees
marginal to the flow, as Bates (1953) had originally
suggested. Furthermore, the static nature of this
model prevented a response to sediment accumulation
directly at the channel mouth. Rivers do not become
completely blocked at the mouth, as would occur if
these simulation runs were allowed to continue long
enough.

The model was improved by making it dynamic
and including a negative feedback control feature.
The model structure was altered so that it could oper-
ate over a number of discrete time steps. At the
termination of each increment, the state of the model
was recorded and used as the starting conditions for
the next time step.

As the grid cells around the river mouth filled
with sediment, they eventually reached a level where
no further net accumulation could occur, and depo-
sitional and erosional tendencies balanced. The
elevation with reference to mean sea level of this
equilibrium surface was called the limiting depth
surface (L.D.S.) and was defined for each cell in
the horizontal accounting grid. The duration of
each time step of the model was defined as being
the minimum time required for any cell to reach its
L.D.S. value. Having reached the L.D.S., the
cell became part of the delta 'platform' (Fig. 6).
During subsequent time steps, sediment could no
longer settle onto the delta platform, and the
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Figure 6.= As sediment accumulates in each account-
ing grid cell, sediment/water interface rises until
equilibrium between erosion and deposition is
reached. Once a cell fills to this point it be=
comes part of 'delta platform', Statistical par-
ticles do not settle until they have crossed delta
lip at margin of platform.

nominal particle trajectories remained horizontal
until they crossed the delta 'lip' at the margin of
the platform. Thus as time moved forward, the
delta 'platform' moved outwards from the channel
mouth. Deposition of sediment was controlled by
the position of the delta lip, but the delta lip it-
self was controlled by deposition. Thus a negative
feedback loop was able to keep the model under
control (Fig. 7).

Using this model, it was found that 'deposits'
possibly equivalent to a distributary mouth bar and
submerged levees formed as predicted by Bates'
hypothesis. Figure 8 illustrates a stratigraphic sec=
tion (drawn by a CALCOMP plotter) through a simu-

POSITION OF

lated delta showing a distributary mouth bar.

To summarize, this simulation model was used
fors

(1) Testing various models of a delta system
encompassing deposition from a single distributary;
shortcomings in the static model were found as a re-
sult of the first experiments; Bates' theory was found
to produce a narrow fingerlike deposit that soon
choked the channel mouth; the model was improved
by making it dynamic.

(2) Testing delta response to changes in sedi-
ment type and channel dimensions.

Other published geologic simulation studies
that fall into this 'natural systems' category include
evaporite sedimentation (Briggs and Pollack, 1967),
marine sedimentation (Harbaugh, 1966; Schwarzacher,
1966), salt dome development (Howard, 1967), sand
grain evolution (Jizba, 1966), stratigraphic sequences
(Potter and Blakely, 1967; Carr and others, 1966;
Krumbein, 1967), brachiopod time =trend curves
(Fox, 1967), petroleum reservoir behavior (Harbaugh,
1967; Breitenbach, 1964), interstitial water chemis-
try (Scholl and Johnson, 1967), and others.

GEOLOGIC SIMULATION: MAN-MADE SYSTEMS

In this short paper we will not discuss the simu=
lation of geologically oriented man-made systems,
except to point out a few of the major areas of appli-
cation. Man-made systems generally have some
criterion for measuring efficiency; this criterion is
often economic. Simulation of man=made systems
usually is done in order to test various system de=
signs or operating characteristics, to find a strategy
which minimizes cost, maximizes profits or optimizes
some other criterion. This type of simulation is,
therefore, an exceedingly important tool for decision=
making.

The design of mining operations is one of the
classic areas for operations research, and numerous
simulation studies have been carried out in this area,
e.g. Bucklen (1966), Manula (1966), Sanford (1965),
Waring and Calder (1965), and many others.

Another very important simulation application
is in the search for mineral deposits. With a priori

DEPOSITION OF

DELTA LIP

SEDIMENT
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Figure 7.~ Negative feedback loop showing interactive control between delta lip and sediment deposition.
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Figure 8.~ Stratigraphic section along length of simulated delta, drawn by CALCOMP plotter with vertical
exaggeration X18.7 from output using dynamic model. Sediment/water surface drawn in for each time
increment, and appears as series of 'foreset' beds. Z.F.E. = Zone of Flow Establishment of jet velocity

field; Z.E.F. = Zone of Established jet Flow.

knowledge of the frequency distributions of mineral
'targets', it is possible to test the success/failure
ratio of a number of alternative exploration strate =
gies (Griffiths and Drew, 1964). Individual pros-
pects also may be 'mathematically drilled"' by simu=
lation in order to make an estimate of prospective
reserves (Smith, 1968). Miesch, Connor, and Eicher
(1964) have used a simulation approach to evaluate
different sampling designs for geochemical surveys.
These are examples of dominantly man=made systems
(the search or sampling framework) with some 'natu -
ral' components (the rock composition variability).

A number of important simulation studies
have been accomplished on dominantly natural sys=
tems, that have been modified by man for his own
uses. For example, the design of water-resource
systems has been the subject of extensive simulation
studies (Hufschmidt and Fiering, 1966). In other
areas, engineering geologists may wish to evaluate
the effects of altering natural systems. For example,
the following types of questions may arise:

(1) How will a change in a particular harbor
design affect the stability of the local beaches?

(2) What effect will be produced on a parti-
cular water table by repeated drilling and pumping?

(3) How will dredging affect the siltation
pattern in an estuary ?
Using a simulation approach, questions of this type
can be answered by employing simulation models of

the system. The model can be modified, and man's
probable influence studied before the real-life
changes are made. In such cases, computer simula-
tion may be an alternative or, better still, a supple=
ment to physical scale modeling.

CONCLUSIONS

(1) Geologic systems may be usefully classi=
fied according to whether they are influenced by
man, whether they are natural systems, or a hybrid
between these two extremes.

(2) Simulation studies of man=made systems
can make extensive use of techniques borrowed
from operations research and allied fields. Consid-
erable economic advantages are to be gained by
using simulation for systems design and decision=
making.

(3) Natural systems often require complex
models for their simulation. Although specially
designed simulation languages may be useful for
modeling man—-made geologic systems, the simula=
tion of natural systems cannot generally make use
of these programming aids. General purpose lan-
guages like FORTRAN are more useful.

(4) Systems principles are valuable for dis-
cerning the common ground underlying the simulation
applications, both within geology and in other
disciplines.
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COMPUTER SIMULATION OF TRANSGRESSIVE AND REGRESSIVE DEPOSITS
WITH A DISCRETE-STATE, CONTINUOUS-TIME MARKOV MODEL

by
W.C. Krumbein

Northwestern University
ABSTRACT

The first-order, discrete-time, discrete=state Markov chain, with a one=step memory, has limitations
in stratigraphic simulation. These relate in part to the lack of correlation, in terms of marker beds, from
one simulation to another. This limitation can be reduced by setting up a Markov model in which the states
are defined by the position of the strand during a transgression=regression cycle. In this way lateral con=
tinuity of the beds is preserved.

The simulation model presented in this paper is a continuous—time, discrete =state mode| based on tran-
sition rates instead of transition probabilities. It generates several equally spaced borehole or outcrop sec=
tions that show the kinds of deposits that are formed during each stage of the cycle. The transgressive=
regressive littoral sand can be traced easily through the simulations. Steps involved in the transformation of
a simple deterministic model to its stochastic counterpart are described.

INTRODUCTION discrete, and time is continuous. Models of this
type permit the direct tracing of simulated marker

Simulations of strafigraphic sections commonly  beds from one monitoring position to the next, and
are based on transition probability matrices of first=  they eliminate one of the major shortcomings of the
order Markov chains with discrete time (or thickness) conventional first=order chain as a simulation device.
and discrete states, the latter being the lithologic In the first-order, discrete~time, discrete=
components in the section. Each simulation is an state Markov chain, the transition probability p..
independent event, and represents one "realization" :
from the infinite number of realizations that could
arise from the underlying matrix of probabilities.
This independence of the simulations, plus the one=  in state i at time t -1+ In the simplest chain it is
step memory in the process, means that the vertical r
arrangement of individual beds may have no real
relation to the stratigraphic marker beds that are an
essential part of real-world stratigraphic sequences.  a transition with every click of a "Markovian clock. "

is defined as the probability that the system under
study will be in state | at time t., given that it was

tacitly assumed that transitions occur at fixed dis-
crete time intervals, t = (tr - fr_]), so that there is

These limitations may be partly overcome by use of The transitions may be from a given state into itself,
higher order chains, such as Schwarzacher's recent or from one state to another. The diagonal proba-

use (1967) of a two-step memory, in which the states  bilities control the within=state transitions, and the
at time t.-30 and t.-q are used to conirol the event off-diagonals control the between=state transitions.

In a transgressive-regressive cycle, it seems
more realistic to think of time flowing continuously,
related fo the average thickness of the stratigraphic  during part of which (at any given geographic moni~=

at time t . The long memory part of the chain is

cycles, and hence tends to produce simulated sec- toring position), sandstone is deposited, followed by

tions with an overall similarity in cycle thickness. shale, and so on. In this situation, the pattern of
For the first=order chain a sense of lateral transitions can be examined in terms of the length

continuity (and hence of stratigraphic correlation) of time that the system remains in a given state,

can be introduced by setting up a model which es- once it has entered that state. That is, interest

tablishes a forward and backward movement of the shifts from the probability of a state change to the

strand line as in transgressive -regressive cycles. rate at which these changes occur.

Observation stations can be placed at convenient The purpose of this preliminary report is to

lateral positions to monitor the to=and=fro motion show how a relatively simple deterministic model

of the strand. Inasmuch as this motion is contin- with continuous time and continuous states can be

vous rather than occurring as a series of discrete converted into its stochastic equivalent. The mathe-

jumps, the model can be structured as a continuous=  matical relations between the transition=probability

time Markov process, with either discrete or con- matrix, [pi. 1, of the discrete=time, discrete=state

tinuous states, This paper discusses a transgressive=

regressive model in which the states are treated as Markov chain and the transition-rate matrix, [qii]
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of the continuous=time, discrete=state Markov model stage of the cycle, so that any horizontal line througl

will be published as a Computer Contribution by the the diagram is a time line. The model is also so con-

Kansas Geological Survey. The present report dis= structed that the belt of littoral sand (i.e., the
cusses principles underlying the models and includes lateral width of the sand deposit along any horizon=
some simulation output, tal line in Figure 1) is fixed in width throughout the
cycle, whereas the marine shale extends indefinitely
CONTINUOUS-TIME, CONTINUOUS-STATE seaward and the nonmarine deposits extend indefi-
MODEL nitely landward of the strandline sand. The fixed

width of the sand belt is not unrealistic for a clas=
Figure 1 is a cross section normal to a straight  tic wedge. The "marker bed" in this model is the

coast for a greatly oversimplified model of a trans- time=transgressive littoral sand, shown in Figure 1
gressive-regressive clastic wedge. The cycle starts as outlining the cycles.
with movement of the strandline from a position of Historically, the concept of marine transgres—
maximum regression to one of maximum transgression, sion and regression developed in part from detailed
followed by regressive movement to the same start- studies of many stratigraphic sections of the kinds
ing position, whereupon the cycle repeats itself. illustrated, in which outcrops discrete in space pro-
This model is continuous in time and space, with all vided the basis for inferring transgressive ~regressive
cycles of equal duration, and with no stillstands. movements continuous in time and space. By re-
The three stratigraphic sections in Figure 1 discretizing the states in Figure 1, a simulation
indicate the kinds of deposits formed during a cycle. model can be set up in the framework of a Markov
These consist of a belt of littoral sand in the shore chain that develops discrete stratigraphic sections
zone, mud (marine shale) in the offshore water, and or boreholes at selected positions along the cross
undifferentiated nonmarine deposits (lagoonal shale, section of Figure 1.

coal, fluvial deposits, etc.) landward of the littoral CONTINUOUS-TIME. DISCRETE-STATE MODEL

sand. [t is assumed that the deposits have thickness

proportional to the time interval associated with each In setting up the discretized model, we define
I II II1
:.// 7] Nz
7_ Ngnmarme
eposits
5 t‘:s Littoral
- REGRESSION ~ ~— B \/Sc\nd
T = iy :E Ra
3 - | _ TME HNE_ _ B ONE Marine —->>:>
w 3 g N CYCLE mud (shale at
S o - s ]
(8] — ——/
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] ”
: 4

Y

~— SEAWARD LANDWARD —=

[/ 4

DISTANCE —

(continueous)

7/

Figure 1,-Uniform transgressive-regressive cycle, showing pattern of sand through time, and three stratigraphic
sections,
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the states as successive positions occupied by the For each state there is a definite lithology

belt of littoral sand as the strandline moves forward associated with each monitoring position. In state

and back. These positions are discretized by using AA all three stations receive nonmarine deposits. In
the boreholes of Figure 1 as monitoring stations for state AB position | receives littoral sand, and non=
observing the progress of the cycle. We now visua=  marine beds continue at stations Il and Ill. In state

lize the cycle in terms of the deposits formed during BB marine shale occurs at position |, but the littoral
lateral migration of three environments that produce  sand has not yet reached position 1, so that this

a band of littoral sand in the shore environment, station and station [l] still receive nonmarine de-
with marine mud (shale) on its seaward side, and posits. Thus, in a simulation experiment three strati=
undifferentiated nonmarine deposits on the landward ~ graphic sections or boreholes can be generated as
side. the cycle proceeds, and each station receives an
Figure 2 shows the discretized model. The unambiguous deposit for each state of the system,
landward and seaward limits of the band of littoral In order to make this model more realistic,
sand are shown as successive segments at equally allowance must be made for major or minor reversals
spaced time intervals, so placed that the position in strandline movement during the progress of a cycle.
of the sand is unambiguously stated with respect to Before this is done, however, it will be interesting
the three monitoring stations. These positions are to examine the fransition rate matrix and its accom=
boundaries between zones labeled A, B, C, and D panying simulation output for the deterministic model
from left to right. The state of the transgressive- of Figure 2. In this model each state is occupied for
regressive system is now defined by the position of the same length of time, which means that the rates
the littoral sand within and between these zones. of moving from one state to the next are all equal,
Thus, the first state (at the bottom of the diagram) and the succeeding state is uniquely specified.
is designated as AA because both sand limits lie in The [9;:1 matrix for this simple case is shown

zone A. The second state is designated as AB be=-
cause the sand limits straddle monitoring position |
and hence the sand lies in both zones A and B. This
procedure is followed through the cycle, with the
regression states indicated as CD', CC', etc., as
in Figure 2, This means that once state AB! is
reached, the system moves to state AA for the next

in Table T. This matrix has some special properties
that deserve comment. Inasmuch as attention is con=
centrated on the time required to leave some state i
and move to another state |, the diagonal elements
can be eliminated; they are simply shown as X's in
Table 1. The rate at which the system moves from

state i to state | is indicated by the marginal values,

cycle.
I I 111
ZONE A ZONE B ZONE C ZONE D
Aooooo-ouoo.oA\
Acscsccocosposcsccce '
B.onooooooooooB‘\

Boocoooooooooooc‘_

Cececccescnce ('

~—REGRESSION T~ D

Cooocccjencccce D

—

") —HMEL—I—NE-—- \Do.oooooooooooD
2 | —
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u.quJ Co.oooo-ooooooD/
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Figure 2.~ Model of Figure T with discretized states showing position of littoral sand during progress of a
cycle.
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which represent the sum of the off-diagonal qii's in Table 1.= Matrix of transition rates for deterministic

a given row. These off-diagonals are proportional transgressive egressive model.
to the probabilities of moving to a specified state j.
The row sums need not equal 1.0 as they do in a Succeeding State, §
[pi.] matrix. An arbitrary rate of 4,0 units is used AR BB ECCC D DD DT BT BB M“RG:‘
X 4.0 0 0 0 0 0 0 0 0 0 0 4.
ir;‘Tctl?Ie 1;d|cl|fer this will be subdivided for the sto= 22 b x i@ § B 0§ B O 8 % | as
chastic model. ‘ s o § @ @ ©| 48
Table 1 represents a completely deterministic zi Z Z ; Axo 400 Z e
scheme, in which the marginal rates are all equal, o s 8 0 2 20 o v 8 5 4 & a4
and the upper right=hand off-diagonal, with the - 4o 0 0 0 o ol s
same value, indicates that the probability is 1.0 R O S N
(i.e., 4.0/4.0=1.0), that when the system leaves [ N
a given state i, it moves to the immediately adja- orpe 0 0000 o X ke 80 '
cent state in the chain. The last row of the matrix S L B
represents the end of the cycle and the system re- BP0 00 0000000 K00
turns to the initial state AA. CE L N L L B
If we now assume that the rate of deposition AT{e0 0 0 0 0 0 0 0 0 0 0 X] &0
is such that one unit of sediment thickness is de=
posited when the system is in any given state, the
stratigraphic sections generated at each monitoring ceding model, additional entries are required in the
station are shown in Figure 3, which simulates one rows of Table 1 to indicate that the preceding state
complete cycle. Horizontal lines are time lines, can again be entered at any stage of the cycle. The
and diagonal lines in the figure indicate the con= conceptual model is shown in Figure 4 as a looped
tinuous path of the littoral sand through the cycle. chain with forward and backward arrows that show
Simulation starts in state AA and proceeds systema= the possible paths through the chain., We assume
tically to AB', whereupon it returns to state AA as that progress through the chain from one state to
shown in the last line of the matrix in Table 1. the next (both in transgression and regression) is
. three times as likely as a reversal to the preceding
MODIFIED MOBEL WITH RANDOM REVERSALS state. The total rate for each state is kept at 4.0
When reversals are introduced into the pre= units, but the value 3.0 is assigned to the forward
STATE STATION STATION STATION
I 11 I1I
AA
AB'
BB'
BC'
cc!
cD'
DD
cD
ce
BC
BB
AB
AA

Nonmarine deposits /-/-/-
Littoral sand Kk Kk Kk
Marine mud (shale) ------

Figure 3.~ Simulation of one cycle from matrix of Table 1. This is completely deterministic, and all simu-
lated cycles would be the same.

14



3 3
‘Aﬂ;__.“’AB BB
301 301
3
AB| [Bc > cc]
1 (
301 301
v 3
BB BC' [
\ A
1
301 3011
;3 3

A A
cc DD
1 1

Figure 4. = Schematic diagram showing main flow
of transgressive-regressive cycle, with rela-
tive rates of forward and backward motion.

arrows and 1.0 to the reverse arrows.

The chain in Figure 4 is arranged as a tran=
sition—rate matrix in Table 2. Marginal entries
indicate total rates, and the individual qi.'s are

proportional to the probability of forward or back=
ward movement, In implementing this model we
again assume that one unit of thickness is deposited
when the system is in any given state i, but now

a new element enters the simulation, That is, al-
though the total rate of moving from one state to
another is 4,0 in each row of the matrix, the prob-
ability of moving to the succeeding state in the
cycle is 3/4, whereas the probability of a reversal
to the preceding state is 1/4,

A simulation run for this model is accomplish-=
ed by starting in state AA, drawing a uniformly
distributed one=digit random number in the range
1, 2, 3, and 4. If the numberis 1, 2, or 3, the
system moves forward (i.e., to state AB). If the
number drawn is 4, the system moves backward to
state AB', and so on through the simulation. Thus
the model has become stochastic with respect to
the succession of states, which are now controlled
by probabilities throughout the chain. Figure 5
shows part of a simulation obtained by using Table
2 and random numbers for state changes.

Although this modified model has a stochastic
element, the stochastic structure can be completed
by now randomizing the total time occupied by
each state. By adding this feature, the model in=
troduces added variety into the cycles, in that it
allows for the unpredictable variations that arise
in real-world cycles under the combined influence
of tectonic movements in the source area, changes

in the nature and amount of detritus fed to the sea,
changes in slope of the nearshore bottom, eustatic
changes of sea level produced by tectonic events in
ocean basins, etc. These underlying controls vary
in space and time, and their combinations give rise
to complex responses in the position of the strand=
lines at any given moment.

SIMULATION MODEL WITH RANDOMIZED TIME

The final modification to be made in the model
is to randomize time as suggested in the preceding
paragraph. To do so with this model, we select a
uniformly distributed random number, U, in the
range from 0 to 1, and take the natural log of its
reciprocal, |oge(]/U). Then, if t. represents the

"time of change" from one state to another, we use
the following relation to determine how long the
system remains in a given state i:

¢ = log 1N
Cc ——_M. .

Here M. is the total rate for state i as indicated in
the margin of the matrix. When observational data
are used to set up the transition=rate matrix, it is
found that a restricted range of random numbers
gives the most "lifelike" simulations. In the pre=
sent case, we used random numbers in the range
0.30 to 0.80 inclusive, for the fe calculation, We

again use the matrix of Table 2, to show how this
simulation compares with the more deterministic
models. (It may be mentioned in passing that U
was kept constant in the simulation of Figure 5.)
The procedure for developing simulations in-=
volves the following steps: draw a random number

Table 2.= Matrix of transition rates for fransgressive=
regressive model with reversals.

Succeeding State, j

AR AB BB BC CC CD DD CD' CC' BC' BB' AB' MARGIN
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Figure 5.= Simulation of three stratigraphic sections from matrix of Table 2. This model permits reversals,
but the time in each state remains constant,
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Figure 6.~ Simulation of three stratigraphic sections from matrix of Table 2, with time in each state a random
variable. This shows up in the different thickness associated with each state, indicated by state code on

left.
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from 0.30 to 0,80, compute its reciprocal and take
the natural log. Divide this by the marginal rate
for the state involved, to find how long the system
remains in that state. Next, draw another random
number to determine the state to which the system
has moved, by using the individual qi.'s as explain=

ed earlier to obtain the probabilities. Finally, se=
lect some interval of time to represent one unit of
sediment thickness, to determine thickness of the
deposit laid down during each state. For example,
with the range of random numbers used here, the
extremes of fo will be 0,056 and 0.301 time units.

We divided the difference into four parts and assign=
ed a number of beds from 1 to 5 over this range. The
following example gives two lines of computation:

State U log (1/U) t No. of Random State to
e c .
beds no. for which sys=
next state  tem moves
AA 0.66 0.412 0.103 2 57 AB
AB 0.54 0.615 0.154 3 80 AA

In this instance the system started in state AA with
two units of sediment thickness, advanced to state
AB with three thickness units, and reversed to state
AA again. Normally one calls for say 500 state
changes which will include a fairly large number of
cycles. Our present limitation of no more than five
thickness units per state change is wholly arbitrary,
but with this restriction, a typical portion of simu=
lated section is given in Figure 6, which shows the
three stratigraphic sections generated.

The most striking difference between the
simulations of Figure 5 and 6 is the variation in
thickness of beds associated with a given state, as
indicated by the codes on the left. The output
here reconstructs the whole lateral pattern, with
the monitoring stations edged by blank space. The
discrete "jumps" of the shifting environments from
one lateral position to the next are well illustrated;
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the thickness of the sand reflects the length of time
that the system remains ina given state.

The arbitrary transition rates chosen for pre=
sent examples serve mainly to show the added variety
introduced by the stochastic model. The matrix of
Table 2, as shown graphically in Figure 4, is still
too simple for realistic simulations: if the random
numbers that control state changes happen to fall
properly, the system can regress to maximum trans =
gression,

CONCLUSIONS

The organization of this report recapitulates
the transition from a fully deterministic model to its
stochastic counterpart. The final model still con=
tains a kernel of determinism that controls the main
pattern of transgression and regression, but as stated,
it includes the sort of unpredictable fluctuation that
is so commonly present in real-world cycles, In
applied stratigraphic studies, the transition rate
matrix can in some cases be set up directly from
knowledge of rates of sedimentation. Commonly,
however, it is more convenient to transform a [pi.]

matrix to its [qi.] counterpart. This aspect of the

model is discussed in the expanded report (Krumbein,
in preparation) submitted for publication, A com=
puter program for the transformation is included in
that report, as is the stochastic transgressive=re=
gressive program. Other topics related to exten =
sions of the present model are developed in the later
report, including the use of higher order Markov
schemes,

| am much indebted to Professor John W,
Tukey of Princeton University for enabling me,
during the Spring of 1966, to participate in his
Statistical Techniques Research Group, where many
of the ideas in this paper, and the basic computer
program, were developed.
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EXPERIMENTS WITH VARIABLE SEDIMENTATION RATES

by

Walther Schwarzacher

Queen's University, Belfast, Northern Ireland

INTRODUCTION

Attempts to simulate stratigraphical sequences
have been made by Carr (1966), Krumbein (1967),
and Schwarzacher (1967). These experiments showed
that comparatively simple random processes may pro=
vide a descriptive model for the stratigraphical sec=
tions. Little has been learned, however, about the
mechanics of sedimentation from such experiments.
The reason for this is largely the complexity of nat=
ural processes. It is possible that some progress can
be made by severely restricting the scope of such in-
vestigations, and in this contribution a limited prob-
lem is examined. How do fluctuating sedimentation
rates affect the manner in which geological processes
are recorded in the stratigraphical column? The
problem can be best explained by the following ex-
ample.

THE CONSTANT SEDIMENTATION RATE MODEL

We may consider the stratigraphical record as
the end result of three stages. Stage 1 consists of the
environment with changing conditions in time; stage
2 is the depositional process determined by a number
of rules governing sedimentation rates, and stage 3 is
the stratigraphical column with the lithological vari-
ation recorded along a vertical scale. As a practical
example, let us assume that the environmental stage 1
can be described fully by three states, A, B, C,
which represent conditions leading to three rock types,
limestone, shale, and sandstone. We assume further
that the three states in the time sequence appear at
any time with equal probability, so the time series of
events leading to the formation of the three rock
types is described fully by the transition matrix,

5
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The sedimentation process shall be defined by
three constant sedimentation rates, A:B:C=1:2:3,
meaning that in the same time in which one thickness
of limestone is produced three thicknesses of sandstone
could be laid down. The stratigraphical sequence
generated by this mechanism can be deduced. Assume
the initial stage was B:
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A\T/C Vol
AB\\C\ /
B
The possible sequences for two consecutive stages are
shown in the above scheme.

The probability matrices for 1, 2, and 3 step tran=
sition are given by:

Step 1 Step 2 Step 3
11 1 4 4 4 7 16]
3 3 3 5 % 3 77 77 77
4 11 5 8 S 02
6 & & 8 T8 18 54 54 5%
11 7 4 7 16 16 28 37
9 9 9 7 27 77 8T 8T 8T

The series converges eventually to a matrix of
the stable probability vector [%’ %’ %]. But this

new series is no longer an independent random series
as the states in the stratigraphical sequence depend
on previous states. |If we had chosen a first=order
Markov process as the stage 1 environmental model,
the Markov property would have been lost in the
stratigraphical record. On the other hand, a pure
cyclical stage 1 model given by the matrix,

0 1 0
0 0 1],
1 0 0

would have been unrecognizable unless up to six lags
of stratigraphical data were calculated.

Because of its rigid conditions regarding
sedimentation rates, the model is of limited use but
is helpful in a first examination of observed transition
matrices, For a test example, a composite section of
Upper Pennsylvanian rocks of Kansas was used. The
section was divided into 5-foot intervals, and each
interval coded according to the lithology that occu-
pied the greatest thickness within it. Four stages
were differentiated; 1 = shale outside limestone for
matrices; 2 = |limestones, except Type 2; 3 = Type 2
limestone (R.C. Moore's classification, 1936), and
4 =shale inside limestone formations. The following
matrix of transition probabilities was found:



.899 .059 .017 .025
.235 627 .039 .098
.000 .250 .000 .750
.000 .435 .000 .565

Powering of this matrix gives the following stable
probability vector: [.603, .256, .020, .1211. As
an initial hypothesis we may assume that the average
thickness of the lithologies is related to sedimentation
rates of the rock types. Thus if we choose the sedi-
mentation rate for Type 2 limestone as unity, we find
that the ratios of the sedimentation rates are 1:2:3:4=
30:13:1:6. That is, according to the hypothesis, out=
side shale is laid down 30 times as fast as Type 2
limestone, etc. We can now test different hypotheses
regarding the stage 1 model. For example, the equal
probability hypothesis of environmental time changes
would lead to the transition matrix:

.975  .008  .008  .008
002 .994 002  .002
.250  .250  .250  .250
042 042,042  .874

which is obviously not close to the observed transi=
tion matrix. An environmental model of the form:

0.00 1.00 0.00  0.00
0.90  0.00 0.00 0.10
0.00 0.25 0.00 0.75]| "
0.00  0.90 0.10  0.00
leads to
976  .033 0. .00 |
070 .923  O. .007
.00 .250 0. 750 '
.148 .83 0. .016]

and although considerably closer to the observed
matrix can not be much bettered under the assum=
ption of constant sedimentation rates.

VARIABLE SEDIMENTATION RATE MODELS

It is altogether more realistic to assume that
sedimentation rates are not constant but are in them=
selves random variables. The sedimentation rate may
be thought of as a series of continuously alternating
stages of deposition and erosion. We assume that at
a certain time environmental conditions are such that
a lithology W may potentially be deposited. At

each time increment, erosion or deposition may take
place. The probability of erosion following deposi-
tion is called a, and the probability of deposition
after erosion is called B. These probabilities are as=
sumed to be constants for each lithology=producing
environment. The time sequence of erosion and dep-
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osition for a single lithology may be represented as
dependent Bernoulli trials:

Deposition Erosion
Deposition W”(l—a) W”a _
(1)
Erosion W8 W”(B-l)

To satisfy the conditions of a transition matrix, Wi

in this system must have the value of 1. There then

exists an equilibrium given by the stable probability
o efel s .

prc e 1. The equilibrium gives us the

proportion of time spent in the depositional and ero-

sional phase during the stage W;. Obviously for ac-

vector [

cumulation to occur, B>a. The principle can be ex-
panded to a multiple Markov chain in the following
manner:

1 2

[ w0 We, Wille) Wity -]
Wi W8 Wi B Wi .
Wor(1mey) - Way3y Wapllmag)  Wpoy
Wy 2 Wy (1-8)) WooBy Woo(1=85) . o .

@)

A similar model has been proposed by Vistelius
(1965) to explain specifically the sedimentation proc-
esses of turbidity currents. The Vistelius model
specifies that only one thickness increment can be
eroded prior to deposition whereas the present model
can remain for several time increments in the deposi-
tional or erosional phase. Vistelius' argument re=-
garding the Markov behavior of the resulting strati-
graphical series, however, holds; that is, if states
W] , W2, W3, have been deposited in succession,

PW5 | Wy, Wit =P {W, [W, . Because of the

possibility of missing steps in the stratigraphical se-
ries, the stratigraphical data may be unsuitable to
reconstruct the environmental sequence. Vistelius
was able to derive the matrix of transition probabili=
ties in the stratigraphical sequence from the frequen=
cy of strata produced by his scheme. No such solu=-
tion has been found as yet for this model but the
equilibrium probabilities for the stratigraphical series
can be determined and simulation models can be
based on these probabilities.

Let the environmental development be rep-
resented by matrix [W]. The sedimentation param=
eters a, B for different lithologies in the long run

will establish an equilibrium for deposition <p and
erosion q—_?_-wrif’ren as vector m. and me. The equi-

librium of W] will be given by [WI" where n is a



large number. The equilibrium vector for the gen- As an illustration for the working of the model

erating matrix (2) is given by the product of the we constructed the matrix:
elements me and m¢ and the elements of [\N]nqlfernofing 6 .38 .33 .13
in the following manner, w .32 .32 21 15
W1 W W I W T .29 .33 .25 A3
nel i e 12 ?2 12 62, ) .08 .29 .25 .38
Now fhe. probability that bed. a in the Sfrqflgmph.‘f'a‘ which in fact consists of standardized random numbers.
section is followed by bed b is eggql to the transition Let us assume that this is the full description of the
probability a—b and the probability that there has environmental history, for the sedimentary parameters
been an equal number of erosional and depositional we take a = [.1, .2, .3, .21 and B =[. 111, .674,
steps in between the actual deposition of a and b. 1-4 1-4
Thus the stable probability matrix of the stratigraph-
. y 9: n P n I . orep .800, .436]. The resulting stratigraphical sequence
ical series [PI" can be calculated and we find for should have a constant probability vector of [.2207,
instance: .3486, .2556, ,1749]1. A simulated run under the
[P”} = [\N”]ﬂ' - SW.om. - LW.r .. same cond.i’rions gave [.2142, .3693, .2693, .1473].
& 18 ot Choosing instead a cyclical model given by the matrix:
For example let [W] be the cyclical matrix: 0 1 0 0
111 6o o o 1
55 0 333 o o 0 1 ‘
w=|055 wh=l s L L .25 .25 .25 .25
5 0 5 L1 it gave a sequence with a stable probability of [.193,
T 3 3 .403, .192, .212]. Note that this cannot be calcu=
lated as the above matrix does not converge with
The parameters are o = .2, .1, 3, B = powering.
.6, .9, .4; leading to the generating vector:
1 2 3
5 € ) € ) €
.25 .083 .3 .033 L1960 . 143 CONCLUSIONS

The model demonstrates that a stratigraphical
sequence may be generated by a wide variety of time
processes. Both deterministic and probability models
P" = [.336, .374, .290] . of an environment can lead to similar Markov series
in a stratigraphical sequence. However, by intro-
ducing the geological meaningful parameters of a
and B we may be able to judge the plausibility of our
environmental model. In the last example a decision

.433  .540 .027 .337  .338 .287 may be based on the relative frequency of lithological
P =|.084 .481 .433| and P'0=|.335 .375 286 . types. Alfe{'n.q’rive models with a predetermined con=
! stant probability vector can be constructed by chang=

and from this we obtain the stable vector for transi=
tion probabilities in the stratigraphical sequence:

An actual simulated run using this source model gave
the first=order transition probabilities for the strati~
graphical sequence as:

-550 .05z .398 335 574 285 ing a and B. Not examined yet has been the thick=
which is in good agreement with the predicted stable ness distribution of different beds which also can be
probabilities. simulated with the model.

REFERENCES

Carr, D.D., and others, 1966, Stratigraphic sections, bedding sequences, and random processes: Science,

v. 154, no. 3753, p. 1162-1164,

Krumbein, W.C., 1967, FORTRAN |V computer programs for Markov chain experiments in geology: Kansas
Geol. Survey Computer Contr. 13, 38 p.

Moore, R.C., 1936, Stratigraphic classification of the Pennsylvanian rocks of Kansas: Kansas Geol. Survey

Bull. 22, 256 p.

Schwarzacher, W., 1967, Some experiments to simulate the Pennsylvanian rock sequence of Kansas: Kansas
Geol. Survey Computer Contr. 18, p. 5-14,

Vistelius, A.B., 1965, Theory of formation of sedimentary beds: (English translation) Doklady Akad. Nank
SSR, v. 164, no. 1, p. 158-160,

21



MONTE CARLO SIMULATION MODEL FOR PIERCEMENT SALT DOMES

by

James C. Howard

The Sun Oil Company Production and Research Laboratory

INTRODUCTION

Piercement salt domes intrude overlying sedi-
ments by upward displacement of salt from a buried
source layer. Salt moves upward in response to a
gravitational instability created by the density con-
trast between salt and heavier overburden. Dome
morphology and growth rate depend on the density
contrast between salt and overlying sediments, the
bouyancy of the salt stock, the geothermal gradient
and the strength of the overburden. The shape of
the dome is influenced indirectly by the rate of basin
subsidence.

Laboratory scale models of piercement salt struc=
tures have been constructed by Parker and McDowell
(1955) and many others. By assuming viscous behavior
for the salt and sediments, Selig (1965) and Biot and
Ode’ (1965) analytically described the nonpierce=
ment stages of dome formation in theoretical models
based on the laws of fluid mechanics. The physical
and deterministic models do not illustrate the irregu=
larities in dome shape such as salt ledges and spines,
which may be observed in nature. A stochastic mo=
del, based on Monte Carlo or random walk techni-
ques, more adequately accounts for the random com=
ponents of variability in a transport phenomenon of
the diffusion type. This has been demonstrated by
Culling (1963) for soil creep, Litwiniszyn (1963) for
subsidence in granular materials, Morrill (1965) and
Yuill (1965) for population expansions, Harbaugh
(1966) for growth of marine organism communities
and Schenck (1963) for drainage basin evolution.

Halite crystals are deformed in part by intra=
crystalline gliding on preferred slip planes (Schwerdt=
ner, 1965). From crystal to crystal the slip planes
are assumed to be distributed randomly so that dis-
placements made by a crystal form a sequence of
independent random variables. Displacement of
aggregates of crystals can be viewed in terms of a
diffusion=type process.

The model is operated on an iterative basis by
a set of assumed probability distributions that specify
the likelihood of the salt-sediment interface dis-
placing in different directions at successive incre=
ments of geologic time. By printing a series of
vertical cross sections at any specified time incre-
ment, it is possible to observe the progressive changes
in dome morphology. The model does not take into
account the nature of deformation in the sediments
or the development of caprock.

Acknowledgments. = | thank the officers of
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The Sun Oil Company Production and Research Lab-=
oratory for sponsoring the research and publication
of this paper.
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bouyancy
compaction
amount of compaction

amount of sedimentation
amount of subsidence

depth

gravitational constant

height of dome above its base
thickness of overburden
b,0,T,S

proportionality constant
lower limit for the variate X,

constant
composite probability
probability for the variate X

near surface end~member probability for

X,

source~bed level end=member probability
for Xi

ultimate strength of sediment

average sediment strength penetrated by
salt

time

time lag

temperature

depth to the assumed present-day level of
the salt layer

upper limit for the variate Xi

rate of sedimentation
weighting factors

average growth rate of the dome

density

average sediment density penetrated by
salt

differential stress between columns of
salt and sediment

PARAMETERS AFFECTING SALT MOBILITY

Factors that are thought to exert the greatest



influence on the mobility of salt are depicted in Fig=
ure 1 as functions of depth. The nature of these
curves will differ from one field situation to the next.

An estimate of the difference of sediment den=
sities with depth can be obtained by applying a con-
version factor to sonic-log velocities. Figure la is
a modified version of a curve compiled by Nettleton
(1934) for sediments in the Gulf Coast area. The
bulk density of salt is approximately 2,2 gm/cm3,

Bouyancy (Fig. 1b) is a cumulative effect that
can be calculated from the product of the height of
the dome and the density difference between the
salt and overlying sediments. Bouyancy is zero be~
fore the dome begins to form and increases to a maxi=-
mum when the dome reaches the level of minimum
density contrast.

Gussow (1966) recognized the importance of
the role of temperature in the mechanical behavior
of salt. He stated that salt deforms plastically at
temperatures in excess of 300° C, which requires
approximately 25,000 feet of overburden, assuming
a normal thermal gradient. Creep in halite probably
occurs at lower temperature and pressure levels than
indicated by many laboratory results, due to the
weakening effect of geologic time. Guyod's (1946)
experiments with electrolytic scale models suggest a
linear thermal gradient in the sediments at distances
sufficiently far from the dome so that the high heat
conductivity of salt does not influence the gradient.
The gradient flattens laterally with respect to the
dome and the deviation from linearity becomes most
pronounced directly above the dome as indicated in
Figure Tc. Selig and Wallick (1966) confirmed
Guyod's results in a theoretical model formulated
around the heat flow equation. A geothermal gra-
dient in the vicinity of a salt dome can be construct=
ed from stabilized bottom-hole temperature measure -
ments.

Figures 1d and le, published by Handin and
Hager (1958), express the depth relationship of ulti-
mate strength for the Barnes Sandstone and Muddy
Creek shale. Even though these rocks are not from
Gulf Coast assemblages, the curves are thought to
be generally indicative of ultimate strength values
for other sandstones and shales. Handin and Hager
(1958) define ultimate strength as the greatest stress
difference the material can withstand under given
conditions of effective pressure, temperature and
strain rate.

Processes which influence the shape of the
dome include sedimentation, compaction and basin
subsidence. The sedimentation rate is expressed
as a function of time

v =k t-]/n )
sed
This function will differ with geological setting. The
amount of compaction is expressed in terms of the

percentage of the original volume, as follows (equa-
tion 2):

23

1
Tk @

The amount of subsidence changes in response to the
weight of the overburden. It is related to differences
in the amounts of sedimentation and compaction.

sub k (dsed ~d ) ()

com

c=H(1

d

PROBABILITY DISTRIBUTIONS

Nettleton (1934) used a continuous curve to
describe the general form of a salt dome and its
surrounding sink (Fig. 2). The curve can be approxi=
mated by straight=line segments and its shape de-
fined by radii with respect to the axis of circular
symmetry. Values for the radii are obtained from
subsurface drilling, geophysical sources and scale=
model studies. The top of the frustrum of the cone
is equated to the estimated near-surface dome dia-
meter. The flanks of the cone are determined by
the estimated dips of the dome flanks. These are
projected to the assumed source=bed level. The
dimensions of the sink peripheral to the dome are
estimated from laboratory model studies (Parker and
McDowell, 1955). Material in the dome portion
of the curve moves generally upward, whereas
material in the sink regions migrates downward.
Volume of salt in the dome is equivalent to that
which is withdrawn from the salt source layer.

The curve is treated then as a probability den-
sity function with values ranging from zero to one.
For each time interval, a random number is generated
and its position along the abscissa is determined by
the probability density function. At this randomly
selected position, the specific direction of displace-
ment of material at the salt=sediment interface is
then computed.

In Figure 3, the relative likelihood of material
displacing in different directions due to the separate
influence of each physical parameter is represented
qualitatively by vector diagrams at two levels ==
near the surface and near the top of the source layer.
For example, at the level of the salt bed, salt dis-
places only vertically or diagonally upward. Near
the surface, sediment densities are less than salt
density. Consequently, considering only the effect
of density on salt mobility, at near=surface levels,
salt tends to displace downward. Bouyant forces
are directed upward and increase with the height
of the dome. The distribution of isotherms in the
salt and enclosing sediments (Selig and Wallick,
1966) suggests the likely directions of salt move=
ment caused by the effects of temperature on mo-
bility. Confining pressure is less near the surface
than at the source bed. Near the surface, the
salt tends to expand in the form of an overhang.

The position of the salt=sediment interface
can be monitored at any instant in time. For a
particular position on TKe interface at a fixed point
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Figure 1.- Density, bouyancy,
temperature and ultimate strength
as functions of depth.
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Figure 2.~ Generalized vertical, cross section showing the configuration of a dome and its peripheral sink.

in time, a resultant probability value, P[ Xi]’ is

calculated for each parameter, i =p ,b, T, S, from

a ratio of the two end-member probability values,

PL NS 1 (near surface) and P[ SL ] (source-bed level).
The ratio is proportional to the value, Xi’ of the

parameter at the specified depth of the interface
with respect to the range of values (ULi - LL), for

the parameter. The resultant probability is defined
as

PL Xi] = (Xi - LLi)/(ULi - LLi) PCSL] +
[1- (Xi - LLi)/(ULi - LLi)] PINS1. (4)

The contribution of each distribution of probability
values, PD(i]’ is related to the others by a weight-

ing factor w. from which a composite distribution

of probability values, P[ C ], is computed. The
function relating the contributions of the parameters
is unknown, making the choice of w. arbitrary. The
values utilized in the sequence portrayed in Figure
8 are determined as follows:

w = kb (h/H), w. =k. (D/TD), forj=P,T,S
| I (5)
For each time increment, the composite dis=

tribution is represented by numerical values occupy -
ing a nine=cell, orthogonal grid, which is centered
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about the element to be displaced. A random num=
ber with a value between zero and one is generated.
In conjunction with the configuration of grid values,
this random number is used to determine the direc-
tion in which a specified portion of the interface
will displace. The entire procedure of selecting a
portion of the interface to displace and determining
its direction of movement is repeated a number of
times.

CONSTRAINTS

Certain specifications affecting the growth
of the dome are incorporated in the model. Dome
formation does not begin until the density of sedi-
ments deposited on top of the salt bed exceeds that
of salt. Termination of dome development occurs
when either of two conditions is met: (1) the salt
supply is depleted, i.e., subsidence in the sink
reaches the base of the salt layer (Fig. 5); (2) the
differential stress

Ao = (° sed B sol’r) gh ©)

between a column of sediment and a column of salt
of equal volume, as measured at the top of the salt
layer, is less than the yield strength of salt, i.e.,
the salt no longer is deformed by flowage. Expan-
sion of the salt stock to form an overhang is a common
feature in the upper portion of salt domes in the Gulf
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Coast region (Fig. 4,5). Development of an over=
hang may be controlled in part by the strength of
the enclosing strata. The free surface acts as a
rigid boundary, which tends to flatten an approach-
ing column of "plastico=viscous" salt (Fig. 7b). In
the model, salt spreads laterally if the strength of
enclosing sediments is less than an arbitrarily pre-
scribed value. The lateral expansion continues for
a period of time determined by the strength of the
sediments, after which intrusion continues (Fig. 7c).
The time lag is given by

=k S.

flag 7)

RESULTS

The function in Figure 2 represents one set of
variables which can be controlled from one test run
to another. The same form of the function is used
for all sequences shown here. The end=member
probability distributions for the individual parame=
ters (Fig. 3) constitute another set of variables.
Irregularities on the gross form of the dome respond
sensitively to changes in these distributions. For
example some runs result in the development of
abnormally long spines. Moderately developed
spines are evident in Figures 4 through 8. A third
source of variation is the interrelationship or weight=
ing of the physical parameters. A variable set of
weighting factors is employed to generate the dome
sequence portrayed in Figure 8. Initially, w >p
wp > we > Wy as the dome evolves, w}, increases

and bouyancy overshadows density contrast. As a
result of the assumption that an overhang will tend
to form if the strength of sediments penetrated by
salt is less than a specified value, basin subsidence
has a profound effect on the final form of the dome.
The only difference in the controls used to generate
the domes shown in Figures 6 and 7 is a slower sedi=
mentation rate and consequently slower basin sub-
sidence in Figure 6. Lateral growth is operable for
a longer period of time in the sequence shown in
Figure 6. Numerous salt ledges form. Although
their lengths are unrealistic, ledges are observed

in nature on the flanks of piercement salt domes
and constitute potentially lucrative areas for oil
and gas exploration. In Figures 7 and 8 the subsi~
dence rates are identical. The end=member proba-
bility distributions and their degrees of weighting
are different for the two experiments. The dome
forming in Figure 8 is decidedly more tapered to-
ward its apex and has entrained a considerable
amount of country rock into the salt.

Figures 4 and 5 show results of a less elaborate
model. In Figure 4, the only physical parameters
represented are sediment density and temperature.
in both figures, overhangs are developed distinctly
in the upper regions of the dome. The overhang in
Figure 4 is asymmetrical and spines begin to extend
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upward from it after a time lag. An asymmetrical
drawdown which cuts off the salt supply to the dome
is depicted in Figure 5. Asymmetrical sinks and
overhangs are typical features of many Gulf Coast
domes such as the Belle Isle dome in Louisiana. The
asymmetry might be attributed to basinward sliding
on down=to=the-basement faults, which causes un-
even salt supply to the dome. In addition, a devia-
tion in the growth axis of the dome would be expected.
The sequences in Figures 4 and 5 suggest emplace=
ment of the dome by means of an overhead stoping
action due to the alternating advancement of spines.
[n support of this contention, country rock has been
entrained into salt and can be observed in salt mines
at the Belle Isle and Avery Island domes in Louisiana.
A large spine projects from the top of the Jefferson
Island dome, Louisiana. One interpretation of the
feature is that it is an erosional remnant. However,
"flow lines", delineated by dark anhydrite bands

in the lighter colored halite, map conformably to
the outline of the spine at its outer edge. This
pattern could result from differential movement of
the spine. Overhead stoping by spines as a mecha-
nism of dome emplacement is mechanically more
feasible than a postulated intrusion of a plug along
a broad flat front,

Figures 6, 7, and 8 indicate that the top of
the dome remains at approximately the same level
through time and that the dome grows passively by
downward extension of the stock during basin sub=
sidence. Barton (1933) advanced this hypothesis
for dome formation. Energy requirements for down-
building of the stock are minimal. It seems plausible
that active overhead stoping would become an im-
portant mechanism as soon as bouyant forces become
well established.

Average growth rate of the dome sequence
shown in Figure 8 is plotted versus time in Figure %a.
It is reasonable to assume that the growth rate in-
creases with time as the dome overcomes friction
between the salt and surrounding sediments as well
as internal friction resulting from differential flow-
age of salt. At point A on the graph, the growth
rate decreases, due to lateral spreading as the dome
approaches the surface. The increase in w from
point B to C is indicative of temporary vertical ad-
vance after a time lag. Figure 9b is a plot of the
average sediment densities and strengths penetrated
by the salt. The increase in ® and S values conforms
to the predominantly lateral motion of the salt. Fig=
ure 9c graphically illustrates the time variation of
the amounts of sedimentation, compaction and basin
subsidence for the dome sequence in Figure 8.

TESTING THE MODEL

One method of testing the validity of the mo-
del is to compute the gravity anomaly attributed to
the final dome in the computer generated sequence
(Fig. 10) and compare it with the gravity picture



A B

1000 2000
3000
30000 FT

Figure 5.~ Dome sequence: iterations 1000, 2000: salt is represented by . , sandstone by X, shale by = .
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Figure 6.~ Dome sequence accounting for sedimentation, compaction and basin subsidence: iterations 700,

1300, 1900.
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Figure 7.~ Dome sequence: iterations 700, 1000, 1300: salt is represented by the symbol . and sandstone by X.
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Figure 8.~ Dome sequence with variable weighting factors: iterations 700, 1000, 1300.
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Figure 9.~ Mean growth rate (a), mean density and
strength (b) sedimentation, compaction, sub-

. .
A sidence (c) versus time.
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Figure 10.- Calculated gravity profile over computer generated salt dome .
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observed for the real salt dome. If the fit is not
good, the controls and initial assumptions, which
comprise the foundation for the model, must be ad~
justed individually until a reasonable response is ob-
tained. It should be possible to formulate a genera =
lized model by testing a variety of contrasting but
well-documented field localities. The model's
potential prediction capabilities then could be ap*
plied to an unexplored area for wlmch only a gravity
survey exisfs,

CONCLUSIONS

Monte Carlo techniques provide a useful
means of mimicking the progressive development of

irregular protrusions on the flanks and tops of pierce=-
ment salt domes. Coupled with symbolic display
methods, stochastic simulation techniques can re-
sult in informative prediction capabilities. The
model is embellished readily with elaborate and
sophisticated changes designed to improve its simi-
larity to reality. Monte Carlo techniques do not
lead to a unique definition of the simulated system.
Instead, the result expresses a probable or likely
soluhon There is no rigorous definition of the
mterrelohonshups among the physical parameters
which comprise the system. The model, however,
does provide clues as to the relative |mpor'rance

of different factors and processes and suggests the
existence of certain mechanisms that are otherwise

not intuitively obvious.
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GEOCHEMICAL AND LOGGING APPLICATIONS OF
A COMPUTER SIMULATED NEUTRON ACTIVATION SYSTEM
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ABSTRACT

A computer program is presented for simulating gamma=ray energy spectra of neutron activated elements.
Input parameters of the program are: mass of the sample, abundance, half life, gamma energies and activation
cross section of the element, duration of irradiation and time of detection. The output is the individual spec=
tra of each isotope in the sample and the composite spectrum of the sample. By means of this program, it is
possible to simulate neutron activation experiments for different rock samples under varying conditions of

irradiation and detection times.
INTRODUCTION

In neutron activation analysis, a sample of
material is first irradiated with neutrons, thus causing
the sample to be radioactive. Each isotope of the
elements contained in the irradiated sample has a
specific mode of decay characterized by the half-
life, the energy and the type of radiation. By moni-
toring these characteristic radiations and by compar=
ing them with some known standards, the isotopes and
the elements in the sample can be quantitatively de-
termined. Thus, activation always consists primarily
of two steps: irradiation and detection. Chemical
separation of a sample is an additional step occasion=
ally.

A computer method is presented here that al=
lows one to simulate the activation experiment.
Specific geochemical examples are presented. Simu=-
lation of rock and mineral irradiation and detection
is especially useful because of the complex mixing
of the spectra derived from various chemical ele-
ments found in lithologic species. The simulated
spectra offer the geochemist rapid means of choosing
optimum irradiation and monitoring times for the
gactual activation analysis experiment. For the simu=
lation, a geochemical model of the lithologic type
is needed to approximate the various element con-
centrations that are expected in the sample. Geo=
chemical models based upon material balances (Horn
and Adams, 1966) are used to estimate expected
chemical element concentrations. Of course, other
concentration models may be used for the simulation
input.

PROGRAM INPUT, OUTPUT, AND LOGIC

Input
The input to the simulation program consists

35

of (1) irradiation, (2) sample, and (3) detection
factors, all of which affect the character of result-
ant spectra.,

Lrradiation factors include neutron flux and
irradiation time.

Sample factors include sample volume, sample
bulk density, estimated elemental concentrations
in sample, isotope percentages, activation cross
sections appropriate to the neutron energy, half-
lives, gamma energies of isotopes, and branch ratios.

Detection factors including detection time,
time of detection start, detection efficiency, chan=
nel number, and maximum energy to be detected,
are included.

Output

The output consists of any or all of the follow=
ing as desired:

Printouts of Compton distribution, photopeak
distribution, and the sum of the two, given per
channel and per element. |f more than one element
is input, the composite energies per channel are also
printed,

Plotter displays of the spectrum of the indi-
vidual elements used as input. If more than one
element is input, the composite spectra is also
plotted.

Program Logic

The program consists of a main routine and
three subroutines:

The main routine (1) reads and prints input,
(2) prints individual isotopic data, (3) converts time
units, and (4) prints results of synthetic gamma=-ray
spectra.

The first subroutine computes saturation



activity, As’

A, = (VPpfN_202)/M

where

V = volume of sample,
P = bulk density of sample,
p = ppm of element,
f = isotopic percentage,

No = Avogadro's number,
€ = detector efficiency
C = activation cross section,
® = neutron flux, and
M = atomic weight,

The significance of the saturation activity is
that it represents the activity produced by an infi-
nitely long irradiation, i.e., the maximum pro=
ducible activity for the isotope under consideration.

The second subroutine (1) computes the total
activity of the sample during the detection time; and
(2) assigns the activity, thus computed, to the var-
ious detection channels representing Compton con-
tinuum, photopeaks, and their pair peaks.

The third subroutine controls the plotting dis-
play. In our applications, an online CALCOMP 563

drum plotter is used. CRT displays also could be used.

Some features of this subroutine are:

Computation of the total activity (Fig. 1).-
The activity, |, of a sample exposed to a neutron
flux, ®, for a time Tl’ at time T after irradiation
stops is given by:

Irradiation
Stops
Starts

1 Irradiation
Starts
Detection
Detection
Stops

10,000

1,000

ACTIVITY, I

D
VV

Figure 1.- Activation as function of time, Tl = time
of irradiation, TB = TA = detection time.

100

Time >
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1M =A, - (1= - T 2)
where
N = decay constant of product nuclide, and

A = saturation activity (equation 1).

Assume detection starts at time TA after ir=
radiation stops, and stops at time TB' The number
of counts accumulated during the detection interval
TB = TA is given by integrating equation (2) with

respect to the time T, between time limits of TA
and TB:

Tg
A:§IGMT:
TA
d

T - =
‘y B{As-(l—e ATy (e xT)}dr,
T

A
an

1= ATy AT A AT
_ AS (T=e *'1) - (e " A-e B) @3)
A
Equation (3) gives the total number of counts

detected during the time interval (TB - TA). These

counts are the sum of the counts due to Compton
scattering, pair production, and photopeaks. The
distribution of the total counts to the proper chan-
nels is explained in the following paragraphs.

A

Distribution of Total Counts Into Appropriate
Channels

Pair production. = If the gamma energy is great -
er than 1.02 Mev two peaks, at energies given by

(Ey-O'S]) Mev and (E =1.02) Mev should occur. The

contribution due to this effect can be treated in the
same manner as in the case of photo electric and
Compton effect. To account for the pair production
effect, the steps in the program are as follows.

If the energy of the gamma given in the data
is greater than 1,02 Mev, then the two energies at
which they occur are calculated. These two ener-
gies are treated as if due to two additional gammas,
i.e., they give rise to Compton continuum and
photopeaks. The number of counts detected due to
pair production depends on the product of two fac-
tors, viz. branching ratio of the primary gamma and
the probability of occurrence of each peak. The
branching ratio is a factor which accounts for the
fraction of activity due to the gamma ray under
consideration as compared with the entire activity
of the parent nucleus. This value is posted on the
data card. It is, in general, complicated to find
the probability of occurrence of pair peaks. How-
ever, for the present work, an empirical relation
has been derived by observing the occurrence of
such peaks due to single energy gammas (Heath,
1964). The empirical formulae are found to be
as follows:



Probability of occurrence = el Ey, for
E . =E -0.51, and (4)
pair Ty
Probability of occurrence = eEY, for
E . =E -1.02. ()
pair 7y

Photo peaks. =Photo peaks are obtained due to
the interaction of primary gammas as well as pair=
production photons, with the crystal. To obtain the
number of counts due to the photo electric effect
from the total counts, the latter is multiplied by the
photofraction. Photofraction, PHF, is defined as
the ratio of area under the photo pedk to the area
of entire spectrum. PHF is a function of energy of
the gamma ray as well as the size of the crystal. An
empirical relation has been derived, for use in this
program, from the published values of PHF vs. en—
ergy for a sodium iodide crystal of size 3" dia. X
3" long. This relation is found to be

PHF = & Ey ©)

This empirical formula is within about 10 per=
cent of the published values (Heath, 1964).

The number of counts due to the photo electric
effect, PC, is, therefore, given by,

PC = (A) x (PHF) x (Branch ratio of EY)' (7)

The photo counts, PC, are distributed in a
Gaussian fashion around the peak energy, E_, of

the gamma ray, by means of the following formula,

- \2
! SN Clall)

PC(n) = (PC e
o= )(275)‘/2 7

where PC(n)= number of photo counts in any chan-
nel n -

n=0,1, ...

n = The number of channels on either side of
the channel corresponding fo the peak
height of the spectrum, Ny and

E
n = 2_ -1.0.
p  channel width

.n,n+l, . ... 2n,

To determine the number of channels on either
side of the peak, n, the following computational
steps are needed.

In terms of the full width at half maximum,
2w, which is explained in the next paragraph, n is
obtained, by comparing the number of counts at peak
and half-the=peak, as follows:

w2 w

- 2
n = =

2log e? 1.386

)

Full width at half maximum, f.w.h.m., is
the width of the spectrum in energy units at half the
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maximum (i.e., peak) counts. The resolution of the
peak is defined as f.w.h.m. The resolution is a
function of gamma energy. From the published
values (Heath, 1964) of energy vs. resolution, R,
an empirical relation, given below, has been de-
rived for use in this program,

R= 1000-819 -0.327 log;, E
TO0

In terms of R, and the channel, n_, corres-
ponding to the peak, n is given by P

{ (n )R)
+

2
_g_u} /1,386 (1)

The photo counts are distributed according
to equation (8) in channels between n_ = n
ton_+n, P

Compton distribution. = Compton continuum

is due to the primary gammas as well as due to the
photons produced in the pair production process.
The activity due to the Compton effect of any single
photon (either primary gamma or the pair produc=
tion photons) is the difference between the total
activity and the activity due to photo=electric
effect. Therefore, the Compton activity, CA is
given by

2) (10)

n =

CA = A(1-Photo Fraction) (Branch ratio of Ey)'

(12)

The Compton activity is distributed uniformly

in all the channels, from channel 1 to the channel
giving the Compton edge, which is the channel

number corresponding to the maximum energy, Ec'

lost by a photon in Compton collision, given by

E
E = 14 (13)

2
mc

1+ o )
Y

Other processes, such as back scatter and
annihilation spectra, have not been considered as
they are of secondary importance. In practice
one is more interested in a spectrum in which the
Compton continuum is as fully suppressed as possible
while the photo and pair peaks are predominant.
From this point of view, the assumptions made and
the semi~empirical nature of the program seem to
be valid.

An experimentally obtained curve from Heath's
work (1964) is compared with that obtained from
this program in Figure 2. In this case the full energy
peak has been normalized.

GEOCHEMICAL AND LOGGING APPLICATIONS
TO ACTIVATION SIMULATION

A few applications of generated synthetic
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Figure 2.~ Comparison of simulated and experimen=-
tal activation in spectrum, V24,

gamma spectra will be discussed in the following sec-
tion. Three typical cases have been considered,
viz. borehole in situ irradiation, shale cutting acti=
vation and the exploration of manganese nodules.

Borehole Irradiation

With the advent of borehole neutron genera-
tors, fast neutron fluxes of the order of 108 n/cm?2
sec. are now available. Some investigations
(Caldwell, and others, 1963; Hoyer and Rumble,
1965) have employed these to identify the capture
gamma rays or to measure the thermal neutron life
times in media of interest to the oil and gas industry.
However, the application of thermal neutron acti=
vation analysis for exploratory purposes seems to have
been little investigated. An experiment has been
simulated by means of the computer program des=
cribed in the previous section, to represent the
irradiation of formations consisting of either shales
or carbonates or sandstones. The assumptions and
the analysis of the results of the simulated experi=
ment are described below.

It is assumed that a thermal neutron flux of
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]07 n/cm2 sec. is available to irradiate a spherical
volume of 1 meter in diameter. The irradiation time
is taken to be 2 minutes. Detection starts 3 minutes
after irradiation stops and lasts for one minute. The
maximum energy range is taken to be 3.2 Mev which
is uniformly divided into 160 channels. Because
the geometry of the system and other parameters
that contribute to the efficiency of the detection
are not precisely known, the detection efficiency

is taken to be unity. As more information on the
detector efficiency becomes available, it can be
incorporated into the program. The values of most
probable composition of the samples, viz. shales,
carbonates and sandstones, are taken from Horn

and Adams (1966). Other nuclear data are obtained
from Reactor Physics Constants (1963). Gamma-ray
spectra thus obtained are shown in Figure 3.

From Figure 3, it can be seen that, in general,
there is more activity exhibited by carbonates than
by either shales or sandstones. The ppm of Mg in
carbonates is 45,300 whereas it is 16,400 in shales
and only 8,100 in sandstones. The high content of

N\927 coupled with the fact that the irradiation and
detection times are 2 minutes and 5 minutes respec=

tively, which happen to be optimum for N\927 with
half-life of 9.45 minutes, accounts for the predomi=
nance of Mg pecks in carbonates. With shales,
however, the Al content is 80,000 ppm compared

to 32,000 in carbonates and only 8,970 ppm in sand=

stones; thus the peaks due to Al™" are predominant.
Sandstones in which Si content is high, viz. 35,900,

be=

cause the isotopic percentage of Si3] is low, being
30 percent; and also the activation cross section is
low. Moreover, what little activity is due to Si3!

do not strikingly exhibit the peak due to 5i3!

is suppressed by the peak due to AI28 at the same
energy (1.26) because the irradiation times chosen

are more favorable for AI28 (half-life of 2.3 minutes)
as opposed to 591 (half-life of 2.65 hours).

Thus, even from a single irradiation of a short
duration the nature of the three types of rocks can
be clearly seen. Further, various detection times
would lead to more conclusive results. It also may
be noted that from a mixture of nearly 80 isotopes
this method has reduced the number of elements of
prominence considerably.

Shale Cutting Activation

Another application of the neutron activation
method is the analysis of rock samples obtained from
drill cuttings. This is advantageous in that there
is no restriction on the time element and the condi-
tions under which the tests would be performed.
Hence, it may be possible to design the experiments
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Figure 3.~ Thermal neutron activation of shales,
carbonates, and sandstones, irradiation time
2 min., detection after 3 min., 0.02 Mev/
channel.

to give the required information. As an example,
a shale cutting of the composition given in Table 1
is used as a sample. The conditions of the simulated
experiment are that the available thermal neutron

Hlox i T0'% n/cm2 sec., (which is possible from
nuclear reactors) and the irradiation time is 30
minutes. The activity was monitored by simulation
for seven days at intervals of 24 hours. The result-
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ing spectra are seen in Figure 4. The posted values
of half-lives and peak energies are shown in Table

2.
Manganese Nodules

Data pertaining to the composition of the
manganese nodules have been obtained from Mero
(1964). Results obtained from a simulated 2 minute
exposure of manganese nodules to a thermal neutron

flux of ]07 n/cm2 sec. and detection of the activity
after 1 minute and 1 hour are shown in Figure 5.
As a comparison, the spectra due to pelagic clays
of same sample volume and identical experimental
conditions are shown on the corresponding figures.
The peaks of interest in each instance are
shown in Table 3.
From the spectrum obtained 1 minute after
irradiation, it can be seen that the two media do
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Figure 4.~ Shale cutting, irradiation time 30 min.,

0.02 Mev/channel.
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Figure 5.~ Comparison of peaks of interest for man=
ganese nodules and pelagic clays: a, detec=
tion after 1 min.; b, detection after 60 min.

not give radically different results, although the
activity due to the clays is less than that due to the
nodules. However, the difference in the two media
becomes obvious from the spectra obtained 1 hour
after irradiation has taken place. The clays, which
have higher contents of Al which has short half-life,
exhibit less activity by far than the nodules which
have a high concentration of Mn with longer half-
life. Moreover, the activity due to both Al and Mg
in the nodules would have decayed substantially, if
not entirely, so that the peak at 0.86 is entirely due
to the presence of Mn.
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Table 1.~ Composition of a shale cutting.

Element _ppm. _
Mn 523
Na 3,028
Fe 23,481
Sc 29.2
La 25.0
Co 81.0
Cu 125




Table 2. - Posted values of half-lives and peak energies.

Isotope Half-Life Peak Energies (Mev.) Pair Peaks
Mn 56 2.6 hrs. 2.12, 1.81, 0.84 1.1, 1.61, 1.3, 0.79
Na 24 15.0 hrs. 2.76, 1.38 1.74, 2.25, 0.87, 0.36
Fe 59 45.1 days 1.29, 1.10, 0.19 0.78, 0.27, 0.59
Sc 46 85.0 days 1.12, 0.89 0.61, 0.11
La 140 40.0 hrs. 2.57,0.92 2.06, 1.55
Co 60 5.3 yrs. 1.17, 1.33
Cu 64 12.87 hrs. 1.34
Table 3.~ Comparison of peaks for manganese nodules and pelagic clays.
MANGANESE NODULES

Element ppm. Half-life Peak Energies Pair Peaks
Mn 56 242,000 2.6 hrs. 0.845

1.81 0.79, 1.3

2.13 1.01, 1.52
Mg 27 17,000 9.4 min, 0.834

1.01 -

0.181
Al 28 29,000 2.3 min. 1.78 1.06, 1.57

PELAGIC CLAYS

Element _ppm.. Half-Life Peak Energies Pair Peaks
Mn 56 5,820 2.6 hrs, 0.845

1.81 0.79, 1.3

2.13 1.01, 1.52
Mg 27 15,200 9.45 min. 0.834

0781
Al 28 84,200 2.3 min. 1.78 1.06, 1.57
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ON THE INTERPRETATION OF STATE VECTORS AND
LOCAL TRANSFORMATION OPERATORS

by

Henry N. Pollack

University of

Michigan

"The purpose of computing is insight, not numbers."

Krumbein (1967), in a paper on Markov chain
experiments, remarks that an important by=product
of such experiments is that the scientist comes to
view his observations as a set of states that succeed
each other in some patterned way, and that the pat-
term of succession, if it can be discovered, can lead
to a fuller understanding of the underlying geologi-
cal process. In the short essay to follow, | wish to
focus attention on the origin, characteristics, and
interpretation of a small group of patterns of suc=
cession.

Let us consider a single=valued function of
one space variable and time, Z = f(X,t). We may
identify this function as a topographic profile, with
the value of the function being the elevation of the
land surface at location X and time t. The passage
to subsequent states may then admit to an interpre=
tation in terms of geomorphic processes. To obtain
a later state of this profile, one can hypothesize
the nature of the change, and give it expression in
terms of a differential equation involving the local
time rate of change of elevation 9Z/dt. This can
then be integrated over time to yield a later state.
Some simple illustrative models follow:

elevation decrement is random in location
and magnitude.

9Z _ _,

ot

elevation decrement is constant everywhere;
regional subsidence .

. oz

§'='bz

elevation decrement is proportional to local
elevation; higher regions suffer more severe
denudation than lower regions.

2z |z
ot oX

elevation decrement is proportional to local
slope.
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R.W. Hamming (1962)
v.oz_, ¥’z
* " ax2

elevation decrement is proportional to local
curvature; mass "diffuses" from hills to valleys.

In the above, a, b, ¢, and d are positive constants.
Models I, 1I1, and IV are taken from Scheidegger
(1961) while model V can be recognized as the classi-
cal diffusion equation.

Let us now select from the profile a "state
vector", i.e., a finite sample of elevations
Z., 25, ...2Z.,...Z atasetofdiscrete

17 =2 i’ n
points X], Xz, . e Xi’ e Xn'
let AX = X. = Xi_] be a constant spacing. Similarly,
i]’ Ziz, R Z; be the values
at point xi at times t,, tor oo ri, with At
The partial derivatives may then be approx-

t. = t. .
il

imated by appropriate differences,

i

i

For convenience

using superscripts, let Z

4
Zi+1 i-1
2AX

i+1
zI" -z
_gTZ'; i 0Z =~

X

14

At

Future states of the profile predicted by each of the
processes above are

j+1

l. ZI = Zg =(random) At
I zI* =zl -aat
|
. ziY = zi -panz
i I §
o ear 1 .
v. zI™ =zl - zl -zl
i i 2XX i+1 i-1
V. zith - g + A8zl szl -2z
i Poax)? el e

The coefficient dAf/(AX)2 = § must satisfy § < 1/2
for the difference equation to represent adequately
the diffusion process. Each of the above is of the
form



m=1

ZFH = consfant N .
ST ) w0

i+m
m==1

where the Wi m are the appropriate coefficients of

H 4
the Z!+ . The future value at a point is obtained

i+m
as a sum of weighted present values at the point and
its adjacent neighbors, plus an additional increment
independent of the present profile values. The gen-
eration of a new state, then, is seen to be accom-
plished by performing a moving weighted sum opera=-
tion on the present state vector. The weights and
constant term for each of the processes are tabulated
in Table 1, and illustrative examples of some of
these processes acting on a common original profile
are shown in Figure 1.

It is, of course, a relatively easy undertaking
to hypothesize a geomorphic process in terms of a
differential equation, which in turn can be cast into
the form of a moving weighted sum operation. The
inverse task, that of inferring a differential equa-
tion (and ultimately a process) from some given or
empirical operator, is usually more difficult. For
example, one might ask what process, if any, is
implied in the generation of a new state by passing
a present state through the common three point
weighted moving average operation frequently em~-
ployed as a data "smoother." The operation can be
written m=1

Zi+] _ m;“l Ci,m Zi+m
; m=1 !
oy Cim

and when the operator is symmetrical (Ci -1 7
C; 1), this expands to !

: C. : : C. :
v LISV ] B2 S P VI
i IC. Iy IC, i

i,m i,m

In the notation of Table 1, this expression has

Wi, -1 =W =G/ IG pand W, o=

Ci ZCi m+ One may note that this operation is
equivalent to diffusion if C, /)ZCi =8 and
Ci O/ZCi m= 1 - 25. Satisfaction of the first

condition guarantees satisfaction of the second; thus
a necessary and sufficient condition for weighted
moving average "smoothing" fo be equivalent to
diffusion is Ci 1= Ci -1 =8):Ci m When § is
constrained by the inequality & < 1/2, the condi-
tionC, ;=C. ;< 1/2 IC, . is obtained. One

can convince himself that every symmetric operator
satisfies that condition independent of the central
weight, provided only that Ci m Ci 0 < 0.

7 4

Commonly employed smoothing schemes, such as the
three point equal weight (1,1,1) and the three point
binomial weight (1,2, 1) moving averages are seen
to be diffusion operators. Thus we have arrived at

a process inferpretation of a frequently utilized class
of local digital operators.

It is also worthwhile to note that for systems
in which future states are generated by operations
requiring values at adjacent sites (as in 1V, V above),
some provision must be made for modification of the
procedure at the ends of the interval. Without pur-
suing the topic in detail, suffice it to say that the
nature of this procedure also plays an important role
in the eventual state of the system. Just as boundary
conditions extract uniqueness from the general solution
of a differential equation, so does the interval end-
point procedure attach its signature to the state
vector (for a clear exposition of this relationship,
see Lanczos, 1961, chap. 4).

Krumbein (1967) has remarked that "in the
classical deterministic model, the state of the sys-
tem in time and space can be exactly predicted from
knowledge of the functional relation specified by the
underlying differential equation." Such knowledge,
with its attendant predictive capability, is one of

Table 1.= Weights and constant term for processes of models |-V.

Model Constant W. _ W. W. Remarks
1, ] 1 ,0 ) ]
l. =(random)At 0 0
Il. —aAt 0 0
1. 0 0 (1-bAt) 0
V. 0 +cAt/2AX FcAt/2AX Choice of signs as
- I :
Zi X Zig
Y, 0 F 1-25 8 § < 1/2




Figure 1.~ Modification of sinusoidal profile accord=
ing to models I, 1ll, and V. Solid lines are
common original profile, dashed lines are
subsequent profiles.

the fundamental goals of science. By exploring, as
we have here, the links between state vectors, local
transformation operators, and associated differential
equations, attention is drawn to that vital transition
zone where assemblages of observations become
identifiable as states of some process. Probing of
this transition zone will hopefully enable the science
of geology to advance from a state of statistical
characterization to one of deterministic prediction.
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APPENDIX

The generation of a future state vector by the weighted sum operation of equation (1) can be thought
of as the following matrix operation (Tobler, 1966, 1967):

ZIH = constant + Z! . S where Z! is the present (1 x n) state vector and S an (n x n) matrix of the
form

Special 0 0 0 0 0 0 0 0
W W, W, 0 0 0 0 0 0 0
0 W, W W, 0 0 0 0 0 0
0 0 W4 WO W, 0 0 0 0 0
S - 0 0 0 Wi W, Wy 0 0 0 0
0 0 0 0 0 0 W W W, 0
0 0 0 0 0 0 0 W W, W,
L0 0 0 0 0 0 . 0 0 Special
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SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS
USING A GENERAL PURPOSE ANALOG COMPUTER

by

K.A. Bishop

The University of Kansas

The acquisition of information concerning phy=
sical entities, phenomena, or processes by any means
other than direct measurement involves what might
be called the simulation or analog concept. Regard=
less of whether one is interested in the precise time
of the next equinox or the performance of a proto-
type aircraft, a model of the situation is exercised.
Two basic assumptions underlie the application of
any model (1) the validity of its description of the
physical situation, and (2) the economy resulting
from its exercise in contradistinction to direct mea-
surement of the required information.

Models may take on many forms, such as a
wind-tunnel version of the prototype aircraft or iron
filings on a sheet of paper to elucidate two dimen=
sions of the force field surrounding a permanent
magnet, but the most common form is the mathemati=
cal statement of physical laws that apply in a parti=
cular situation. These expressions generally consist
of combinations of algebraic, differential, and inte-
gral equations, with appropriate boundary conditions
and constraints.

Application of the general purpose analog
computer as a simulator may be viewed as a second
level of hierarchy of the modeling concept. Con-
sider the following situation. It is desired to eval-
vate the hypothesis that a large amplitude secon=
dary pressure pulse, which has been identified as
the cause of the destruction of the SL=1 nuclear
reactor, was the result of steam generated by heat
transfer from particles of the melted core falling
through the water moderator (Green and others,
1965). It is obvious that the hazards involved,
coupled with the cost of a reactor installation, pre-
clude experimental replication. Further, the im-
plied experiment involves measurement of heat
fluxes or their inference based on measured surface
temperatures, Newton's cooling law, and estimated
film heat transfer coefficients.

Whereas direct measurement is out of the ques—
tion, the mathematical expression of the applicable
laws, i.e., Fourier's and Newton's heat transfer
laws, is well known. Even so, the uncertainty as
to the magnitude of the film heat transfer coeffi-
cient, due to questions of boiling regime, raises
the spectre of an immense computational task if
either the analytical or numerical solution to the
requisite partial differential equations is employed.

The general purpose analog computer consists
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of a large number of operational amplifiers, poten-
tiometers, integration networks, etc., which may
be interconnected (programmed) in a configuration
such that its behavior is described by a set of equa-
tions similar to those describing the heat transfer
problem under consideration. Further, measurement
of voltages existing at different points in the cir-
cuit as a function of time is more economical than
solving the differential equation model of the physi-
cal situation.

It is apparent that the untenable proposition
of making extremely difficult measurements involving
the destructive testing of nuclear reactors has been
replaced by that of making direct measurements of
a physical analog.

For the purpose of this discussion, it is appro=
priate to narrow the scope of the problem to solve
a partial differential equation on an analog computer.
In order to accomplish this it can be stated simply
that Green and others (1965) made measurements of
the surface temperature of a sphere moving through
a water bath and its subsequent cooling in still air.
The measurement was made by photographing an
oscilloscope trace which was generated by a thermo-
couple attached to a metallic sphere. This trace is
shown in Figure 1.

The sharply decreasing initial portion of the
trace corresponds to the surface temperature trajec-
tory while the sphere was under water. The sharp

W A

P by i by
ﬁ/{r[rT‘rTf

I

Figure 1.~ Trunsient surface temperature response.
Scale: 1 mu/em (vertical), 0.1 sec/cm (horizontal).



rebound corresponds to the emergence of the sphere
from the water and reflects change from conduction
to convection as the rate limiting phenomenon. The
slight drooping of the tail indicates that while film
heat transfer coefficients in still air are small they
are finite. Rather than consider the problem of
evaluating the hypothesis, consider the simulation
involved in reproducing the trajectory of Figure 1.

THE MATHEMATICAL MODEL

An energy balance over a differential element
of volume gives rise to the partial differential equa=
tion

Qg = a V2 8 (])

at

where 6 is temperature; t is time; a is the thermal
diffusivity; and v< is the Laplacian operation. This
assumes that a # a (position, time). Further, the
rate of heat transfer from the surface is given by the
expression

q=hA (6 -6) (2)

where h is the Newton cooling parameter (which is

a function of both position and time); A is surface
areq; and § is the temperature of the water. Two
cases were considered: (1) temperature as a function
of radius and time, and (2) temperature as a function
of radius and one angular dimension. For these cases
the model equations are

0 _ «a a_ rZQQ (3)
af_rT ar ar

% _ {10 [228]

at — %2 o |" ar

T]_ %(sinﬁ aa—g-)s 4)
rsing

Taylor series expansion of the deviations of
temperature with respect to space dimensions in terms
of finite differences leads to a set of ordinary differ-
ential equations. The general interior equations for
the two cases considered are

de =(1+he
dn r = nAr r = (n+1)Ar
- 1
r = nAr r=(n=1)Ar )

de _\a +%) 0
il [ﬂ= A g = mag
r = nAr r = (n+1)Ar
2
- (2 + W, ) V]
n“(AQ) 7 = mAg
r=nAr
+(1-De
g =mAp
r=(n=1)Ar
+ 2 +2Aﬂ c;t (mAZ) )6
207 (09 g = (m+1)Ag
r = nAr
+ (2 "Ag cot2(mAﬁ) ) 6
27 (69) g= (rz'l)AﬁI

where n is a dimensionless variable which involves
a and Ar.

Analog Computer Notation

A general purpose analog computer is a
collection of operational amplifiers, summing net-
works, integration networks, potentiometers, mul-
tipliers, function generators, etc. For the purpose
of this study, we need only consider the first three
elements in this list.

I. Coefficient potentiometers multiply a
voltage by an arbitrary constant, 0 <k < 1.0. Its
operation is shown symbolically:

&)= —e ()

If. Operational amplifiers equipped with
summing networks sum voltage signals. Their oper=
ation 1s shown symbolically:

eo(’r) =kei(’r) 0<k<1.0

e; ](f) 1
e o2 e
e 3(1‘) 10

eo(f) == [e](f) + 2e2(f) +10 es(f)]



or in general eo(t) == % G.e. . where Gi is the

7
input gain for a particular signal.

[11. Operational amplifiers equipped with inte=
gration networks integrate voltage signals with re=
spect to time. Their operation is shown symbolically

[G ‘(/; ei(f) dt + icJ

where ic=-e (0).

)
Because summing networks are input networks and
intagration networks are feedback networks they
may be and are combined in this application.

Application to the Case 6 =6 (rn)

For this case, the partial differential equation
(1) with boundary constraining equation (2) is re-
placed by the set of ordinary differential equations
of the form of equation (5) in which the subscripts,
n, refer to grid points shown

012345678¢9I1011 r
namely
de]
b 206,-6,] 6,(0) =k
d62
d63
a;—= 464/3 -263 +262/3 63(O)=k
dO]O
=3 = HG”/IO “28]0 +989/10

"l 8,,(0) =k

10
6” ) 2.913 910‘33.6 0>§Tq <T 7
10 1
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where T is the value of  at which the medium sur-
rounding the sphere changes from liquid to vapor,
i.e., the film heat transfer coefficient becomes
comparatively insignificant. The analog computer
program is shown in Figure 2.

ic]

Figure 2.~ Analog program for 8(r,n)

Results of the computations are presented in Figure
3. The traces are plots of temperature as a function
of time for parameters of radial position. The low-
est trace in Figure 3 corresponds to the temperature
at the surface of the sphere, i.e., a simulation of
the experimental work of Green and others (1965)
in Figure 1.

+1

1 PETETE En
LI I N B B B B

Figure 3.-Temperature profile for eleven radial
grid model, Scale: 6/5 dimensionless sec/
unit (horizontal); 10 dimensionless degrees/
unit (vertical).



Application to the Case 6 = 6(r, 7, t)

For this case the partial differential equation
(1) with boundary constraint equation (2) is re=
placed by the set of ordinary differential equations
of the form of equation (6) in which the subscripts,
m,n refer to grid points.

[0

2
3 1
m
0 1 2 3

n ——s
Flow—

In contradistinction to the previous case, the
hydrodynamics of the physical situation can be
brought into play. Moving pictures show a vapor
cloud partially covering the surface, thus decreas=
ing the heat transfer rate at the trailing edge. This
vapor cloud is sketched

flow

—»  liquid { solid vapor

In order to introduce this information to the simula-

tion, the boundary conditions listed were instituted.

q=hA ®-06) gridm=3,4;,n=3
n<T

q=0 gridm=3, 4, n=3
n>T

q=0 gridm=0,1,2;n=3
all

The boundary conditions were applied to the
two=space dimension model given in equation (6).
Note that the symmetry about a line through the
center of the sphere and parallel with the flow di-
rection suggested by the shape of the vapor cloud
has also been included in the model.

The programmed equations are:

dé
_ 0,1 _og

an - 8.4846

0,2 0,1+ 6.4848, |

deolz =-2.62160,2 +O.5SO,] +2.1216],2

4.1 _ -
—-d—q-l— —26412 8.48494,] +6.48493,]
de4 2
_c]ﬁl——z -2.62]64,2 +0.594,] +2.]2]93,2
9,3 =%),2
91,3 =61,2
6,3 =98
6 _ .65363,2 - 130 Kn<T
3,3
63’2 n >T
~ .653642"]30 0<n<T
8,3 = '
64,2 n>T )
de n
—dr:—J—— = equation (6) form=1,2,3; n=1,2.

A general interior grid point would be pro-
grammed as shown in Figure 4.

Results of the computation are presented in
Figures 5, 6, 7, 8, and 9. Each of these presents
traces of temperature as a function of time at various
radii for a particular value of the angular parameter.
Figures 5, 6, and 7 show small variations of tempera-
ture due to the small rate of heat transfer to the
vapor cloud. Figures 8 and 9 show the enhanced
rebound upon emergence from the liquid which was
exhibited in Figure 1.

The limitation of the analog approach to solv-
ing partial differential equations becomes obvious
from considerations of this case. This limitation,
of course, is that all analog equipment is used in
parallel, thus an almost trivially small grid system
taxes all but the largest analog installations.

This problem has been solved at the Argonne
National Laboratory analog facility. The two=space
dimension case which involved seven angular para-
meters and seven radial parameters required 43
integrators, in excess of 120 operational amplifiers
and in excess of 200 coefficient potentiometers=-
in short, more than 75 percent of the facility's
capability was tied up for this problem.
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Figure 4.~ Symbolic representation of typical interior
grid point.
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Figure 5.~ Temperature profile two=space dimension
model m = 0. Scale: 1 dimensionless sec/unit
(horizontal); 10 dimensionless degrees/unit
(vertical).

Figure 6.~ Temperature profile two=space dimension
model m =1, Scale: 1 dimensionless sec/unit
(horizontal); 10 dimensionless degrees/unit
(vertical).
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Figure 7.~ Temperature profile two=space dimension
model m =2, Scale: 1 dimensionless sec/unit

(horizontal); 10 dimensionless degrees/unit
(vertical).
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Figure 8. - Temperature profile two=space dimension
model m = 3. Scale: 1 dimensionless sec/unit
(horizontal); 10 dimensionless degrees/unit
(vertical).
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