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Editor’s Remarks

One of the great problems facing earth scientists today is that of becoming technically obsolete. 1.
Stambler and D.M. Graham reported in an article on Qutracing Technical Erosion (Industrial Research,
August, 1967) that 90 percent of all world scientists and innovators are alive today and are contributing to
the "scientific explosion." Workers are becoming increasingly aware of the obsolesence problem, but find
it ever more difficult to keep up with the vast amount of literature, even in specialized fields. Stambler
and Graham estimate that about 50 percent of a scientist's knowledge will be "useless" in ten years after
his graduation.

Many techniques of data storage and retrieval are being tested in an attempt to make pertinent infor=
mation available quickly according to H.A. Simon (Information Can Be Merged, Think, v. 33, no. 3, 1967).
He suggests it is necessary to distinguish between fundamental and transient knowledge, and "...There is
little or no time available to stow away heaps of facts and particulars, specific narrow techniques that 'may
be useful sometime'." He advocates as effective retrieval system based on a series of "indexes." Many
data systems, especially those developed for the petroleum industry are now becoming available to earth
scientists. Hopefully, these automated filing systems will increase our efficiency and give earth scientists
the data necessary for proper decision-making.

Many organizations are now encouraging their employees to take refresher and continued education
courses. In addition, they engage visiting lecturers and specialized consultants to aid in up-dating their
personnel. Symposia, colloquia and seminars are held on special topics at all technical levels to keep work -
ers abreast of latest developments. At present, meetings in computer technology are being sponsored by the
University of Michigan, Oklahoma Research Institute, and the Kansas Geological Survey.

Special topics in information storage, retrieval, and analysis are being discussed in conjunction with
some regional, national and international meetings, for example, meetings were held in conjunction with
the recent International Sedimentological Congress and the 6th International Congress on Carboniferous
Stratigraphy and Geology, both in Great Britain. These sessions promoted a free interchange of ideas
among specialists from all over the world.

To help disseminate the latest information on computer applications in the earth sciences and keep
researchers up-to-date, the Kansas Geological Survey publishes the COMPUTER CONTRIBUTION series.
This issue, reporting the proceedings of the Colloquium on time-series analysis, brings together people from
different disciplines with varied backgrounds to discuss research progress in this extremely interesﬁ:g area.
The sponsors of the Colloquium hope that participants will derive much benefit from their involvement in
this meeting. The Colloquium is designed to allow maximum interchange of ideas and information in a limi-
ted amount of time.

(continued on inside back cover)
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A COMPARISON OF COHERENCE AND CORRELATION AS MEASURES OF ASSOCIATION
FOR TIME OR SPACIALLY INDEXED DATA

by

L. H. Koopmans~

1/

University of New Mexico

INTRODUCTION

Time series or numerical sequences indexed
by a space parameter are of considerable interest in
geology. The thickness of varves as a function of
time measured (yearly) from a convenient origin is an
important example of the former, and terrain heights
measured at equally spaced stations considered as a
function of distance from the "first" station is an ex-
ample of the latter, Two or more measurements may
be made at each time or space index, thus, for
varves, thickness, calcium carbonate content and
several other measurements are made usually for each
lamina in a varve sequence. Along with the various
single-series parameters to be computed, it is of
great interest to compute measures of association
between the various series (see paper by R. Y. An-
derson in this volume). For simplicity, | will restrict
attention to time series taken two at a time. The
corresponding information for spacially indexed series
will be obtained easily by converting the terminology
from time and frequency to space and wave number.
A consideration of parameters for more than two series
at a time is not in keeping with the subject matter of
this paper.

The statistician's (and geologist's) old stand-
by for measuring the linear association between two
sets of numerical quantities XqrXoreeer X and

YyrYpreeery, is the (sample) correlation coefficient.

The formula for its calculation is well known and |
will not repeat it here. If the subscript on the x's
and y's is a time index; that is, if x. denotes the x

measurement corresponding to | equally spaced time
units from a given origin and y. is the y measurement

taken for the same time index, i, then the x.'s and
y.'s constitute a pair of time series and a frequency

dependent measure of association, called coherence,
can be computed. To save space, | will also avoid
the details of the formulas and methods for calculat-
ing the (sample) coherence (see Jenkins, 1961;
Amos and Koopmans, 1963).

l/Resecxrch. supported by the National Science Foun-
dation, grant GP 5217,

As | will indicate in the next section, the
sample correlation coefficient and sample coherences
can be viewed as "estimates" of corresponding "over-
all" parameters for a mathematical idealization of
the time series. If the number of time units (n) at
which measurements are taken is large, there is little
need for distinguishing between the sample quantities
and the corresponding parameters as the sample quan-
tities tend, in the limit as n goes to infinity, to these
parameters. The purpose of this paper is to point out
a simple mathematical relationship between the
"overall" correlation coefficient and coherence, and
on the basis of this relationship, indicate reasons for
preferring coherence to correlation as a measure of
linear dependence between pairs of time series. |
will also describe an actual situation involving a
particular varve sequence in which the correlation
coefficient provided misleading information about
the linear dependence between a particular pair of
measurements which was later clarified by computing
coherences. The reason for this phenomenon will be
explained on the basis of the above mentioned rela-
tionship between correlation and coherence.

RELATIONSHIP BETWEEN CORRELATION AND
COHERENCE

Imagine that both the x and y series are
extended to the infinite past and into the infinite
future so that our two sets of numerical quantities
constitute n observations from the idealized doubly
infinite series et X XgrXqreeei ceerY_ 1 Yor Yy

«eo o By adding constants to the x and y series we
can guarantee, thus assume, that

N N

1
=1 =z .=0,
X Im R ET i=-Ny|

lm T
i:—N | Nooo

N-ooo

(This is essentially the process of removing the D.C.
component from each series.)

Now, let
N
. 1 2
R ) 2 AN
N-—oo 1=
and
| N
o = lim X, .
SANPYS N+ =N |yl



Similarly, 0 is defined as is 0__ with y.
yy XX
replacing x.. The quantities SN and 0 are the

total mean square amplitudes of their corresponding
series——also called power in the terminology of math-
ematical time-series analysis. |f the time series has
a stochastic origin and the x and y series are realiza-
tions of a stationary time series, then O and O

are also the variances of the x and y measurements,
respectively. In this situation, o, is the covariance

between the x and y measurements. Consequently,
the "overall" or population correlation coefficient

is
P= 0Tl

In addition, under reasonable conditions,
the quantities O xr Oy and 0 have spectral rep-

resentations (see Jenkins, 1961) of the form,

© ©

o = S_@ o), 0, = S_w ),

(1
o =0 e,
Yy S—oo YY( )

The functions fxx()x) and fyy()\) are called the spec-

tral densities or, simply, the spectra of the x and y
series and fx (X)) is called the cross-spectrum. Thus,
fxx(X) and fyy(K) measure the intensity of the power
in the x and y series at frequency A and their inte-
grals over all frequencies "explain" all of the power
in these ceries by virtue of equation (1). LM'I?ﬁe cross=
spectral density contains information aboyt the linear
relationship between the two series as a function of
frequency. This information is obtained more intui-
tively from two auxiliary functions, the coherence
and phase angle:

£ )]
y=—=

v
A ANt )fyy(x)

Imf ()
8__(\)=arctan —X— |
Xy Re fxy(x)

The functions fxx(k) and f (A) are real-valued
whereas f (A) is generally complex-valued. Then
Im fx (A) and Re fx (A) stand for the imaginary and
real parts of fxy(l) and | fxy(}\ )| for its absolute

value.
The most useful interpretation of the correla-

tion coefficient, p, is that 92 is the proportion of the

variance (0_ ) of the y measurements which can be

attributed to the linear dependence or regression of
y on the x measurements, This important interpreta-
tion carries over almost directly to the coherence,
which provides the reason for the importance of this

parameter; Y2x (A) is the proportion of the power (or

more precisely power intensity) of the y series at
frequency A , which is attributable to the linear de-
pendence of the y series on the x series. More intui-
tively, Y . (A) measures the extent (at frequency A)

to which a linear filter could be designed which would
transform the x series into the y series.
The phase angle exy(k) is the average phase

lead of the "harmonic component” of the x series at
frequency Y over the corresponding component of the
y series. It plays an important role in the relation-
ship between correlation and coherence.

Without going into the algebraic details
(which follow from (1) and are actually extremely
simple), the correlation coefficient can be expressed
in terms of the spectral parameters as follows:

p= S_m‘( xy()\) cos ny(X ) hxy()\) dr . 2)

The weight function hxy(X) is given by

£ M) 1/2
ey )= | —= Ao .
A S f 0

®
It can be shown that 0 SS hxy()\ A<,
where the 0 value is assumed only if f_ _(A) f ()=0
XX yy

for all A and the value 1 is attained only if
fxx(X) = const, - fyy()\) for all A, Consequently,

hxy()t) measures, in a sense, the degree of similarity

between the power spectra of the x and y series. For
cyclic data such as varve measurements the spectra
consist principally of isolated peaks (Anderson and
Koopmans, 1963). Thus, this function will be appre-
ciably different from zero only when peaks in the x
and y spectra coincide. This means, returning to
equation (2), that contributions to the correlation
coefficient for varve series are made by the coherence
only at frequencies corresponding to [ strong]cycles
in both the x and y series. It is possible for the co-
herence to be near its maximum value of one when

hx (\) is near zero at a given frequency and no essen-

tial contribution to P will occur.
Note that hxy(k) does not depend upon the
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Figure 1.- Log-power spectra of clay and CGCO3.

cross—spectrum, Fx (A). The two terms in the inte-

grand of (2) which do, provide the interesting possi-
bility of high coherence at all frequencies for which
hxy()\) is large, yet a negligible correlation! This

is brought about by the following possibilities, or a
combination of them. If the series are /2 or 3/2
radians out of phase, cos © « ()= 0 and no contri-

bution to p will be made at such frequencies. It is
possible, however, for a direct relationship between

=0)

the series to exist at some frequencies (exy(x):

and an inverse relation to exist at other frequencies
(® xy(X ) = 1) which wili lead to a cancellation of

of the coherences from these two sets of frequencies
when the integration is performed in (2). (Note that
ny(X) and hxy(X) are both non-negative so this

cancellation is due only to changes in the sign of
cos ny()\ ).) Thus, the harmonic components at

certain frequencies can have "correlations" near +1

at certain frequencies and near -1 at others—-indi-
cating sfrongqlineor dependence between the series—-
but the correlation coefficient will be deceptively
small. It is such contingencies which lead me to
recommend coherence as a replacement or, at least,

a supplement for correlation for measuring dependence
between time or spacially indexed series. The follow-
ing extract from a varve study will illustrate that such
phenomena actually occur in practice.

COMPARISON OF COHERENCE AND CORRELA-
TION IN VARVE STUDY

A variety of harmonic analyses were carried
out on several kinds of measurements made on a 1400-
year varve sequence from the Rita Blanca Lake de-
posits in Texas (Anderson and Koopmans, in press).
One particular analysis=-the comparison of clay con-
tent with calcium carbonate--provided some surprises.
An anticipated large negative correlation between
these two series failed to materialize. The computed
correlation was only =0.12. On the other hand, the
computed coherences over spectral regions of high
common power for these two measurements were high.
A study of Figures 1 and 2 shows that high coherence
and large common power occur over the periods 22
years, 30-40 years, 70, 100 and 300-1000 years.
By far the highest power is concentrated in the region
of 70-1000 year periods (Fig. 1). The high coherence
and low correlation seems contradictory until Figure
3 is studied. In the light of expression 2 and the
above discussion, the contradiction is easily explained.
Over the 70-1000 year periods the phase angle is al-
most uniformly near =180° which yields cos exy(X)

=-1. On the other hand, over the two other regions
of large common power and high coherence the phase
angle is either near 0°or its image on the circle,
-3600. For these regions, cos ex (A)=1. Thus, the

cancellation of coherence as discussed in the last
section takes place here and yields the small cor-
relation. The negative sign of the correlation is

attributable to the comparatively large value of
hxy()\) over the 70-1000 year periods.
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Figure 2.- Coherence between clay and CGCO3.



-360°

—3
®
°
°

® [ ]

Region of positive cos 8xy °° °
=270% o e R e

°
° ®
®e
° ) .
® o® Region of negative cos 8 xy
o |
-180 °
°
°
°
°
-90° b L gy U S S
)
)
°
Region of positive cos Bxy ° °
° ® e
°, °° . e ° °
° o7 0

0° 1 I I I hd | L]

1000 200 100 50 40 30 20

PERIOD (YEARS)
Figure 3.- Phase angle for clay and CaCOs.

REFERENCES

Amos, D. E., and Koopmans, L. H., 1963, Tables of the distribution of the coefficient of coherence for
stationary bivariate Gaussian processes: Sandia Corporation Monograph SCR-483 (available from the
Office of Technical Services, Department of Commerce, Washington 25, D. C.).

Anderson, R. Y., and Koopmans, L. H., 1963, Harmonic analysis of varve time series: Jour. Geophys.
Res., v. 68, no. 3, p. 877-893.

Anderson, R. Y., and Koopmans, L. H., in press, Statistical analysis of the Rita Blanca varve time series,
in Anderson, R. Y., and Kirkland, D. W., eds., Palececology of an early Pleistocene lake on the

High Plains of Texas: Geol. Soc. America Mem.

Jenkins, G. M., 1961, General considerations in the analysis of spectra: Technometrics, v. 3, p. 133-166.



SOME EXPERIMENTS TO SIMULATE THE PENNSYLVANIAN ROCK SEQUENCE OF KANSAS

by

W. Schwarzacher

Queen's University, Belfast, Northern Ireland

ABSTRACT

Power spectra were calculated of a simplified lithological section compiled from R. C. Moore's data
for Kansas. The power spectra show that quasiperiodicity is a characteristic feature of cyclothem deposition.
Such oscillating series can be generated only by a second- or higher order process. Either autoregression co-
efficients or transition probabilities of the series may be estimated. Both may be used as a model, and they
are compared with reality by calculating the power spectra from simulated runs. The simplest model that gives
reasonable agreement is a two-stage Markov chain. To go from one stage into the following in succession,
transition probabilities are used that depend on lithologies found at a level of 155 feet below this stage in the
section, The time lag of 155 feet is the dominant wavelength in the spectrum of the Kansas stratigraphic sec-

tion.
INTRODUCTION

Time-series analysis applied to geological
data is a relatively new development. The object is
to obtain more information from the stratigraphic rec-
ord than is apparent from casual inspection. Time-
series analysis may be carried out for practical rea-
sons, such as interpolation of incomplete sections or
for stratigraphic correlation. The main problem,
however, will always be the search for a mechanism
which explains in physical terms the causes of sedi-
ment variation in geological sections. The develop-
ment of time-series analysis in other subjects, such
as economics, meteorology and geophysics, warns us
not to expect too much from purely analytical proce-
dures in our search for models. The generating proc-
esses or mathematical models responsible for observed
time series are more complex than realized at first.

An important complication which is peculiar
to geological data is the uncertainty of the time
scale. Naturally we can substitute the vertical
scale for time in our analysis of sections, but knowl-
edge of the time history is essential to interpret litho-
logic variation in terms of physical processes. Because
of this, it will always be necessary to treat geologi-
cal data in two stages being the search for (1) a
stratigraphic response model with a vertical scale
response, and (2) a time process model. If we adopt
the analytical approach, this will be the logical
order of investigation. Unfortunately, it seems un-
likely that this will lead to success in many instances.
After a preliminary analysis has been made, it will be
necessary to formulate a hypothesis in terms of geolog-
ical processes. This geological model then may be
expressed in mathematica! terms and a response model
obtained by a simulation experiment. The method
not only is hit-and-miss but often it will be difficult
to decide if a hit has been made. Nevertheless, it
is felt that at present this is the only possible approach

to geological time=series analysis. We can only
hope that eventually geologically useful information
will emerge.

This paper is intended to demonstrate such an
approach by using R. C. Moore's rock-column data
of Kansas (Moore and others, 1951). The author is
unfamiliar with details of the section, but it is per=
haps the "classic” example of cyclic sedimentation.
The large amount of literature on cyclothems com-
pensates only partially for this lack of geological
familiarity, and the author realizes the limitations
of such a "theoretical " study.

PRIMARY DATA

The ideal cyclothem (Moore, 1936) is defined
in terms of lithologic phases which follow each other
in a regular sequence. Moore originally differen-
tiated ten phases, some of which are lithologically
identical but can be defined by their position in the
cyclothem, Pearn (1964) simplified Moore's classi-
fication to five lithologic types which can be used
directly for coding lithologic variation. Further
simplification leads to a three component system of
sandstone, shale and limestone that has been essen-
tially adopted for this study. However, shale con-
taining coal was distinguished from shale without
coal, thus, 1 =sandstone, 2 = shale with coal,

3 =shale without coal, 4 = limestone. The question
of coding lithologies is obviously important and a
problem which must be solved by geological argu-
ment rather than mathematical analysis.

The next decision to be made was the choice
of the vertical measuring interval. Many authors
avoid this problem by using beds of uniform litho-
logic composition as units; the thickness of the bed
is deliberately ignored. This method may be useful,
providing that the geological situation really indi-
cates that each bed is a unit in itself and represents



a "phase" in the vertical development of the facies.
This implies that a large amount of geological inter-
pretation has to go into the designation of each unit.
It is necessary, for instance, to decide on geological
grounds whether two or more beds of identical lithol-
ogy have followed each other in succession. The re-
sulting series of alternating stages can be brought into
a time relationship only if something is known about
the duration of each stage. The available data cer-
tainly does not justify the bed-equal-unit approach.
A rough analysis of thickness frequency distributions
of sand, shale and limestone in the Kansas rock col-
umn indicates a large variability with bimodal or
polymodal distribution. For example, shale has a
mode both in the 2 to 4 foot thickness class and in the
12 to 14 foot class. If the bed-equal-unit approach is
chosen, two shales which differ according to their be-
havior in thickness would be classified together. In
fact, it seems doubtful if any statistical examination
of vertical sections can afford to ignore the additional
information contained in the thickness data.

In this investigation, the following procedure
was adopted. Coded lithology and thickness to the
nearest 0.5 of a foot were taken from the graphic
columns in Moore's paper (Moore, 1936). A section
starting with the Brownville Limestone at the Penn-
sylvanian=Permian boundary and extending downward
to the Hepler Sandstone at the base of the Pleasanton
Group was compiled. Measurements from Moore's
section could not be made with great accuracy, but
a check was provided by comparing the total thick-
ness of the transferred values with Moore's total
thickness. The values agree to within 1.5 percent
of the total length of the 2000-foot section. A com-
puter sorting program was used to determine percent-
age values of coded lithologies for specified increments
on the vertical scale, together with lithologies which
made up the highest percentage in each interval. The
latter will be called dominant lithologies. For reasons
to be discussed, an interval of 5 feet was found suit-
able for most problems, thus giving 400 values for the
investigated time series.

PRELIMINARY ANALYSIS

An important feature of any time series is its
stationarity. This property is difficult to examine,
particularly if we are dealing with a single record of
limited length. Stationarity in the broad sense is pres-
ent if the series possesses a time-invariant mean and
autocorrelation function. The determination of a
mean or autocorrelation function, therefore, should
not in practice depend on the position of the sample
series within the section under investigation, and the
presence of a definite trend would reduce such sta-
tionarity. We investigate stationarity by partition-
ing the entire section into subsamples and comparing
the mean values of the variables. The mean percent-
age of sandstone for 50-foot intervals was used for a
"runs” test (Bendat and Piersol, 1966), and results

suggest that one may accept the hypothesis that sub-
sequent 50-foot intervals are independent and there

is no underlying trend. The graph shows, however,
that the fluctuations are not without geological mean-
ing, as they reflect the stratigraphic stages which
have been used to subdivide the Kansas column. It

is believed that this indicates significant deviation
from stationarity but for the present this will be ig-
nored.,

To obtain a general description of the series,
estimates of the power spectra were calculated. The
method suggests itself because of the so-called "cy-
clic" nature of the sediments in this section. Esti-
mates of power-spectral densities (Bendat and Piersol,
1966) were obtained by "Hanning" the periodogram
of observed autocovariancies. The standard sample
interval of 5 feet was determined by requirements of
the spectral analysis. It seemed desirable to search
for oscillations in the wavelength range of 500 to 10
feet. The highest frequency equals the number of
lags used in the estimation of the autocovariance
function, This number was kept at 50 in most ex-
amples.

The wavelength in feet therefore can be found
from the frequency Vas shown on the diagrams by the

relation: )\=0_.§'0W . Furthermore, the wave length

in feet also is indicated at the important peaks of
the spectra.

Spectra can be calculated either from the
coded data of dominant lithologies or from the per-
centage data; both results are comparable. In all
instances individual spectra must be calculated for
each lithology. Dominant lithologies are coded in
a sequence of +1 (present) and -1 (absent) which is
treated in exactly the same way as a series of per-
centage values,

Typical Pennsylvanian spectra are shown in
Figure 1. Both shale and sandstone show a pro-
nounced peak in the 166-foot wavelength, The
limestone peak is shifted into the 125-foot wave-
length, having a minimum coinciding with shale-
sandstone peak. Subsidiary peaks occur at 50 and
35.7 feet and these are close to the 3rd and 4th
harmonic of the main peak. The sandstone and shale
maxima are without doubt due to cyclothemic sedi-
mentation, as the wavelength of approximately 150
feet coincides well with the average thickness of
cyclothems, particularly in the lower and middle
part of the section. The limestone spectrum could
be caused by an effect of erosion which frequently
removed limestone as indicated where followed b
sandstone. But there is evidence also of genuine(y
shorter limestone "cycles” and these may be individ-
val members of megacyclothems. The interpretation,
however, must be tentative at this stage for a number
of reasons. The present system of coding, for instance,
may not be detailed enough to enable one to recog-
nize megacyclothems. Changes in cyclothem thick-
nesses may occur also and complicate the analysis.



Shale

Sandstone
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Figure 1.- Spectra of composite Kansas stratigraphic
section, Dominant lithology at 5-foot inter-
vals,

All spectra indicate that, in mathematical
terms, the series can be described as being generated
by a quasiperiodic random process. It is suggested
therefore that the definition of cyclothem deposition
logically should be the following "...the arrangement
of one or more lithologies in a vertical section in such
a way that there is a preferred period of occurrence
when a complete record of the section is examined;
more simply, when the power spectrum of the inves-
tigated record shows a significant peak." Unfortu-
nately, geological definitions of cyclothems and
"cycles" in general are directed usually more towards
the order in which various rock types occur. This is
of geological significance, but a different aspect
from the problem considered here. It is obvious, for
instance, that a completely ordered sequence of
lithologies can give a white noise spectrum if the
thickness of the lithologic units vary at random. If
quasiperiodicity in the described sense is accepted as
the characteristic feature of cyclothems, then the
reality of "cyclic" sedimentation canbe tested by

investigating the significance of the peaks in the
spectrum. This can be done in two ways either by
the argument that (1) spurious peaks in the spectrum
are not likely to have peaks at their harmonics as
the Kansas spectra, or alternatively, (2) confidence
limits to the power spectra can be constructed
(Granger and Hatanka, 1964). There is no doubt
about the reality of the frequency peaks in the Kan-
sas spectra (Fig. 2).

166,66

—— —— —— = Shale Percentage

10 o — Limestone Percentage

Figure 2.- Spectra of Kansas section showing percent
of lithology with 10 percent confidence limits.

Further descriptions of cyclothems may be
obtained by investigating the cospectral properties
of individual lithologies. We consider, for instance,
the records of the sandstone and shale sequence.

The cospectrum then is calculated from the cross
correlogram of the two records. The cospectral den-
sity function is a complex quantity and can be rep-
resented by two components, the coherence and
phase., Coherence is a measure of amplitude and will
be high if both series have maxima or minima in the



identical frequency band. The phase diagram shows
how far the first series lags behind the second series.
From the amount of lag, it is possible to calculate

the average thickness of lithology for each frequency.
For the 166-foot wavelength of the section, the fol-
lowing lags were found, sandstone 161 degrees behind
shale, shale 166 degrees behind limestone., These can
be translated into thickness, and we obtain for this
frequency a cyclothem consisting of 13 feet sandstone,
137 feet shale and 17 feet limestone. This result
should not be regarded simply as an average cyclo-
them that could have been obtained by averaging
thickness measurements together with a so-called
"modal cycle" (Duff and Walton, 1962), as the latter
does not carry frequency information. At the same
time, it must be realized that the cyclothem descrip-
tion derived from spectral analysis is not accurate, as
for instance in this example where the frequency bands
adjacent to the 166-foot band have a wavelength of
250 feet and 125 feet, respectively. This relative
coarseness of estimation is not a fault of the method
but of data, which are such that no more accurate

and at the same time meaningful information could be
obtained from them.

Cospectral analysis can be generalized to any
number of variables by investigating the lag of cross-
correlation matrices. Coded lithologies, which we
may call different states, use a matrix of cross=
association coefficients recording the frequency with
which state i follows | at any specified lag. In this
situation it is useful to transform the correlation ma-
trices into stochastic matrices; this is simply achieved
by making the rows add up to unity. Such a matrix
gives the transition probabilities between states, i.e.
lithologies, and can be useful for description and
sometimes for the interpretation of lithologic varia-
tion. The transition probability matrix contains the
same fundamental information as the correlation ma-
trix; the selection of the method which one uses
depends on the nature of the problem.

VERTICAL SCALE RESPONSE MODEL

It is now our aim to formulate a mathematical
model in such a way that it can be used to simulate
the stratigraphic record. At the same time, we will
try to keep the geological implications of any such
model in mind.

In the previous section we have proposed that
quasiperiodicity should be regarded as the typical
feature of "cyclic" sedimentation, and we can there-
fore specify that the theoretical model must be a proc-
ess of second or higher order. A first-order Markov
process, for instance, can only be regarded as a
limiting case, because its power spectrum has a max-
imum only at zero frequency (Bartlett, 1962). Never-
theless, the first-order transition probability matrix
gives a considerably better description than can be
obtained by assuming random changes in lithology.
The estimated transition probabilities for 5-foot

intervals in the Kansas section are given in Table 1.

Table 1.- Estimated transition probabilities for 5-
foot intervals in Kansas section.

0.6456 0.1266 0.1519 0.0759
0.0625 0.3125 0.3125 0.3125
0.1272 0.0060 0.7212 0.1456
0.0476 0.0119 0.3452 0.5953

Testing the hypothesis (Anderson and Goodman, 1957)
that the events in the sequence are independent
against the alternative that they are controlled by a
first-order Markov process gives a =2I7A value of
176.01, which indicates that the hypothesis of in-
dependent states can be rejected with great confi-
dence.

In order to see the type of section which
would result from a first-order Markov model, a
simulated section has been calculated together
with the power spectra (Fig. 3).

20 |
|
|
| ——=—=— Shale
l -------- Sandstone
l ——————— Limestone
15+ |
|
10 -
5 b
0 : : ' l ;

5 10 15 20 25

Figure 3.- First-order Markov model.



As predicted, there is no significant peak in this
spectrum apart from the zero frequency maximum,
The simulated section (Fig. 4) indicates, as one
would expect, the most likely sequence from sand-
stone to shale to limestone, but it is difficult to pick
out successive cyclothems. Geologically, the first-
order Markov process can be interpreted as a facies
continuity, in the sense that if changes in the envi-
ronment take place they have to follow a definite
pattern which is logically fixed. Thus, it is not pos-
sible (as a rule) to change from shallow into deep
water without passing through a state of intermediate
water depth.

Figure 4.- Examples of simulated and observed strati-
graphic sections; A, Kansas; B, second-order
Markov; C, autoregression; D, first=order

Markov.

Before discussing higher order processes, it
seems profitable to review briefly how quasiperiod-
icity can be introduced by means of geological proc-
esses. We consider two crude models, both based on
the structural behaviour of a piece of crust.

Model 1

Consider a piece of crust which we assume to
be floating and perhaps supported by a central pivot
(Fig. 5A). If this is brought out of equilibrium, it

will oscillate around its pivotal point with a charac-
teristic frequency. The oscillations may fall off
rapidly if damping is present. |f next we assume that
the oscillations are excited by random impulses, then
we have an example of Yule's famous random disturbed
pendulum which is the classic model for an autore-
gressive process (Yule, 1927). The movement of the
pendulum is described by the stochastic differential
equation

2
dxt dxt

+b, — +byx, =€
df’Z ]df 27t t

Model 2

Consider an area of uplift separated by rigid
crust from an area of subsidence. Assume downwarp
is linked casually with uplift, for instance, due to
increased sedimentation when uplift occurs. In turn,
uplift is caused by subsidence after a more-or-less
constant time lag, which could be due to a slow-
moving undercurrent (Fig. 5B). In this model, the
movement of the basin area depends not only on the
immediate past but also is strongly determined by the
state of the basin at a time before the present. This
is precisely the model which was chosen by Whittle
(1954) to represent Alfven's theory of sunspot forma=
tion. It can be summarized by the stochastic dif-
ference equation

d X, +CX, =€
17t 27t
dt
The two models do not only apply to tectonic control
as used in this illustration but could be developed
for a variety of environmental factors such as climatic
or biological control. For the present it is only

A

t

AR
]

Time LagrT

Figure 5.- Models: A, disturbed pendulum; B, time-
lag.



necessary to investigate if either of the models can
be used as a stratigraphic response model. At the
same time, it must be realized that much more com-
plex processes can be constructed which may be
mixed differential difference equations of any order
and which also will lead to quasiperiodicity.

Estimation of an Autoregressive Scheme

Whittle's (1954) method of examining the two
types of models is to fit autoregression coefficients to
a time series and to compare the residual variance Vi

of a scheme in which @ coefficients have been fitted
against the residual variance Vo of a scheme in which

only & -Bcoefficients were fitted. The statistic
%
1= o) n )
V2

is approximately X2 distributed with B degrees of

freedom. Thus, if 4!2 is significantly large, the B
excluded coefficients are essential in representing
the scheme. The full procedure can be found in
Whittle's paper.

We have examined the autocorrelations of
the sandstone, shale and limestone percentages. In
each instance, the following model has been fitted

X(f) =A X1+ A2Xt_Z +A

1 30%¢-30 * (1)

Where x stands for lithological percentage at time t
and the time lag 30 (i.e. 150 feet) represents the
dominant frequency of the cyclothems. The results
are interesting. For sandstone, the scheme is

Xy = -826%X, ) = 301X, +.072X, g5t €, (1)

Although the coefficients for lag 30 gave a small
value, Whittle's test shows that it contributes signif-
icantly. Comparing the variance of the scheme
derived from coefficients A], A2 with the variance

of a scheme incorporating coefficients A], A2, A3O

we find

.4585

2 =
Y .3-9-17) =28.31

= 397In (

The probability of obtaining '112 as large by chance
is <0.001. The shale and limestone models differ
considerably from the sandstone model. For shale we

find

Xf = .662Xf_] .005X,r_2 - .OOIXT_30 (2)

with 2= .75, p~ 0.4;
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and for limestone

X,r = 564X, _, + .OlSXt_2 + .04]Xf_ (3)

t=1 30

with ¥2 = 1.01, p~ 0.2

In both the limestone and shale regressions, the lag
30 coefficients do not contribute significantly to the
scheme. In fact, the lag 2 coefficients are so small
that we will not be too wrong if we assume first-
order Markov properties for shale and limestone.

The three series have been considered here
as independent for simplicity., Further, it is realized
that the estimation of the autoregressive coefficient
is inaccurate at the relatively small sample size
(n = 400) used. We use this method principally to
aid our intuition in constructing the first simple
model to simulate the series.

We assume that it is only the sandstone which
determines the quasiperiodicity of the sequence.
Sandstone sedimentation is caused by a random proc-
ess incorporating a memory which extends at least
over the length of the cyclothem. The simulation is
carried ouf in two steps: first, a sandstone series is
generated by making use of equation (1) and a ran-
dom number generator. The series is standardized
to unit mean. Thus, if the mean sandstone series is
multiplied with the first row of the first-order transi-
tion probability matrix, the latter stays unchanged.
If the series oscillates, the first row of the transition
probabilities will be biased correspondingly. In
stage two, a series of transition probability matrices
is calculated and from these the section is simulated.
Simulation runs for about 2000 feet give the power
spectra which are shown in Figure é and the section
given in Figure 4C. The results are an improvement
on those obtained with the first-order Markov model.
The most prominent peak in the spectrum is at ap-
proximately 50 feet and coincides reasonably well
with the theoretical oscillation period of a two-term
autoregressive scheme. Making use of the coeffi-
cients a and ay, we obtain 43.75 feet for this

period (Kendall, 1945), Peaks around the 150-foot
period are indicated but obviously the 30-lag term
has been underestimated. Nevertheless, if one
studies the simulated section one can make out the
larger periods (megacyclothems?). The model is
primitive in the sense that it regards sandstone sedi-
mentation up to the first-order Markov relationship
as independent from the other variables and this is
not a realistic assumption. If we investigated the
limestone sedimentation as an independent variable
we find that the 30-lag term is insignificant but the
correlogram indicates that a 20-lag term (wavelength
= 100 feet) may be significant. Fitting the three
autoregressive coefficients we find for limestone

X, = 534X _ (4)

and

+.002X,_, + 066X, _

1 20



.6230

2=
vy = 397|n .m—é

=98.00

which is highly significant. Similar estimates for the
sandstone and shale sequence show that the 20-lag
term does not significantly contribute to the scheme.,

20

Shale
Sandstone
| —_—— Limestone

0 ! l 1 i
X5 20

25

Figure 6.- Spectral analysis of lagged autocorrelation
run.

This may indicate a separate mechanism at work that
determines the limestone sedimentation, and more
sophisticated models may have to incorporate terms
for both limestone and sandstone sedimentation. Ob-
viously, two regression equations could no longer be
regarded as independent and more has to be learned
about the phase relationship of sandstone and lime-
stone. This may be attempted at a later stage with
more suitable data.,

Estimation of Transition Probabilities
A more direct approach to the simulation

problem is the estimation of transition probabilities
of lithologic states in the sequence. Although this
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estimation procedure is straightforward from a math-
ematical point of view, the resulting matrices of
transition probabilities are not as easily interpreted
by the geologist as the autoregressive model. We
stress once more, however, that fundamentally the
two methods are identical.

We concern ourselves again with a second-
order model. Thus, if at time t - T the state i
occurred, we find a matrix of probabilities such that
at time t + 1 the state k occurs provided that state |
occurred at time t. In the instant of the four lith-
ology system, we will therefore be concerned with
four [ 4 x 4] matrices for each time lag T. If T
becomes zero, we have a simple Markov matrix. In
order to establish the most significant value of T we
use the likelihood ratio criterion

4 A n

i,k

A

where pik and Piik are estimated transition probabil-
ities and Rtk is the number of individuals in state i
at t = T, state j at t and state k at t + 1. The statis-

tic -2InA has an assymptotic X2 distribution under the
null hypothesis that the chain is first order against
the alternative that it is second order (Anderson and
Goodman, 1957). The test criterion =2In\ has been
calculated for T=0to T= 45 and is shown in Figure 7
together with the 0.001 confidence limits of the dis-
tribution. At zero lag, the null hypothesis tested is
the hypothesis discussed earlier, that the series con-
sists of independent random variables against the
alternative of a first-order Markov chain. The test
statistic gave the highly significant value of 176.01,
Taking into account the possibility of a second-order
Markov chain we obtain a highly significant value
of 103.13 at 7= 31. Thus the hypothesis of the first-
order Markov chain is abandoned in favor of the
second-order chain and we formulate our model.
Provided the lithology at t - 31 has been 1, 2, 3or
4, then the transition probability from the state at
time t to the state at time t + 1 is given by four

[ 4 x 4]matrices (Table 2). The transition probabili-
ties of Table 2 have been used for simulation experi-
ments to obtain spectra and sections (Fig. 8, and 4B)
which show considerable agreement with reality.
Curiously enough, the best agreement now is in the
limestone spectra which show similar peaks in the
100-foot wavelength band, closely followed by the
shale spectrum. The sandstone maximum that should
occur at the 166-foot band is not well developed.
This again may suggest that a different mechanism

is needed for the control of sandstone sedimentation.
The comparison of the simulated with the observed
spectra generally indicates that the actual sedimen-

tation processes are more regular than a second-order
model .
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Figure 7.- -2Im\ values for lags 1 to 45.

Table 2.- Probabilities from the state at time t to the state at time t + 1.

T-31=1 T-31=3

0.7143 0.0952 0.1429 0.0476 0.2222 0.3333 0.3333 0.1112
0.0000 0.0000 0.0000 1.0000 0.10000 0.3000 0.50000 0.1000
0.0455 0.0000 0.5454 0.4091 0.1270 0.0000 0.7301 0.1429
0.0000 0.0000 1.0000 0.0000 0.0000 0.0285 0.2858 0.6957
T-31=2 T-31=4

1.0000 0.0000 0.0000 0.0000 0.8823 0.0588 0.0000 0.0589
0.2500 0.2500 0.2500 0.2500 0.0000 0.5000 0.0000 0.5000
0.3750 0.1250 0.3750 0.1250 0.1316 0.0000 0.8158 0.0526
0.0000 0.0000 1.0000 0.0000 0.1875 0.0000 0.2500 0.5625
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CONCLUSIONS

The geological interpretation of the experi= |
ments must be approached with caution. Assuming |
that the stratigraphic record is an unbiased estimate |
of the time history of sedimentation, then the hypoth- l
esis of a time-lag mechanism seems to provide an ade- |
quate model. It is not intended here to speculate |

|
|
|

— — Shale

-------- Sandstone

Limestone

about the nature of such a mechanism beyond indicat-
ing that it is most likely to involve some form of lat- 15 L
eral transport that must have proceeded over a constant

distance at a constant rate.

i
[}
]
i
Assuming that the stratigraphic record contains '
\
[}
[}

systematically disturbed gaps or a systematic variation
in sedimentation rates, our conclusions are more un-
certain, It is believed that the experiments definitely
indicate that the simpler random models such as a
first—order Markov process or a second-order auto-
regressive process can be eliminated. This is more or
positive if we allow for randomly fluctuating sedi-
mentation rates, as such fluctuations would blur the
spectra rather than accentuate them. The time quasi-
periodicity must have been more pronounced than is
found in the stratigraphic record. Whether the model
should be improved by making use of higher order
terms or possibly by introducing a deterministic peri-

odic component depends ultimately on the geological Bl
theories which are available to justify such proce-
dures. In the meantime, simulation techniques can
be used to study the effect of such improvements,
o 1 1 1 | J
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FREQUENCY ANALYSIS FOR SPARSE AND BADLY SAMPLED DATA IN THE EARTH SCIENCES

by

Norman S, Neidelll/

Gulf Research and Development Company

INTRODUCTION

Cyclicities, periodicities, and oscillatory
transients of long=time duration are ubiquitous char-
acteristics of many earth-science studies. Second-
order differential equations govern motions of heav-
enly bodies, wave phenomena, and heat transport
processes. These represent some of the most basic
physical systems which admit solutions of the nature
described, and their solutions become imprinted in
the geological record to varying degrees. Hence,
frequency analysis can assume a role of central im-
portance in deciphering and understanding these
aspects of geology.

The current literature abounds with examples
where frequency analysis might be employed to ad-
vantage. Xanthakis (1967) is concerned about the
rise time initiating sunspot cycles, whereas Donn and
Shaw (1967) debate with C. Emiliani on paleotemper-
atures. A pulsating "constant" of gravitation is re-
lated to the major tectonic episodes by Machado
(1967). All too often, however, the material for
study barely qualifies as data. It can be sparse,
limited in range, badly sampled, and highly inac-
curate. Additional information may be extremely
difficult to obtain,

Conventional methods of frequency analysis
date from Fourier in 1822 (Lanczos, 1956) and were
designed to give a maximum resolution in frequency
approximately proportional to the inverse of the num=
ber of data samples multiplied with some mean sam-
pling interval. The power-spectral methods currently
in vogue can improve the reliability of calculated
amplitudes but sacrifice frequency resolution by
averaging over adjacent bandwidths (Blackman and
Tukey, 1958; Jenkins, 1961; Parzen, 1961; Goodman,
196]{. Alternative methods of frequency analysis
exist, although they have not been commonly used
in the earth sciences. Two of them, nonlinear esti-
mation and differential modeling, will be mentioned
in this paper. Appropriately used, both of these
methods attain a degree of amplitude and frequency
resolution which cannot be matched by the conven-
tional analysis.

l/I would like to thank officers of the Gulf Research
and Development Company for their permission to
publish this paper.
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NONLINEAR ESTIMATION

Frequency analysis by nonlinear estimation
might equivalently be called "doing the obvious."
Take the data and fit it in the least-squares sense
with a trigonometric series of a fixed finite number
of terms. Both the amplitudes and frequencies are
considered as unknowns thus making for a nonlinear
problem. There is, of course, no requirement that
the trigonometric functions be harmonics so the fre-
quency resolution is governed only by the accuracy
of the data and not by the number of observations as
in conventional analysis. Considerations of alias-
ing and such phenomena exist but do not cause undue
difficulty for the experienced analyst.

Obviously, much technology has been de-
veloped to allow the doing of the obvious. In
particular, the pioneering work of Kuhn and Tukey
discussed by Hadley (1964) on the algorithmics and
the advances in digital computing must be cited.
For our studies, the algorithm of Shanno (1966) has
been used.

DIFFERENTIAL MODELING

Before discussing frequency analysis via
differential modeling, it would be helpful to note
how modern digital computing has changed our
perspective on what constitutes a solution. This is
an observation made by the mathematician Richard
Bellman. Suppose a differential equation is to be
solved as an initial value problem and also the
analytic function which satisfies it. A difference
approximation can be made for the equation and
using the FORTRAN language this leads to a single
DO loop. The analytic function can be expanded
as a series or its values sought in a book of tables.
Now, if it is desired to know a single value of the
function then we might seek it in a book of tables
or compute it using the series. Suppose, however,
that we wish to have available for further calcula-
tions a range of values of the function. These might
be most efficiently and accurately calculated using
the DO loop on a computer. In effect this is solv-
ing the differential equation. Is it fair to consider
the function rather than the differential equation a
solution?

Table 1 indicates how an advance in tech=
nology has interchanged the classical or 17th cen-
tury view of problem and solution. Philosophically
it is a basis for techniques of differential modeling.



Table 1.- Problem or solution.

Differential Equation: Function:
du _ _ 0) = =X
I = "cu u(0) =a u=ae

Difference Approximation: Series Expansion:

using known values ofCLi and w.. Next, the values
of(:ti and W, were treated as unknowns to be found by

fitting the data using the differential system

Ui" + UJizui =0 Ui(O) =a, ui'(O)

=0i=1,2, 3.
In essence, we are asking to find six unknown values
from seven data points., The procedure used first was

quasilinearization and required initial guesses for the

Ui = (]"ch)ui u(x) =ae X = a. and w.. Data and the results of four iterations are
2 3 shown in Table 2.
Up = u(0) = a a(1-ex+(ex)"= (cx)
21 31 Table 2.- Results of frequency analysis
b
[ ax =g b 1 Fees) Data: Results:
"DO" Loop: Table of Values: t U(#)  Method i o Y

UZERO = A 0.00 1.600000 Initial 1 0.900000 1.00000
DO761=1, N 0.83 0.452413 Guesses 2 0.600000 2.00000
U(l) = (1-0 DO-B)*UZERO 1.67 -0.679691 3 _0.200000 3.00000
76 UZERO = U(l) 2.50 -0.820313 True 1 1.000000 1.11000
3.33 -0.367504 Values 2 0.500000 2.03000
4,17 -0.381874 3 _0.100000 3.42000
Fitting of data using differential equations owes much 5,00 0,351082 Quasi- 1 1.000000 1.11000
to Richard Bellman. The generality of these models lineari- 2 0.500000 2.03000
in relation to the number of parameters to be estima- zation 3 0.100000 3.42000
ted is unmatched while their applicability to prob- Nonlinear 1 0.999976 1.11012
lems in the physical universe is most dramatic. For Estimation 2 0.499886 2.02995
instance, reflect upon how much more often theoret- 3 0.100073 3.41921

ical studies lead to expressions of differential calcu-
lus rather than algebra. Further, differential models
are intrinsically recursive or self~adaptive in nature
and embody the essence of "learning" processes.

For frequency analysis, we need only fit the
data with a differential system whose solutions are
sine and cosine functions. Again, the analysis is
not restricted to include only harmonics of some
fundamental frequency. In terms of numerical sta-
bility these approaches to frequency analysis have
been demonstrated to be superior. Many alternative
methods for differential modeling exist especially in
the literature of filter theory, control theory, and
system identification. In our studies we use the
quasilinearization method developed by Bellman and

Kalaba (1965).
AN EXAMPLE - TWO WAYS

Consider the example of "periodogram
analysis" given by Bellman and Kalaba (1965).
Seven nonuniformly spaced data points were gen-
erated from the mathematical expression

3

E OLicosUJi'r

i=1

uft)

16

Table 2 also shows the results of fitting the
same data using the identical initial guesses with a
sum of three cosine functions of unknown parameters.,
This nonlinear programming problem was accomplished
using the algorithm of Shanno (1966). These results
are somewhat inferior because they were computed
using less digits of accuracy than the quasilineariza-
tion solution. The frequencies in this example were
severely truncated by the range of sampling, and
there were few samples. Both quasilinearization and
nonlinear estimation give results which cannot be
matched by conventional analysis yet neither tech-
nique has been used much as indicated in earth-
science literature.

CLOSING REMARKS

In brief, the results obtained for the synthetic
example indicate that these alternative methods of
frequency analysis merit further study and attention,
especially when treating sparse and badly sampled
data, a common situation in the earth sciences.
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SIMULATION MODELS OF TIME-TREND CURVES FOR
PALEOECOLOGIC INTERPRETATION

by

William T. Fox
Williams College

INTRODUCTION

Time—-trend curves can be used to plot the
distribution of organisms or rock types as a function
of time. A series of time=trend curves was computed
and plotted to show the relationship between fossils
ond the enclosing strata (Fox and Brown, 1965).
Individual curves have been plotted for brachiopod
genera in the upper part of the Richmond Group
(Upper Ordovician) of southeastern Indiana (Fox, in
press). Based on these curves, it is possible to make
a generalized interpretation of the palecenvironment.

To explain the faunal distribution in terms of
actual changes in the physical environment, a mathe-
matical simulation model was constructed to reproduce
the faunal distribution pattern shown by the time-
trend curves. In the simulation model, organisms
are assigned hypothetical tolerances and respond to
changes in the temperature, salinity and depth. By
adjusting the tolerances in the model, the distribu-
tion patterns are brought into line with the observed
time-trend curves.,

TEMPERATURE, SALINITY AND DEPTH

To test hypotheses involving changes in tem-
perature, salinity and depth as a function of time, a
method was devised for computing and plotting simu-
lated time-trend curves. For each simulation model,
it is possible to change the shape of the curve and
the maximum and minimum values. To make the
curves closely approximate the observed data, a
random component can be superposed on the simulated
curve using a pseudorandom number generator. The
smooth curve represents the general trend of the
environmental factor through time with the random
components mimicking local fluctuations.

Several parameters are used to control the
shape of the curves and their limits. For tempera-
ture, salinity and depth, each point on the simulated
curve is considered the average value during a short
interval of geologic time, represented by a small
thickness of rock strata. In simulating the fossil dis-
tribution of an actual stratigraphic section, it is con-
venient to select the number of units so that the
simulated time-trend curve will be plotted on the
same scale as the time-trend curve for the observed
section,

In computing and plotting the curves for each
variable, the vertical section is divided into four
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equal segments. It is possible to treat the full sec-
tion as a single unit, to split the section into two
segments and treat the upper half and the lower half
independently, or to treat the four quarters separate-
ly, making certain that the ends of successive seg-
ments join. The attitude of each segment of the
curve and the maximum and minimum values are
controlled by the function control card which is
read in with the data. The nine different options
available for each segment include: (1) remain
constant at the minimum value, (2) remain constant
at the mid-point, (3) remain constant at the maximum,
(4) increase from the minimum to the maximum, (5)
increase from the minimum to the mid-point, () in-
crease from the mid-point to the maximum, (7) de-
crease from the maximum to the minimum, (8) decrease
from the maximum to the mid-point, and (9) decrease
from the mid-point to the minimum. By using dif-
ferent combinations of the above options with dif-
ferent segments of the curve, several different hy-
potheses about how the variables change with time
can be tested. Each segment of the curve can be
plotted as a linear function or as a portion of a
cosine curve, In plotting a linear function which
increases from the minimum to the maximum, the
segment is plotted as a straight line with the mini-
mum value at the lower end of the segment and the
maximum value at the upper end of the segment.
Figure 1 shows examples of the linear and
cosine functions plotted as several curves. Curve A
is a linear function for the full section which in-
creases from the minimum to the maximum. Curve B
is a cosine function increasing from the minimum to
the maximum. Curve C is a linear function in which
the bottom-segment increases from the minimum to
the maximum, and the top segment decreases from
the maximum to the minimum. In Curve D a cosine
function is used which increases from the mid-point
to the maximum, then decreases from the maximum
to the minimum. Curve E represents a linear func-
tion in which the bottom quarter is constant, the
second quarter increases from the minimum to the
maximum, the third quarter decreases from the
maximum to the minimum, and the top quarter re-
mains constant at the minimum, Curve F is based
on a cosine function with the lower quarter increas-
ing from the minimum to the maximum, the second
quarter decreasing to the mid-point, the third quar-
ter increasing to the maximum and the top quarter
decreasing to the minimum.,
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Figure 1.- Linear and cosine function curves used for plotting environmental parameters.,

It is possible to superpose a random fluc-
tuation on the curves, as an option to the simulation
program. Using a pseudorandom number generator
with a normal distribution, a standard deviation can
be assigned to the environmental function. Curve G
is a linear function which increases from a minimum
to a maximum and has a standard deviation of 1.0.
For curves A through F, the standard deviation is set
at 0. It is possible to control the amount of fluctua-
tion by increasing or decreasing the standard deviation.

LIGHT INTENSITY AND PHOTOSYNTHESIS

Light intensity is the most important limiting
factor to photosynthesis within the oceans. Photo-
synthesis is limited to the euphotic zone, which
extends to a maximum depth of 100 meters where the
light intensity reaches 1 percent of the surface illum-
ination., The depth of the euphotic zone is a func-
tion of surface radiation and the turbidity of the sea
water. In the middle latitudes, the average surface
illumination at noon on a clear day is about 10,000
foot-candles.

The turbidity is affected by both absorption
by sea water, dissolved organic substances and
colored particles, and scattering by the water mol-
ecules and particles in suspension.

Jerlov (1951) subdivided the oceanic waters
into three categories and coastal waters into nine,
based on the transmissibility of light. For each
water type, Jerlov recorded the transmissibility at
a depth of 1 meter for several wave lengths of light.
The extinction coefficient can be computed directly
as a function of light transmissibility. Light with a
shorter wave length has a greater transmissibility in
clear oceanic water, but in more turbid coastal water,
the longer wave lengths have a greater transmissibility.
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Although the extinction coefficient increases with
water type in moving from oceanic through coastal
water, there is not a direct mathematical relation-
ship between water types selected by Jerlov and
their extinction coefficients. Equation (1) was
derived empirically to relate the turbidity coefficient
(Tb) used in the simulation program to the extinction
coefficient (k)

k=0.018 +0.051 Tb (1

A plot of extinction coefficient versus turbidity co-
efficient is given in Figure 2 with the three oceanic
water types and nine coastal water types from Jerlov
(1951) included for reference. The oceanic types
are numbered beneath the line with the coastal types
above the line. In using the turbidity coefficient,
0 represents clear oceanic water with an extinction
coefficient of 0,018, 2 is the boundary between
oceanic and coastal water approximately at the
outer margin of the continental shelf with an extinc-
tion coefficient of 0,120, and 10 is the most turbid
coastal water with an extinction coefficient of 0.528,
The light intensity (L) at any depth is computed
as a function of surface illumination (Ls), depth (h)
and extinction coefficient (k) using equation (2).
L=Ls - e K )
Ryther (1956) made a study of the relation-
ship between light intensity and photosynthesis of
marine phytoplankton. In experiments made at the
Woods Hole Oceanographic Institution, he exposed
phytoplankton to a full range of light intensities and
measured photosynthesis by the uptake of radioactive

carbon, C' . A series of additional experiments
also was made by measuring photosynthesis at dif-
ferent depths in the Woods Hole Harbor with simul-
taneous measurements of incident radiation and the
extinction coefficient of the water,



A generalized photosynthesis light-intensity
curve was constructed by averaging the relative
photosynthesis values at each intensity for three
groups of marine phytoplankton. In order to use the
generalized curve in the program for simulating
time-trend curves, it was necessary to derive the
mathematical equation for the curve. The curve
plotted by Ryther (1956) has a marked asymmetry
tailing off toward the higher values of light inten-
sity which is best approximated by a gamma-
density distribution. A computer program was
written to compute relative photosynthesis as a
function of light intensity using equation (3) for
the gamma distribution (Krumbein and Graybill,
1965, p. 121).

xr-le-X/B
T(r) gr

G(X,r,B) = (3)

COEFFICIENT (k)

EXTINCTION

2 4 6 8
TURBIDITY COEFFICIENT (Tb)

2.~ Plot of extinction coefficient (k) versus
turbidity coefficient (Tb) with coastal and
oceanic water types.

Figure

The population parameters for the gamma-
density distribution include a location parameter,
r, and a scale factor, B, which can be found in
terms of the mean X and the standard deviation S by
using equations (4) and (5).

s 2
r=(5) “)
2
-2 (5)
X
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In using the gamma density distribution to compute
relative photosynthesis, X is the light intensity
measured in thousands of foot-candles. The value

of light intensity for which the relative photosynthesis
is at its peak is found by equation (6).

S2

= X%

X ()

X peak = | )

In computing the relative photosynthesis curve, the
peak value is set equal to 1 and the remaining values
are computed relative to the peak.

By computing and plotting the gamma distri=
bution through several iterations changing the mean
and standard deviation, a function was determined
with a close fit to the observed curve from Ryther
(1956). The gamma distribution with a mean of
4,075 and a standard deviation of 2,574 (Fig. 3)
gives a good approximation of relative photosynthe=
sis as a function of light intensity in thousands of
foot-candles.
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Figure 3.- Relative photosynthesis as a function of
light intensity in thousands of foot-candles.

The program for computing light intensity was
combined with the program for relative photosynthesis
to produce a program which computes relative photo-
synthesis as a function of surface illumination, depth
and turbidity. The program also computes the depth
for the maximum phytoplankton production and depth
for the base of the euphotic zone where light inten-



sity equals 1 percent of the surface=light intensity.
Curves for light intensity and phytoplankton distri-
bution versus depth with different turbidity values
are given in Figure 4.

ORGANISM TOLERANCES

Organisms are restricted in their geographic
and temporal range by tolerances to the physical
and chemical factors of their environment. Although
the environment consists of many factors involved in
a complex interaction, only water temperature,
salinity and light intensity are considered in time-
trend simulation models. For every factor, each
organism is assigned a tolerance mean which repre-
sents the optimum and a standard deviation which
controls the range.

For many living species of plants and animals,
the temperature range can be firmly established by
climatic observations. Along with the lethal tem-
perature limits, feeding, reproduction and general
activity are modified by temperatures less extreme
than those which actually cause death., An increase
in temperature accelerates chemical reactions which
regulate the body processes within organisms (Moore,
1958). Two types of reactions, one set building up
and the other set breaking down, are taking place
within organisms. A combination of the two sets

Turbidity = 1

Turbidity = 3

Turbidity =

of reactions gives a reaction curve which rises to a
peak and then drops off with an increase in temper-
ature. The peak in the curve is considered the op-
timum temperature for a particular organism and
tails of the curve mark lethal limits,

In time-trend simulation, the normal curve
is used as a model of the temperature reaction curve
with each species assigned a temperature tolerance
mean and standard deviation. With an increase or
decrease in temperature away from the mean, there
is a decrease in abundance (Fig. 5). Organisms
with a wide temperature range are called euryther-
mal, and those with a narrow range are termed
stenothermal. Figure 5 is an example of a simulation
run with a constant increase in temperature, to
demonstrate the difference between eurythermal
and stenothermal organisms with different optimum
temperatures. Organisms A through E are steno-
thermal with a temperature tolerance standard
deviation of 1,0°C. The remaining organisms F
through J are eurythermal with a temperature
tolerance standard deviation of 2.0°C.

The distribution of organisms in the marine
environment also is dependent on salinity. Those
organisms with a narrow salinity tolerance are con-
sidered stenohaline and those with a wide salinity
tolerance are called euryhaline. Normally those
organisms which live in the open ocean with a

5 Turbidity = 7 Turbidity = 9
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Figure 4.~ Light intensity and phytoplankton distribution versus depth with different turbidity values.
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Figure 5.= Organism abundance versus temperature for organisms with different optimum temperatures and

temperature ranges.

salinity near 350/00 have a narrow salinity toler-
ance, whereas those in the intertidal zone, tidal
flats or estuaries usually have a broader salinity
tolerance. As with temperature, the organisms in
the simulation models are assigned salinity toler-
ance means and standard deviations.

The benthonic species also have different
tolerances to light intensity, which provides a
vertical zonation with water depth. Based on the
curve for light intensity versus photosynthesis of
phytoplankton plotted in Figure 3, the gamma distri-
bution is used as a model for light intensity versus
population density in the marine environment. In
Figure 6, three species (A, B and C) with different
light intensity means and the same standard devia-
tion are used to test the relationship between light
and depth for different conditions. Teny:erqture was

held constant at 20°C, salinity at 35°/°°, and surface

illumination at 10,000 foot-candles. In moving
through time, depth was decreased linearly from 25
meters to sea level.

A turbidity coefficient of 3.0 was used for
the first test, giving an extinction coefficient of
0.153 (Fig. 6). Species A is assigned a light in-
tensity tolerance mean of 4.1 which is the value
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derived for marine phytoplankton. For species B,
the light intensity mean has been increased to 4.6
and for species C, the mean is 5.1. The standard
deviation derived for the phytoplankton, 2.6, is used
for the three species. With an increase in light in-
tensity tolerance, the peak abundance of species A
to C occurs at a higher level and the range is more
restricted. If the turbidity coefficient is increased
to 5.0, the extinction coefficient goes up to 0.273.
As a result of the decrease in light penetration,
species A, B and C are found in higher levels of the
sea. For the three species, the increased turbidity
results in a higher peak and a decrease in vertical
range. If the turbidity is raised to 7.0, the extinc-
tion coefficient is raised to 0.375 and less light
reaches the bottom. With the increase in turbidity,
the organisms are restricted to a depth of 10 meters
or less.

FREQUENCY, ABUNDANCE AND AGGREGATION

The terms frequency, abundance and aggrega-
tion are used to describe the distribution of a group
of organisms under optimum environmental conditions.
For living communities, Fager (1963) defined indices
to measure frequency, abundance and aggregation.
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Figure 6.- Depth, light intensity and organism abundance for different turbidity values.

For the time-trend simulation models, each taxonom-
ic group is given a frequency index, an abundance
mean and standard deviation, and an aggregation
index. These indices are used with the environ-
mental tolerances to determine the population den-
sity in each increment of time or rock thickness.

According to Fager (1963), frequency is
measured on the spread of a species throughout a
community, For the simulation program, frequency
is defined as the ratio of the number of horizons at
which the species is present to the total number of
horizons. If a species is found in 20 limestone layers
in a sequence of 100, it has a frequency index of
0.2. A pseudorandom number generator is used in
the simulation program to determine if a species is
present or absent in a particular layer. The pseudo-
random numbers have a rectangular distribution
ranging between 0 and 1.0. If a species has a fre-
quency index of 0.4, the species will be counted as
present if the random number is less than or equal to
0.4, and will be considered absent if the random
number is greater than 0.4, Because a new random
number is selected for each stratigraphic interval,

a species with a frequency index of 0.4 will be pres-
ent in 40 percent of the layers and absent in 60 per-
cent. As an example of how the frequency index is
used, three species which are distributed normally
with a linear increase in temperature are plotted in
Figure 7. The frequency indices (0.2, 0.5 and 0.8)
are given at the top of each column.

The mean abundance is defined as the mean
number of individuals of a species per unit volume
or surface area in the samples in which the species
is present. Because mean abundance is computed
using only those samples where the species is present,
mean abundance and frequency are independent.
Species with different abundance means but the same
frequency are plotted in the second part of Figure 7.
Natural fluctuations in population density are taken
into account by the abundance standard deviation.
For computing population density, a random number
is selected from a normally distributed population
with a mean of 0 and a standard deviation of 1,

The
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effect of changing abundance standard deviation
can be seen from the third part of Figure 7. Species
with a stable population have a small abundance
standard deviation, and those with a highly fluctua-
ting population have a large standard deviation.

The aggregation index is used as a measure
of the clustering or aggregation of a species within
a stratigraphic sequence. The aggregation index
ranges from 0 to 1.0 with O for negative clustering
or dispersion and 1,0 for maximum clustering. The
aggregation index acts as a weighting factor in a
Markov process to adjust the frequency index. If
the aggregation index is greater than 0.5, the
frequency index is increased if the species was pres-
ent in the previous layer, and decreased if the species
was absent. If the aggregation index equals 0.5,
the presence or absence of a species in a layer has
no effect on its frequency in the following layer.
The effect which the aggregation index has on a
population is shown in the final group in Figure 7.
The species which have a short larval stage and form
colonies would have a high aggregation index,
whereas species with a long larval stage which are
dispersed widely by the currents would have an ag-
gregation index close to 0.5.

SIMULATION MODEL 1

To test the simulation program with actual
data, a model was made of the distribution of ten
brachiopod genera in the upper part of the Richmond
Group in southeastern Indiana (Fox, 1962). In
Figure 8, time-trend curves of brachiopod distribu-
tion are plotted using a modified version of the
FORTRAN program by Fox (1964). The data used
in the time-trend curves are plotted also as bar
graphs in Figure 9 for direct comparison with the
simulated time-trend curves in Figures 10 through
13.

The simulation models are an attempt to
reproduce the time-trend curves using environmental
factors and organism tolerances to control the curves.
The optimum temperature is the temperature tolerance



mean, and the temperature range is the standard
deviation.

For Simulation Model 1 which is plotted in
Figure 10, temperature increases as a linear function
from 16 to 24°C. Water depth is held constant at 5
meters and the turbidity coefficient is set at 5. Ac-
cording to Jerlov (1951), this would correspond to the
middle of the continental shelf. The surface illumi-
nation is set at 10,000 foot-candles and salinity is

held constant at 35%°° which is close to the average
salinity for the ocean,

| Frequency | Mean

2 .5 .8 2
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The distribution of Sowerbyella cannot be
satisfactorily explained by a linear increase in
temperature. Sowerbyella is found near the base
of the section, is missing from the middle, and is
fairly abundant at the top (Fig. 9). In order to
account for its presence both near the base and at
the top of the section, Sowerbyella is given an
intermediate optimum temperature (21.0) and a
high range (5.0). Because the plot for Sowerbyella
in Figure 10 does not match its distribution in
Figures 8 and 9, Sowerbyella is considered relatively

| Standard Deviation | Aggregation [
1 5 7

3

Figure 7.- Faunal abundance versus temperature with different values for frequency index, mean abundance,
abundance standard deviation and aggregation index.

Because there is a linear increase in temper-
ature with time, the organisms with a low optimum
temperature mean will occur near the base of the
section and those with a high optimum temperature
will be concentrated near the top.

The results of the first simulation model using
temperature as the only variable (Fig. 10) can be
compared with the observed distribution in Figure 9.
Resserella is limited to the lower part of the section
and has been assigned a low optimum temperature
(17.0) and a narrow range (1.0). Platystrophia is
most abundant in the lower part of the section but
has a wide range, so it is given an optimum temper-
ature of 18.0 and a range of 2.5. Leptaena occurs
in the middle of the section and is assigned an opti-
mum of 20,0 and a range of 1.5, Rafinesquina and
Zygospira are fairly evenly spread over the entire
section, so they are given an intermediate optimum
temperature (20.0) and a high range (5.0). Stropho-
mena and Hebertella extend from near the base to the
top of the section with their greatest abundance in
the upper portion, therefore, they are given a high
optimum (23.0) and a medium range (3.0). Rhyncho-
trema and Plaesiomys are found only in the upper few
meters, so they are given a high temperature optimum
(24.0). Rhynchotrema has a wider range and is given
a larger deviation (1.5) than Plaesiomys (1.0).

24

independent of temperature and its distribution must
be accounted for by other environmental factors.

SIMULATION MODEL 2

Depth is changed and the other environmental
factors are held constant for Simulation Model 2 (Fig.
11). A cosine function is used to compute the depth
values with a minimum of 2.0 meters and a maximum
of 16 meters. Between the base and middle of the
section, the depth is increased from the midpoint
value (9 meters) to the maximum (16 meters). Between
the middle and top of the section, depth is decreased
from the maximum to the minimum (2). The original
assumption for an increase in depth followed by a
decrease is based on point counts of distribution of
micrite and sparite in the Richmond Group. In the
lower part of the section, there is a high sparite-to-
micrite ratio which would indicate relatively shallow
water. The middle part of the section has a lower
sparite-to-micrite ratio which has been interpreted
as the result of an increase in depth. The top part
of the section has the highest sparite-to-micrite
ratio and is overlain by a primary dolomite, the
Saluda Formation, which contains mudcracks and
other evidence of subaerial exposure.

The turbidity coefficient for Model 2 is set
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Figure 8.~ Time-trend curves for brachiopod distribution in upper part of Richmond Group.

at 3.0, giving an extinction coefficient of 0,171, of Figure 11 decreases from 2,15 x ]03 foot-candles
This corresponds to Jerlov's (1951) coastal type 2, at ¥his bass of Bhe section 1 BL48 103 ot the mid-

found in clear water on the continental shelf, Be- point. At the tap of the section where Hhe depth

cause this is a carbonate shelf environment with a hes 2.0 he b Nominat
low influx of terrigenous clastics, a low turbidity reaches 2,0 meters, the bottom illumination reaches

value was selected for this model. The bottom il- a maximum of 7,10 x 10° foot—-candles.
lumination, which is a function of depth, turbidity The abundance curves based on the last of a
and surface illumination, changes inversely with series of computer runs for Model 2 are plotted in

depth. The bottom illumination plotted in column 3 Figure 11. The temperature and salinity tolerances
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Figure 9.= Bar graph for brachiopod distribution in Richmond Group. Each bar represents average abundance
for a 50-centimeter interval.
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Figure 10.- Simulation Model 1 with temperature as only variable.
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Figure 11.- Simulation Model 2 with depth as variable and light intensity as a function of depth.
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are set at their optimum values, 20° C and 350/00
respectively, and the light tolerances are different
for the different genera. Although light tolerance
seemingly is not an important factor for a majority
of the organisms, it seems to be the critical factor
controlling the distribution of Sowerbyella in Model
2. For the distribution of brachiopods which can be
explained by temperature tolerances in Model 1, the
light tolerances observed for phytoplankton are used.
Sowerbyella, Rhynchotrema and Plaesiomys are given
a higher Tight optimum so that their distribution is
split into 2 modes. In their observed occurrence in
Figure 9, Rhynchotrema and Plaesiomys are limited
to the upper mode, but Sowerbyella is found in both
the upper and lower part,

SIMULATION MODEL 3

The depth function from Model 2 and the
temperature function from Model 1 are united in
Model 3. The tolerance means and standard devia-
tions are based on the temperature tolerances for
Model 1 and the light tolerances for Model 2. The
population density curves in Figure 12 portray the
effect of changing both temperature and depth through
time. At this point in the simulation process, it is
possible only to line up the maxima and minima.
Because the frequency and abundance means are set
at their maximum values, the simulated abundances
in Model 3 will be higher than the observed abun-
dances. With the abundance standard deviation set
at 0.0, the simulated model lacks the fluctuations
in abundance which are seen in the observed data.
The abundances in Model 3 form an envelope which
would fit the time-trend curves in Figures 8 and 9
as closely as possible.

SIMULATION MODEL 4

Simulation Model 4 in Figure 13 is based on
the temperature and depth functions and the environ-
mental tolerances from Model 3. To make the model
more realistic by adding a random component, hypo-
thetical frequency, abundance and aggregation

TEMP. SAL. DEPTH LIGHT Res. Plat.

Lep.

indices are established for each genus. With these
final adjustments, the model is brought in tune with
the time-trend curves in Figure 8. The tolerances
are listed in Table 1.

In Models 1 through 3, the frequency was
held at 1.0 to study the response of the organisms to
changes in the environmental parameters. The fre-

quency index is independent of temperature or depth
and hypothetically is a measure of dispersal rate.

A higK frequency would correspond to a high dis-
persal rate and a low frequency to a low rate of
dispersal. The frequency values in Table 1 range
from 0,95 for Rhynchotrema to 0.40 for Leptaena
and Zygospira. This would indicate that Rhyncho-
trema occurs in almost all horizons with the proper
environmental conditions. Leptaena and Zygospira,
on the other hand, have a spotty occurrence al-
though the environmental conditions are suitable for
their existence. The frequency index controls the
presence or absence of a genus at a particular hori-
zon, whereas the abundance mean controls its rela-
tive abundance. The abundance means and standard
deviations are used to fit the abundance curves in
Figure 13 more closely to the trend curves in Figure
8. In the first three models, the abundance mean
was set at the maximum, 6.0, and the standard
deviation was held at 0.0. The abundance mean
ranges from a high of 3.0 for Strophomena, Rhyncho-
trema and Plaesiomys to a low of 1.5 for Zygospira.
The adjustments in abundance mean are based on the
curves plotted in Figure 12 for Model 3.

The abundance standard deviation is used to
control the amount of fluctuation about the abun-
dance mean. In Models 1 through 3, the standard
deviation was set at 0.0 to eliminate random fluctua-
tions in the curves. For Model 4, the random fluc-
tuations are introduced into the model to simulate
the fluctuations in the observed data. Rhynchotrema
is given the highest standard deviation (3.0) while
Zygospira, Strophomena and Hebertella are given
low deviations (1.0). Most of the organisms are
given in standard deviation of 1.5.

The aggregation index is used to control the
clustering or aggregation within a genus. An

Plae.

Figure 12.- Simulation Model 3 with both temperature and depth as variables.
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Figure 13.- Simulation Model 4 with temperature and depth as variables, and frequency, abundance mean
and standard deviation and aggregation index used for organisms.,

aggregation index of 0.5 would mean that the fre-
quency has a purely random distribution. With an
aggregation index greater than 0.5, the frequency
index is raised if the organism was present in the
preceding layer and lowered if it was absent. With
a high aggregation index, the organism has a higher
probability of occurring if it was present in the pre-
ceding layer. For Models 1 through 3, the aggrega-
tion index was set at the neutral position, 0.5. For
Model 4, Leptaena and Zygospira are given the
highest aggregation values 30.7; and their clustered
occurrence, especially for Zygospira, can be seen
from Figure 12. Rhynchotrema and Resserella, which
have the highest frequencies, are given a normal
aggregation index (0.5). The remaining genera are
given an aggregation index of 0.6 which would
cause them to have a slight tendency toward cluster=
ing.

CONCLUSIONS

By plotting temperature, salinity and depth
as a function of time and assigning tolerances to the
organisms, it is possible to reproduce the time-trend
curves based on observed data. The simulated time-
trend curves provide one possible explanation for
brachiopod distribution in the Richmond Group. It
would be possible also to reproduce the faunal dis=
tribution with other combinations of environmental
factors and tolerances. Thus, the time-trend simu-
lation model provides a means of testing whether a
hypothesis involving environmental changes is pos-
sible. For example, it was not possible to account
for the entire brachiopod distribution in the Rich-
mond Group by either temperature or depth in Models
1 and 2. It was necessary to change both tempera-
ture and depth in Models 3 and 4 to reproduce the
original pattern.

Table 1.- Tolerance values used for simulation Model 4.

OPTIMUM ABUNDANCE FACTORS

FREQ. MEAN DEV. AGGR.
RESSERELLA 0.99 2.00 1.50 0.50
PLATYSTROPHIA 0.80 2.00 1.50 0.60
LEPTAENA 0.40 2.50 1.50 0.70
RAFINESQUINA 0.70 2.50 1.50 0.60
ZYGOSPIRA 0.40 1.50 1.00 0.70
STROPHOMENA 0.65 3.00 1.00 0.60
HEBERTELLA 0.80 2.50 1.00 0.60
SCWERBYELLA 0.70 2.00 1.50 0.50
RHYNCHOTREMA 0.95 3.00 2.50 0.50
PLAESIOMYS 0.80 3.00 1.00 0.60

TEMPERATURE SALINITY LIGHT

MEAN DEV. MEAN DEV. MEAN DEV.
16.0 1.0 35.0 1.0 4.1 2.6
18.0 2.5 35.0 1.0 4.1 2.6
20.0 1.5 35.0 1.0 4ol 2.6
20.0 5.0 35.0 1.0 4ol 4.0
20.0 5.0 35.0 1.0 4.1 4.0
23.0 3.0 35.0 1.0 4.1 2.6
23.0 3.0 35.0 1.0 4.1 2.6
21.0 5.0 35.0 1.0 5.9 2.6
24.0 1.5 35.0 1.0 5.6 2.6
24.0 1.0 35.0 1.0 5.6 2.6
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PREDICTION OF MULTIPLE TIME SERIES GENERATED BY STATIONARY RANDOM PROCESS

by

Gangu G. Hingorani and Louis F. Marczynski

Northern Natural Gas Company

INTRODUCTION

A time series can be any collection of data
where each point is associated with a moment in
time, i.e. a time series can be defined as a set of
ordered pairs (fi, Xi) fori=0,1,2,..., n.

The time series generated by a random phe-
nomenon has the property that each observation is
unique. A given observation will represent only one
of many possible values that might be generated at
that particular point in time. Because of this prop-
erty, a random process cannot be described by an
explicit mathematical relationship, but must be
looked at in terms of its statistical properties.

The random processes can be classified as
stationary and nonstationary processes. The under-
lying mechanism that generates a random process can
be described in physical or mathematical terms.

The underlying mechanism that generates
ocean waves is essentially wind force in conjunction
with the earth's gravity. The outcome of dice
throwing is determined by probability of 1/6 for each
face of each die independent of all others.

If the generating mechanism does not change
with time, any measured average property of the
random process is independent of the time of measure-
ment aside from some statistical fluctuations, and the
random process is called stationary. For instance,
ocean wave height in a given sea state, a telegraphic
signal of a certain language are examples of station-
ary random processes. |If the generating mechanism
does change, the random process is called nonstation-
ary, so that the generating mechanism may change in
a predetermined fashion or at random.

An example of a stationary random process is
shown in Figure 1. The time series represents the
annual mean air temperature in London from 1763 to
1900. An example of a nonstationary random process
is shown in Figure 2, The time series represents the
average daily temperature in Minneapolis from
January 1, 1966 to December 31, 1966,

The time series representing a stationary ran-
dom process can be generated by the expression

N

x(t) = Z (Ak sin w tt Bk cos W) t)
k=1
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where:

i

Yk Tk
AI< and B|< are uncorrelated random variables with

a zero mean and a standard deviation of 0,

MATHEMATICAL DESCRIPTION
Definition of the Problem

Consider the set of time series xi(f) for

i=1,2,.e., mandt=0, 1, 2,..., N which
are generated by stationary random process.

x](t) :X'I(o)l X](])l X](z)l ceey X](N)
xz(f) :XZ(O)I Xz(l)l x2(2)l coey X2(N)

Xm(f) :xm(o)l xm(])l Xm(2)l Yy Xm(N)

The problem is to predict X (N+ax), x2(N+G), cees
xm(N+0£) fora =1, 2,... where &tis the prediction

distance.
The Correlation Function

The correlation function between x(t) and
y(t) is defined as
I

b, (T)=|im+ S x(t) y (t - T) dt.
T=we 0

The correlation function between two input time
series x](t) and x2(t) (or the same time series) is com-

puted exactly the same way as it is defined, except
that the sample time series has finite length T

T,-T
_— 1
#15(T) = x,(1) x2<r-T>=T]‘—_,r Gy () gt
0

where the bar refers to the lagged mean crossproduct.
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Figure 1.~ Annual mean air temperature in London from 1763-1900,

The equations indicate three essential steps
(i) Time shift: Either advancing Xq

or delaying X by an interval T
(i) Multiplication
(iii) Averaging
Because only a finite number of data points can enter
into the computations, we select an interval At,

T
At =Nl and take readings of x](f) and x2(i') att=0,

At, 28t,..., NAt, Now we have two time series
x](r) and x2(f) fort =0, At, ..., NAt, The correla-

tion function can be written as

N-T
g121) = = le(f)xz(f'”
=0

Prediction Equation

The basic equation for predicting multiple
time series is defined as

x(t+a)= ag x(t) + o x(t=1) + a, x(t=2)
(M

F 406 +qTx(f'T)

where
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(1) |
x2(i')
x(t) = = a mx! vector containing the
: values of each time series
; fort=0,1, 2,..., N.
x. (1)

a.=(apn, Ay, .00, a.) =a set of mxm
i 0r 1 T ..
coefficient mat-
rices for i =0,
Tyeee, T
T =time lag
a = prediction distance

Minimization of Mean Square Error

In designing a "digital filter" or a "set of
weights" to predict multiple time series we use the
mean square error criterion,

The input to our digital system is x(t). The
desired output is defined as x(t + @) and the actual
output is y(t) where

y(t) = a x(t) + a x(t=1) + ay x(t=2)
(1a)

To obtain the "best" prediction equation, we minimize

*owoe +aTx(f-T)
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Figure 2.~ Daily average temperature.

the mean squared error between the desired output ~ A T N
x(t + o) and the actual output y(t). The error is (el e Dyl Lay] (r, QHJT
defined as N N ’ .
ERL NS R S I R (r) g49)
2 ’ ’
E e2(t) = E Ix(t + a)-y®1% () o . o
t=0 t=0 o ’ : )
where - 1) ) : ’ : T .
e?(f) b T e Tipd | (e | e
e5(t) )
e2(i')= Each matrix [rii] is a mxm square matrix for m
: time-series problem [rii] contains all terms of the
2 : | GG=1) \fh lag of the autocorrelations and cross=
e, (t) correlations of the input time series
— . . . .
N For stationary random time series, the cor=
2 relation matrix LR] in equation (3) can be simpli-
Taking the partial derivatives of E e“(t) fied. We can show
t=0 Cryyd=Clrpl=0ii=ln ],
with respect to each coefficient matrix [ai] and " 22 kerk
setting the resulting equations to zero, we obtain Let us define the matrices [r] 1 1 [r22] P [rk k] .

the following matrix equation.

32



N

" b — =
T
[rd = Z x(t) x(B) ol ! I | R I e
] t=0 ey Ly - L] | Beyd ['l,a+2]T
N . . .. .
T T
[r22] = E x(t=1) x(f-l)T brpd T d e Dy _[C’T] ['l,a+k]T
t=0
. . (4)
All the elements along each diagonal of the
N correlation matrix [ R] are the same and [rii]
_ T
U J = E x(t=T) x(t=1)7 = [’;i] .
! t=0 Note that if we know the first row

I A I s O N |
where T =k=1 n 12 Tk

To show that [r] ]] = [r22] the following where
equation must hold.
N N ~
Z : : IO 450 .. 0
t t Z =1 t=1
2, x(t) x(1) 2, x(t=1) x(tT) i 010 6,0 o
TIEND [r”] = Zx(t) x(f)T=
x(=1) x(=1) EFFECT t=0 . . . .
g,04 ; (0 ... ¢ (0
x(0) x(O)T x(0) x(O)T _m 1m mm .
x(1) x(1)T x(1) (1) (4, PG TP A () ]
; : N a3(1) £op(1) Bn-1,m(V)
' T ’ T [ru] = E(t) x(t-l)T= :
x(N-1) x(N-1) x(N-1) x(N-1) t=0 . ..
END
EFFECT |x(N) x(N)7 i) Het, - -+ F D)
The N terms are the same and the (N + 1)
terms are different. If we assume the time series to .
be random $nd stationary and N is Iarge,Tthen _,’”(r) #15(7) P AN
x(=1) x(=1)" is nearly equal to x(N) x(N)', Under
the same assumptions (1) #o(7) Fra=1,m()
[l =lrpd ==y Crad = D 0 xe-n)T=
Similarly, we can show that all matrices on each ' ’ .
subdiagonal and superdiagonal are equal. fmlmd AU B

Final Equations for Digital Filters

The equations which have to be solved for the

set of coefficient matrices [ai] are given by: then all the elements of the matrix [R] are shown.
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For a different value of &, the matrix on the
left=hand side of equation (4) is the same and it is
only necessary to change the right-hand side and
solve for the set of coefficients.

The predicted values x](N+<1), x2(N+Ct), i v

xm(N+Cx) are obtained by solving the system of equa-

tions (4) and applying the solution to the original set
of time series xi(f).

NUMERICAL EXAMPLE

To illustrate the method of predicting "mul-
tiple time series, " let us consider two time series
representing economic data. The data were obtained
from "Business Statistics 1965" published by the United
States Department of Commerce. One time series
represents an index of the value of total industrial
production in the United States by month for the
period of January 1947 to June 1960 (Fig. 3). The
other time series represents the total production of
crude petroleum in the United States by month for
the same period (Fig. 4).

Results were obtained in predicting each time
series for five consecutive periods (July 1960 through
November 1960). Three different filter lengths were
tried giving the following average percent error for
both time series.

Filter Length

Average percent Error

The best filter length was 10 with an average
error of 1.83 percent. The results using a filter of
length 10 for each time series are shown in Tables 1
and 2,

Table 1.- Time-series results of industrial production
index using a filter length of 10,

Actual Predicted  Absolute percent
Date Values Values Error
July 60 103.9 105.1 1.15
Aug 60 107.6 106.8 0.74
Sept 60 108.9 1055 3.12
Oct 60 110.3 103.9 5.80
Nov 60 106.5 101.9 4.32
Average error 3.03

FUTURE WORK

Nonstationary data represent any class of
data whose statistical properties change with time.
Consequently, the vast majority of physical data

8 1.86 actually falls in this area. Data are arbitrarily
10 1.83 assumed to be stationary for reasons of approxima=
12 2.13 tion and simplicity. Also if the data are slowly
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Figure 3.- Industrial production index.
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changing with time, we consider it to be stationary. standard derivation, and (3) a combination of the
above, For joint statistical properties between
values of a single nonstationary process at different
times, the process can be described further in terms
of its nonstationary autocorrelation function,

The selective partitioning approach groups
the given nonstationary time series into sequence of
stationary time series. The finite state machine is

Table 2.~ Time-series results of crude petroleum
production using a filter length of 10,

Actual Predicted  Absolute percent set up which consists of linear predictor operators
Date Values Valyes Error for each partition of the time series and the director
which tells the machine when to change from one
July 60 212.6 212.0 0.28 state to the next state. That is, at each state a
Aug 60 215.1 215.4 0.14 linear filter is given but these filters change in time
Seot 60 209.1 210.8 0.81 and space according to the action of the finite state
P : ’ : machine.
Oct 60 215.7 215.0 0.32 The basic idea of this approach is to construct
a class of generalized linear predictors which fit a
Mov &8 2180 2105 1.64 set of data for different intervals of time. If we are
Average error 0.64 interested in predicting a particular interval of time
in the future, we choose the predictor which will
CRUDE PETROLEUM PRODUCTION
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Figure 4.- Crude petroleum production.

A totally adequate methodology does not operate best on those data. The approach is based
exist as yet for the analysis of all types of nonstation=  on the assumption that not all past data are signifi-
ary data. This is partly because a nonstationary con-  cant to the prediction of the future values. The
clusion is generally a negative statement specifying selective partitioning approach may be considered
the lack of stationary preperties, rather than defining  as combined detection—estimation procedure.
the precise nature of the nonstationarity. The seismic correlation problem involves

There are various types of nonstationary data.  seismic data from which we would like to infer the
Three basic and important types which can represent geologic structure. To infer the geologic structure
certain physically occurring nonstationary data are may be described roughly as follows. Look at the
(1) a time-varying mean value, (2) time=-varying collections of all inferences over past and present
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which have characteristics in agreement with the
given past data and which can be performed by pres-
ent machines. Then choose the simplest member of
this class of machines.

For example, suppose we are given some
sequences of seismic data (the inputs) and the result-
ing geologic inferences (the outputs) as well as the
true geologic structures (the desired outputs), Then
we would consider the collection of all finite state
machines which agree with the given data. From
this collection we could choose the one with the
smallest complexity. This machine would be the
one into which we would feed fresh seismic data in
order to make the geologic inferences.

Consider the problem of estimating the gas
load for a particular day when we are given the data
representing the temperature, .wind velocity and gas

load for each day for the last three years. The under-

lying temperature and wind velocity which affect the
gas load can be divided in three periods (1) winter,
(2) summer, and (3) marginal, i.e. periods during
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SOME DISTRIBUTION PROBLEMS IN TIME-SERIES SIMULATION—]-/

by

N. C. Matalas
U. S. Geological Survey

ABSTRACT

To generate synthetic sequences by means of a first-order Markov process, the probability distribution
of the random component, €, in the process must be considered in terms of the form of resemblance that is
desired between the historical and synthetic sequences. For resemblance in terms of moments of order m=3,
no special difficulties are encountered. If the historical events are assumed to follow a particular probability
distribution, then the probability distribution of € is uniquely defined and this may give rise to difficulties in

generating synthetic sequences.
INTRODUCTION

The responses of complex systems to time
dependent inputs are difficult to determine analyti-
cally. Simulation offers a means, and in some in-
stances the only means, of evaluating input-output
relations. If a historical sequence of inputs is
"routed” through a system, the sequence will yield
a single response of the system. The historical
sequence is unlikely to be repeated in the future, so
that the single response is not representative of future
responses of the system. With several simulated in-
put sequences, each "routed" through the system, a
set of responses may be obtained from which prop-
erties of the probability distribution of the responses
may be assessed.

For the statistical properties of the simulated
responses to have practical utility, the simulated
sequences, referred to hereafter as synthetic sequen-
ces (Thomas and Fiering, 1962), must bear some
resemblance to the historical sequence. Resemblance
may refer to the moments that characterize the his-
torical sequence or to the assumed underlying prob-
ability distribution of the historical events. If a
historical sequence is characterized by moments of
order 1 through m, then the moments of order 1
through m for a synthetic sequence must converge to
the corresponding historical moments as the length
of the synthetic sequence tends to infinity. If the
historical events are assumed to follow a specific
probability distribution, then the synthetic events
for a sequence of finite length must represent a ran-
dom sample from a population that has the assumed
underlying probability distribution.

Various time-series models may be used to
generate synthetic sequences, however, only one
model, the first—order Markov process, will be con-
sidered. The following paragraphs discuss some
difficulties associated with the use of this model in
attempting to achieve resemblance either in terms of
moments or with respect to an assumed underlying
probability distribution.

1/ Publication authorized by Director, U. S. Geological Survey.
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FIRST-ORDER MARKOV PROCESS

The first-order Markov process is defined as

2 1/2

(Xi+]_“x) - px(]) (xi_ LJ’x) +Lr- px(])] /
(M

(o}
X

€in

where x; and X denote the events at the time
points i and i+1, respectively, Mo and o are the

mean and standard deviation of x, respectively,
px(]) is the lag-one autocorrelation coefficient for

x, and €N is a random component that is independ-
ent of x,. For an historical sequence, the values of
Mor Oyr and px(l) are unknown, but their estimates
or Opr and ﬁx(]) may be obtained.

To achieve some specified degree of resem-
blance between the historical and synthetic sequen-
ces, an appropriate choice of the probability distri-
bution of € must be made. The choice of this distri=
bution is discussed below. Once the probability
distribution of € is specified, a synthetic sequence
may be generated by equation (1), withu _, I,

and px(l) replaced by their respective historical

estimates, in the following manner. The most recent
historical event is represented by x. and a value for

€ s randomly selected from a population that

has a specified underlying probability distribution.
With these two values, equation (1) yields a value
for x, 1, which is the first synthetic event. The

i+1
value for X; .1 Now assumes the role of X, and with
a new random selection of a value for € i47r €qua-
tion (1) yields a new value for X which is the

second synthetic event. This procedure is repeated
N times to obtain a sequence of N synthetic events.



As N tends to infinity, certain properties,
depending upon the desired degree of resemblance,
of the synthetic sequence will converge to the
corresponding properties of the historical sequence.
Essentially, the values of these properties for the
historical sequence act as population values relative
to the corresponding values of the properties for the
synthetic sequence. In practice N will be finite,
however large, so that resemblance between the
historical and synthetic sequences is said to exist if
the values of the synthetic properties do not depart
from the corresponding values of the historical prop-
erties by more than is expected by chance.

MOMENT RESEMBLANCE

The following discussions are limited to
statistical parameters that are functions of moments
of orderm =1, ..., 4. More specifically, m =1
and m = 2 refer to the mean and standard deviation,
respectively, and m = 3 and m = 4 refer to the coef-
ficients of skewness and kurtosis, respectively. For
a specified value of m, resemblance is with respect
to all parameters that are functions of moments of
order equal to and less than m. The lag-one serial
correlation coefficient is defined in terms of second
order moments and thus resemblance of degree m = 2
requires this coefficient be preserved as well as the
standard deviation,

For any value of m 2 1, € must follow a
probability distribution that has zero mean, and for
m = 2, the probability distribution of € must have
zero mean and unit variance. The skewness, B](e ),

and kurtosis, 52(6 ), of € will depend upon the sam-
ple values of skewness, 8 .'(x), and kurtosis, Bz(x),

of x. The relations between the coefficients of
skewness ‘and coefficients of kurtosis of x and € are

-2
Bie) = —2 B () @
[1-62m73

[1+82()] 68 2(1)
Bye) s B - — X (3)

-2 _a2
[1-529) T1-5201))
For 5)2( (1020, B,(e)= B,(x), where equality
holds if ﬁx(]) =0orifB ](x) = 0. Note that kurtosis

is defined as the fourth central moment divided by the
square of the variance, and therefore kurtosis is a

positive valve. If éz(x) = 3, then Bz(e) = 3 for all
values of ﬁ)z((]) 2 0. For 6)2((1) >0, B,(9) >§2(X)
if 32(x) > 3 and B,(e )< Bz(x) if Bz(x) < 3, and for

5x(])= 0, 32(6) = 32(x). However, if
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\ 682(1)
) € — X @
1+ 6)2((1)]
then 82(6) < 0, which is not an admissible range of

values for kurtosis, in which instance, a first-order

Markov process cannot be used to generate synthetic
sequences and achieve resemblance of degree m = 4
for such a case.

For resemblance of degree m = 2, there is
considerable latitude in the choice of the probability
distribution of € . All that matters is that the prob-
ability distribution have zero mean and unit variance.
The choice of distribution of € is narrowed if resem=
blance is extended to m = 3. Here, €must be
distributed with zero mean, unit variance, and
skewness as specified by equation (2). If resem-
blance is extended to m = 4, the probability distri-
bution of €, the choice of which is limited, must
have zero mean, unit variance, and skewness and
kurtosis as specified by equations (2) and (3),
respectively. The choice of the probability distri-
bution of € is said to be wide or narrow in the sense
that the choice is likely to be made among the rela-
tively few distributions commonly used in statistical
practice where generally there is a unique relation
between the coefficients of skewness and kurtosis.

As long as resemblance is desired in terms
of moments, the probability distribution that under-
lies the historical sequence need not be considered.
Therefore, the choice of probability distribution of
€ is an operational one, that is, any choice is allow-
able that permits the desired degree of moment re-
semblance to be achieved. More than one probabil-
ity distribution of € may be used, in which case,
the choice of one of them may be guided by the
simplicity with which the random sequence for €
may be generated.

DISTRIBUTION RESEMBLANCE

If x is assumed to follow a specific distribu=-
tion and if resemblance of degree m is desired, then
the distribution of € must be uniquely defined. The
following discussions of resemblance in terms of the
probability distribution and certain moments of x
are based on the assumption of strict stationarity
(Papoulis, 1964). With this assumption, the prob-
ability distributions of x; and x, , are identical and

independent of i. Because for the first-order Markov

process x; and €., are independent for all values

.
1,

8[0:x]=2%[8:2] 8[8:n] ®)

where [ 8:x1], [ 68:2], and 8[0:7M Jdenote the
characteristic functions of x, z, and 1 , respectively,

In this notation, z=ﬁx(])x and n =[1- 6)2((])]]/26)(6,



If the characteristic function for x is known, the
characteristic function for z is easily obtained,
whereby, the ratio of 8[8:x] to & {9 :z] gives the
characteristic function for 1. However, the deriva-
tion of (M), the probability density function of 1 ,
may be a difficult task.

For a given probability density function f(x),
the probability density function (1) that satisfies
equation (5) may present operational difficulties.
That is, it may not be possible to generate in a con-
venient manner random numbers that follow f(71). If,
however, f(N) is integrable in closed form over the
range (- @, N ), random numbers that follow f(71) can
be generated easily.

If x is assumed to be normally distributed,
then € is normally distributed. Thus in special
instances where x can be transformed to a normal
variate, there is no need to derive f(1) from 8[8:M ],
For example, suppose x follows a log=normal distri-
bution, so that y = log x, where logarithm is to the
base e, is normally distributed. For x, the mean,

~ . [y 2
le, and variance, Ol are related to the mean, uy,

and variance, Of', for y by
ﬁ=exp[]02+u] (6)
27y Ty

6’i=exp[2(0’)2,+uy)] -exp[0§+2|~ly] (7)

(Aitchison and Brown, 1957). [fy instead of x is
assumed to be generated by a first-order Markov
process, then in terms of x, the generating process
is

Xip] = {exp[uy(l-p)]}x§J 8 i1 (8)

2.1/2
i+ 1% et

and €, is normally distributed with zero mean and

where p= py(]), 8, ,=exp{l[1-p

unit variance. 5)((]) is related to pby
6x(1)={exp[c§p]—1}/{exp[c§]-1} ©)

From the observed values ofﬁx, 3x, and
6x(l), the values of u_, 0 , and p may be obtained

from the above relations, whereupon, equation (8)
may be used to generate synthetic events that are
log-normally distributed and where moment resem-
blance is of degree m = 2, The log-normal case with
m = 3 and the case where x follows a gamma distri-
bution with m = 3 has been discussed elsewhere
(Matalas, in press).

If moment resemblance of degree m =4 is
desired, then the assumed probability density func~
tion, f(x), must be considered in terms of the rela-
tion between B](x) and Bz(x). If f(x) implies a

unique relation between B](x) and Bz(x), the histori-
cal values él(x) and Iéz(x) will have to satisfy this

relation, which is unlikely. Consequently to gen-
erate synthetic sequences some degree of resemblance,
either in terms of f(x) or in terms of statistical param=-
eters, will need to be sacrificed. In practice the
number of historical events is seldom large enough

to permit a strong discrimination on the basis of
goodness of fit among various assumed probability
density functions. Moreover, the statistical param-
eters estimated from the historical events are subject
to standard errors that tend to increase rapidly as m
increases, Therefore, resemblance of degree m = 3
may be misleading, in the sense that the high order
moments estimated from the historical sequence may
be poorly representative of their respective popula=-
tion values,

SUMMARY AND CONCLUSIONS

The time dependent structure of an historical
sequence of events may be approximated by first-
order Markov process, whereby, synthetic sequences
may be generated., The generation and application
of the synthetic sequences requires that some degree
of resemblance between the historical and synthetic
sequences must be specified. Two forms of resem-
blance have been considered. The first pertains to
parameters defined in terms of moments, and the
second, to the probability distribution that is assumed
to underly the historical events. For either form,
the probability distribution of the random component,
€, in the first-order Markov process must be consid-
ered. For moment resemblance, however, the choice
of the probability distribution of € is an operational
one, and in general more than one distribution of
€ may be used. For distribution resemblance, the
choice of the probability distribution of € is unique-
ly defined by the probability distribution that is
assumed to underly the historical events.

No special difficulties are encountered in
generating synthetic sequences by means of a first-
order Markov process if resemblance is desired in
terms of parameters defined by moments of order
m < 3. Where m > 3 or where resemblance is
desired in terms of an assumed underlying proba-
bility distribution of the historical events, it is not
easily handled by means of a first-order Markov
process. With respect to distribution resemblance,
the difficulty in simulation arises from the relation
that may exist between the coefficients of skewness
and kurtosis for the probability density function,
f(x), that is assumed for the historical events. The
historical values of the coefficients of skewness and
kurtosis are unlikely to satisfy the relation, so that
the particular f(x) cannot be assumed.

In practical situations, the exact form of
f(x) may not be important, and only moment resem-
blance need be considered in the generation of



synthetic sequences. To say that the form of f(x)
is important implies that moments of all orders

must be considered. To determine if the form of
f(x) matters, moment resemblance may be limited
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SPECTRAL-DENSITY ANALYSIS OF STRATIGRAPHIC DATA

by

C. John Mann

University of Illinois

ABSTRACT

Numerically coded data on lithology, color, bedding, and thickness for two stratigraphic sections of
Missourian (Pennsylvanian) rocks were analyzed by spectral densities. Geological assumptions required that
deposition was continuous and at a uniform rate for 4.14 million years throughout the sequence. Although
noise level is high for the analysis of stratigraphic data, periodicities of 109,000; 30,800; and 24,250 years

may be interpreted from the spectral density.
INTRODUCTION

Determination of the spectral density (power-
spectral density, power spectrum, covariance spec-
trum, or second-moment spectrum) is a method which
may be used to study cyclic components of a time
series, The technique has been developed extensive-
ly and employed widely by engineers in studying com-
munications, electrical systems, and data-processing
systems. Less frequently, it has been utilized suc-
cessfully by geophysicisfs, economists, astronomers,
oceanographers and meteorologists. Thorough mathe-
matical treatment of the measurement and calculation
of power-spectral densities has been given by Black-
man and Tukey (1959), Cox and Lewis (]966{,
Grenander and Rosenblatt (1957) and Rice (1944,
1945).

SPECTRAL-DENSITY ANALYSIS

Briefly and simply, the power-spectral den-
sity is a function of frequency and represents that
contribution to the forcﬂ variance of the time series
from frequencies within a given interval of frequen-
cies (see the Appendix). It provides a harmonic
analysis of a series variate x; as a function of time.

Blackman and Tukey (1959) define the spectral den-
sity as the "...value of a function whose integral
over any frequency interval represents the contribu-
tion to the variance from that frequency interval. "
The term, power, is derived from one of its first
applications in electrical engineering. If we con-
sider the voltage across, or the current through, a
resistance of 1 ohm, the average power dissipated in
the resistance theoretically will be proportional to
the variance of the voltage, or of the current,
Mathematically, the spectral density in a
continuous time series is simply the Fourier transform
of the autocovariance function. The autocovariance
is a function of the statistical correlation existing
between values of a variate, x-i(t), in a series and

the value of that same variate at a constant interval
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or lag of time, x; (t). Thus the range of frequen-

cies represented by the spectral density is determined
by the arbitrarily chosen interval of lag used to de-
termine the autocovariance.

Assumptions must be made commonly in apply-
ing spectral-density analysis to practical problems.
Although these assumptions may not in fact be true
and may result in a theoretically incorrect spectral
density, the answer may be a sufficiently good esti-
mate of the actual spectrum so that the analysis is
beneficial for the investigator (Blackman and Tukey,
1959). Spectral-density measurement in theory
requires that the data are stationary Gaussian ran-
dom processes with zero means. Exact determina-
tion of the spectrum would require an infinitely long
piece of a continuous random function which has
been measured perfectly. Inaccuracies and uncer-
tainties necessarily are introduced into the analysis
if the sequence is not time invariant, the data se-
quence is finite in length, the data lack normality
of distribution, or the data are discrete observations
of a continuous series.

The spectral densities for this investigation
were calculated following a procedure proposed for
digital computation by Southworth (1960). The
hamming-type spectral window for smoothing values
of the raw spectral-density estimates was employed.
Southworth's method assumes that the discrete values
are taken at equal intervals of time from the station-
ary series. Digital computation was performed on
the University of lllinois' 1BM 7094 Computer.

Basic mathematical relations are provided in the
Appendix.

STRATIGRAPHY

Two stratigraphic sequences of Missourian
age (Pennsylvanian) were analyzed for their spec-
tral densities. The sections, one from Superior,
Arizona, and the other from Honaker Trail, Utah,
(Fig. 1), were selected for the seemingly continuous
deposition they represent and because they were



known to be cyclic in lithology and equivalent to
better known cyclothemic sequences of the Midcon-
tinent region. The sections are portions of a thicker
sequence of Atokan, Desmoinesian, Missourian, and
Virgilian strata approximately 426 km apart, The
Superior section is mainly carbonate strata, whereas
the Honaker Trail rocks are primarily shale and fine
clastics (Fig. 1). Both sections were measured and
described in detail by Professor Harold R. Wanless.

Several assumptions concerning the geologi-
cal data were made for the purposes of this study.
These strata are assumed to represent uninterrupted
deposition during Missourian time, an interval taken
to be 4.14 million years (based on data from Francis
and Woodland, 1964), and the sediments are assumed
to have accumulated at a uniform rate irrespective
of lithology. Under these assumptions, discrete
stratigraphic thickness may be related to specific
intervals of time depending solely upon the total
thickness of the Missourian section and the average
depositional rate for each stratigraphic section.

Both sections were subsequently "sampled" from the
field descriptions at 10,000-year intervals for digi-
tal computation of the spectral densities. Ten
thousand years, under these assumptions, are repre-
sented in the Superior section by 15,91 cm (0,522 ft)
ar;d in the Honaker Trail section by 37.33 cm (1.225
ft).

Qualitative elements of the field descriptions
including lithology, color, and bedding were quanti-
fied by establishing arbitrarily a coding scale which
for most aspects was between 0 and 10,

RESULTS OF SPECTRAL-DENSITY ANALYSIS

Spectral densities were computed for thick-
ness, lithology, color, and bedding for both strati-
graphic sections, These rock properties are not
equally good indicators of strata cyclicity as might
be surmised a priori. Thickness and lithology are
more consistent than bedding and better than color
as an index to periodicities (Fig. 2). The noise
level for the stratigraphic data is generally high;
noise levels for the individual factors vary consider-
ably. In spite of these differences, the periodicities
which are revealed by analysis of the individual
properties are strikingly similar (Fig. 2).

Under conditions imposed by the data and the
parameters of computation, the theoretical frequency
resolution resulting from this spectral-density analy-
sis is 20,000 to 600,000 years per cycle. The high
noise level, however, generally tends to obscure
frequencies near the extreme values.

Three frequencies appear to stand out more
than others above the general noise level in these
two stratigraphic sections. These frequencies are
109,000; 30,800; and 24,250 years. Interestingly,
the first periodicity agrees well with the perihelion
cycle of 112,000 years (van den Heuvel, 1966) and
the last may be associated with the precession cycle
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SUPERIOR HONAKER
TRAIL
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Figure 1.- Columnar sections of Missourian strata
in Queen Creek Canyon (sec. 36, T. 15S.,
R. 12 E.) 2 miles northeast of Superior,
Arizona, and along Honaker Trail in San
Juan River Canyon about é miles northwest
of Mexican Hat Lodge, Utah,
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Figure 2,- Spectral densities calculated for lithology, thickness, bedding and color for Missourian strata in
Superior and Honaker Trail sections. Noise level is approximately intermediate between minor peaks
and troughs of curves.
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of 25,789 years. The intermediate periodicity rec-
ognized is unassociated as yet with known solar cycles
and may represent a harmonic of one of the primary
frequencies. Obviously, additional investigation and
study is necessary to sugsfum‘iafe these preliminary
conclusions; but nonetheless, these suggested perio-
dicities are stimulating and intriguing.

Although other frequencies are evident on
the spectrograms (Fig. 2), they appear to be less
consistent or to be simple multiples of other primary
frequencies and hence are discounted.

CONCLUSIONS

Results obtained in this preliminary analysis
of the cyclic nature of Missourian strata suggests that
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APPENDIX

The autocovariance function W(p) for a con-
tinuous variate x(t) with that same variate at a con-
stant lag interval x(t+p) is

/2
Wee) = lim 1/7 7 "x(t) x(t+p) o
-1/2

where T is the total time over which observations of
the variate are made and p is the lag interval. The
autocovariance function may also be shown (Black-
man and Tukey, 1959; Cox and Lewis, 1966) to be

the Fourier transform of a distribution function P(f);

T——Q

Wee) = § P & 2 s

where

T/2
P(F) =lim1/TL S / x(t) e'-izrrﬁ.di':l2
-T1/2

T—» (=<}
with f being the frequency. Conversely, P(f) is the
Fourier transform of W(p);

@®

P = § W) e 2 Pp,

Because the function of P(f) may be shown
to represent the contribution to the variance of x(t)
from frequencies between f and f+df, it describes
the spectrum of the process. Thus P(f) is called the
spectral-density function for a stationary time series
x(t).

For equally spaced discrete values xi(r) of a



stationary time series, a finite Fourier series trans-
formation must be used instead of the infinite integral
transformation. Raw estimates of the spectral density
(Blackman and Tukey, 1959) may be calculated by

M-1
L(p) =W  + 2q2=1 chos apT /M + W) cos pTT
where the autocovariance is

N-p
W(p) = 1/IN=p) = x;x; +p

with M being the maximum lag and N the total num-
ber of observed discrete values of the series. The
problem of smoothing raw estimates is complex and
without definitive guidelines; it has been discussed
and examined at great length by many workers in
spectral-density analysis. The hamming-type of
corrected estimates C(p) of the smoothed power den-
sity has been used in this study: here

C(p) = 0.23 L(p_-') + 0.54 LP + 0.23 L(p+])

For a time series which has a mean value of
zero, an assumption which is made for a stationary
series, and discrete observations

_ 2
W(p) = o S

where r_ is the autocorrelation coefficient for a
lag p and Sx is the standard deviation of the observa-

tions, the autocorrelation coefficient r_ for a dis-

crete variate X of a series with that same variate at
a constant lag Xisp 15
o (N-p) T *Xirp

LN T 63 - )P 2 LN T 62 ) - (0, 071 2

- (%) (B, )

For economy of time in computation, the autoco-
variance was calculated with the autocorrelation
coefficient,

Spectral-density estimates for finite series
theoretically are reasonably accurate if the lag
length does not exceed 5 to 10 percent of the total
series observed. In this instance the resolution is
equal to the maximum lag interval.



A WAVE STATISTICS MODEL FOR CLIMATIC TIME SERIES

by

Leslie Curry

University of Toronto

INTRODUCTION

Godske (1962) has stated "...the aim of
statistical climatology is to arrive at mathematical
models giving an adequate description of the statis-
tical properties of the atmospheric variables." He
then goes on to detail various stages such as distribu-
tion functions, time and space autocorrelations and
cross=correlations between different elements. It is
assumed that such models can be linked back geneti-
cally and forward functionally and thus provide a firm
basis for an integrated climatology. Clearly it will
be necessary to provide the models with a basis in
hydrodynamics and thermodynamics, but at this stage
the task is mathematical rather than physical.

In the progression of weather systems over a
sampling point, we note the physical interrelations
between our measured values and develop theory to
account for them. If mathematical functions describe
the relations between the instantaneous values of the
weather elements and their rates of change, statisti-
cal functions should relate the aggregations of data
of the elements which we know as climate. It is the
purpose of this paper to propose a stochastic generat-
ing mechanism for these statistics. Initially, time
variation of the elements is of concern, spatial varia-
tion being neglected; one-dimensional processes are,
of course, easier to deal with but work in oceanog-
raphy is available to aid future extensions into two
dimensions. The strictly periodic modulation of
weather processes by diurnal and annual cycles is
excluded.

The purpose here is to outline a theory which
can be checked almost immediately with available
data. In this setting a good deal of heuristic argu-
ment is acceptable, the effort of formalizing being
delayed until the physically more meaningful two-
dimensional processes are tackled. Most of the
statistical results we have, however, are for time
variation, and many of these apparently disparate
results seemingly are capable of being linked in a
common schema.

A safer procedure may be to have a theoreti-
cal model to test on the data rather than examining
the data alone. Not only can one make sense of the
results by inferring processes but the model suggests
ways of looking at the data not immediately appar-
ent.

Previous Work .~ With rare exceptions, the
study of the form of climatic statistics has been pur-
sued either in its own right or as a necessity to an

understanding of the relations to other features of
the landscape. This has led to the neglect of the
relationships between the statistics of different cli-
matic elements, both in terms of the general forms
of density functions describing, say, cloud cover
and rainfall, and the numerical values of the param-
eters of these functions. Also, there has been little
attempt to describe possible probability generating
mechanisms for these elements, particularly mech-
anisms which are consistent for the whole range of
elements.

There have been several approaches to the
probabilistic analysis of climate.

1. Probability density and distribution func-
tions have been fitted to time collections of some
elements.

2. Serial or autocorrelations have been
calculated for time series and spectral densities
worked out. Probability generating mechanisms,
for example, without physical plausibility of the
urn type, have been tested for rain days, no-rain
days and temperatures.

3. One example exists of the use of one=
dimensional wave statistics in studying the duration
of temperature oscillations.

4, Le Cam (1961) provides the only example
of an attempt to phrase physical processes in stochas-
tic terms in his work on precipitation. This is a
tentative, exploratory study which does not claim
substantive results. Such a model also has been
suggested for the analysis of cloud-seeding experi-
ments.

5. The vexing problem of extreme values
has been ascribed some probabilistic basis, but this
is of a limited, ad hoc nature.

There has been a considerable amount of
purely statistical analysis of such topics as singu-
larities, synoptic-climatological forecasting, rain-
making and atmospheric budget-keeping.

WAVE BASIS OF THE MODEL

From observation and theory we know waves
occur in the zonal winds. Recent work has shown
many variables in time and space may be represented
as additive harmonics. If we take the sine wave as
the basic unit for our climatological models, we are
within reach of physical theory. While not pursuing
a rigorous interpretation, we may rely on qualitative



understanding. The statistical properties may be
examined of a time sample taken at a point of char-
acteristics of a succession of moving waves. The
well=-known resolution of summation of waves into
standing waves and transient eddies is made. The
latter are most tractable for the use of probability
theory in our context because they exhibit station=
arity in the time domain. It is important particularly
to note that standing waves are not time dependent
over periods on the order of a month or at least can
be so regarded.

CLOUD COVER

The formation of clouds in level terrain is
dependent on the degree of convergence experienced,
moisture content of the air, and change in static
stability as a result of heating or cooling at different
levels. Passage of a single wave in the westerlies
will produce periodic fluctuations in all quantities
and a symmetric wave thus will give alternating
periods of cloudy and clear weather. Note that in
order to discuss cloud formation by waves, we need
not refer to the amplitude of the waves but only to
their phase.

Consider a collection of sine waves with a
uniformly random phase distribution. Samples are
taken at regularly spaced moments of time, i.e.
once a day. Because cloud statistics are collected
on this basis we can ignore any autocorrelation be-
tween consecutive readings. It may be shown
(Bendat, 1957) that the probability density function
of the amplitude (or similarly of the rate of change
of amplitude) is

P(y) = (/AZ - y3)!

where A0 is the constant maximum amplitude of the

“AgSY<Ag

waves. This is the well-known but misnamed arc-
sine density. The corresponding distribution func-
tion is

Py) =1 (2 +sin”y/Ag) ).
m 2

It may be postulated that these functions describe the
distribution of cloud cover in the absence of a stand-
ing wave. The latter now is added to the transient
waves as a sinusoid of fixed phase for any sampling
location. Where the rate of change of amplitude for
the standing wave is zero (i.e. at the ridge and
trough lines), the combined density function again
will be arc-sine. Where the rate of change is posi-
tive, the number of occasions when negative values
are recorded will be reduced and the frequency of
positive values increased. The U-shaped function
will become asymmetric, the asymmetry depending
on the position of the sampling point within the

47

standing wave . Such a distribution is the Beta-
density function, a generalization of the arc-sine
function (Feller, 1966):

B, W)= [M](l-x)“"xv"
! T (u)I(v)
for0<x <1

To maintain a U-shape, K< 1, v < 1, the term with-
in the square brackets may be written

L. -
I/Soxv ](l-x)t'l ]dx
x_

for u=0, v* 0, so that

i]_x)u-lxv-l
By X)) =T -1 v-
Hov S (]-x)}"l LT dx
x=0

For U= ;. , v =% this reduces to (T/V/ x(1-x) )-],

which is the arc=sine density. Note that the Beta
integral produces a probability measure from the
product of x and (1-x) with appropriate weights.

It is likely that 4 and v are not independent for
cloud statistics; this can be checked for a number
of stations. Certainly they are available for physi-
cal interpretation. If 4 +v =1, a possible result,
the Beta densities are known as generalized arc-sine
densities.

SUNSHINE DURATION

The next atmospheric variable to be con-
sidered is hours of sunshine. We make the assump-
tion that sunshine is related inversely to percent
cloud cover. Thus, the density function describing
its probable duration is an integration over the day
of instantaneous values of cloud cover subtracted
from unity. To perform this integration, the form
of the autocorrelation function for cloud cover
should be known, but for a period as short as a day
we can simply assume a negatively sloping ramp
function without worrying about where and in what
manner it reaches zero. |f each period of, say, an
hour was independent, we would be summing inde-
pendent random variables and the central limit
theorem would ensure normality. [f each hour was
the same as 9 am then, of course, a Beta distribution
would result. Because the Beta-density converges
to a normal one, it seems likely that sunshine dura-
tion can be specified by a Beta with the cloud param=-
eters modified by autocorrelation. To the extent
that intensity of sunshine is not a direct function of
cloudiness, in particular the importance attached to
height of cloud and low sun angles, there may be



need for some revision,
PRECIPITATION

A physical approach to a statistical theory
of rain amounts is virtually impossible at the present
time. In cloud physics, a quantitative theory of
shower rains is nonexistent and qualitative theory
controversial. At the microscale, we need some
form of branching process from random initiations
by precipitation nuclei, in turn affected by up-
draught conditions, windshear, temperatures, etc.,
and the whole affected by the distribution of storms.
Of course, some of these conditions will correspond
to the general process we are describing: lower level
convergence, thermal stability and moisture content.
We shall make the sweeping assumption that the
microprocesses are functions of the macroconditions
and these are described by our model.

A number of urn models have been devised
for studying rainfall persistence. Gold (1929)
obtained the probable number of runs of length r
out of m events, assuming rainy and fine days to be
equally probable. Cochran (1938) allowed for
unequal probabilities but used independent successive
trials. Gabriel and Neumann (1962) assumed a first-
order Markov chain so that transition probabilities
are constant and sequences are independent with
lengths being geometrically distributed. In 1964,
Feyerherm and Bark used this model for daily rain
amounts after deterministic seasonal variations were
removed by harmonic analysis. Wiser (1965) sought
a more general solution with a variety of contagious
models, i.e. transition probabilities were allowed
to vary with run length. It is interesting to note
that the schemes which worked best were those which
caused persistence to increase with run length and
then to decline beyond a certain point. Thus a
Polya urn which increases chances of success with
run length needed to be limited by a Bernoulli urn
beyond a certain point or be generalized by a
Friedman urn which essentially does the same in a
more continuous fashion. Seemingly, we need a
model which generates an autocorrelation function
which declines slowly at first and then rapidly to
zero. So far as is known no models have attempted
to take both runs of rainy and fine periods into
account, yet casual observation suggests that the
autocorrelation function may well pass through zero
into negative values and then return into positive
values. This corresponds to our experience of rainy
weather followed by fine, followed by rain again,
and also to a succession of cyclones and anticyclones
passing overhead whose phase becomes increasingly
uncorrelated with time. We might thus expect an
autocorrelation function of the form

R(T) = Ae_k' T| cos cT

where A 20, k> 0, ¢ 2 0, and a spectral density of
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G(w) = [_Q_A_k] [wz + (k2 + c2)]
T (t0% e 262+ B wl s (o) 2]

Depending on the relative values of k and ¢, this
exhibits either a monotonic decrease with wor a
single maximum occurs, a situation typical of macro-
climatological variables. Bendat points out that the
more complex actual realizations may be approxi=
mated by composites of two functions.

We shall now generalize our model to
generate such a series. Given that waves of dif-
ferent wavelength and frequency are arriving at a
station in a manner so that the integral effect is a
surface of varying amplitude and wavelength, we
may assume reasonably that the phases within any
narrow bandwidth of frequencies are unrelated.
Assuming a uniformly random distribution of phase
and invoking the central limit theorem, it may be
shown that the amplitudes of the surface will be
distributed normally. Consider measurements of the
height of an isobaric surface x(t) taken either at
random times or at equal intervals of time and assume
no standing waves are present. Subtract the mean
height and assume the phases 5z(n of the series are

distributed rectangularly

x(t) = ch cos (Tnt - ¢’n)

Not only will x(t) have a normal density function
with zero mean, but time derivatives x't, x"t, etc.,
and any groupings of such quantities will also be
normal. Thus they can be expressed entirely in
terms of the variances and covariances between
these quantities.

In terms of the wave model, precipitation
amounts should depend on (a) maximum values of
the wave form, and (b) time it takes to reach (or
descend from) the maximum from (or to) some arbi-
trary level. This should be a measure of the period
and intensity of lower-level convergence and in-
cludes as well some notion of thermal stability.
The distribution of maxima is somewhat confusing.
Rice (1954) and Longuet-Higgins (1957, 1958a,
1958b) both assume a narrow-band spectrum (i.e.
sharply peaked) and show that if amplitudes are
defined as the difference in height between a crest
and the preceding trough, maxima have a Rayleigh
density

_ 2
e 0.5a /mo

P(a) = ()
0

In fact, the Rayleigh distribution describes the
maxima for any spectrum, provided we refer now to
the height of the maxima formed on the envelope of
fluctuations, i.e. the curve joining peaks of the



summed sinusoidal series (Sveshnikov, 1966). It is
only with a narrow-band series in which the waves

assume the shape of a single sinusoid with slowly
varying amplitude that the envelope maxima and
series maxima become the same to within a constant
term, Cartwright and Longuet-Higgins (1958) give
the equation for maxima for any normal-series spec-
trum (meaning heights of maxima above the mean
level be made zero), but this seemingly is less useful
for our purpose. If we use the Rayleigh density, it
is difficult to know exactly what assumptions we are
making. No natural series fulfills the strict require-
ments of the theoretical narrow-band process. On
the other hand, the maxima of the envelope may
be sufficient for our heuristic reasoning, Consequent=
ly, we are not sure if we are assuming a narrow-band
spectrum or not. It is of interest that Roden's (1964)
application of wave statistics to screen temperatures
on the Pacific coast used Rice as a source so oscil=
lations of the westerlies may well be a narrow band.
The Rayleigh density function is of interest
because squaring such variables produces a Chi-
square function that can be related readily to Gamma=
distributed rainfall per seven day period. Summing
over a five to seven day period seems to take care of
any important autocorrelation; thus such periods can
be regarded as independently distributed. Rice shows
that the energy content (i.e. the square of devia-
tions from the mean) within a fixed period beginning
from an arbitrary time approximates a Gamma distri-
bution.
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SUMMARY

We presumably want to "explain" climatic
statistics in rigorous terms. How do we do this?
Current circulation models of the Smagorinsky type,
if they could generate the statistics exactly, do not
seem to be geared to answering questions about the
statistics. | rather doubt, for example, that a
statistician charged with designing a set of rain-
making experiments for one or two sites would find
a hemispheric general-circulation model which
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IN SEARCH OF GEOLOGICAL CYCLES
USING A TECHNIQUE FROM COMMUNICATIONS THEORY

by

Brian W. Carss

University of Illinois

INTRODUCTION

Research Report No. 51 of the Radio Research
Laboratory of Harvard University entitled "The spec-
trum of clipped noise" is an important milestone in a
number of disciplines including radio communications,
radar, radio astronomy and geophysics. The latest
discipline to be added to the list is geology.

J. H. Van Vleck (see Van Vleck and Middle-
ton, 1966), author of Research Report No. 51, was
concerned particularly in this project with the cal-
culation of the power-density spectrum of a Gaussian
signal (a time series) after it had been clipped. The
process of clipping involves chopping off the extreme
amplitude values of the time series. Figure 1is a
sequence of drawings showing what happens to a time
series if it is clipped. Figure 1A shows the original
series; Figure 1B shows the same series clipped at an
arbitrary amplitude of +25, -25; and Figure 1C shows
extreme clipping where practically all the amplitude
information has been destroyed, and only the position
of the zero crossings remains. For extreme clipping
the resulting wave is rectangular as only two values
for the amplitude remain, either +1or -1,

The real contribution made by Van Vleck
(see Van Vleck and Middleton, 1966) in this study
was to show how the power-density spectrum of the
clipped time series is related to the power-density
spectrum of the unclipped series. He showed that
the effect of extreme clipping is to make the clipped
autocorrleation function 2/T times the arc sin of the
unclipped autocorrelation function

R(fi) =2/T * arc sin r(fi) (1)

where R(t.) is the i th term of the clipped autocor-
relation function, and
r(t.) is the i th term of the unclipped autocor-
relation function.

It should be obvious, therefore, that it is possible to
calculate the power spectrum of the continuous data
from a clipped time series by rearrangement of the
equation so that

I’(fi) =sin (T/2 * R(fi) ), (2)

and to obtain a normalized and corrected autocorrela—
tion

R(t.)

i ) .
R(f])

r(ti) =sin (T/2 * (3
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This means that any Gaussian random time series
can be specified by numbers of finite accuracy and
a normalized autocorrelation function calculated
from these numbers. It is known that less accurate
numbers require a greater length of series (more
data) to estimate the autocorrelation function with
the same accuracy. If this reasoning is carried to
the limit, the zero-line crossings of the time series
contain enough information to calculate an auto-
correlation. Hence, frequency information then
can be derived from the power-density spectrum.
It is this frequency information that is of particular
interest to geologists.

DESCRIPTION OF TECHNIQUE

Until recently geological data have been
predominantly qualitative or descriptive. Many
times, however, it is possible to make a generalized
interpretation, say of the environment of deposition
of a rock. It is possible also to quantize generalized
interpretation by some ordinal scale. For example,
an alternating sequence of limestone, shale, sand-
stone and coal was deposited during Pennsylvanian
time in many parts of the world. It is assumed that
some limestones were deposited under marine condi-
tions and the coal under quasimarine (terrestrial ?)
conditions. It is therefore relatively simple to
quantize a description of a section of Pennsylvanian
rocks. The rock is either terrestrial (coal) and may
be coded +1, or marine (limestone, shale or sand-
stone) and may be coded -1,

A portion of the lithological log (Lumsden,
1961) of the Archerbeck Borehole, Canonbie, Dum-
friesshire, Scotland was processed after being quan-
tized by means of the technique of polarity coinci-
dence correlation as just described. Rocks of Car-
boniferous age from the base of the Catsbit Limestone
to top of the Glencartholm Volcanic Beds in the
Archerbeck Borehole (about 3,450 feet) consist of
a sequence of alternating marine limestone, shale,
sandstone and coal. This sequence (Fig. 2) repre-
sents a continuous distribution of marine to non=
marine environments. The environments, defined
by coal, sandstone, shale, etc., range arbitrarily
within this continuous distribution. Consequently
it is difficult to place a boundary precisely between
two adjacent environments. On the other hand, it
is possible to define broader classes such as marine
and nonmarine. In doing this a continuous distribu-
tion has been reduced to a two-state discrete form.
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Figure 1.- A, unclipped time series; B, time series clipped at arbitrary level; C, time series with extreme

clipping, all amplitude values reduced to +1 or -1,
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Figure 2.~ Diagrammatic horizontal succession of environments for Carboniferous sedimentation.
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The borehole data was considered as a time
series ordered on depth. Each é-inch interval was
assigned a value of +1 or -1 according to whether the
environment was judged to be nonmarine or marine.

In all, there were 6,900 data points. Criteria used
to define nonmarine or quasimarine conditions were
the presence of coal, plant material in situ, seatearth
or roots in place. -

Implicit in applying this technique of analysis
to the data are two assumptions; first, that the statis-
tics of the continuous distribution of environment oc-
currence do not depart too far from those of a Gaus-
sian distribution; and second, that the borderline
between marine and the quasimarine conditions is near
the mean value of the continuous distribution. These
conditions seemed not to be unreasonable on the basis
of a priori knowledge.
~  An autocorrelation function was calculated
from the two-state (+1, -1) data and corrected to
the normalized autocorrelation for continuous data
using equation (3). The normalized autocorrelation
is shown in Figure 3. The first zero crossing in Figure
3 gives an approximate indication of the quarter wave-
length of the dominant frequency. In this instance the
wavelength of the fundamental (dominant) frequency
is about 145 feet. The quarter wavelength criterion
would be exact if the original data had been a sine
wave.

0
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o 50 100
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Figure 3.~ Normalized autocorrelation function
corrected for 1-bit quantization for Car-
boniferous lithologic data, Archerbeck Bore-
hole.

The normalized autocorrelation function was
smoothed using a cosine or hanning window (Black-
man and Tukey, 1958), and then a Fourier transform
was performed on this smoothed, corrected, norma-
lized autocorrelation using the following relationship
to compute the power-density spectrum:
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SUMMARY OF CALCULATION PROCEDURE

Step 1. Remove any trend from the time
series by subtracting the mean value from each sam-
ple point, or by fitting a best line in the least-
squares sense,

Step 2. Calculate the clipped autocorrela-
tion function.

Step 3. Correct and normalize the clipped
autocorrelation function,

Step 4. Generate a hanning or cosine window.

Step 5. Smooth the normalized autocorrelation
by multiplying it point for point with the cosine window.

Step 6. Carry out Fourier transform,

Step 7. Calculate logarithms of the inde-
pendent estimates.,

Step 8. Plot the resulting power-density
specfrum,

INTERPRETATION OF THE POWER-DENSITY
SPECTRUM

The power-density spectrum, as shown in
Figure 4, has a background shape such that the
Gaussian assumption is reasonable. Recurrent peaks
(Neidell, 1966) are present at about equal frequency
intervals, Nine of these peaks have been labelled
on Figure 4 by letters of the alphabet (Table 1).

OF SPECTRAL AMPLITUDE

oG
10

L

FREQUENCY IN FREQUENCY
OR NYQUIST UNITS

Figure 4.- Power spectrum estimated from Carbonif-
erous lithologic data, Archerbeck Borehole.

The harmonics of a 145 feet fundamental are:

Fundamental 145.0 6 20.7
1 72.5 7 18.2
2 48,3 8 16.2
3 36.2 9 14,5
4 29.0 10 13.2
5 24,2 11 12,1



Table 1.- Nine peaks with associated wavelengths
compared with harmonics of a fundamental
wavelength of 145 feet.

Peak Approximate Harmonic indicated
wavelength, feet
A 200 Fundamental
B 71.3 1
C (?) 2
D 37.5 3
E 25 4,5, &6
F 19.3 7
G 15.4 8&9
H (?) 10
o 12.8 11

(?) denotes position uncertain, but presence indi-
cated for comparison.,

There is no reason to expect all harmonics to be pres-
ent, or in a particular proportion. It is possible for
some averaging to take place for example at E. The
presence of many harmonics can be taken as a good
indication of cyclicity rather than periodicity.

GEOLOGICAL INTERPRETATION OF CYCLICITY

Both Johnson (1962) and Westoll (1962) state
that the thickness of cyclothems in northern England
ranges from 90-150 feet. Westoll also records an
average thickness of 100 feet for a complete cycle.
The fundamental cycle detected in the Archerbeck
Borehole agrees well with the thickness recorded for
this type of sedimentation. Using rates of sedimenta-
tion from 1,000-3,000 years per foot as Westoll did,
the Archerbeck Borehole cycle would have a funda-
mental time span from 145,000-435,000 years.
Average rates of sedimentation are not oo meaning=
ful because the rate of deposition of any sedimentary
sequence is not linear with time. It seems, therefore,
that an interpretation which is not linked to time
would offer a more satisfactory explanation.

Dunham (1950) suggested that small isostatic
readjustments take place in the earth's crust as sedi-
ments accumulate. The thickness of the fundamental
would represent then the maximum thickness of sedi-
ment that the crust can support by its own strength,
Once this thickness has been exceeded, the strength
of the material is exceeded and isostatic readjustment
takes place.

SEARCH FOR CYCLICITY IN LIMESTONES

A section of 1,846 feet of limestone belong-
ing to the Bird Spring Group (Pennsylvanian-Permian)
in the Arrow Canyon Range, Nevada, was studied by
Heath (1965) and Lumsden (1965). They were
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interested particularly in the petrography of the
microfacies found in the Bird Spring limestones.

Their interpretation of environmental condi-
tions again showed a continuous sequence of sediment
type ranging from a calcisiltite to an oolitic calcar-
enite (Fig. 5). The calcisiltite was interpreted as
being deposited under quiet marine conditions, with
poor circulation, and the oolitic calcarenite deposited
under agitated conditions. The boundary between
the nonagitated and the agitated sediments coincides
approximately with wave base.

Both workers presented curves showing an
interpretation of how the environmental energy varied
with time. These curves were quantized. In quan-
tizing these curves, microfacies 3, 4, and 5 were
coded +1; and 0, 1, and 2 were coded as -1 at a
sampling interval of 6 inches. The same calculating
procedure was used as before and the power-density
spectrum plotted. Analysis of the power-density
spectrum points to the existence of cyclicity. The
sequence of peaks (Fig. 6) labelled A through K are
given also in Table 2. |t became necessary to compute
broadband spectral estimates as well as narrower
ones in order to detect the fundamental. From the
several autocorrelation functions calculated, the
fundamental was estimated to be approximately 400
feet.

Table 2.~ Sequence of peaks with corresponding
wavelengths and indicated harmonics.

Peak Approximate Harmonic indicated
wavelength, feet
A 80 5
B 64 (?) )
C 50 8
D 33.3 12
E 25.0 16
F 18.2 22
G 16.6 25
H 12.1 33
| 10 40
J 9 44
K 8 50

INTERPRETATION OF LIMESTONE CYCLICITY

Schwarzacher (1964) has detected a cyclical
phenomenon in a group of Lower Carboniferous lime=-
stones and shales in Ireland. The wavelength of the
cycle that he detected is 9.85 feet (300 cms.) which
agrees with the 40th harmonic in the present study.
In another study on the Lower Carboniferous in the
north of England, Schwarzacher (1958) gives a cycle
wavelength of approximately 30 feet. This would
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correspond to the 12th harmonic of the present study.
It is not possible to suggest any definite mech-

anism for cyclical sedimentation phenomena, but it is
possible to make comparisons between the number of

cyclothems in the midwestern United States for a com-
parable interval. There are 37 complete cycles in the
Arrow Canyon section and 36 cyclothems in the mid-
western United States. A coincidence perhaps?
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QUALITY AND QUANTITY OF AVAILABLE GEOLOGIC
INFORMATION FOR STUDIES IN TIME

by

P. H. A. Sneath
University of Leicester (UK)

Studies that involve time are found often to
make exacting demands on the quality and quantity
of data that is needed. This discussion will not be
restricted to time series in the narrow sense, but will
consider also other problems in which there is a time
element.,

Experiences in numerical taxonomy and medi-
cal diagnosis have shown that usually a large quantity
of data is required to be reasonably sure of getting a
satisfactory result. This stems largely from the dif-
ficulty of selecting the best data for answering a given
question. There are two approaches: (1) one may
choose the minimum amount of data of the "right
kind, " based on some simple hypothesis or model, or
(2) one uses much data, in the hope that the "right
kind" of data can be sifted effectively from the mass.
It is particularly difficult in complex biological fields
to formulate the hypotheses required for the first ap-
proach. We may defeat therefore our own ends if we
try to restrict the data to a minimum. Also, up to a
point one may compensate for poor quality if the quan-
tity of available data is increased, and this is impor-
tant if the cost of improving the quality is prohibitive.
'll'hese considerations apply to many geological prob-

ems,

My colleagues D. F. Merriam and M, J.
Sackin and | are interested in studies on sequences
of sedimentary rocks, which of course involves the
time element. We have been developing a method
of cross—association, which is useful in fields as
diverse as molecular biology of proteins and sedimen-
tation (Sackin, Sneath, and Merriam, 1965). The
method is analagous to cross—correlation, or rather
to cross~multiple correlation because it considers
many variables simultaneously. Essentially it consists
of sliding one sequence past another, and counting
the matches between the two sequences at every
position of trial, The matches may arise from com-
paring many variables of strata that are opposite each
other. We are experiencing difficulties, as one might
expect, especially with different thicknesses of strata
in different sections, and thus have used only sequen-
ces of rock types in rank order, ignoring thickness,
and taking an arbitrary criterion of what is a single
rock type. The method is capable in theory of find-
ing the geological correlation between rock sections,
of detecting insertions and deletions in the sections
and of revealing periodic or cyclic phenomena such
as cyclothems. In preliminary work (Sackin, Sneath,
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and Merriam, 1965; Merriam and Sneath, 1967) we
used only a few descriptors of rock types, and though
encouraging, the results suggested that more informa-
tion is required. Ideally we would like to put into
the computer the same information the geologist uses,
and in some respects we may be able to approach

this ideal.

We have been looking, therefore, into the
quantity and quality of information in coded sec-
tions. Most of this has been done with the idealized
case, viz. the two sections are from the same spot
and are identical, but further studies of sections from
different localities are in progress. The example
shown here is taken from the Kansas City Group,
Middle Pennsylvanian (Jewett, Hornbaker, and
Press, 1967). Thirty rock units were recorded in
average or better than average detail, and 36 de-
scriptors were found to be reasonably accurate and
complete (Tables 1 and 2). A number of subsections
of different size were chosen to investigate how the
results depend on the number of units in an unknown
section that is being compared with a standard sec-
tion. Cross-association studies were run on these.
From the results we can answer a number of questions,
and these answers may well hold true for much materi-
al of this type. The number of descriptors available
for a typical section as ordinarily recorded by geol-
ogists is evidently large. Here there were 36 rele-
vant descriptors, but the number levels off as the
number of strata is increased (thus there are about
10 descriptors for any one stratum taken at random,
and five strata require nearly 30 descriptors). This
increase in descriptors depends primarily on new
features of the rocks that differentiate them. Thus,

a new fossil type introduces a new descriptor capable
of differentiating some rocks, and as more strata are
added, more fossil types in general will be added.
We would expect that for long sections there would
be about twice as many relevant descriptors as there
were strata, but this figure no doubt depends mostly
on the diligence of the investigator.

In the section studied about 3/4 of the de-
scriptors were recorded and applicable to any one
stratum. The remaining 1/4 is due to lack of precise
recording, and also to certain combinations of fea-
tures that are logically incompatible (though careful
coding of features should keep this to a minimum;
the principles of coding of data of this type are given
in Sokal and Sneath, 1963, p. 74-79). In this section,



Table 1.- Strata used in study.

Stratum No. Rock Type Member Formation
in Section
29 Limestone Westerville  Cherryvale Shale
28 Limestone Westerville  Cherryvale Shale
27 Limestone and Shale  Westerville ~ Cherryvale Shale
26 Limestone Westerville  Cherryvale Shale
25 Shale Westerville ~ Cherryvale Shale
24 Limestone Westerville  Cherryvale Shale
23 Shale Wea Cherryvale Shale
22 Limestone Wea Cherryvale Shale
21 Shale Wea Cherryvale Shale
20 Limestone Wea Cherryvale Shale
19 Shale Wea Cherryvale Shale
18 Limestone ? Block Cherryvale Shale
17 Shale Fontana Cherryvale Shale
16 Limestone and Chert  Winterset Dennis Limestone
15 Limestone Winterset Dennis Limestone
14 Shale Winterset Dennis Limestone
13 Limestone Winterset Dennis Limestone
12 Shale Winterset Dennis Limestone
11b Limestone Winterset Dennis Limestone
1la Limestone Winterset Dennis Limestone
10 Shale Winterset Dennis Limestone
9 Limestone Winterset Dennis Limestone
8 Shale Winterset Dennis Limestone
7 Limestone Winterset Dennis Limestone
6 Shale Stark Dennis Limestone
5 Shale Stark Dennis Limestone
4 Shale Stark Dennis Limestone
3 Shale Galesburg Galesburg Shale
2 Shale Galesburg Galesburg Shale
1 Limestone Bethany Falls Swope Limestone

also, the probability of a match between any two
strata on a given descriptor is 72,9 percent. That
is, observed matching greater than this percentage
indicates better-than-expected agreement, and a
lower match indicates poorer matching than expected.
The degree of better (or worse) matching is given by
our computer program in standard deviations (SD)
above (or below) the expected match.,

As an experiment, a number of short subsec-
tions were run against the complete (reference) sec-
tion. The number of strata in the subsections, My,

varied from 1 to 30 (the latter was the complete
section itself). There was, for each subsection, one
position where it gave a perfect match against the
reference section. The proportion of matches was
then, of course, 10, and the number of descriptors
that matched, summed over all the relevant strata,
increased linearly with m,, as one would expect.

Thus for m, = 1 there were about 28 matches, for
m, = 5 about 135 matches, while for m, = 30 there

were 832 matches, The SD's do not increase linear-
ly, of course; thus for m, = 1, matching 28/28 is

about 6+07 SD above the expected proportion of about
73 percent, whereas 832,/832 corresponds to 3160 SD
above the expected. The statistical significance in-
creases much faster than linearly, but we do not wish
to put a literal interpretation on the astronomic prob-
abilities that correspond to figures like 30 SD's.
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Of more consequence is the distribution of
the SD values that correspond to positions that are
not the position of perfect match. The most interest-
ing are positive SD values, which might lead to mis-
leading conclusions on the correct matching positions
between different sections or subsections, because
these might be mistaken for near-perfect match posi-
tions. In our example there was little likelihood of
such confusion (Table 3). The next highest SD's
were always well below the perfect-match SD, even
for subsections that consisted of only three adjacent
strata. Indeed, the results suggest that it may be
possible to match with some confidence a single
stratum correctly in a reference column, when 30 or
more descriptors are available. The remarkable fa-
cility of expert geologists to identify a single stratum
at an outcrop without knowing the exact location or
the beds above and below is no less remarkable for
knowing that one stratum does, very likely, contain
enough information for this feat to be possible. Yet
the results suggest that we may be able to increase
the geologist's powers by supplementary computer
methods.,

We do not have enough data to study in
detail the distribution of the SD's of the "next best"
matches, 1t is clear that this is not simple mathe-
matically, and at present we are simply studying it
empirically, by tabulating observed SD values and
by simulation studies. Present results suggest that
the "next best" SD's seldom exceed 40, whereas
the perfect match SD is usually above 9 even for a
subsection of only three strata. Of course in a more
realistic study, where the sections being compared
are not identical, the perfect match SD would not
be so high, but there is evidently a considerable
margin. Strong cyclic or periodic structure would
raise also the "next best" SD's, The negative SD's
indicate worse than expected matching, for example
if many shales are positioned opposite limestones.

As yet we do not understand the significance of
these, but it may be noted that negative values of
over —4.0 are not uncommon (Table 3).

Confirmation of the general conclusions
noted has come from simulation studies, where the
order of strata in the subsequences has been ran-
domized. We do not now expect any position of
perfect match. The highest SD values are mostly
below 4.0 (Table 4). In passing, one may note that
as m, is increased the chance of high "false match™

SD's will become less. The longer sections will
generate more match positions, however, and more
SD values will be tabulated, so there will be a
greater chance of an extreme value arising "by
chance."” In the present study these opposing ef-
fects almost cancel out; whether they will do so
in general is not known. Reversing the order of
strata entirely ("reverse matching") behaved like a
randomized order.

It may be mentioned that the main type of



Table 2,- Descriptors used for section,

No.  Descriptor Coding (O=unrecorded or not applicable)
1 Maijor rock type 1=limestone, 2=limestone and shale, 3=shale
2 Fresh surface, color depth 1=light, 2=medium, 3=dark, 4=black
3 Fresh surface, color shade I=white, 2=gray, 3=pink, 4=buff, 5=yellow-brown
4 Weathered surface, color depth 1=light, 2=medium, 3=dark, 4=black
5 Weathered surface, color shade 1=white, 2=gray, 3=pink, 4=buff, 5=yellow-brown
6 Secondary rock 1=No shale, 2=Shale present
7 20 rock fresh, color depth 1=light, 2=medium, 3=dark
8 20 rock fresh, color shade 1=white, 2=gray, 3=pink, 4=buff, 5=yellow-brown
9 20 rock weathered, color depth 1=light, 2=medium, 3=dark
10 20 rock weathered, color shade I=white, 2=gray, 3=pink, 4=buff, 5=yellow-brown
11 Other components: argillaceous I=none, 2=argillaceous material present
12 calcareous bands 1=none, 2=present
13 silty bands I=none, 2=present
14 chert present I=none, 2=present
15 calcite present I=none, 2=sparry, 3=crystalline in fossils
16 phosphate nodules  1=none, 2=present
17 Texture I=dense, 2=poorly consolidated
18 Fracture I=conchoidal or speudoconchoidal
19 Fissile, for shales 1=nonfissile, 2=fissile or splintery
20 Bedding, spacing 1=thin, 2=medium, 3=blocky, 4=massive
2] Bedding, regularity 1=regular, 2=irregular
22 Bedding, wavyness 1=flat, 2=wavy, 3=cross-bedded
23 Vertical joints, spacing 1=close, 2=distant
24 Undulated upper surface 1=flat, 2=undulated, 3=pitted
25 Prominent ledge formed 1=no, 2=yes
26 Nodular or lenticular bed I=no, 2=yes
27 Dark band in bed 1=no, 2=yes
28 Limestone type I=amorphous, 2=oolitic, 3=crinoid, 4=algal
5=fine crystalline
29 Fossil abundance I=nonfossiliferous, 2=sparse, 3=abundant,
4=fossil "hash"
30 Specific fossils recorded: crinoids 1=no, 2=yes
31 bryozoans 1=no, 2=yes
32 snails I=no, 2=yes
33 clams 1=no, 2=yes
34 brachiopods  1=no, 2=yes
35 Composita 1=no, 2=yes
36 echinoderms  1=no, 2=yes
rock in the subsections (shale or limestone) had little based on careful recording (and no doubt re-recording)
influence in any of the above effects. The section in standard format (such as printed record-sheets).

showed no marked evidence of cyclic or periodic
structure, which can be detected in principle by

Cross=correlation methods are capable of great sen-
sitivity, and one can illustrate this by the remarkable

cross-association, but it contained only one cyclo- results of tree-ring dating, e.g. Fritts (1963) where

them and a small part of another (Merriam, 1963) so correct dating was obtained that could not be detected

this is not unexpected, In this connection the study by eye, and where distances up to 1,000 miles may

of Schwarzacher (1964) is interesting. We have not nevertheless give significant correlations. Similar

been able to make much use of the sum of Chi-square  results are being obtained with varves (Anderson and

statistic referred to in an early study (Merriam and Kirkland, 1966).

Sneath, 1967). One approach that might be tried would be
Clearly we need more work on this problem, to regard the rock at unit distances up the section as

but its implication is obvious. A standard computer a series of vectors, each vector being given by the

coded geological section for areas could be made

descriptors of the rock at that point. In principle,
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Table 3.- Highest positive and highest negative match standard deviations from cross-associations of different

subsections compared with the complete section of Table 1 ("forward matches" only); m

ber of strata in subsection.

1 indicates num-

Subsection Perfect  Next three Three highest Main
(strata match highest positive negative rock
numbers) m, SD SD's SD's type
24 1 607 174 1-33 0:97 =-2:78-1-52 -1-11 Limestone
5 1 5:39 243 2+43 243 -4:08 -2:06 -1-24 Shale
23-25 3 9-55 231 2:07 145 -3°03 -2°45-1-53 Shale
4- 6 3 9+50 1°68 129 1+16 -4-07 =354 -2+60 Shale
22-26 5 12-39 287 2+65 218 -2°98 -2:93 -2-14 Limestone
3-7 5 12457 2+12 176 144 -3-12 -2:58 -2°33 Shale
19-28 10 18-39 3+09 182 106 -3-24-3-18 -3°15 Limestone
2-1la 10 1796 1°61 1°47 116 -326 -3°18 -2+63 Shale
1-14 15 22-04 127 1-18 109 =342 -3-35 -3°25 About equal
1-29 (complete section) 30  31:60 1434 1+34 0°99 =339 -3-31 -3-21 About equal

Table 4.- Highest positive and highest negative match standard deviations for subsections with order of strata
randomized; if compared by cross—association against complete section in its original order of strata.

Randomized subsection Three highest Three highest Main
(strata numbers before positive SD's negative SD's rock
randomizing) m, type
22-26 5 4928 2:67 2°14 =291 -2°44 -2-27 Limestone
37 5 6°07 228 2°15 -3°91-3-12 -2-88 Shale
19-28 10 2+36 175 171 -3+39 -3°00 =199 Limestone
2-11a 10 3°24 2¢10 2°08 -2°70-2+66 -2+57  Shale
1-29 (complete section) 30  2+80 2+61 2°38 =379 -3:73-357  About equal
1-29 (complete section) 30  2¢46 2:20 2°04 -3°08 -2°52 -2°09  About equal

therefore, one would have a continuous series of
vectors with respect to height (and by implication
also with respect to time). One might then look for
specified types of movement of the vector tips, from
given hypercubes to other hypercubes, or from hyper-
spheres, or for specified angular movements of the
vectors. This might be more useful in some data than
transition matrices. Any vector model, however,
poses acute problems on the proper weights to be
given to each of its dimensions. Comparison between
cross—association and vector models should prove
interesting.

If one turns from detailed multivariate data
of this sort to the equally detailed but predominently
univariate (or oligovariate) data of things like elec-
trical logs the nonspecialist like myself is reminded
of the puzzles that are set by electro-encephalogram
records of brain activity. One does not doubt that
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there is much information in them, but it is not
clear how it can be extracted. It may be that we
need new kinds of information about rocks==and the
rocks must surely be full of information as yet un-
guessed. Anything that could help toward deter=-
mining synchronicity in rocks would be of the great-
est theoretical and practical interest. With excep=
tion of varves and volcanic ash bands, we have
little here as yet. It is the privilege of the amateur
to make uninformed, even outrageous, suggestions
in the hope that one or other may point a new path-
way. Clearly we await new technical advances in
petrology. Nevertheless there are possibilities, if
remote, that may be considered. Recent volcanic
eruptions seemingly are detectable by delicate ash
bands in deep sea sediments (e.g. Kuenen, 1950;
Nayudi, 1964); would sensitive analytic methods
detect them in chalks, limestones, and shales?



The secular and long term vectors of remnant mag-
netism perhaps could be subjected to cross—correlation
(or cross-vector) studies if paleomagnetic techniques
could be improved so that they could be performed
quickly on small rock samples. Oxygen isotope
studies of ancient temperatures perhaps could be
exploited further. Sea-level changes might be dis-
associated from local land mass movements if we

hc:dI sufficient comparative data on a world-wide
scale.
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ABSTRACT

A detailed discussion on different methods employed for the comparison of polynomial trend surfaces
is outlined. The trend and residual components are treated by modern analytical methods that are used cur-
rently in communication theory, as the signal and noise content of spatial=spectral series.

INTRODUCTION

In the computation of trend-surfaces, it is
necessary to know the degree needed and to evaluate
the goodness of fit of the determined polynomial sur-
face. At present evaluation and interpretation of
trend maps is subjective rather than statistical. An
element of empiricism points to the need for a collab-
orative attempt by geoscientists and statisticians to
apply statistical theories more rigorously in evalua-
tion of trends (Krumbein and Graybill, 1965).

Krumbein and Graybill advocated use of
analyses of variance and confidence intervals around
the fitted surface. Wilks (1963) indicated the need
for a "two sample validity cross check" procedure
that aids in evaluation of the regression techniques.
Agterberg (1964) applied this concept of using two
subsets and by subtracting one set of trend contours
from the other, he showed that it is possible to
obtain satisfactory maps that portray the actual
regional trends in this manner. He showed, however,
only the "difference trend maps" and did not indi-
cate procedure for computation. Because evaluation
of trends involve comparison of polynomial surfaces,
emphasis in this study is placed on critical evalua-
tion of present methods for the comparison of the
trend surfaces.

The technique of trend-surface analysis can
be viewed either on the basis of statistical theories
or on the basis of information theory. It can be
thought of as a statistical procedure (a method of
variance analyses), where the observed parameters
can be decomposed into trend and residual compo-
nents. If the trend and residual components are
treated as the signal and the noise contents of a
spatial-spectral series (Tobler, 1966), it is possible
to apply certain modern analytical methods that are
used currently in communication theory.

Rao and Rao (in press) used trend-surface
analysis as a technique for filtering the local fluc-
tuations (noise) in grain size distributions, In this
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way the relation between the mean and the degree
of sorting of bed-load sediment in a curved channel
becomes more meaningful. Rao (in press) approached
the problem of grading in a magnesite deposit on the
basis of information theory; trend-surface analysis

is followed by use of grade specifications as "numer-
ic filters" in the grading of a homogeneous mineral
deposit.

In 1966 Tobler indicated the possibility of
applying time-series concepts to spatial data directly.
In a personal communication regarding the comparison
of trend-surface maps of subsets, W. R. Tobler men-
tioned cross-correlation analysis and distance func-
tion techniques. In an important contribution, Mer=
riam and Sneath (1966) detailed a procedure for
quantitative comparison of contour maps, They
adapted two techniques (correlation analysis and
taxonomic distance) for preparing dendrograms.

This was followed by comments from Mandelbaum
(1966) and a reply by the authors. One of the
earliest contributions on comparisons of trend sur-
faces is by Miller (1964). He used the surfaces them-
selves or the residuals for comparison. Miller (1964)
says: "The problem of devising quantitative stand-
ards for comparing contour maps is very complicated.
Difficulties appear at the very onset, in asking just
what is to be compared. "

Tobler (personal communication, 1967)
essentially agrees with the stated view and says
"...the question of comparison of trend maps is
very difficult. The question is clearly of consider-
able importance, especially for the case, in which
one wishes to compare a theoretical surface with an
empirical surface.” In the present study, the authors
computed two sets of trend maps from the same re-
gion to estimate parameters by the following methods:

1. Use of variance analyses techniques.

2, Comparison of error measures as obtained
from the Davis and Sampson program (1966).

3. Computation of root mean square error
measure ,



4, Computation of distance function using a
modified Mandelbaum (1966) procedure.

5. Use of serial and cross-correlation func-
tions.
Methods (3) and (5) are justified by viewing the data
as part of a spatial-spectral series (an analogue of
time series).

DETAILS OF COMPUTATION

The test data were taken from a region near
Salem, Madras State. The region represented in
Figure 1 is dunite intrusive for which a series of
specific-gravity determinations were made by
D. K. Shrivastava. The determinations were by
the pycnometer method and Metlar's monopan bal-
ance. It is estimated that the values are accurate
to £0.005. The samples were divided into two sets
as indicated (Fig. 1).

Trend surfaces up to and including the fourth
degree were fitted by the Davis and Sampson (1966)
program. This program operates in single precision,
so that the coefficients of determination of higher
degree trends may give a smaller index than higher
degree trends. In one instance the authors corrected
ill-conditioned matrices by either increasing the
mantissa length or by removal or addition of some
samples. By and large, however, this effect was
ignored.

Krumbein and Graybill (1965) showed that
variance analysis can be used to evaluate the
"strength" of the trend. The results of variance
analysis are given in Table 1. The analysis indicates
that the F value is significant up to the third degree

in both subsets. This finding corroborates conclusions

derived from the serial and cross—correlation coef-
ficients.,

9.0 10.0 11.0 12.0

7.0

8.0

9.0

500

Scale in meters

Figure 1.- Sampling pattern, ® Subset A and O Sub-
set B, in dunite outcrop of Chalk Hills,
Salem area, Madras State.

Table 2 shows the error measures obtained by
processing the data with the Davis and Sampson
program. With one exception, the error measures
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for both subsets are in substantial agreement.

Table 1.- Variance analysis and results.

Degrees

Source Sum of of Mean F

squares freedom square
Subset A
Due to linear 45.09 2 22.04 3.15
Dev. from linear 167.66 24 6.98
Due to quad. 55.01 3 18.34 3.45
Cev. from quad. 112.65 2] 5.32
Due to cubic 32.33 4 8.08 1.71
Dev. from cubic 80.32 17 4.72
Due to quartic 9.53 5 1.90 .32
Dev. from quartic 70.78 12 5.90
Total 212.75 26
Subset B
Due to linear 58.03 2 29.01 3.61
Dev. from linear 168.68 24 7.02
Due to quad. 39.40 3 13.13 2.28
Dev. from quad. 129.28 21 6.15
Due to cubic 67.81 4 16.95 4.69
Dev. from cubic 61.47 17 3.61
Due to quartic - 13.19 5 - 2.64 .43
Dev. from quartic 74.66 12 6.22
Total 226.70 26

Another method for comparing the subset
trend maps is to compare the dependent variable as
computed for fixed grid-point locations. Because
the equations for the four surfaces are known,
values for the dependent variable can be generated.
In this study the origin was taken at the northwest
corner of the map. For a fixed value of the vertical
coordinate, 71 values of Y were computed along
the east-west line at grid intervals of 0.1. These
values were generated for each surface, then one
set was subtracted from the other. To annul the
effect of algebraic sign, the difference is squared
and then summed along the grid line. The mean
value is obtained by division by 71, and the square
root of the summed value is computed. Next, the
value of the vertical coordinate is incremented by
0.1 and a similar set of values is obtained for the
second row, Thus summation was determined for
41 rows to cover the entire mapped area. The root
mean square values for all rows are again summed
and divided by the number of rows to obtain the
total root mean square error for the entire map. This
is equivalent to the generation of two signals along
particular directions, and computing the root mean



square error, as is usually done in time-series analy-
sis. Some representative data computed for the entire
map are given in Table 3. The error measure spread

Table 2.~ Comparison of error measures.

Subset A Subset B

Standard

deviation: first degree 0.2364 0.2499
second degree 0.1938 0.2189
third degree 0.1636 0.1509
fourth degree 0.1536 0.1663

Variation

explained by

surface: first degree 0.4509 0.5803
second degree 1.0010 0.9743
third degree 1.3244 1.6524
fourth degree 1.4197 1.5205

Variation not

explained by

surface: first degree 1.6766 1.6868
second degree 1.1264 1.2928
third degree 0.8032 0.6146
fourth degree 0.7077 0.7465

Total variation: 2.1275 2.2671

‘Coefficient of

determination: first degree 0.2119 0.2559
second degree 0.4705 0.4297
third degree 0.6225 0.7289*
fourth degree 0.6673 0.6707

* Anomalous value discussed in text.

at these different intersections are graphically rep-
resented in Figure 2. This diagram indicates that in
selected regions the RMS error for the third-degree
surface is lower than the linear and quadratic sur-
faces (about a value of 6.00). The quadratic surface
has in general a lower value than the linear within
region 5.5 to 7.5. The quartic surface indicates a
higher RMS value over the entire region. This row=
by-row scanning procedure discloses certain trends
that are not obvious from a study of the total RMS
value, which generally shows a progressive increase
as surfaces with higher terms are computed.

As a corollary to the computation, one can
obtain the difference value (including the sign) at
these 2,911 fixed grid points. These differences
can be used as a dependent variable to determine
a polynomial function of appropriate degree, and
for each surface, one can obtain the "error poly-
nomial surface.” If the surface is flat and devoid
of large-scale undulations, the flatness of the sur-
face can be taken as a comparative measure. This
phase of computation was not done here.

Table 3.- Determination of root mean square error
measures.

Line no.* Linear Quadratic Cubic Quartic
surface surface  surface surface

5.00 0.0176 0.0247 0.0342 0.0338
5.50 0.0155 0.0163 0.0128 0.0147
6.00 0.0135 0.0161 0.0099 0.0140
6.50 0.0119 0.0088 0.0124 0.0165
7.00 0.0107 0.0099 0.0134 0.0149
7.50 0.0103 0.0117 0.0148 0.0118
8.00 0.0106 0.0129 0.0162 0.0116
8.50 0.0116 0.0139 0.0156 0.0146
9.00 0.0131 0.0151 0.0157 0.0286

Total root mean square value using 41 x 71 = 2,911 grid locations

Linear 0.0124
Quadratic  0.0130
Cubic 0.0149
Quartic 0.0160

*Scaled value along western (vertical) margin.

The authors also have used computation pro-
cedures outlined by Merriam and Sneath (1966) for
the determination of the distance function between
the two subsets. As Mandelbaum (1966) mentions,
it is not possible to adopt the Merriam and Sneath
procedure for comparison of two trend surfaces as
they will have no standard deviation. No weight=-
ing has been assigned for two reasons. Because both
samples are drawn from the same population and
equal numbers of samples are used, the given
weightings cancel each other. The authors feel that
Mandelbaum's (1966) suggestion of a method of as-
signing weights will make the calculation procedure
biased.

Procedures adopted for distance=function
calculation have yielded the following generalized
distances:

Between linear surfaces of

Subset A and Subset B 1.035
Between quadratic surfaces

of Subset A and Subset B 0.596
Between cubic surfaces of

Subset A and Subset B 24,903
Between quartic surfaces of

Subset A and Subset B 6.846

These results do not correspond to conclusions de-
rived from other functions. An inspection of the
trend surfaces indicate that the high value of the
distance function can be accounted for by the con-
stant term in the equations for the third degree which
differ greatly. This is also the case with the fourth=



degree distance function (polynomial surface equa-
tions are given in the Appendix). In these polynomi-
al equations the constant term usually will be large,
followed by lesser and lesser values for the higher
degree and cross-product terms. In usual calcula-
tions of distance functions, this situation does not
arise. Parks (1966) adopted a normalized data ma-
trix in similar situations so that equal weighting was
given to all variables. Following Mandelbaum's
comment, Merriam and Sneath did not recalculate
the distance functions, so the effect of adding the
constant term to the computations could be evaluated.
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Figure 2.- Error analysis.

The authors are of the opinion that some
specific investigations are needed to evaluate the
efficiency of distance functions in comparing con-
tour maps. Based on Tobler's (1967) suggestion, the
authors have computed a series of cross= and serial-
correlation coefficients at specified locations. The
computation of serial- and cross—correlation coef-
ficients requires the determination of residuals at
every grid location. Because the data are irregular-
ly spaced, it is possible to obtain the residuals. The
interpolated value at any specified location may be
obtained by triangulation or by the polygonal method.
Trend values can be computed and by subtraction,
the residuals can be found at all grid locations
needed for computation. It is possible also to inter-
polate observed values in any specific direction along
a line which cuts across some sampling sites and then
use Lagrangian or other functions to obtain the inter-
polated values along the cross section. For this
cross section, the residuals can be obtained which
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are used for the computation of serial- and cross-
correlation coefficients. The authors, however,
followed a different method. They subtracted one
surface from the other and used these values as
residuals. For the four polynomial surfaces of each
set, the following six sets of residuals were obtained.

Set 1 residuals
Set 2 residuals
Set 3 residuals
Set 4 residuals
Set 5 residuals
Set 6 residuals

by subtracting 1st from 2nd degree
by subtracting Ist from 3rd degree
by subtracting 1st from 4th degree
by subtracting 2nd from 3rd degree
by subtracting 2nd from 4th degree
by subtracting 3rd from 4th degree

Thus for both sets, we get 12 sets of residuals. The
serial=correlation graphs and cross-correlation
graphs are machine plotted along the east-west
direction at the 7.5 vertical coordinate. As gen-
erally noted the serial- or cross-correlation coef-
ficient initially will have a maximum value which
falls rapidly as lag increases. It eventually becomes
equal to 0 and then attains a negative value. The
lag values at which the serial- or cross-correlation
coefficients become 0 are given in Table 4. In the

Table 4.- Serial- and cross—correlation coefficients.

Serial-Correlation

Subset A Subset B
Set No. Lag value at Set No. Lag value at
which S.C. which S.C.
is zero is zero
1. 16. 7. 16.
2. 12, 8. 10.
3. 16. 9. 1.
4, 6. 10. 6.
5. 9. 1. 7.
6. 17. 12, 12,
Cross—Correlation
Set No. Lag value at
which C.C.
is zero
1-7 17.
2-8 14,
3-9 13.
4-10 5.
5-11 8.
6-12 4,

serial-correlation, residuals of sets 4 and 10 have
minimum lag. These are obtained by the subtrac-
tion of the second degree from the third degree sur-
face. The cross-correlation coefficients show a
minimum lag for sets 4 to 10 and 6 to 12. These
represent residuals obtained by subtraction of the
second-degree surface from the third degree and
the third degree from the fourth-degree surface.
These results corroborate the results obtained
by variance analyses, that the third-degree surface



almost fully represents trends in this mapped region.
It may be mentioned that the structural correlation
coefficient of Mirchink and Bukhartsev (1959)
represents a cross—correlation coefficient for a curvi-
planar surface.

CONCLUSIONS

The authors have discussed the various meth-
ods available for the comparison of polynomial sur=
faces from the viewpoint of statistics and communi-
cation theory. This paper is confined to polynomial

functions, such as are used by Rayner (1967) and
others, are not explicitly included.
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APPENDIX

Equations for Subset A

1st Degree
Z =
2nd Degree

Z=
+

3rd Degree

+
+

4th Degree
Z=

+

1.8943793

7.5151330
0.0212037 X2

0.3216236

0.3261589 X2
0.0107994 X3
0.0224141 Y3

25.1280760
0.3899428 X2
0.0507990 X3
0.1667794 Y3
0.0133861 X2Y2

Equations for Subset B

1st Degree
Z=

2nd Degree
Z=

3rd Degree

+ + 1

4th Degree

+

1.8914432

5.8800829
0.0291434 X2

30.2970910
0.6156923 X2
0.0188511 X3
0.0605195 Y3

17.9726880
1.5115974 X2
0.1394446 X3
0.3357144 Y3
0.0036486 X2Y2

+

LI I B B |

0.0454694 X +

0.5193206 X
0.0287213 XY

+

1.7521444 X
0.2051868 XY
0.0100178 X2Y

+

2,7416320 X
0.4462897 XY
0.0387204 X2Y
0.0004221 X4
0.0143222 XY3

+ + + + +

0.0035416 X +

0.6126081 X
0.0174408 XY

+

5.5425986 X
0.1950124 XY
0.0222879 X2Y

1+

5.4009023 X
0.5946450 XY
0.0079996 X2Y
0.0039719 X4
0.0017753 XY3 +

++ + 1
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0.0650713 Y

0.8897343 Y
0.0501776 Y2

0.0768555 Y
0.2147443 Y2
0.0241175 XY2

10.1476370 Y
1.9949123 Y2
0.1033560 XY2
0.0063774 X3Y
0.0029754 Y4

0.1126443 Y

0.3174948 Y
0.0195861 Y2

8.5133%67 Y
1.1544107 Y2
0.0114727 XY2

7.0069909 Y
2.,5174640 Y2
0.0860757 XY2
0.0030459 X3Y
0.0148537 Y4



SEDIMENTARY LAMINATIONS IN TIME-SERIES STUDYl/

by

R. Y. Anderson

University of New Mexico

INTRODUCTION

Laminations are alternations of textures or
components of sediments (i.e. clay, silt, sand,
organic matter, carbonate, sulfate, halite, etc.).
The simple repetitions represent the basic or shortest
term aspects of sedimentary processes, Because the
time involved in their formation is on the order of
minutes or seasons, the processes are apt to persist
for intervals of time that are sufficient to produce
series of laminations that lend themselves to time-
series methods, The persistent repetition of a few
components is a distinctive characteristic of lamina-
tions; this is a more distinctive characteristic than
the generally accepted arbitrary size limit of 1 cm
(Kelley, 1956). Something can be learned of the
shorter and longer term aspects of related processes
through careful examination of the laminae and the
repetitious patterns in which they are arranged.
Laminations also form under a variety of conditions.
In this report we are concerned only with those
laminae that were deposited in quiet saline or
unoxygenated basins where the organisms that nor-
mally mix and destroy laminations have been ex-
cluded. Under these conditions, the laminae tend
to be well preserved in long, fairly continuous series.

SEDIMENT "RAIN"

In quiet basins, the sediments "rain" down
on the floor of the basin from above. Chemical and
organic constituents are derived generally from the
water mass itself as precipitates or flocculates. The
allocthonous fraction is mainly a pelagic clay that
also can be considered to settle as a "rain" of parti-
cles. The continuity of sediment "rains" is an aspect
of sedimentology that has been studied only slightly
but the concept of a more or less geographically uni-
form "rain" of sedimentary particles has been estab-
lished through stratigraphic correlations of individual
laminae for many kilometers (Anderson and Kirkland,

1966).

l/This work was sponsored by the earth sciences pro=-
gram of the National Science Foundation grant AG
922, GP-4200 and earlier grants. | wish to thank
Walter E. Dean, Jr. for his help in developing some
of the ideas in this study.
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ASSOCIATION WITH TIME

Two time-related concepts, first applied to
ecologic changes (Clements and Shelford, 1939),
are the basis for interpreting the significance of
laminations that are formed as the result of sediment
rains, The first, called aspection, involves changes
from season to season. The production or deposition
of each component usually has defineable limits in
time. That is, a particular component (i.e. the
carbonate layer in the Rita Blanca varves; Anderson,
in press) is produced or deposited within a known
season or some other period of time.

The other time concept (annuation, or changes
from year to year) relates to the frequency of produc-
tion or influx of a particular laminae-forming com-
ponent. A range of frequencies and patterns from
precisely annual and seasonal to random and non-
seasonal is possible but some generalizations about
different types of laminae can be made. In glacial
varve series, for example, where the controlling
mechanism is fairly well understood (Antevs, 1925,
1951), the deposition of laminae is seasonal (aspec-
tion) and at a frequency that is nearly annual (an-
nuation). In many nonglacial varve series a clastic
(clay) component may accumulate with only a slight
seasonal variation in quantity. A second component
such as a layer of sapropel or plankton bloom may
settle in a strongly seasonal manner and “set off"
the clay layer into annual laminae. In other in-
stances, multiple blooms or precipitates may occur
in a single season or entire years may be skipped.

The lamination process may be complicated
further if clastic materials larger than clay size
(sand, silt, tuff, pumice, woody fragments, etc.)
are involved. The frequency of influx of these
components tends to be more erratic or random than
for the finer grained materials (Anderson, 1964), and
they may be associated with other laminae with dif-
ferent time relationships. Hence, in the Oligocene
Florissant laminated series, seasonally blooming
diatomite was interlaminated with a more constantly
accumulating sapropel and erratically deposited
graded tuff and inversely graded pumice laminae
(McLeroy and Anderson, 1966).

In all these examples, the aspection (changes
from season to season) concept is used to help inter-
pret the environmental significance of a laminae or
component., The concept of frequency (annuation)
is used to calibrate the rate of production or accumu-
lation of the components.



CALIBRATED STUDIES

Calibration (the counting and measuring of
laminae) makes it possible to sample and analyze
stratigraphic samples on a time-series basis. This,
in turn, permits the study of the "true" associations
of major and minor constituents as well as the study
of other phenomena that are unrelated to the envi-
ronment of the laminated sequence. It leads also to
more detailed petrographic interpretations based upon
lamina by lamina correlation.

Component Association

Conventional stratigraphic sampling is based
upon either standard thickness, standard volume, or
changes in physical appearance. It is difficult to
avoid interpretations that assume that the rate of
deposition is relatively constant., Hence, a change
from shale to limestone is assumed to be a time of
increased carbonate deposition when, in fact, a
reduction in both clay and carbonate deposition
might be equally plausible. It is impossible to deter-
mine the true associations of several components if
only changes in proportion are known.,

In time=series sampling, however, the num-
ber of laminae is held constant and the thickness or
volume of the sample interval varies. Percentage
estimates of components based upon standard volume
within the sampling intervals (relative values) are
converted to a quantity=per=unit time basis (absolute
values) by obtaining the product of the thickness or
volume of the sampling interval and the percentage
estimate. The result is an independent time series
for each component, expressed on a quantity-per-unit
time basis, that may be used to determine the time
associations. The method is applicable whether the
frequency of deposition is known or not because the
laminations are assumed to be the result of a regular
process. In the situation of known or proven varve
series, this assumption is the most valid and inter-
pretations the most reliable.

Two laminated series illustrate the method.
The Permian Castile Anhydrite consists of organic-
rich calcite laminae alternating with nearly pure
anhydrite laminae (some carbonate grains are mixed
in with the anhydrite). Plots of carbonate and sul-
fate on a relative (%), and "absolute" basis (Fig. 1)
show the difference in association for each sampling
technique. The relative (%) plots naturally show an
inverse association of carbonate and sulfate because
there are only two major components; note also that
percent carbonate declines in the last 1,000 years.

The "absolute"” plot, however, shows that
the two components have a positive association
(r =+0.56, n =60, first 600 units) and the amount
of carbonate actually deposited holds fairly steady
during the last 1,000 years. This positive associa=
tion is not constant throughout the series and there
are times when the association is negative. There
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are also places in the Castile series where sulfate
deposition stops completely with little or no change
in carbonate deposition and the two parameters
appear to behave independently. Hence, the derived
time series is a more informative record than percent-
age estimates derived from ordinary stratigraphic
sampling.

"Absolute" time series were constructed also
for the clay and carbonate components in the Rita
Blanca lake deposits of Texas (Pleistocene). Smoothed
plots of the two independent 1,400-year series show
a strong negative association of the two components
(Fig. 2). The correlation coefficient, however, did
not substantiate the interpretation of a strong nega-
tive association (-0.012; n =51), As for the Permian
Castile example, associations change with time, and
in this instance it was suspected that the strong nega-
tive association was cancelled by positive associations
elsewhere in the series. Bivariate spectral analysis
was used to determine the association for different
frequencies of change and a comparison of correla-
tion and coherence methods, using the Rita Blanca
series as an example is discussed by L. H. Koopmans
in this Colloquium.

The phase angles derived from the bivariate
analysis (see Koopmans, Fig. 3) revealed that the
clay=carbonate association was negative for fre-

uencies greater than 70 years and positive for
ﬂne shorter frequencies. Environmentally, this was
interpreted to mean that some of the carbonate was
washed in with the clay from the caliche soil, prob-
ably as a result of runoff from local storms or melting
snow. But another form of carbonate was precipitated
in the basin in response to long-term changes in tem-
perature, evaporation or precipitation. This informa-
tion, if combined with biologic and petrographic
data was the basis for interpreting air-mass move-
ments that alternately brought in cool-moist or warm=-
dry conditions (Anderson and Koopmans, in press).

Stratigraphic Correlation and Association

Evaporitic, organic, and some pelagic clay
laminations persist for great distances and lend
themselves to stratigraphic correlation techniques.
Laminae by laminae stratigraphic correlations can
be located and demonstrated by sliding a short "slave"
series along a "master" series until a significant cor-
relation has been obtained (Anderson and Kirkland,
1966). In practice, however, several statistically
significant correlations will be obtained, and although
the true correlation generally has the highest value,
correlation is determined more easily by direct vis-
val comparison. Where a correlation is known to
exist but cannot be located visually, the sliding
method will extend the range of correlation, but
this is based upon interpreting the same number of
laminae in each series, which is not always possible.

Stratigraphic correlation has proved to be
more useful as a method for determining the degree
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Figure 1.- "Relative" and "absolute” time series of CaSO4 and C<:1CO3 in Permian Castile Anhydrite. Samples

were collected and analyzed on 10-unit basis.

of association of correlative series of laminae. In this
way it was possible to infer that certain stratigraphic
sections in the Permian Zechstein and Jurassic Todilto
Formations were probably disturbed by currents through-
out deposition and had lost some of their continuity as
a record of precipitated material (Anderson and Kirk=
land, 1966).

A simple moving correlation technique can be
applied to correlative stratigraphic sections to deter-
mine the degree of lateral continuity in different
parts of the same series. After two correlative sec=
tions have been measured and interpretive problems
about the number of laminae resolved (same n in each
series),a moving correlation for some arbitrarily selec-
ted length of data can be computed. A plot of such
a series will show the zones of greatest lateral con-
tinuity.

The moving correlation technique may be
applied also to associated but different parameters
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in the same varve series. In the Permian Castile
series, a moving correlation (110-year interval)
revealed alternate times of positive and negative
association of carbonate and sulfate on a quantity-
per-unit-time (absolute) basis (Fig. 3). The same
figure also shows the changing association of sul-
fate, carbonate, and organic matter with time (Dean,
1967). This technique is a valuable adjunct to ordi-
nary correlation studies and to bivariate spectral
analysis.

Lamina by lamina correlation has proved also
to be a valuable petrographic tool. Comparison
of two or more correlative thin sections may reveal
stages in the processes of reorganization and recrys-
tallization and allows for the recognition and separa=-
tion of local and regional characteristics. Correlation
also makes possible a comparison of normal and
structurally deformed textures and probably has a
good many other applications.
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Unrelated Phenomena

In the previous discussion, some simple time-
series methods have been adapted to the study of
laminations with a view toward interpreting the local
environments and processes with which the laminae
are associated. Some phenomena, such as climatic
changes resulting from planetary perturbations or solar
variations, are related only indirectly to the environ=

ment in which the laminations formed. For other phe-
nomena, such as secular changes in the magnetic field
or magnetic particle influx, the relationship is even
more remote. In spite of the remoteness of these phe-
nomena, it is already apparent that any attempt to at-
tack these problems without first understanding most of
the local environmental factors would be futile.
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ABSENCE OF DETECTABLE TRENDS IN THE RATE OF BENTONITE OCCURRENCES
IN THE MOWRY SHALE (CRETACEOUS) OF WYOMING

by

John C. Davis

Kansas Geological Survey

INTRODUCTION

Geologists are performing time-series analy-
ses on stratigraphic sequences in the hope of obtain-
ing information on rates of occurrence of geologic
events, In most instances, time scales are not avail-
able, and the stratigraphic succession is considered
as a time equivalent. Information is needed about
the expected consistency of depositional rates at a
location within a sedimentary basin.

Information gathered during an investigation
on the petrography of a Cretaceous black shale
(Davis, 1967) provided an unusual opportunity to

test the application of standard time-series procedures.

The unit measured, the Mowry Shale, is a siliceous,
marine black shale deposited far from its inferred
shoreline. Only minor variations in grain size occur
through the section; sedimentary structures indicate
that deposition occurred in relatively undisturbed,
stagnant water, The section used probably represents
as uniform a depositional situation as can be found
in marine environments. Distributed throughout the
sec|1uence are bentonite deposits that represent the
only disturbance in an area of seemingly uniform,
slow deposition.

R. A. Reyment (personal communication,
1967), using the same time-series analysis proce-
dures, has found strong trends in the rates of erup-
tions of modern volcanoes. Detection of similar
trends in bentonites in the Mowry Shale could be
interpreted as indicating a uniform rate of sedimen-
tation throughout the sequence. Absence of these
trends, however, would have no particular signifi-
cance,

FREQUENCY OF BENTONITE OCCURRENCE

Bentonites in the Mowry Shale are distinctive
beds with sharp lower contacts in an otherwise uni-
form sequence of marine shales, Stratigraphic distri-
bution of bentonites is the result of sudden, catastro-
phic volcanic eruptions which were separated by

differing intervals of time. A random variable through

time may be distributed according to the Poisson mod-
el, so randomness of bentonites may be tested by cal-
culating goodness of fit to the Poisson distribution,

The following assumptions are necessary for this model:

(1) Volcanic eruptions occurring in one time
interval are independent of those in any other inter-
val.

73

(2) The probability that an eruption occurs is
proportional to the length of the time interval.

(3) The probability of two or more erup-
tions occurring in avery short time interval is so small
that it can be neglected.

(4) The length of time intervals may be ap-
proximated by the thickness of shale that accumu-
lates during that interval,

All assumptions of the model may be questioned.
Volcanic eruptions may not be independent events if,
for example, one eruption triggers subsequent erup-
tions in the area or changes the natural pattern of
vulcanism in the region. For the same reasons,
assumption (2) may be invalid. Graded bedding in
bentonites, noted by Slaughter and Earley (1965)
may indicate successive, closely spaced eruptions,

a condition violating assumption (3). The tenuous-
ness of assumption (4) is obvious.

A search was made for trends in bentonite
beds in a section measured in sec. 15, T. 33 N.,

R. 94 W., Fremont County, near Sand Draw, Wyo-
ming. This section was selected because it is ex-
ceptionally well exposed and bentonites are thicker,
making them easier to find. From the nature of the
exposure, it is unlikely that any bentonites were
missed during field examination. This removes the
confounding effect of possible incomplete selection
from available bentonites, a hazard at less well-
exposed sections,

Data, listed in Table 1, consist of distances
between successive bentonite beds, measured from
center of bed to center of bed. Twenty-eight ben-
tonites are found in 289.5 feet of section. Thick-
ness of individual bentonite beds are not considered,
but range from 7 feet to less than 1 inch. Lithology
of the enclosing rock consists of rather uniformly
silty, siliceous shale. Some fluctuation in apparent
grain size is noticeable.

Data were tested using a statistical analysis
of series of events program by Lewis and Kelly (1966);
procedures used in this program are discussed in Cox
and Lewis (1966). The first computation is a test for
trend in the rate of occurrence of bentonites, repre-
sented by a smooth change i frequency of occurrence
through the section. It may be postulated that the
distribution is not stationary Poisson, but time de-

pendent Poisson (A (t) = ea+Bf). If the process is
stationary, B=0, so trend may be detected by testing
this assumption. The appropriate testing statistic is
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which is normally distributed except for cases of
very small n. [ T=total thickness, n=number of
events, S=Zfi/n, where ’ri is the thickness from the

bottom of the section to each successive bed.] For
the Mowry bentonites, U=0.253, which is not
significant above the 60 percent level. It can be
concluded, therefore, that no significant trend is
apparent in rate of bentonite occurrences.

Table 1.- Feet between midpoints of successive ben-
tonites in Mowry Shale in section 19. Inter-
vals listed from bottom upward.

4 4 14
26 35 17
4 2 5
5 15 10
4 10 5
17 23 6
3 8 11
6 7 29
47

A series of values then are computed that can
be used to graphically analyze the trend, if present,
using standard regression methods. These values are
based in part on an arbitrary constant, K, which
specifies successive intervals (Xi) containing exactly

K bentonites. In this run, K=4. Because any trend
present may be exponential, it is also appropriate to
work with logs of thicknesses. Graphs of thickness
of intervals and log thickness vs. midpoints of inter-
vals are shown in Figure 1. No trends are apparent,
nor are fitted regressions significant.

Next, the data are ordered so the form of the
distribution of intervals between beds may be dis-
played graphically as an empirical distribution func-
tion. Figure 2 is a cumulative plot of feet between
bentonites vs. number of bentonites. Note that the
curve appears exponential. Four distribution-free
statistics were generated for testing the Poisson hy-
pothesis against three broad general categories of
alternatives: (1) trends, (2) renewal processes, and
(3) serially correlated stationary series. The first
of these alternatives has already been eliminated by
testing for trends, leaving alternatives (2) and (3).
The empirical distribution function may be compared
to a Poisson distribution by Kolmogorov-Smirnov
statistics. Neither one=sided nor two-sided tests
reject the hypothesis of goodness of fit at the 95 per-

cent level. The Anderson-Darling statistic, Wﬁ ,

which is exceptionally sensitive to departures in
the tails of distributions, is then computed. This
statistic is not significant at the 95 percent level.

Moran's statistic, kn’ is a test against renewal hy-
potheses, having a Chi-square distribution with n-1
degrees of freedom. Computed value of kn is 22.7,

not significant at the 95 percent level. In conclusion,
all four tests fail to reject the hypothesis that the dis-
tribution is Poisson.

Log Thickness
w -
i
K

Thickness of Intervals (ft.)

5 15 25
Tens of feet

Figure 1.~ Thicknesses of intervals containing four
bentonites versus stratigraphic height of in-
terval midpoints.

Serial=correlation coefficients may be com-
puted for lags up to n/2 = 13, The distribution of
serial correlation coefficients is an estimate of the
spectral=density function and can be tested for trend
using the U-statistic. Here, the computed value of
U = .513 is not significant above the 70 percent
level. Highest correlation found is 0.328 for a lag
of 2, Distribution-free statistics can be calculated
and applied to the estimated spectral-density func-
tion. Kolmogorov=Smirnov and Anderson-Darling
statistics for testing the observed distribution against
a Poisson distribution are not significant at the 95
percent level.
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A series of additional tests were performed,
including calculation of variance time curves, serial
covariance curves, and the normalized spectral-
density function. In all instances, statistics of these
functions are not significantly different from those
expected from a Poisson process.

These analyses were run in an attempt to dis-
cern a trend or pattern in the frequency of bentonites
present in the measured section. Operating on the
assumption that segments of black shale represent
equal increments of time, bentonite occurrences fit
into a stationary Poissonlike distribution. This may
be interpreted in various ways: (1) the model
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GEOPHYSICAL DIGITAL FILTERING

by

Sven Treitel

Pan American Petroleum Corporation
ABSTRACT
Statistical communication theory has contributed substantially to the art of signal extraction from
geophysical recordings. Filter design techniques based on the principle of least squares have been exten-
sively studied. Minimization of the error energy in the difference between a distorted and an undistorted
signal leads to the Wiener filter. This operator is particularly useful in high resolution work, and can be
implemented either in the single-channel or the multichannel mode. Simple models of the real layered

earth aid in the formulation of filter design parameters.
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AUTOCORRELATION, SPECTRAL ANALYSIS, AND MARKOV CHAINS

by
W. C. Krumbein

Northwestern University
ABSTRACT

Given a sequence of observations, X7 Xor eeey Xpp weey X at equal intervals of time or equally

t’ t+k’

spaced along a line, methods are available on the one hand for analyzing these data by autocorrelation and
spectral analysis; and on the other by arranging the data into discrete states, leading to a transition probability
matrix. The first path treats the observations as continuous, whereas the second requires discretization of the
observations, unless the pii are sought in terms of autoregressive functions.

Several questions arise here of possiyble relations among these paths, and it is interesting to ask whether
the concept of statistical entropy, either discrete as E = -Zpi log p; or continuous as E =-\f(x) log f(x)dx, can
be used as a unifying concept. The following scheme is presented as a possible search area for connecting

threads among the diverse paths:

STATIONARY PROCESS
AUTOREGRESSION AUTOCORRELATION
FOURIER TRANSFORM
TRANSITION PROBABILITIES SPECTRUM
STATISTICAL ENTROPY(?)

Formal presentation at the Colloquium will raise questions rather than provide answers.
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This is the third colloquium which has been held on the campus of the University of Kansas. The first
was concerned with classification procedures, the second with trend analysis. Proceedings from these collo-

quia have been published as COMPUTER CONTRIBUTIONS 7 and 12.

It is my pleasure to acknowledge several people who have helped with the preparations of this meeting.
Prof. R.K. Moore and Dr. Adrian Fung of CRES (Center for Research in Engineering Science) assisted in the
planning; Mr. R.F. Treece of University Extension made the arrangements; Dr. J.C. Davis, Mr. O.T. Spitz,
and Dr. W. Schwarzacher of the Kansas Geological Survey read the manuscripts; Mrs. Nan C. Cocke, Mrs.
Jo Anne Crossfield and Mrs. Laquetta Karch assisted in the preparation of the proceedings.

An up-to-date list of other COMPUTER CONTRIBUTIONS and related publications may be obtained by

writing the Editor, COMPUTER CONTRIBUTION Series, Kansas Geological Survey, The University of Kansas,
Lawrence, Kansas, 66044,

COMPUTER CONTRIBUTIONS
Kansas Geological Survey
University of Kansas
Lawrence, Kansas

Computer Contribution

1. Mathematical simulation of marine sedimentation with IBM 7090/7094 compufers, by J.W.

Harbaugh, 1966 . . . o 51,00
2. A generalized two-dimensional regressaon procedure by % R Dempsey, 1966 e e . 50.50
3. FORTRAN |V and MAP program for computation and plotting of trend surfaces for degrees 1

through 6, by Mont O'Leary, R.H. Lippert, and O.T. Spitz, 1966 . . > 30.75
4. FORTRAN Il program for multivariate discriminant analysis using an IBM 1620 compufer by

J.C. Davis and R.J. Sampson, 17665 R8T . $0.50
5. FORTRAN |V program using double Fourier series for surFoce frthng of lrregulorly spoced

data, by W.R. James, 1966. . . . 30:75
6. FORTRAN IV program for estimation of clodlshc reIoflonshlps usmg ’rhe IBM 7040 by R L

Bartcher, 1966 . . . s v S1R00
7. Computer applications in the earth ; sciences: CoIquurum on cI055|f|cchon procedures,

edited by D.F. Merriam, 1966 . . . . Si 6100
8. Prediction of the performance of a solution gas drive reservoir by Muskat's Equohon by

Apolonio Baca, 1967. . . R
9. FORTRAN IV program for mathematical simulation of marine sedlmenfohon with IBM 7040

or 7094 computers, by J.W. Harbaugh and W.J. Wahlstedt, 1967 . . o 51,00
10. Three-dimensional response surface program in FORTRAN 1| for the IBM 1620 compufer, by

R.J. Sampson and J.C. Davis, 1967 . . . o D TS
11.  FORTRAN IV program for vector trend analyses of directional dofo by w. T Fox 1967 v ei1,00
12. Computer applications in the earth sciencest Colloquium on trend ano|y5|s, edited by D.F.

Merriam and N.C. Cocke, 1967 . . i3 e ey 51200
13. - FORTRAN |V computer programs for Markov chain expenmen’rs in geoIogy, by W C

Krumbein, 1967 . . e 5100
14. FORTRAN IV programs to determme surface roughness in fopogrophy for the CDC 3400

computer, by R.D. Hobson, 1967 . . . S $ 1500
15.  FORTRAN Il program for progressive linear fit of surfcces on a quodroflc bose usmg an IBM

1620 computer, by A.J. Cole, C. Jordan, and D.F. Merriam, 1967 . . . . -« $1.00
16. FORTRAN IV program for the GE '625 to compute the power spec’rrum of geoIoglcoI surfoces,

by J.E. Esler and F.W. Preston, 1967 . . R SO TS
17, FORTRAN IV program for Q-mode cluster onolyS|s of nonquonhfohve datd usmg IBM

7090/7094 computers, by G.F. Bonhom-Corfer, WB7 - v s . $1.00
18. Computer applications in the earth sciences: Colloquium on hme-serles ononsns edlfed by
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