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Editor’s Remarks

The "Colloquium on Trend Analysis" is the second in a series of meetings on Computer Applications
in the Earth Sciences to be held at The University of Kansas. The Colloquium, sponsored by the Kansas
Geological Survey, Department of Chemical and Petroleum Engineering, Department of Geography, and
University Extension, affords participants an opportunity to convene and converse on a subject of mutual
interest at an advanced level in an interdisciplinary atmosphere. By definition a colloquium is "a

conversation",

Oral presentations are designed to encourage discussion - discussion, of course, is a basis for
exchange of ideas, which is one of the chief purposes of this Colloquium. Many oral presentations may
not coincide with written ones as recorded in these proceedings. To allow latest developments to be
transmitted, however, discussion leaders cannot be confined to findings of 6 weeks ago. Such is the way
of the computer !

Trend analysis was an obvious choice as one of the subjects. Geologists have long sought trends and
it was only natural that this quantitative technique was one of the first to be utilized by them. Many
papers dealing with applications of trend analysis in two, three, and four dimensions to geological, geo-
physical, and geochemical data have been published - many are cited in references of papers presented
here. Most papers are concerned with distribution of various constituents in igneous and sedimentary rocks
and geologic structure. Today approximately ninety papers can be found that treat this subject - this number
of references serves to emphasize the importance of trend analysis as a sophisticated quantitative method.

The sponsoring organizations take this opportunity to thank all participants. Hopefully everyone
will benefit from the interaction of active participation. The editors thank the authors for complete and
wholehearted cooperation. Many have helped with various "chores" involved with preparations of the
Colloquium, including Mrs. Alberta E. Bonnett, Mr, John C. Davis, Mr. Owen E. Spitz, and Mr. Richard
F. Treece.

Indeed, conferences of this type seemingly serve a definite purpose and fill a particular need. By
co=sponsoring the Colloquium, the Survey is fulfilling yet another obligation to industry and the profession,
that of disseminating information of current and immediate interest and providing the avenue of exhange of
information between people with mutual interests.

Comments and suggestions concerning the COMPUTER CONTRIBUTION series are welcome and should
be addressed to the Editor. An up-to-date list of publications and available decks can be obtained by
writing the Editor.



COMPUTER APPLICATIONS IN THE EARTH SCIENCES:

COLLOQUIUM ON TREND ANALYSIS

Edited by

DANIEL F. MERRIAM

and

NAN CARNAHAN COCKE

1967



CONTENTS

Selecting the "best" regression equation, by N.R, Draper and H. Smith . . . . .

Fourier trend=-surface analysis in the geometrical analysis of subsurface folds of the Michigan Basin,

by E.H.T. Whitten o v v & v v v v v v 0 e e e e e e e
The use of eigenvector methods in describing surfaces, by T.V. Loudon . . . . .
Stepwise regression in trend analysis, by A.T. Miesch and J.J, Connor . . . . .
Application of canonical correlation to trend analysis, by P.J. Lee and G.V. Middleton
A simulation of ghost stratigraphy, by G.S. Koch and R.F. Link . . . . . . .
Nonlinear models for trend anql);sis in geology, by W.R. James . . . . . . .
Correlation between surfaces by spectral methods, by J.N. Rayner . . . . . .
The general linear model in map preparation and analysis, by W.C. Krumbein . . .
Trend-surface analysis of noisy data, by D.B. McIntyre. . . . . . . . . .

Application of response=surface analysis to sedimentary petrology, by J.C. Davis . .

Page

10

12

16

19

22

26

31

38

45

57



SELECTING THE "BEST" REGRESSION EQUATIONl/

by

Norman R. Draper

University of Wisconsin

and

Harry Smith
University of North Carolina

INTRODUCTION

Suppose we wish to establish a linear regres-
sion equation for a particular response Y in terms of
"independent" or predictor variables X] ’ X2 s eee

X, - We assume this is the complete set of variables

from which the equation is to be chosen and includes
any functions such as squares and cross products or
transformations such as log, roots, etc., thought to
be desirable and necessary. Two opposite criteria of
selecting a resultant equation are usually involved.
They are as follow:

1. To make the equation useful for predic-
tive purposes we should want our model to include as
many X's as possible so that reliable fitted values can
be determined.

2, Because of the costs involved in obtain-
ing information on a large number of X's and sub-
sequently monitoring them, we should like the equa-
tion to include as few X's as possible.

The compromise between these extremes is what is
usually called "selecting the best regression equa-
tion." There is no unique statistical procedure for
doing this, and personal judgment will be a neces-
sary part of any of the statistical methods discussed.
We shall describe two main procedures which have
been proposed; both of these are in current use.
Other current procedures which, in our opinion, are
of less value in general, will be mentioned also. All
these procedures do not necessarily lead to the same
solution when applied to the same problem, although
for many problems they will achieve the same answer,
The two procedures to be discussed are:

1. Backward elimination
2, Stepwise regression.

l/This material consists of selected portions of
Chapter 6 of Applied Regression Analysis, by Norman
R. Draper and Harry Smith, John Wiley and Sons,
Inc., New York.

To illustrate the procedures we shall use the
data in a four-variable (k=4) problem given by A.
Hald (1952, p. 647). The data are given in the
first section of Table 4. The independent variables
here are X] r Xy 1 Xqg and X, , and the dependent
variable Y is Xg .
BACKWARD ELIMINATION PROCEDURE

The basic steps in the backward elimination
procedure are:

1. A regression equation containing all
variables is computed.

2.  The "partial F-test" value is calculated
for every variable treated as though it were the last
variable to enter the regression equation.

3.  The lowest partial F-test value, FL

is compared with a pre-selected significance level
FO;

(a) If FL < F0 remove the variable XL which gave
rise to FL , from consideration and recompute the
regression equation in the remaining variables; re-
enter stage 2,

(b) If FL > F0 adopt the regression equation as
calculated.

Using the Hald data, we can illustrate this procedure

as follows. (It is not intended that the section
numbers below should correspond to those above.)

1.  First, do the complete regression on all
independent variables. In the example this means
find the least-squares equation Y = F(X] , X2 , X3 ,
X4). The regression procedure forces an ordering of

the variables into regression. In Table 1, note that
the complete model was obtained by fitting X, first,

then X, , then X, and finally X, . In order to
elimind?fe variabl€s at this point, one must determine



the contribution of each of the variables X] , X2 ,
X3 and X4 to the regression sum of squares as if each

were in the last position, The partial F-test shown

in the last column of this printout indicates just this,
2,  Using the partial F-test, choose the

smallest value and compare it to some critical value

of F based on a predetermined a-risk. In this case,

the critical F value for, a= .10 is F(1,8,0.90) =3.46.

The smallest partial F is for variables, X3; i.e.,

.0182345, Since the calculated F is smaller than the
critical F, reject X3 .

. 3. Next, find the least-squares equation,
Y = f(X] , X2 , X4). This is shown in Table 2. The

overall F value for the equation is 166.83 which is
statistically significant. Examining this equation
for potential elimination, one sees that Xy should be

eliminated., The procedure for this elimination is
similar to the preceding elimination with one change;
namely, the critical F value is F(1,9,0,90) = 3.36.
4,  Find the least-squares equation

~

Y = f(X] , X2). This is shown in Table 3. This

indicates a statistically significant overall equation
with an F of 229.50. Both variables X] and X2 are

significant regardless of position, as indicated by the
significant partial F's. Thus, the backward elimina-
tion selection procedure is terminated and yields the
equation,

Y =52,5773400 + 1.4683057 X] + 0.6622507 X2 .

Opinion.=This is a very satisfactory procedure
in general especially for statisticians who like to see
all the variables in the equation once in order "not
to miss anything.” However, if the input data yields
an X'X matrix which is ill-conditioned, i.e., nearly
singular, then this procedure may yield nonsense due
to rounding errors, With new computing equipment
this is not usually a serious problem. We believe
this method to be slightly inferior to the stepwise
regression procedure below. On the whole, though,
it is an excellent procedure.

THE STEPWISE REGRESSION PROCEDURE

The backward elimination method begins with
the largest regression, using all variables, and sub-
sequently reduces the number of variables in the
equation until a decision is reached on the equation
to use. The stepwise procedure attempts to achieve
a similar conclusion working from the other direction,
i.e. to insert variables in turn until the regression
equation is satisfactory. The order of insertion is
determined by using the partial correlation coefficient
as a measure of the importance of variables not yet in

the equation. The basic procedure is as follows.
First we select the X most correlated with Y (sup-
pose it is X]) and find the first order, linear re-

regression equation Y = f(X]). We next find the
partial correlation coefficient of Xi (i#1) and Y
(after allowance for X]). Mathematically this is
equivalent to finding the correlation between (i)
the residuals from the regression Y = F(X]) and (ii)
the residuals from another regression Y. = f.(X])
(which we have not actually performed). The X.

with the highest partial correlation coefficient with
Y is now selected (suppose this is X2) and a second
regression equation Y = f(X] , X2) is fitted. The
partial F criteria for each variable X] and X, is

now evaluated and compared with a pre-selected per-
centage point of the appropriate F distribution.

This provides a judgment on the contribution made

by each variable as though it had been the most
recent variable entered. If either variable provides
a nonsignificant contribution it is removed from the
model. This process continues. After Xir Xgrees

X, are in the regression, the partial correlation
coefficients are the correlations between (i) the

residuals from the regression Y = f(X] ’ AX2 ;e .,Xk)
and (ii) the residuals from a regression X, = f.(X] ,
X2 , e "’Xk)(i >k). As each variable is entered

into the regression, the partial F values for every
variable are examined and compared with a pre-
selected percentage point of the appropriate F
distribution and any variable which provides a non-
significant contribution is removed from the model.
The process continues until no more variables will be
admitted to the equation and no more are rejected.
We shall use the Hald data once again, to illustrate
the workings of the forward selection procedure.

The analysis would proceed as follows (see Table 4):

1.  The stepwise procedure starts with the
simple correlation matrix and enters into regression
that X variable most highly correlated with the re-
sponse, Here X4 is entered as in Step No, 1 of

Table 4,

2.  Using the partial correlation coeffi-
cients, it now selects as the next variable to enter
regression that X variable whose partial correlation
with the response is highest. In this problem it is
X] , with a partial correlation coefficient of

0.91541.

3.  Given the regression equation Y =
F(X4 , X]) shown in Step No. 2 of Table 4, the

~



method now examines the contribution X4 would have
made if X] had been entered first and X4 entered

second. Because the value of the partial Fis 159,

295 which is statistically significant, X, is retained.
So is X, because it has a partial F value of 108,224,

The stepwise method now selects as the next variable
to enter, the one most highly partially correlated
with the response (given that variables X4 and X]

are already in regression). This is seen to be vari-
able Xy. (The partial correlation coefficient of

Xy with the response is .35833 shown at the bottom
of Step No. 2 of Table 4.) .

4. A regression equation of form Y =
f(X4 , X], X2) is now determined by least squares.

The variable X, enters with a significant partial F

value of 5,026, At this point partial F-tests for the
variables X] and X4 are made to determine if they

should remain in the regression equation. Asa
consequence, X4 is rejected since its partial F value

1.863 given in Step No. 3 of Table 4 is not signifi-
cant compared with the F(1, 9, 0.95) =5.12,

5.  The only remaining variable is Xs.

Because this variable is immediately rejected, the
stepwise regression procedure terminates and chooses

as its best regression equation Y = f(X] ’ XZ) as

REFERENCES

shown in Step No. 4 of Table 4

Y =52.58 + 1.47 X] +0.66 Xy

Opinion.-We believe this to be the best of
the varicgie selection procedures in current use and
recommend it. However, "stepwise regression" can
easily be abused by the "amateur" statistician. As
in all selection procedures, sensible judgment is
still required in the initial selection of variables
and in the critical examination (through residual
anslysis) of the model. It is easy to rely too heavily
on the automatic selection performed in the computer.

A discussion of the method is given by M. A,
Efroymson (1960). A complete account of the
computations needed for the Hald data are given
in Draper and Smith (1966).

OTHER PROCEDURES

Other selection procedures in current use
include

1. All possible regressions

2. The forward selection procedure

3. The stagewise procedure

4, Variations on the methods above.

For a more complete discussion see Applied
Regression Analysis, Chapter 6, by Draper and

Smith.

Draper, N.R., and Smith, H., 1966, Applied regression analysis: John Wiley and Sons, New York, 407 p.

Efroymson, M.A., 1960, Multiple regression analysis, in Mathematical methods for digital computers;

Ralston, A., and Wilf, H.S., eds.:

John Wiley and Sons, New York, p. 191-203.

Hald, A., 1952, Statistical theory with engineering applications: John Wiley and Sons, New York, 783 p.
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Table l.—X5 = f(X],XZ,XB,X4)

Control Information

No. of observations 13
Response variable is no. 5
Risk level for B conf, interval 5%

Variable entering 1

Seguential F-test 4, 3375998

Percent variation explained R-SQ  98.237570)

Standard deviation of residuals 2,4460044

Mezn of the response 95, 4230750

Std. dev, as % of response mean 2. 563%

Degrees of freedom 8

Determinant value . 0010577

ANOVA

Source d.f. Sums sgs. Mean sq. Overall F

Total 12 2715.7635000

Regression 4 2667, 9000000 666, 9750000 111.4795200

Residual 8 47.8634980 5.9829372

B Coefficients and Confidence Limits

Var Decoded B Limits Standard Partial

No. Mean Coefficient Upper/ Lower Error F-test

4 29, 9999990 -, 1440588 1,4909970 . 7090441 . 0412794
-1,7791144

3 11, 7692300 . 1019111 1. 8422494 . 7547001 . 0182345
~-1,6384272

2 48, 1538450 .5101700 2,1792063 . 7237799 . 4968402
-1, 1588665

1 7.4615383 1,5511043 3.2685233 .7447611 4, 3375858

-. 1663147

Constant Term in Prediction Bjuation 62,4051530

Squares of Partial Correlation Coefficients of Variables Not in Regression

Variables Square of Partials

5 1. 00000



Table 2.-X5 = f(X{, X5, X )

Control Information

No. of observations 13

Response variable is no. 5

Risk level for B conf, interval 5%

List of excluded variables 3
Variable entering 4
Sequential F-test 1, 8632545
Percent variation explained R-SQ  98.2335600
Standard deviation of residuals 2,3087418
Mean of the response 95, 4230750
Std. dev. as % of response mean 2.419%
Degrees of freedom 9
Determinant value . 0500394
ANOVA

Source d.f. Sums sgs. Mean sq. Overall F

Total 12 2715, 7635000
Regression 3 2667.7911000 889,2637000 166. 8321800
Residual 9 47,9725980 5.3302886

B Coefficients and Confidence Limits

Var Decoded B Limits Standard Partial
No. Mean Coefficient Upper/ Lower Error F-test
2 48, 1538450 .4161107 .8359611 . 1856103 5. 0258974
-, 0037398
1 7.4615383 1.4519380 1.7165861 . 1169974 154, 0080400
1. 1872899
4 29, 9999990 -.2365395 . 1554371 . 1732876 1,8632548
-, 6285160

Constant Term in Prediction Equation  71,6482410

Squares of Pariial Correlation Coefficients of Variables Not in Regression

Variables Square of Pariials
3 . 00227
5 1, 00000



Table 3.—X5 = f(X],X2)

Control Information

No. of observations 13

Response variable is no. 5

Risk level for B conf. interval 5%

List of excluded variables 3,4
Variable entering 1
Sequential F-test 146. 5229400
Percent variation explained R-SQ 97.8678500
Standard deviation of residuals 2. 4063327
Mean of the response 95. 4230750
Std. dev. as % of response mean 2.522%
Degrees of freedom 10
Determinant value . 9477514
ANOVA

Source d.f. Sums sgs. Mean sq.
Total 12 2715,7635000
Regression 2 2657.8593000 1328,9296000
Residual 10 57.9043680 5,7904368
B Coefficients and Confidence Limits
Var Decoded B Limits Standard
No. Mean Coefficient  Upper/ Lower Error
2 48. 1538450 . 6622507 .7644149 . 0458547
.5600865
1 7.4615383 1. 4683057 1.7385638 . 1213008
1. 1980476

Constant Term in Prediction Equation 52.5773400

Overall F

229.5042100

Partial
F-test

208. 5823200

146. 5229400

Squares.of Partial Correlation Coefficients of Variables Not in Regression

Variables Square of Partials
3 .16914
4 . 17152
5 1. 00000



Table 4.-Stepwise solution for the Hald data.

Original and/ or Transformed Data

X 1 Xz Xs X 4 X5
1 7.00000000 26, 00000000 6. 00000000 60, 00000000 78. 50000000
2 1. 00000000 29, 00000000 15.00000000 52, 00000000 74. 30000000
3 11.00000000 56, 00000000 8. 00000000 20, 00000000 104, 30000000
4 11, 00000000 31. 00000000 8. 00000000 47, 00000000 87, 60000000
5 7.00000000 52, 00000000 6. 00000000 33. 00000000 95, 90000000
6 11,00000000 55, 00000000 9,00000000 22, 09000000 109, 20000000
7 3. 00000000 71.00000000 17, 00000000 6. 00000000 102, 70000000
8 1, 00000000 31.00000000 22, 00000000 44, 00000000 72. 50000000
9 2.00000000 54, 00000000 18. 00000000 22,00000000 93. 10000000
10 21, 00000000 47. 00000000 4,00000000 26, 00000000 115, 90000000
11 1.00000000 40, 00000000 23.00000000 34, 00000000 83. 80000000
12 11.00000000 66. 00000000 9. 00000000 12, 00000000 113.30000000
13 10, 00000000 68. 00000000 8. 00000000 12, 00000000 109, 40000000
Means of Transformed Variables
1 7.46153830 48, 15384509 11.76923000 29, 99999900 95. 42307500
Std. Deviations of Transformed Variables
1 5. 88239440 15. 56087900 6.40512590 16, 73817800 15, 04372400
Correlation Matrix
1 . 99999991 . 22857948 -.82413372 -. 24544512 . 73071745
2 .22857948 1, 00000010 -.13924238 -. 97295516 . 81625268
3 -.82413372 -. 13924238 . 99999991 . 02953701 -. 53467065
4 -.24544512 -. 97295516 . 02953701 1. 00000010 -. 82130513
5 . 73071745 . 81625268 -, 53467065 -.82130513 . 99999999
Control Information
No. of observations 13
F level for entering a variable 3.28
F level for deleting a variable 3.28
Response variable is no. 5
Risk level for B couf, interval 5%
Step No. 1
Variable entering 4
Sequential F-test 22,7985280
Percent variation explained R-SQ 67.4542100
Standard error of Y 8.9639014
Mean of the respouse 95, 4230750
Std. error as a % of mean response 9.394%
Degrees of freedom 11
Determinant value 1,0000001
ANOVA
Source d.f. Sums sqs. Mean sq. Overall F
Total 12 2715. 7635000
Regression 1 1831.8968000 1831, 8968000 22,7985300
Residual 11 883. 8668200 80, 3515290
B Coefficients and Confidence Limits
Var Decoded B Limits Standard Partial
No. Mean Coefficient Upper/ Lower Error F-test
4 29, 9999990 -,7381620 -. 3978962 . 1545960 22.7985270
-1, 0784277
Constant Term in Prediction Equation 117, 5679300

Squares of Partial Correlation Coefficients of Variables Not in Regression

Variables

N N

«91541
. 01696
.80117
1. 00000

Square of Partials



Table 4.-continued.
Step No. 2

Variable entering

1

Sequential F-test 108. 2240500
Percent variation explained R-SQ 97.2471100
Standard error of Y 2,7342642
Mean.of the respouse 95, 4230750
Std. error as a % of mean response 2.865%
Degrees of freedom 10
Determinant value . 9397567
ANOVA
Source d.f, Sums sgs. Mean sq. Overall F
Total 12 2715. 7635000
Regression 2 2641, 0015000 1320, 5007000 176, 6272400
Residual 10 74,7620080 7.4762008
B Coefficients and Confidence Limits
Var Decoded B Limits Standard Partial
No. Mean Coefficient  Upper/ Lower Error F-test
4 29.9999990 -.6139538 -. 5055738 . 0486445 159, 2954900
-, 7223338
1 7.4615383 1, 4399582 1,7483502 . 1384165 108, 2240500
1, 1315662
Constant Term in Prediction Equation 103, 0973800

Squares of Partial Correlation Coefficients of Variables Not in Regr ession

Variables Square of Partials
2 . 35833
3 .32003
5 1. 00000
Step No. 3
Variable entering 2
Sequential F-test 5. 0258747
Percent variation explained R-SQ 98.2335500
Standard error of Y 2,3087426
Mean of the response 95, 4230750
Std. error as a % of mean response 2.419%
Degrees of freedom 9
Determinant value . 0500394
ANOVA
Source d.f. Sums sgs. Mean sq. Overall F
Total 12 2715, 7635000
Regression 3 2667.7908000 889.2636000 166. 8320500
Residual 9 47, 9726310 5.3302923
B Coefficients and Confidence Limits
Var Decoded B Limits Standard Partial
No. Mean Coefficient Upper/ Lower Error F-test
4 29, 9999990 -,2365401 . 1554367 . 1732877 1.8632619
-.6285170
1 7.4615383 1.4519379 1.7165861 . 1169975 154. 0079500
1. 1872897
2 48.1538450 .4161100 .8359608 . 1856104 5, 0258730
-, 0037408
Constant Term in Prediction Byguation  71.6482910

Squares of Pariial Correlation Coefficients of Variables Not in Regression

Variables

3
5

Square of Partials

. 00227
1. 00000



Table 4.-concluded.

Step No. 4
Variable leaving is 4
Sequential F-test 1.8632611
Percent variation explained R-SQ 97.8678500
Standard error of Y 2.4063325
Mean of the response 95, 4230750
Std. error as a % of mean response 2,522%
Degrees of freedom 10
Determinant value .9477514
ANOVA
Source d.f, Sums sqgs. Mean sq. Overall F
Total 12 2715,7635000
Regression 2 2657.8593000 1328,9296000 229. 5042500
Residual 10 57.9043570 5. 7904357

B Coefficients and Confidence Limits

Var Decoded B Limits Standard Partial
No. Mean Coefficient Upper/ Lower Error F-test
1 7.4615383 1. 4683057 1.7385638 . 1213008 146. 5229500
1. 1980476
2 48, 1538450 . 6622507 .7644149 . 0458547 208, 5821200
. 5600864

Constant Term in Prediction Equation 52,5773400

Squares of Partial Correlation Coefficients of Variables Not in Regression

Variables Square of Partials
3 .16914
4 . 17152
5 1. 00000

Residual Analysis

Obs.

No. Observed Y Predicted Y Residual Normal Deviate
1 78. 5000000 80, 0739960 -1.5739960 -, 6541058
2 74.3000000 73.2509140 1. 0490860 .4359688
3 104, 3000000 105. 8147300 =-1.5147300 -.6294766
4 87. 6000000 89.2584720 =1.6584720 -.6892115
5 95, 9000000 97.2925130 -1.3925130 -. 5786869
6 109, 2000000 105, 1524800 4, 0475200 1,6820285
7 102, 7000000 104, 0020500 -1,3020500 =-.5410931
8 72.5000000 74. 5754150 =2.0754150 -.8624806
9 93. 1000000 91,2754870 1,8245130 .7582132

10 115,9000000 114. 5375400 1. 3624600 .5661977

11 83. 8000000 80, 5356710 3.2643290 1,3565577

12 113.3000000 112, 4372400 . 8627600 . 3585373

13 109, 4000000 112,2934400 =2,8934400 «1.2024273



FOURIER TREND-SURFACE ANALYSIS IN THE GEOMETRICAL ANALYSIS OF SUBSURFACE FOLDS
OF THE MICHIGAN BASIN

by

E.H. Timothy Whitten

Northwestern University

ABSTRACT

The folded top of the subsurface Dundee Limestone has been simulated by double Fourier trend-surface
analysis on the basis of 504 well logs. Dips were calculated from tangent planes to this simulated surface
and were used to calculate scalar descriptors of the folds. The areal variability of the actual folds can be
analyzed by trend-surface analysis of the scalar fold descriptors.

INTRODUCTION

This paper briefly describes a method used
successfully to analyze the nature and spatial vari-
ability of fold geometry in the Dundee Limestone,
central Michigan, on the basis of well-log data.

FOLD DESCRIPTION

While measurement of fold axis orientation
and fold size are routine, fold shapes have common-
ly been described in qualitative terms only. How-
ever, Loudon (1964) and Whitten (1966a, 1966b)
demonstrated that the nature of fold shape can be
quantitatively described by scalar quantities. To
describe the geometry of a series of folds quantita-
tively it is necessary to measure (a) fold axis orien-
tation, (b) fold size, and (c) overall fold shape
(Whitten, 1966a, 1966b). Description of fold shape
by scalars can automatically specify the orientation
of the axial surface and the nature of the fold pro-
file and its variation along the fold axis. Such
description permits the complete nature and areal
variability of fold geometry to be mapped in a sys-
tematic manner, although an actual example has
not been analyzed previously.

To illustrate the mefKod, a large number of

datum points on the folded surface must be measured.

An intensely drilled subsurface area seemed more
promising for a preliminary analysis than an area of
natural surface outcrop. An area of apparently
simple folds (and no known faults) was selected in
the Basin oil and gas district of central Michigan
(Isabella, Clare, and Necosta Counties: Townships
13-17 North, Ranges 3-7 West). The upper surface
of the Middle Devonian Dundee Limestone was cut
by 504 drill holes at an approximate mean depth of
2,800 feet within the 900 square mile sample areaq;
the central 324 square mile area was analyzed
separately on the basis of 244 drill logs. Actual
dip of the stratum at each site could not be deter-
mined from the well logs.

DETERMINATION OF FOLD SURFACE AND ITS
ATTRIBUTES

Loudon (1964) suggested that the three-
dimensional orientation of lines joining all possible
pairs of observation points on a folded surface pro-
vides an adequate basis for describing the fold geo-
metry. His method has several serious disadvantages
that make its use impractical and inadvisable.

The present approach involves use of a trend
surface to simulate the folded stratum on the basis
of the well-log data. For this purpose the double
Fourier series model (James, 1966a) has been used
rather than the polynomial trend-surface model
(Whitten and others, 1965) because (a) intuitively,
it seemed likely that the fold structures are harmonic,
and (b) when adequate safeguards are taken, the
'‘boundary effects' at the periphery of the sampled
area appear less severe. Preliminary work with the

. computer program published by James (1966b) shows

10

that 90 to 95 percent of the total sum of squares is
accounted for when some 30 terms of the double
Fourier series are used for different portions of the
test data. Available tests suggest that the calculated
trend surfaces are close approximations fo the actual
folded bedding plane geometry.

The dip of the simulated bedding plane (Fourier
surface) can be calculated at as many points as nec-
essary to yield an adequate sample for analysis of the
varying fold geometry. A new computer program in
CDC-FORTRAN computes the three-dimensional
orientation of the normals to the simulated surface
at an operator specified grid of 'sample points'; the
computation involves locating the upward-directed
normal to the tangent plane (defined by the first
derivative of the double Fourier series) at each
sample point. The program uses the array of normals
to calculate the scalar descriptors necessary to
specify all features of the fold geometry (Whitten,
1966a, 1966b), and to prepare equal-area (Schmidt)
projections and cross sections through the structure.

By selection of appropriate subareas from the



total region, scalar descriptors for attributes of the While this is useful in itself, the availability of

fold geometry in each subarea can be calculated scalar descriptors will enable several other signifi-
and mapped. Trend-surface analysis of these de- cant studies to be undertaken. For example, quanti-
rived data (either by polynomial or Fourier trend- tative assessment of the differences in fold geometry
surface analysis) permits the regional changes of in successive members of the subsurface succession
fold geometry to be identified and separated from could be analyzed. The method appears to offer a
the local deviations. significant exploration tool because regional trends
in the changing fold geometry of an area could be
SIGNIFICANCE OF THE TECHNIQUE identified objectively.
A full analysis of the results obtained from
The method apparently provides the first the Dundee Limestone structures, Michigan, and a
quantitative method of describing the nature and listing of the computer program will form the sub-
spatial variability of subsurface fold geometry. ject of a subsequent paper.
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THE USE OF EIGENVECTOR METHODS IN DESCRIBING SURFACES

by

T. Victor Loudon
University of Reading (UK)

INTRODUCTION

Any statistical method is, of course, con-
cerned with a set of numerical data. Conventional
trend-surface methods are generally applied to a
set of values of a mappable variable which des-
cribes a surface; either a real surface located in
space, or a conceptual surface describing, for in-
stance, the sand/shale ratio of a particular forma-
tion. The methods described below, on the other
hand, are more applicable to sets of surfaces, where
the aim is not so much to study individual measure-
ments of a variable, and their relationship to the
surface of which they form a part, but rather to
study an entire surface and its relations to the set
of surfaces to which it belongs.

Geologists are already familiar with the
concept of a set of surfaces, that is with a collec-
tion of surfaces that have some property in common.
For example, there is the set of all surfaces that
show ripple marking, or the set of polished and
striated surfaces produced by erosion of rock faces
by ice. On a larger scale, there is the set of sur-
faces that are marked by a dendritic pattern, which
might reflect a system of river valleys or submarine
canyons, or the set showing the linear pattern of
offshore bars or the arcuate ridges of wind-blown
dunes. A surface may be assigned to a set on the
basis of a number of complex properties, as in de-
ciding, for example, whether a surface in a meta-
sediment belongs to the set of bedding planes or the
set of cleavage planes. The sets of surfaces that
seem to be most important from a geological point
of view are those that indicate the process or en-
vironment of formation of the surface.

The fact that sets of surfaces have an impor-
tant part, implicitly at least, in geological thought,
suggests that it may be rewarding to attempt to des-
cribe the properties of the sets in quantitative terms.
There are strong arguments for making the attempt
on economic grounds also. The value of being able
to examine the statistical distribution of surfaces
belonging to the set describing porosity-feet in
Devonian reefs of Alberta and of making compari-
sons with the set describing similar properties of
shoestring sands in the Cretaceous need not be
stressed. Perhaps the most urgent need for a quan-
titative approach, however, arises from the develop-
ment of methods of simulating geological processes
on the computer (Harbaugh, 1966). Frequently
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the outcome or result of the simulation procedure is
in the form of a description of a surface. The aim
of simulation is frequently to determine the statis-
tical properties of a number of results which differ
because of random variation in the process. The
computer is capable of generating large numbers of
surfaces, and methods are required for summarizing
the results.

The approach to the problem of quantitative
description of sets of surfaces that is described here
uses correlation methods rather than the regression
methods employed by various other workers, for
example, Merriam and Sneath (1966) and Sneath
(1966). It seems likely that future work will show
that the two approaches to the problem are to a
large extent equivalent. In the meantime, there
may be advantages in looking at the problem from
more than one point of view. The actual procedures
described below involve well known statistical
methods that have been described elsewhere in the
geological literature (Whitten, 1966; Scheidegger,
1965; Loudon, 1964), and are not therefore consider-
ed in detail here. Application of the techniques
described below is believed to break some new ground.
Methods are based on procedures for the analysis of
orientation data in structural geology, which were
developed at Northwestern University. Work on the
application of the techniques to sedimentology has
formed part of a project undertaken by Professor
P. Allen at Reading University.

PROPERTIES OF A SURFACE

The problem of describing a set of surfaces
is essentially one of finding for each surface proper-
ties that can be described statistically and that are,
as far as possible, independent of one another.
Statistical measures must be additive, so that mea-
sures for the entire set or for subsets can be obtained,
and should preferably be easily interpretable in terms
of geometrical or geological properties. Orienta-
tion, size, and shape of features on a surface are
examples of properties that could be measured. The
pattern on a surface is frequently repetitive, as in
the ripple-marked surface or the dendritic pattern
of river valleys mentioned above. |t seems desirable
that measures describing the shape of features on a
ripple-marked bed should not be affected by the
relative size of different ripples, nor by their num-
ber or completeness. If a set of ripple-marked beds



is described, it should be possible to combine and
compare measures derived from different beds. The
problem of describing orientations, shapes, sizes
and spatial relationships is a geometrical one, and
matrix algebra offers a means of representing geo-
metrical operations within the computer.

STATISTICAL DESCRIPTION

In order to separate the concept of shape
from that of size and position in space, it is con-
venient to consider measurements of a surface in
terms of orientations rather than locations. In
some fields, structural geology for example, the
original measurements of a surface are commonly
recorded in the form of orientations, such as strike
and dip. Otherwise, where the original measure-
ments specify the value of a variable at a number
of points, it is always possible to derive orienta-
tion measurements from them. Any two points on
a surface define a vector, namely the line which
joins the points. The orientation of the vector is
measured by three direction ratios, which are
simply the differences between the x, the y, and
the z coordinates of the two points. The length of
the vector, by the theorem of Pythagoras, is equal
to the root of the sum of squares of the three direc-
tion ratios. Direction cosines are the direction
ratios of a vector of unit length, and are obtained
by dividing each of the direction ratios by the
length of the vector. A vector has sense as well
as direction, that is, it points one way rather than
the other. An arbitrary decision may be necessary
about the sense of vectors used to describe a sur-
face, and one may consider that each pair of points
defines two vectors, both joining the points, but
in opposite senses, One vector is obtained from
the other by reversing the sign of each direction
ratio. Alternatively, one might choose to consi-
der only those vectors that are directed upwards.

Size

The apparent form of a surface depends on
the scale on which it is observed. A bed of sand-
stone which appears flat and smooth through a pair
of binoculars may look very rough under the micro-
scope. Different geological controls operate on
different scales, and it may be desirable to try to
separate their effects. A whole range of partly
independent factors on different scales may con-
trol the deposition of a layer of sedimentary rock,
for example. On a small scale, the frequency dis-
tribution of available grain sizes may determine
grain to grain relationships. On a larger scale,
properties of the depositing current may cause sed-
imentary structures to develop. The general en-
vironment might control the development and posi-
tion of tidal channels and offshore bars, while
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variation in the rate of subsidence might control the
large-scale distribution of sediment. In order to
separate such features for descriptive purposes, one
might consider first only vectors less than a centi-
meter in length, secondly, vectors between a centi-
meter and a meter, thirdly, those between a meter
and a kilometer, and fourthly, those over one kilo-
meter.

Orientation

In comparing different surfaces, their orien-
tation in space is frequently irrelevant to the com-
parison. In comparing the topography of river valleys,
for example, it is desirable to align them in the same
direction before the comparison is made. The align-
ment should depend on internal properties of the sur-
faces, not on accidental external features such as
their position relative to the North Pole. Suitable
internal reference axes are provided by the principal
axes of the distribution of vectors. There are three
principal axes, three directions at right angles that
have the following properties: the correlation be-
tween direction cosines measured about the principal
axes is zero; the second moment of the vectors mea-
sured about the first principal axis is larger than the
second moment measured about any other direction
in space, while the second moment measured about
the third principal axis is a minimum. In geological
terms, the principal axes are axes of symmetry, or
are as symmetrically placed as is possible in the par-
ticular surface. One axis is normal to the plane of
the surface, the other two lie on the surface, one in
the direction in which the slopes are steepest, the
other at right angles to it. In many cases it is likely
that a geologist who is shown a map of a surface and
asked to align it by eye in directions that reflect
the internal properties of the surface, would choose
an alignment very close to the principal axes.

Principal axes are computed by matrix alge-
bra (Whitten, 1966) using exactly the same methods
as are used in factor analysis. A covariance matrix
is calculated from the direction cosines of the vec-
tors. The three eigenvectors of the covariance ma-
trix are the orientation of the principal axes, mea-
sured as direction cosines. |f, as described above,
the vectors were divided into groups according to
their length, different groups might prove to have
different principal axes. This might occur, for
example, where small ripple marks were aligned
obliquely on the sides of larger sand bars. When
the principal axes have been found, original mea-
surements of location, in the form of coordinates,
or of orientation, in the form of direction cosines,
can be transformed to refer to the principal axes
as coordinate axes by multiplying the data matrix,
of which each measurement forms one row, by the
eigenvector matrix, which has the direction cosines
of the three principal axes as its columns.



Shape

It is usual to compute eigenvalues and
eigenvectors at the same time. Eigenvalues are
variances of the transformed distribution of direc-
tion cosines. They therefore measure the varia-
tion in amount of slope in direction parallel to
the principal axes. An almost flat surface would
have a low variance and an irregular surface a
high variance. The variance of the transformed
direction cosines is thus a measure of one aspect
of the form of a surface. Skewness and kurtosis
(Whitten, 1966) can also be computed for the
distribution of direction cosines about each prin-
cipal axis in turn, Skewness measures the degree
of asymmetry of slopes on the surface, and indi-
cates whether the steeper slopes face to the right
or left along each axis. Kurtosis measures the
relative abundance of steep and gentle slopes. A
surface in which most of the slopes have approxi-
mately the same gradient has a low kurtosis. Sur-
faces which have a wide range of gradients in a
particular direction have a high value for the kur-
tosis about that axis. Because of the way principal
axes are chosen, covariance terms are zero. High-
er order correlations, however, and correlations
between slope and distance along an axis may be
significant in surfaces of complicated form.

Measures of shape derived in this way are
independent of size, and if relations between shape
and size are of interest, orientation vectors can
be divided into groups of different lengths and each
group analyzed separately. However, if more
exact information is required on the size distribu-
tion of features on a surface, some form of series
analysis, such as serial correlation or Fourier analy-
sis, can be performed on direction cosines about
each principal axis separately.

Change of Scale

It is possible to alter the scale in which
length is measured in such a way that the unit of
length in a particular direction depends on the
variability of slope in that direction. The compu-
tational method is to multiply the data matrix by
a diagonal matrix in which the eigenvalues are the
diagonal elements. The distortion of scale is simi-
lar to that used by geologists when the vertical
scale of a cross section is exaggerated to show
vertical variation more clearly. A map in which
measurements were plotted in this distorted scale
could be used as a guide to the collection of
additional information about the surface. Intui-
tively, the sampling pattern should be evenly
distributed in this space.

Estimation

The descriptive statistics described above
can, of course, be combined for a number of sur-
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faces belonging to the same set, weighting the
statistics for each surface, if necessary, according
to the accuracy with which they are known. Ma-
terial from different sources can also be brought
together in one composite description. For example,
information obtained at outcrop about small-scale
variation in the thickness of a formation could be
stored in the same manner as information about the
large-scale distribution pattern of the formation,
derived from subsurface information. Data from
observation, computer simulation, and knowledge
about similar situations elsewhere could be com-
bined to form a composite, quantitative description
of the pattern of the thickness distribution of the
formation. If therefore, an estimate was required
of the thickness at a proposed well site, informa-
tion from various sources could be used in the pre-
diction.

In the vicinity of the proposed well site,
there may be a number of boreholes at which the
thickness of the formation is known. Information
as described above is available about the expected
frequency distribution of slopes on the surface that
maps the formation thickness. Vectors can be drawn
joining each of the known values to the point at
which an estimate is required. From the known
value at one end of a vector, and from the frequency
distribution of slopes, the probability distribution
of values at the other end of the vector can be pre-
dicted. Each borehole in turn can be used to com-
pute a probability distribution of values at the
proposed well site. Short vectors, from nearby
points, are likely to give precise estimates. Long
vectors, from distant points may, even though the
same distribution of slopes is used, merely indicate
that a wide range of values is equally likely, as
far as that vector is concerned. A composite prob-
ability distribution, taking a number of estimates
into account, can be obtained by multiplying to-
gether the various estimates of probability for each
value. If vectors of different length had been
found to behave in different ways, each group could
be treated separately, and results combined by
multiplication. The calculations are all, of course,
performed by computer, and the final result is an
estimate of the probability distribution of thicknesses
at the site of the proposed well.

Assumptions in the Model

To a large extent, methods described above
are purely descriptive, and no constraining assump-
tions are involved. The interpretation of the re-
sults, however, as in the estimation procedures
described above, implies a mathematical model
which may be an oversimplification of the geologi-
cal situation. The estimation methods neglect the
effect of high-order correlations in the surface, thus
implying that the surface has a simpler mathematical
form than in fact may be the case. The assumption



is also made that estimates based on different summarize the properties of a set of surfaces are

measurements can be considered to be independent, required. One approach is to consider a surface
although in general, this may not be true. As in terms of the orientations of vectors tangential
the method is still in an experimental stage, great to it. Eigenvector methods can be used to rotate
caution is needed in making any interpretation of the distribution of vectors to principal axes which
the results. provide an internal frame of reference. Conven-
tional descriptive statistics, such as the variance,
SUMMARY AND CONCLUSIONS skewness and kurtosis can be used to describe the
distribution of slopes relative to the principal axes
The computer's ability to store large quan- and thus measure properties of the shape of the sur-
tities of data from many sources and the develop- face. Descriptive statistics from several surfaces
ment of computer techniques that produce numbers can be combined to give a composite picture of the
of simulated surfaces suggest that methods that can set.
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STEPWISE REGRESSION IN TREND ANALYSISl/

by
A.T. Miesch

and

J.J. Connor
U.S. Geological Survey

Trend analysis is an empirical method used in
the examination of numerical map data. It consists
of fitting mathematical surfaces (models) to the data
by means of least-squares techniques in an effort to
either (1) obtain a regression equation that can be
used to interpolate or predict values between the
map control points, or (2) separate components of
variation in the map. Selection of a mathematical
surface is, in large part, a matter of personal judg-
ment; most work so far has employed either polyno-
mial or Fourier models. According to KrumE:

p. 28), the selection of the trend model depends, to
a large extent, on the objectives of the map analysis.

The selection of a trend model for use in
prediction or interpolation presents fewer difficulties
than selection of a model for use in separating com-
ponents of variation. In prediction problems a model
is needed which will yield very low or zero auto-
correlation in the trend residuals (i.e., the devia-
tions of the data from the model should be unpredic-
table from one map control point to another). The
model with the lowest autocorrelation in the trend
residuals might, in fact, be accepted as the best
predicting device, as long as the model behaves well
between data points, so that no more maxima and
minima are present in the model than are called for
by the data being analyzed.

Use of trend analysis in separating components
of map variance is more difficult, and considerably
more subjectivity is involved in the selection of a
trend model. The variance in any set of map data
may be thought of as having resulted from two groups
of geologic processes (regional and local) plus some
contribution (noise) due to sampling and measurement
error, Although such partitioning of the variance
seems reasonable, the separation of the conceptual
components may be extremely difficult. Neverthe-
less, this is the objective of a very large amount of
numerical map interpretation in geology, whether
trend analysis methods are used or not.

l/Publiccﬁion authorized by the Director, U.S.
Geological Survey.

in (1966,
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The approach offered by trend analysis is to
fit a mathematical surface to the data by the method
of least squares. This surface is then considered to
be an estimate of the regional component of variance
(or trend). The deviations of the observed data from
the trend describe the local component plus the
noise. Where the deviations cluster on the map into
areas of positive or negative values (i.e., where
they are autocorrelated) they are thought to reflect
mostly local variation, or variation on a scale less
than the map area but broader than the average
distance between map control points. Where the
deviations are not so clustered (autocorrelated) they
are interpreted to reflect a very local variation (on
a scale less than the average distance between
control points) and noise due to sampling and meas-
urement errors,

The principal shortcomings of trend analysis
are that the correct mathematical form of the actual
regional gradient is unknown and that even if it
were known its fit to the observed data by least
squares would be affected, and therefore, biased by
the presence of local components of variation. Be-
cause of these shortcomings the methods of trend
analysis are essentially empirical. Yet, trend
analysis offers a powerful means of examining the
data more thoroughly than can be done by visual
inspection, Numerous examples of its successful
application to a wide diversity of map interpretation
problems are present in recent geologic literature
(Merriam and Harbaugh, 1964, p. 2).

In a large number of map interpretation
problems to which trend analysis has been applied,
the trend model accounts for only a small portion of
the total variance in the data. In such cases, where
the trend is obviously weak, the final geologic con-
clusions based on the configuration of either the
trend or the residual maps are not highly dependent
on the mathematical form of the equation used to
describe the trend. Two surfaces fitted to a set of
map data that are different in mathematical form but
about equal in terms of their fit to the data (i.e.,
sums of squares accounted for) will yield deviations
of roughly the same configuration. In other cases,
however, where most of the map variation is con-
tained in the trend, residual maps are more highly



dependent on the mathematical form of the trend
equation. Without a good theoretical basis for
deciding which trend equation may be more nearly
correct for a given problem it becomes necessary to
give equal consideration to a number of equations.
These may be of the polynomial or Fourier type, but
other equations describing smooth surfaces with gen-
tle flexure should not be excluded. Trend analysis,
used in this manner, then becomes an exploratory
tool for the examination of map data; various trend
models are used and, although mathematical tests of
fit may be applied, the value of a model is deter-
mined entirely from the geologic information or
suggestions it may produce.

Any trend model which can be arranged into
the general linear model (Krumbein and Graybill,
1965, p. 283) can be fitted to a set of observed map
data by least-squares methods. The general linear
model is
Ti—b0+b]w” +b2Wi2+ "'+bnwin’ m
where T, is the trend value at the ith map control
point and the w, 's are functions of the map coordi-
nates, X and Y, at the ith point, and constitute the
terms of the general model. Terms in X and Y which
we have used are listed in Table 1.

Table 1.-Terms used in X and Y.

Polynomial terms

Linear X, Y

Quadratic X2, XY, Y?

Cubic %3 x2y, xy?, Y3

Quartic X4, X3y, x2v2, xv3, v*
Quintic X2, X%, X3v2, x2v3, xv*, v
Other terms

Root /X, /XY, /Y

Exponential e~, e’ ezx, eX+y, e2y

Logarithmic log X, log Y, (log X)2, log X*log Y,
2
(log Y)
Reciprocal 1/X, 1/, 1/X%, 1/XY, 1/¥?

The terms to be entered into a particular trend
equation can be selected by means of stepwise re-
gression, We have used a technique essentially the
same as that described by Efroymson (1960), modified
so that terms are selected or rejected at a probability
level specified by the user rather than using constant
critical F values, The modified technique was pro-
grammed for a Burroughs 5500 computer by D.S.
Handwerker of the U.S. Geological Survey.

In the stepwise regression procedure the
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standardized partial regression coefficients are esti-
mated as the independent variables to be used in the
regression equation are selected, but the method is
equivalent to deriving the estimates by

B=R"'c, )

where B is an array of n standardized regression coef-

ficients used to derive the b's of Equation 1, R_] is
the inverse of a matrix of correlation coefficients
among the selected w's (of Equation 1), and C is an
array of n correlation coefficients between the
selected w's of Equation 1 and observed values at
the corresponding map control points. If R, the
matrix of correlation coefficients among the w's, is

singular, R—] in Equation 2 does not exist. Also, if
the determinant of R is small the system of equations,
in (2), is said to be ill conditioned, and the solutions
for B may be highly sensitive to roundoff errors and

to small changes which can occur in R with the
addition or deletion of even a single map control
point. Difficulties attendant with poorly conditioned
matrices in trend analysis were considered by
Krumbein (1959, p. 828) and Mandelbaum (1963,

p. 507). In order to measure matrix condition, we
have used the determinant of the normalized matrix,
as suggested, for example, by Booth (1957, p. 85)
and by Macon (1963, p. 66), and refer to this as

the "condition value.” The condition value may
range from minus one to plus one; the higher the
absolute quantity of the condition value, the better
condition is the system of equations.

The condition value of an R matrix depends
on (1) the distribution of the X and Y control points
on the map, and (2) the particular terms in X and Y
(Table 1) used in the trend equation.

For example, if the map control points were
along some straight line nonparallel to the map
coordinate system, and only the linear polynomial
terms were selected for the regression equation, the
R matrix would consist of

r r 1.0 1.0
XX Xey
R = =
r r 1.0 1.0
yeX Yy
1.0 -1.0
or (3)
-1.0 1.0

and would have a condition value of zero, indicat-
ing singularity. If one or more control points occur-
red as outliers from those occurring in a straight line,
the ryandr elements in (3) would be less than

1.0 in absolute value and the condition value would
not equal zero. As sufficient control points are
added to form a rectangular grid the R matrix will



converge fo

1.0

(4)

0.0 1.0

with a condition value of 1.0.

If the map control points are on a rectangular
grid and terms in X and Y that have nonzero linear
correlations are used in the trend equation, the
condition value of the R matrix is, again, less than
1.0 in absolute value. The specific value, in this
case, will depend on what terms are used and the
degree to which they are linearly correlated in a
particular map problem. In general, the condition
value decreases as the number of terms in Xand Y is
increased. It seems desirable, therefore, to exclude
all terms from the trend equation which do not
account for a statistically significant proportion of
the variance in the dependent variable. This can be
accomplished through stepwise regression procedures.,

The terms selected by the stepwise regression
procedure depend in part on the scale andthe origin
of the X-Y coordinate system. In one problem we
have investigated, for example, the only polynomial
terms, linear through quartic, found to be statistically

significant were X and X2; these two terms alone
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APPLICATION OF CANONICAL CORRELATION TO TREND ANALYSIS

by

P.J. Lee

and

G.V. Middleton
McMaster University

INTRODUCTION

Recent years have seen the growth of an
intense interest in the application of numerical tech-
niques to the processing of areally distributed data.
The most thoroughly studied technique has been trend
analysis, which is Easicqlly the fitting of a poly-
nomial surface to the observed data, by the method
of least squares. Trend analysis appears to be open
to a number of practical criticisms:

(i)  In common with other univariate or
bivariate statistical techniques, applications of
trend analysis to geological data rarely reveal in-
formation that is not apparent from a close examina-
tion of the original data. It has been claimed that
the separation of trends from residuals yields infor-
mation not obtainable from hand- (or machine-)
contoured maps, but the few examples presented in
the literature are not convincing. Thus far, it
appears that conventional trend analysis is useful
mainly as a routine data-processing technique,
rather than as a research tool.

(ii)  Almost all geological data is inher-
ently multivariate: it is rare that the geologist
measures only one property at each observation
point. Trend analysis, however, is essentially a
univariate technique, though it makes use of the
apparatus of multivariate statistics to process loca-
tional variables.

One approach to the problem of dealing
with spatially distributed multivariate data is to
process the data first, using a technique such as
component or factor analysis, and then use trend
analysis to determine trends and residuals for the
components or factors. Another technique will be
discussed in this paper, namely the application of
canonical correlation to trend analysis.

DESCRIPTION OF TECHNIQUE

Canonical correlation is a technique intro-
duced by Hotelling (1936) and hitherto applied
mainly in the social sciences, especially psychology
(Horst, 1961a, 1961b) and economics. It is basi-
cally a technique which seeks to relate two sets of
variates to each other, by finding two linear
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combinations of the variates which maximize the cor-
relation between the two sets. As such, it may be
cansidered to be an extension of multiple correlation
or regression, i.e. instead of seeking the b. which

maximizes the multiple correlation between y and
the Xj o or setting up the regression equation

y = Zbixi+e i=1,2,..0,n
where ¢ is a random variable, we set up the
equation

i=1,2,...,m;

n)

and maximize the correlation between U and V.

The technique clearly has potential applica-
tions in geology, quite apart from trend analysis.

For example, the two sets of variates might be chem-
ical and modal rock analysis, or trace and major
element analyses of rocks and minerals, or biological
and environmental characteristics. The technique
may also be used in relation with the discriminant
function (Bartlett, 1947),

In order to apply the technique to trend
analysis, the spatial coordinates and their various
powers and cross-products constitute one set of vari-
ates (say, the x.), and the geological variates con-

U= Zaiyi , V= Zbix.

<

Vv -

i=1,2,...,n (m=n,orm (M

stitute the second set. The geological variates are
standardized (to zero mean and unit variance) and
the covariance matrix is generated for all combina-
tions of the geological and spatial variates, up to
the highest order of polynomial surface which is to be

investigated. Let this covariance matrix be R

~

Ri

) Ro1 Ry

where R” is the standardized covariance matrix of

~

R12

R

the geological variates, Roy is the covariance

matrix of spatial variates (including linear, quadratic,



«+e+, up to 6th order polynomial terms) Ryp = Ré] .
We require  a. and bi to be such that U and V have

unit variance and a maximum correlation, i. e.,
maximum E [UV]. These requirements lead to the
matrix equation

-\ R” R

]
o

A (2)
R21
where X is Lagrange multiplier. In order that there

be a nontrivial solution, the matrix on the left of
(2) must be singular. Thus, we have

e S 2 5
(Ryp Ryy Ryp Ryp =27 1) =0 (3)

A Jacobi-like method (Eberlein, 1962) was

used to solve for the X2's (the eigenvalues). The A's
are called the canonical roots by Hotelling (1936).
The largest root is the one of greatest interest.

Values of the b. in equation (1) are the eigenvectors
associated with Ay, whereas ai may be obtained by

R
0 =Ry Ryg by /A (4, #0) (4)
Details of the standard technique are given

by Anderson (1958, p. 288-306). In order to obtain

a scale dependent trend-surface equation and equal

variance for the geological variates, it is necessary

to modify the standard technique by the use of the
covariance matrix, after prior standardization of the
geological variates. It should be noted that the
technique selects the surface that has maximum cor-
relation with the weighted geological variates. This
surface shows the correct trends, but its slopes and
intercept on the vertical axis need to be adjusted
before it can be considered as a surface of "best fit"
or before meaningful residuals can be calculated.

Interpretation

To understand the possibilities of the tech-
nique, consider one possible application. Suppose
a geologist wishes to predict areas favorable to oil
occurrence on the basis of a number of mapped vari-
ables. For simplicity, suppose that only two variates
are of interest, formation thickness and percent
porosity. Basically the problem is to determine in
which area the combination of these two variates
reaches a maximum. However, it is clear that pre-
dictions can be made only on the basis of the trends,
not of the random residuals. Thus in assessing the
trends displayed by each variate considered sepa-
rately, greater weight should be attached to the
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variate which shows the most clearly defined trend,
the variate which can be most reliably predicted.

The application of canonical correlation to
this example will result in the determination of that
trend which shows (for a given order of polynomial
surface) the greatest correlation with a linear com-
bination of the two variates. If the two variates are
positively correlated, the weightings will be positive
and inversely proportional to the variances of the
error terms in their individual trend surfaces. Thus,
if there is a strong correlation between spatial posi-
tion and one of the variates (formation thickness) and
only a weak correlation between position and the
other variate (porosity), the trend given by canonical
correlation will be close to that of the formation
thickness alone, and formation thickness will be
strongly weighted in the equation for U. This appears
to be geologically reasonable because although
porosity may be very important for oil accumulation,
the assumption has been made in this example that its
regional variation is very difficult to predict. Under
such circumstances the geologist would naturally
tend to outline favorable areas mainly on the basis of
variates such as formation thickness, which might be
less important as controls of oil accumulation, but
had the advantage that they could be reliably pre-
dicted.

An illustration of some of the principles of
interpretation given above can be given by making
use of hypothetical examples. Data were constructed
for these examples by using 150 points spaced over a
rectangular area, the points being located by a
stratified random sampling method. Values for the
hypothetical variates at the sampling points were
computed from equations incorporating an indepen-
dent, random, normally distributed, "error" term,

Example 1.-The constructed variates were

yq =0.7071 x + 0.7071 x, + €

1
Yo = 0.7071 Xy - 0.7071 Xyt €

1

2
where X is the E-W direction, Xy is the N-S
direction, and € and €, are independent random

variables with N(0, 1) distribution. The canonical
frend was

U=0.67y,+0.74y,

V=1.0 Xy
The canonical correlation was 0.976.

In this case the strike of the two trends was
NW-=SE and NE-SW, with both trends increasing to-
wards the east, and with the error terms equal. The
canonical trend weights each of the two variates
equally, and establishes an "average" trend which
strikes N-S and increases towards the east,



Example 2.-The constructed variates were
Y1 = 0.7071 Xy + 0.7071 Xy + €4

=-1.0x, +¢

Y2 17 %2

€ and €, were N(0, 1). The canonical trend was
U =-0.53 yq+ 0.85 Yo

V =-0.94 X = 0.34 X

The canonical correlation was 0,985

In this case the variates were negatively cor-
related, so that the weightings in the canonical
trend are of different signs. Because the variance in
X was larger than that in Xy (the area studied was

rectangular, with the larger dimension in the E-W
direction), the variance of Yo Was larger than that

of yq After standardization, therefore, the con-
tribution of the variance of the random variable €y
to the variance of Yo was proportionally less than
the contribution of e foyg . Thus the weighting of
Y9 is greater than the weighting of g in the equa-

tion for U. If this is taken into account, however,
it can be seen that the two variates have approxi-
mately equal, though opposite weightings, and that
the canonical trend (NNW-SSE) is intermediate be-
tween the trends of the two original variates (N-S

and NW-SE).

Example 3.-The constructed variates were
the same as in example 2 except that €, was

N(0, 4). The canonical trend was
U=0.99y, - 0.093y,

V=0.74 x]+0.68 Xy
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The canonical correlation was 0,967,
It is clear that yq is so strongly weighted that

Y9 has only a very small effect on the trend. The

opposite effect was obtained in another experiment

in which €, was N(0, 4) and €, was N(0, 1).

If one of the constructed variates has no
random variable term, it will receive a unit weight
and the other variates will be given zero weight.
The canonical correlation is equal to one. If more
than one of the constructed variates has no random
term, the computer program selects one of the vari-
ates, more or less at random, and assigns unit weight
to that variate and zero weight to the others.

The following is a summary of the principles
of interpretation which emerge from these experi-
ments:

(1)  Positively correlated variates have
weightings of similar sign in the equation for U.
Large weightings are assigned to those variates which
show least deviation from the specified order of
polynomial surface.

(2) Negatively correlated variates
have weightings of opposite sign.

(3) The canonical correlation cannot
be less than the largest multiple correlation between
a single variable and the specified order of poly-
nomial surface, and may be much larger. U is the
most predictable linear combination of the variates
and the equation for V specifies its trend surface
(subject to intercept and slope corrections).

CONCLUSIONS

This paper should be considered to be a report
on work in progress. Further studies are necessary,
both on constructed and real geological examples, in
order fo gain experience of the potentialities and
limitations of the method. It appears, however, that
canonical correlation may be used to extend the ap-
plication of trend analysis to multivariate data, and
that the trends which result may be expected to have
both geological meaning and practical application.
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A SIMULATION OF GHOST STRATIGRAPHY

by

George S. Koch
U.S. Bureau of Mines

and

Richard F. Link

Princeton University

ABSTRACT

A quadratic equation is fitted to illustrative data simulating ghost stratigraphy. The patterns found
among the residual variations indicate the nature of the rock before metamorphism. Thus, the complications
of a specific model are shown, and an instructive use of simulation is illustrated.

A familiar geological problem in deciphering
the history of metamorphic rocks is to identify the
nature of the rock before metamorphism. The same
problem exists for rocks changed by processes not
always considered to be metamorphic, such as dia-
genesis, weathering, and hydrothermal alteration.
In studying such rocks, it is sometimes possible to
identify statistically numerical information that has
not been oblitereated by the metamorphism, just as a
mineral pseudomorph can be recognized even though
the mineralogy has been changed. Thus, Whitten
(1959, 1960) has recognized "ghost stratigraphy, "
stating that, in the Donegal area, Ireland "the de-
viations (residuals) have geological significance and
may be closely correlated with the metasediments
extant prior to the emplacement of the granitoid
rocks., "

We shall look for indications of premeta-
morphic phenomena by studying residual variations to
a trend surface fitted to simulated illustrative data.
When a quadratic or other mathematical equation is
fitted to data, the resulting surface seldom, if ever,
corresponds exactly to the actual observations at the
sample points. This lack of agreement results from
variation within sample points, if there is more than
one observation at each sample point, and from the
fact that the fit to the summary-sample points is not
perfect. Rather, there is a residual variation be-
tween the surface and the observations, whether
original or summarized, measured by the vertical
distance at each point between the elevation of the
point and the elevation of the fitted surface, both
with reference to the datum plane. This residual
variation, named simply the residual, is positive if
the actual value is above the fitted surface and is
negative if the actual value is below.

Residuals are studied for several reasons.
The principal one is that if a generalized trend, say
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a quadratic trend, is removed, the basic, underlying
behavior of the dependent variable may be recog-
nized. Geologists are already accustomed to gen-
eralized linear trends. In structural petrology, data
may be plotted on a stereographic net and then
rotated to make some element, such as a hypo-
thetical "b" axis or fold axis horizontal, regional
dip may be removed for a problem in petroleum
geology, or, details of vein structure may be plotted.
In each of these examples, linear trend is removed.
The same method can be applied mathematically,
with the advantage that quadratic or higher order
trend can also be removed.

In our simulated illustration we will assume
a square surface area, as outlined in Figure 1. The
area, of arbitrary size, is subdivided into four equal
parts, which may be imagined to represent out=-
cropping sedimentary beds striking due north. The
mean value of an imaginary constituent is different
in the four beds, as shown in the figure (20 in bed
1, for example). The area is sampled at 256 points
on a 16 by 16 grid. However, the observations in
each bed are not equal to the mean, because two
additional elements are introduced. First, to sim-
ulate natural fluctuation, a random number from a
normal distribution with a mean of 0 and a standard
deviation of 2 is added to each of the original mean
values. Second, to simulate a regional metamorphic
front or other phenomenon, a northeast linear trend
has been added. This trend is numerically equal to
0 at the southwest corner of the map area and
increases linearly to 10 on the northwest-southeast
diagonal and to 20 at the northeast corner. The
resulting observations are plotted in Figure 1.

If we now pretend that the construction of
the model is unknown and that only the observations
at the sample points are available, we can test
whether the 256 observations provide evidence of



northward-trending ghost stratigraphy in the simulated
metamorphic area. When a quadratic equation is
fitted to the data, the surface of Figure 2 and the
analysis of variance of Table 1 are obtained. As the
element of linear northeast gradient is strong, most of
the regression is explained by the linear terms, and
strike of 141 degrees (N 39 W) is estimated. The
plotted surface shows the general increase in gradient
to the northeast, complicated by a quadratic trend
introduced because of the initially different means in
the four beds.

The next step is to determine the pattern of
residuals from the quadratic trend. When the resid-
vals are calculated and plotted, the pattern shownin
Figure 3 and Table 2 is obtained. For simplicity on
this figure, the residuals are plotted as plus or minus
signs, with blanks indicating those from plus 1 to
minus 1. The residuals indeed define a pattern, for
example, in bed 1 there are 37 positive residuals and
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only 20 negative ones. To carry the analysis further,
we could have compared the residuals among beds

by one of several F- or t-tests depending on the
details of our hypotheses, and then could have con-
firmed the result, already evident from the counting
of positive and negative residuals.

In summary, this simulaton of ghost strati-
graphy shows the sort of assumptions that can be
made, and the complications of a specific model.
The presentation also gives an idea of the use of
simulation from which some insight can conveniently
be gained about how real data might behave under
certain model conditions. While preparing this
example, we simulated several sets of ghost strati-
graphy varying the parameters, and found it in-
structive to see how, as the trend, the initial bed
differentiation, and the amount of randomness
changed, the"ghost" got fainter and fainter and then
disappeared.,

Whitten, E.H.T., 1959, Composition trends in a granite: Modal variation and ghost-stratigraphy in part of
the Donegal granite, Eire: Jour. Geophysical Res., v. 64, p. 835-848.

Whitten, E.H.T., 1960, Quantitative evidence of palimpsestic ghost-stratigraphy from modal analysis of a
granitic complex: XXI Internat. Geol. Congr., Norden, pt. 14, p. 182-193.
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Table 1.-Analysis of variance for quadratic regression analysis of simulated ghost stratigraphy data.

Source of Sum of Degrees of Mean

variation squares freedom square F F 10%
Linear terms 4,698.23 2 2349.11 119.0 2.30
Quadratic terms 2,533.90 3 844,63 42.8 2.08
Residual 4,935.71 250 19.74
Total 12,167.84

Table 2,-Distribution of positive, zero, and negative residuals from fitted quadratic surface.

Bed Number Number Number
+ 0 -
1 37 6 20
2 11 8 45
3 28 17 19
4 27 10 27

286 340 30.2 29.7 124.7 16.1 243 302 |286 284 274 329 | 36.1 355 425 360

276 33.0 31.2 3286 II9A3 23.1 24,1 243 |2&4 290 304 266 | 27.9 29.7 399 337

26.5 25.6 28.2 31.2 : 170 18.9 24.7 19.7 |33.3 27.2 362 348 ! 316 343 401 371

| -N-
259 293 22.8 29.8 | 27.2 15.0 28.1 25.1 |29,l 22.1 304 242 ,37.8 32.0 379 321
30.1 24.7 285 252 | 20.2 228 19.8 20.9 I 23.7 247 229 220 268 43.0 336 367

386 348 31.8 404

211 31.3 27.9 28l : 16.0 26.6 18.8 19.8 |2I.5 32.5 223 32.1
|
368 21.9 293 251 |19.7 176 234 20.8 |2|.2 243 321 247 l 335 33.0 336 39.0
234 21.6 223 245 :I?.S 16.9 16.8 20.2 |2I.8 26.0 287 321 I 333 283 302 348
| |

23.6 19.4 25.2 247 |22.| 15.5 20.1 33.2 |22.8 29.8 252 243 l35.9 34.1 295 33.0

274 23.2 21.0 268 IlG.? 12.1 19.9 26.9 |25.0 25.6 23.4 256 I 32.1 26.3 321 339

227 23.4 22.0 29.4 12.0 18.3 18.1 10.7 |22.3 24.2 23.2 20.6'26.2 36.1 331 305
' |
|

26.5 279 30.6 228 l 1.0 16.0 13.1 209 |24.5 21.5 26.2 23.6 I 26.4 342 337 263
| ' |

259 21.7 175 266 l 6.0 9.8 140 135 |23.5 20.5 247 21.8 | 262 21.6 31.8 30.I

I
245 271 185 227 | 126 14.0 16.2 22.0 l24.5 223 197 335 l 324 434 324 358

21,8 21.3 155 225 ' 175 12.6 148 13.8 |I8.2 15.7 19.9 22.1 l28.| 320 250 340

184 174 22. 219 | 121 179 182 64 |148 27.4 237 207 | 219 325 288 278
] ]
Bed I 4,= 20 Bed 2 4p= 10 Bed 3u3= I5 Bed 4 4= 20

Figure 1.- Model for simulated ghost stratigraphy, showing simulated observations, and means for four beds.
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Figure 2.- Quadratic regression surface fitted to simulated ghost stratigraphy data.
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NONLINEAR MODELS FOR TREND ANALYSIS IN GEOLOGY

by

William R. James

Northwestern University

ABSTRACT

The standard techniques of trend=surface analysis involve regression of mathematical functions which
are linear with respect to their coefficients. The regional variability of many mapped variables is such that
standard models are basically inadequate, and in many cases complicate the otherwise simple regional pic-
ture. In many of these cases the geologist has some basic idea of, or can make an educated guess at, some
underlying geometric form which may be expressed in general mathematical terms. This "substantive" geo-
metric model may be regressed and residuals plotted. The analysis of residuals may well lead to a revision of
the original model and a new model developed and regressed. Through this iterative procedure a satisfactory
"trend" may be found and meaningful "fit" parameters might be discovered.

REVIEW AND CRITIQUE OF STANDARD TREND- the fundamental wavelength. This forces the oppo-
ANALYSIS TECHNIQUES site edges of the map to approach the same profile
regardless of the actual trends in the observations.
The method of trend-surface analysis in The power series model tends to use all available
geology has been to a very large degree restricted to extrema inside the control area and is forced to
regression of either a power series or a double Fou- begin ascent or descent to plus or minus infinity as
rier series to observed map data. These two series the map edges are approached. These aspects of
(or models) have much in common, including some the two models are discussed and illustrated by
distinct disadvantages. They both represent finite Krumbein (1966).
expansions of infinite series. They both possess terms
of increasing complexity (i.e., more extrema and ALTERNATIVE APPROACHES
inflection points) upon further expansion. Also sig-
nificant is that both are linear with respect to their Despite these restrictions both models have
coefficients, thus defining both models as specific been used extensively for analysis of trend and re-
cases of the general linear model. This character siduals in geology. Unfortunately this is also com-
enables unique least-squares solutions for monly the end point of quantitative procedures in
coefficients by solution of aset of simultaneous geologic investigations involving map analysis.
linear equations. There appear to be three major reasons for this, (1)
There are many cases where regional vari- No other models are readily available to geologists.
ability of mappable observations behaves in a fashion  (2) Nonlinear models commonly involve nonunique
which cannot be deduced by application of the above  solutions for coefficients. (3) Substantive reasoning
models. This is due to some rather severe mathe- is not, in many cases, developed to the point where
matical restrictions inherent in both models. For conceptual models may be formulated into mathe-
example, a simple oscillating surface with a linear matical expressions. The first reason is not valid.
gradient cannot be adequately fit by a double Fou- Other models are available but they are nonlinear.
rier series. The linear gradient affects all row- The validity of the second reason depends upon the
column coefficients of the series and produces a validity of the third, i.e., if a deterministic model
wavy surface more or less normal to the direction of is available nonunique solutions are not reasons for
dip. A regular change in amplitude or wavelength not using the model. Thus the question is whether
in a given direction will introduce complex com- or not the geologist has sufficiently clear intuition
ponents to the Fourier coefficients and produce over about the variable he is mapping to formulate a
complicated trend surfaces. Similar restrictions mathematical expression. [f he can do this, he is
apply to the power series model. For example, a then in a position to put his intuition to a test,
simple oscillating surface cannot be detected by low Clearly it is too much to expect that in
degree trends if the wavelength of the oscillations is general a geologist could formulate a deterministic
much smaller than the map length. Both models or stochastic model invoking process elements as
suffer from severe boundary restrictions. The Fourier well as geographic coordinates to apply to his vari-
series must repeat itself in the direction of the ori- able. The point to be discussed inthis paper is that
entation of the map grid over every interval equal to there is an alternative, The geologist may not
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understand the complex interplay of process elements
which produced the geometry he observes when he
maps a variable. Yet he is nearly always capable of
generalizing or simplifying that geometry in his own
mind. He is also capable of assessing certain bound-
ary conditions to that geometry. For example, a
geologist studying sand texture parameters in a near-
shore and beach environment is aware of the likeli-
hood of a discontinuity occurring in his map variable
along the plunge zone. A fault would produce sim-
ilar effects on variables measured on a structurally
deformed terrain. The development of a simplified
conceptual model for the observed geometry is a sub-
stantive reasoning process. It does not, however,
involve the development of a deterministic model.
The substantive geometric model lies somewhere be-
tween the arbitrary linear map models and the deter-
ministic model.

It appears that in many cases the geologist is
in a position to at least attempt to apply a substan-
tive rather than an arbitrary geometric model. One
example is the interpretation of subsurface structure
from boreholes. One could conceive of a sloping
corrugated surface. This surface might well be
approximated by a simple sine wave on a plane.

This concept alone is enough to allow development
of a mathematical expression for regression. One
might develop this expression so that average depth
or elevation with respect to some datum, trend and
plunge of fold axis, dip of the (ab) plane, and wave-
length and amplitude of fold profile, are the para-
meters of the fitted surface, hereafter called simply
the fit parameters. This expression may be regressed
by standard iterative techniques until the "best rea-
sonable" fit is found. Residuals may then be com-
puted and plotted, and the trend contribution to the
total sum of squares calculated. These may be used
as criteria for a substantive judgment on the value of
the initial model,

' Other examples of the potential use of the
substantive geometric model are abundant, For
example there has been a good deal of discussion in
the literature concerning the formation of beach
cusps. One would not find it difficult to make ac-
curate measurements of the geometry of beach cusps
and formulate a general equation for regression.
When a satisfactory model is found, the fit para-
meters could be computed for a variety of beach
cusps under varying sea conditions. The fit para-
meters are likely to be meaningful numbers to use in
correlation of shore processes and cusp geometry.
O.F. Evans (1940) measured several profiles across
the "low and ball" structures off the east coast of
Lake Michigan. His profiles seem to indicate an
oscillating surface with increasing wavelength with
distance offshore., These structures are parallel to
the shoreline and continuous for many miles. In the
study of the origin of these structures one would
desire meaningful parameters describing the geometry
of these features. These numbers are not likely to be
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obtained through application of an arbitrary regres-
sion function., They may well be obtained from an
equation developed by substantive reasoning on the
part of the geologist.

In short, the use of arbitrary functions with=-
in the framework of the general linear mode! should
not, in many cases, be the end point in quantitative
analysis of trend,

Time and space limitations of this report
preclude the working out of specific examples to
support the foregoing general statements. However,
one example is discussed below which displays in
some detail, the various procedures which might be
used .,

EXAMPLE

One of the simpler examples mentioned
above is the underlying geometry associated with
the "low and ball" structures. The term "low and
ball" refers to a parallel set of offshore bars and
troughs commonly developed along relatively stable
shorelines. O.F. Evans (1940) measured a series of
profiles normal to the eastern shoreline of Lake
Michigan, Figure 1 shows his sounding profiles.
Although Evans did not show the locations of his
profiles one could conceive of them as being spaced
side by side and thus representing sample observa-
tions of a surface.

The geometry appears to be quite regular.
As a first approximation one might postulate a
simple sine wave form having a linear increase in
wavelength with increasing distance offshore, con-
stant amplitude, and origin at the shoreline. The
oscillations could be allowed to be about a plane
dipping normal to the shoreline with an intercept at
the shoreline. The general equation for such a
surface is:

X_=ayV+aysin 21V
ag + a4V
where

X = computed value of depth below water
level

a; = average offshore slope

a, = amplitude of low and ball structures

ay = initial wavelength of low and ball
structures

a, =rate of change of wavelength with
increasing distance from shoreline

V  =distance from shoreline

This equation may then be fitted to the data
using the least-squares method. The least-squares
function to be minimized may be written as follows:

G=%(X. -X )2 =% (X. “apV, - agsin_2Vi )2
b ' | a3 T a vy
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Figure 1.- Low and ball profiles normal to eastern shore of Lake Michigan, after Evans (1940). Essential
part of figure is shape of profiles, not affected by loss of clarity of small type.

where 2mV.
X. = observed depth at distance V, (X. = a,V. - a,sin ———)
i P i i 11 72
ag + G4Vi
The first partial derivatives with respect to )
each coefficient may be written as follows: 3G V. 2V,
— = 4mma, Z(— 2 cos ———) X
2mV. da . (a,y+a,V.) a,+a,V.
a—G——Z—ZZV.(X.-G V. - a,sin ————) 4 iT3 T4 3" A
a; ¢ T 2 e g,V 2mV,
: ! (Xi - ay Vi - a2sin —)
G 2V, agt gV
— =-2Ysin——— X
Bay i By * OI4Vi In the case of the general linear model,
2V setting the first partial derivatives equal to zero
X. = a.V Vi generates a set of simultaneous linear equations.
( AV Tagsn ta.V ) For nonlinear models this is not true. Thus other
a3 Y methods must be used to solve for the coefficients.
One of the faster methods is the method of steepest
descent. The procedures are as follows. (For
3G V. 2V, general reference to this technique, see Hadley,
A 4Trc|22 ( ) o cos L) X 1964,)
803 (03 + a4Vi) az + °4Vi 1. An initial guess is made for the values

of the coefficients.
2. The least-squares function and its set of
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partial derivatives are computed for that initial guess.

3. The vector which points in the direction
of steepest descent is given by the direction numbers
(3G 3G 3G _s6

7 14 7 .
da

1 Ba2 Bc3 604
the coefficients are made by moving in the direction
of steepest descent,

New estimates of

a] =a] -A-a-’g

i i=-1 aa]
i-1

a =a -AE

2. 2.

i i-1 aa2
i-1

_ _20G

03 —q3 A—=

T I
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-22G

i i-1 604.
i-1

where

A = a multiplier which can be chosen before
the computer run or programmed to depend on the
rate of descent of the function.

4. The new estimates of the coefficients are
then used to recompute the function and its first
partial derivatives. The same procedure is followed
iteratively until the function converges at its min-
imum.,

The initial guess is fairly important inthat the
least-squares function for this regression will have
several minima. One must be certain that the correct
one is approached. In the example being discussed
here initial guesses are not difficult to make. The
general slope of the nearshore bottom appears to be in
the neighborhood of 12 ft, of depth per 700 feet off-
shore distance. Thus an initial guess of 0.017 would
be a reasonable estimate for ay. The amplitude of the
low and ball structures appear to be inthe range of
two to four feet. Because the variable being measured
is depth below lake level and the wave form initially
dips, the signofthe amplitude will be positive. Thus
a value of +3 would be a reasonable guess for the
initial value of a5 The initial wavelength (a3 and 04)

may be estimated by a few simple measurements and
calculations. Let ¢ = 21'rV/(e|3 + q4). It is evident

from Figure 1 that ¢ must get as high as 7.5 inorder
to produce the four bars observed. Setting ¢ = 7.5m
will provide a maximum estimate for a,. When
this is done it is seen that 3.75c13 = V(1-3.75c14).

Thus a4 must be less than 0.267 or the fourth
bar would not be allowed to appear in the
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function. The second bar has its peak at around

V =250 ft, The fourth bar has its peak at around
1150 ft. These estimates may be used to set up two
equations in two unknowns,

3.5m =2m x 250/(c13 +ay x 250)
5.5m =2mx 1150/(a3 +ay x 1150)

These equations give an estimate of az ™ 97 ft. and
estimate ay ™ 0.182. These estimates predict other

peaks as shown below.

distance offshore

84 feet
250 feet
533 feet
1150 feet
3403 feet
never reached (¢
converges on a constant)

peak

COAWN —

These appear to be close enough to accept the
estimates of ag and ay as satisfactory first guesses.

It is interesting to note that the final estimates of
as and ay will predict a specific number (perhaps

zero) of bars farther offshore. If the final fit is
judged to be good, this equation may be successful
in prediction of offshore bars by measurement of the
relative spacing of a few nearshore bars. It is quite
evident that the use of arbitrary linear mapping
models will not be successful in this respect.

After the fit has been made and residuals
plotted, regular deviations might be observed that
would suggest modification of the original model.
Several such modifications are possible. Amplitude
could be allowed to vary with distance offshore.
Wavelength could be given a different functional
dependence on distance offshore. A linear trend of
bar crests not parallel to shore could be allowed.
The variety is infinite. By building successively
onto simple models a satisfactory model is likely to
be discovered.

CONCLUSIONS

Dr. J.W. Tukey of Princeton University has
long been the major proponent of the iterative "fit
and expose" approach to data analysis. It is thus
appropriate to close with references to his ideas on
this subject. With regard to the present state of the
art of data analysis he states (Tukey, 1965), "In-
adequate attention to the objectives and science of
data analysis has left us hampered by fragmentary
understanding. The technology of data analysis is
today far more awkward and inadequate than is
necessary. Recogrition and use of modular com-
ponents of diverse forms is now essential ...."



Referring to the objectivity which most people as-
sociate with arbitrary statistical models Tukey states,
"Data analysis cannot do more than bring to our
attention a combination of the content of the data
with knowledge and insight about its background.
Validity and objectivity in data analysis are danger=
ous myths.," Speaking on thestrategy of data
analysis Tukey argues, "The twin objectives of data
analysis, summarizing and exposing, go hand in hand.
Once something has been summarized, we gain by
exposing only what has not been described. From
such exposition we hope to learn how to summarize
more extensively or more precisely in the next cycle.
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CORRELATION BETWEEN SURFACES BY SPECTRAL METHODS

by

John N. Rayner
Ohio State University

INTRODUCTION

A large number of disciplines are interested
in the two-dimensional spatial pattern of variables.
In particular, biology, geography, and geology are
frequently concerned with the variation of phenomena
at or close to the surface of the earth. In any sci-
ence one of the initial steps in analysis is the de-
scription of the phenomena, and in these areas of
spatial study this step is in part fulfilled by the fit-
ting of a theoretical surface. It serves to generalize
objectively some of the features of the empirical
distribution. However, the fitted surface is only a
tool used for describing one individual distribution,
and further analysis virtually always calls for the
study of joint distributions, the analysis of the as-
sociations between phenomeno in two-dimensional
space. Just as the variance measures the variability
in the single varlafe, the .covariance measures the
joint variability in two. Suitably normalized by the
square roots of the variances of the separate data
sets, the covariance becomes the correlation coef-
ficient. It is to the problem of estimating the co-
variance (and the correlation) between two surfaces
that this paper is addressed.

ONE-DIMENSIONAL CORRELATION

Before consideration is given to the two-di-
mensional case it is instructive to look at the one-
dimensional situation. Figure la shows the variation
of two series along a line. For example, these might
be plots of height and density of vegetation along a
traverse line. The correlation coefficient estimated
in the normal way,

cov(xy) Txy/n (1)
(var(x)var(y)) g ]/2 (Zx / Zyz/n ]/2

r
Xy

where x and y are deviations from their mean value,
is calculated as 0.5. This is not particularly
intriguing. The relationship is positive as a scatter
diagram would suggest (Fig. 1b), but it is by no
means definite.

2- o
o
[}
o [+]
o
|- o
[}
o 80
oj]o
0_ 4 o
o o
o
o
o
o
-1- ol o
o o
] o
- D =
' [ ' ' '
2 | 0] | 2

Figure 1b.-Scatter diagram of equally spaced data
in Figure la. Height is plotted along the
ordinate and density along the abscissa.

Various courses of action now lie open to the
researcher. |f he feels he has a well based hypothesis
that there should be a linear relationshipbetween the
helghf and density, then he will look for methods of
|mprov1ng the testing procedure. Obviously, one
suggeshon he will make is that other factors are work-
ing independently on height and density. He might
measure these and add fo the regression equation.
Alternatively, he might hypothesize that the in-
dependent factors operate in different areas and that
their effect will show up at different intervals (wave-
lengths) along the traverse. If he takes this point
of view he will proceed by isolating the frequency
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Figure la.-Theoretical plots of height (dashed) and density (continuous) of vegetation along traverse line.



components in each series,

This is easily accomplished if the untenable
but useful assumption is made that the series is
periodic and repeats itself indefinitely both forward
from the end and backward from the start of the
traverse. Classical Fourier analysis may now be
applied. Figure 2 shows such a breakdown of fre-
quencies (or wavelengths) for the series in Figure la.
In this idealized example height of vegetation has
two frequency components, 4 and 5 cycles per tra-
verse length, and density also has two, 5 and 6
cycles per traverse length. If the usual correlation
coefficient is now calculated for the separate fre-
quencies it will be seen that there is no correlation
for 4 and 6 cycles but a correlation of 1,0 at 5
cycles per traverse length. The real world is never
this simple, but the exercise has demonstrated what
many have stated before, that scale is important in
correlation and unless scales are separated they tend
to blur analyses (see Casetti, 1966).

kth frequency in the x series,
n = number of points along the traverse,

and,

-1 bx[k]
#x[k]=mn ( %
a

)= the phase angle, a

constant for the kth frequency in the x series,
(Barber, 1961, 1966; Lanczos, 1956; and Harbaugh
and Preston, 1965). The squaring, division by n,
and integration of equation (2) gives the variance
of x,
A20k] a?[k1+b2[k]
var (x) = = = X i

2 2

By defining yk[ i 1 in the same way the variance of

)

Figure 2. - Frequency breakdown of data in Figure la.

The same study reveals other limitations in the
use of the simple correlation coefficient. In order to
discuss these it will be useful to write x and y in
terms of the sinusoidal functions. Thus, the magni-
tude of the kth frequency component of at point |
may be written

X\ [i]:AX[k]cos(2ﬂki

n
2mkj

n

aX[k]cos( >+bx[k]sin

where

A [k]=(a§[k]+b§[k])‘/2 = amplitude of
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y may similarly be obtained. Also the covariance
at the kth frequency may be found in this way,

Ax[k]Ay[k]
2

X

cov (xy) = cxy[k 1=
cos(+y[ k]- +x (kD) (4)

:qx[k]qy[k]+bx[k]by[k]
2

. (9)

With the substitution from (3) and (4), (1) may now
be rewritten for r at the kth frequency

rxy[k]=cos (¢y[k]—¢x[k] .

(6)



In other words, the correlation coefficient
for two periodic functions at the same frequency is
dependent only upon the phase difference between
the two series. The amplitudes may be any mag-
nitude greater than zero. This may at first seem
reasonable. Completely in-phase series (§ [ k] -

4>X [k ]1=0) vary together and have a correlation of
1. Completely out-of-phase series (c#y[ k]- ¢x k1]

=1) vary inversely and therefore have a correlation
of =1. The question now arises as to whether two

series with a phase difference of;—T or37Tr should

have an r of zero, as this is what the algebra gives
us. Zero would also be obtained from the correlation
of the two series at the same frequency when one or
both have zero amplitudes. Obviously there is a
fundamental difference between these two cases.
One way of solving this problem is to define
a new correlation term which ignores the phase and
then, in any discussion, to state both this new term
and the phase. The covariance discussed so far is
the in-pﬁase covariance: that is, the usual covari-
ance. The set of covariance, cxy [k ], as a function

k is usually known as the cospectrum.
Another covariance, not yet introduced, is
the out-of-phase covariance which may be obtained

by displacing y, g radians, This produces an

equation equivalent to (4)

Gy (KT =A [ TA (k] x

S
sin(p, [k 1 = 4, (k) @)
s kIb (ke kb k]

2

A set of the out-of-phase covariances is known as
the quadrature spectrum.

Together the cospectrum and quadrature
spectrum provide a measure of the cross spectrum,

1/2 Axy k1,

VoA kI=2 k1+a2 )2, @)

and the phase difference, the displacement of y
forward of x,

b, (kT =, [kI=p [kI=tan'

Gy [k /c, [kD) (10)

The new correlation term may now be defined as the
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cross covariance divided by the standard deviations

W [k1=A [kI/ATKIA [KD). (1)

The square of this term, W>2( [k ], may be thought

of as the ratio of the variance of the product series,
when phase is ignored, to the product of the vari-
ances of the individual series. A little algebra will
show that, for an integer frequency of a strictly
periodic function, nyl:k ] is always 1, except

where a particular frequency is missing.

This may seem an insignificant result and it
is for periodic functions. However, these equations
have important uses in section 5 where the data are
more realistic: that is, are nonperiodic. Then,
ny [k ] may vary between zero and 1.
TWO-DIMENSIONAL SPECTRAL RELATIONSHIPS

All above equations may be reproduced for
the two-dimensional case. From arrays of x[j1,i2 ]
and y[j1, j2 7, the amplitudes, ax[kl, k21,

a [k1, k217, bx[k], k2 ] and by[k], k2 ], may be

calculated where k1 refers to the ordinate and k2

to the abscissa. This is a slight variation on the
work of Harbaugh and Preston (1965) in that only
two amplitudes for each series are obtained. As
before the a's are the cosine amplitudes and the b's
are the sine amplitudes. The meaning of any par-
ticular amplitude may be easily visualized if its
position in the array is considered in terms of polar
coordinates, The particular amplitude is the am=-
plitude of a series of parallel waves, which are at
right angles to the position vector and which have

a frequency proportional to the length of the vector.
The vector direction, 8, measured from the abscissa,
is

8 =tan” ' (k1/k2), (12)
and frequency, k3
k3 = (k12 + k22) 1/2 (13)

It should be noted that k's are in cycles per length
of side of array [n1, n2]. These units are most
useful since the k's remain integers and therefore
may be used as subscripts. However, for equations
(12) and (13), they must be in the same dimensional
units, In cases where the array is not square
(n1 # n2) and/or the data spacings are not the same
(871 # Aj2) the k's must be considered in cycles per
unit length., That is, k1 and k2 in (12) and (13)
should be replaced by k1/(n1 Aj1) and k1/(n2 4{2)
respectively.

An example of a surface produced by a



single amplitude in the array, al4,2 ], is shown in
Figure 3. These waves have one crest at 0,0. If
the first crest were elsewhere the phase angle would
be given by a magnitude in the b array at f4, 2.
If only two amplitudes are present the two sets of
waves will interact. If the two sets are at right
angles they will produce symmetrical depressions
and elevations as shown in Figure 4. The addition
of more frequencies will produce further variations.
x(j}

‘+— one cycle —— '

amplitude

'
'
'
'
'
|
1

[JE]

$03_ :
e,

¥

Figure 3.-An example of an x array which produces
one amplitude at [4, 2 ].

The equations remain similar, [j] is replaced
by [i1, j2] and k by [k1, k2] and the summations
become double summations. Thus the equation for a
Lk1, k2] may be written

nl-1 n2-1
2 5

nln2 j1=0 2=0

a [k1, k2] = X1 oLl 121%

os 2Wk]i]+2nk2i2 )
nl n2

C

(14)

and,

if cosine is replaced by sine, (14) becomes the
equation for b_Lk1, k21, It provides all the
information for the calculation of

e [k1, k23, ¢ [k1, k21, q_ [k1, k21,
xy xy xy

4> [k1, k2] and W_ [k1, k2
Xy Xy
because each is a function of the a's and b's.

CALCULATION OF THE AMPLITUDES - THE FAST
FOURIER TRANSFORM

In the past, most computer programs have
used the Goertzel method (Hamming, 1962) for
calculating the Fourier amplitudes. Recently a new
computational algorithm has become available, and
has been adapted for use by Cooley and Tukey
(1965). Gentleman and Sande (1966) have further
modified some of the procedures and Sande has pro-
duced excellent Fourier Transform programs. Readers
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are referred to the quoted papers for details, Es-
sentially, the algorithm reduces the number of

computer operations from n2 to nlogn where n is the
number of data points, This is a considerable
reduction, particularly where large arrays are in-
volved.

NONPERIODIC DATA

Excepting for the variation of elements
around a latitude circle, a fact used extensively by
meterologists in studying the energy conversions in
the atmosphere (Saltzman, 1957; Wiin-Nielset and
others, 1963, 1964), very little naturally occurring
data are truly periodic. Consequently the un-
modified results of the above equations have
limited value. All the amplitudes are for integer

frequencies in the range 0 to % for one dimensional
series, and 0,0 to n_2] , r_122 , for the two-dimensional
case. If more data are added or some removed the
new set of frequencies will not correspond to the
old. In other words, a whole set of amplitudes are
realizable between a particular pair of frequencies.
The effect of this is clearly demonstrated in statis-
tical terms by the fact that the number of degrees

of freedom associated with each line amplitude,
A_[k], isonly 2,

x There are two alternatives for obtaining
reliable estimates of the frequency components in
nonperiodic data. Presently, the most widely known
and used technique is that developed by Tukey
(1949) and Blackman and Tukey (1958) from a
theorem by Wiener (1930). For a single set of data
the autocovariances are first calculated and then
these are subject to a cosine transform. Final
adjustments must be made by applying a spectral
window function to allow for the fact that the auto-
covariances came from a finite sample of data.
Also, some initial modification, called pre-
whitening, may be made so that large peaks or
valleys at one point in the final spectrum do not
affect other frequencies. Resulting figures are
estimates of the variance in frequency bands rather
than in lines. Alternatively they may be in the
form of variance density.

For two sets of data the average lagged
products are subject to cosine and sine transforma-
tions to give estimates of the cospectrum and the
quadrature spectrum (Goodman, 1957; Jenkins,
1961, 1962, 1963, 1965). From these spectra the
other statistics may be obtained through the use of
equations (9) to (11). The ny[f 1, where [ refers

to the central frequency of the band, is now called
the coherence. The name coherence or coherency
is also sometimes applied to the square of W L 1.

It varies between 0 and 1 and is a measure of how
well the two series are related in that band. This



Figure 4.-An example of part of an x array which produces two amplitudes; one at [k1, k2] and another at

[-k1, k2], where |k1l = k2] .

is a most useful measure of association between two
sets of data, It supplies information on the degree
of the association between data with respect to
scale, something which is not available with the
simple correlation coefficient. Furthermore, the
phase difference provides estimates of the average
direction of the relationship; whether the series in
that band of frequencies vary together or vary in
opposition, etc. A number of examples of the ap-
plication of this method are given in Lumley and
Panofsky (1964).

: What has been said above about the one-
dimensional case also applies to the two-dimensional
case. In geology the equations have recently been
given by Preston (1966). Explicit papers on the
application of this form of two-dimensional analysis
are by Pierson (1960) and Leese and Epstein (1963).

~ The second method was suggested by Black-
man and Tukey in 1958 (p. 90-95). This was to
"calculate many values of [the line spectrum] and
then average these results over moderately wide
frequency intervals. Again our estimates will be
estimates of considerably smoothed spectral densities;
again our estimates will be moderately stable.” Now
that the Fast Fourier Transform is available, Tukey
(1966) advocates this technique for obtaining spectral
estimates.

For the one dimensional case, the estimates

for a band 2m+1 wide centred at f are given by

J+m
Ar1=— T (@b (1)
2m+1 k=f-m
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] L
5

nyllf] = /2 x

2m+1 k%f—m

(af[k] a,[k1+ b, [k]b [k])

ALY
7l= Yo1/2 X
y 2m+1 k=f-m

(cX[k] by[k] - qy[k] bx[k] ) (17)

Equations (9), (10) and (11) may now be applied by
replacing k by /. For the two-dimensional case

k in (15), and (16) and (17) is replaced by k1, k2,
and the individual terms are doubly averaged.

As in the first method a spectral window
must be applied and some pre-whitening is usually
necessary. As Tukey (1966) points out, arithmetic
speed has been gained but many of the old problems
still remain,

SUMMARY AND CONCLUSION

It has been demonstrated that the degree of
association between one- and two-dimensional
series is a function of scale. In any analysis of
association, then, the isolation of the scale com-
ponents of the data should be a routine procedure.
Furthermore, it has been pointed out that the
simple correlation coefficient has limited use at a
specific frequency since it is a function only of
phase difference. Another measure which might be



used is coherence with phase. with the introduction of the efficient Fast

The earlier equations were given for truly Fourier Transform it should become a universal
periodic data which seldom occur in nature, How- technique, If needed, the auto and lag covari-
ever, these equations may be modified by averaging ances may be calculated by transforming back
so that they may apply to the nonperiodic situation. the final spectral estimates obtained by the direct
In the past this method has seen little use but method.
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THE GENERAL LINEAR MODEL IN MAP PREPARATION

AND ANALYSIS)

by

W.C. Krumbein

Northwestern University

ABSTRACT

The general linear model is the connecting thread that weaves through many aspects of map prepara-
tion, map analysis, and map interpretation. In its conventional form the general linear model is the basis
for such multivariate maps as the Q-mode factor map and the discriminant function map. In its two-
dimensional form the general linear model is the basis for the polynomial and Fourier map-analysis models,
both of which are widely used in a variety of geological fields. All variants of the general linear model can be

reduced to a simple matrix equation, S’é =g, where S is the matrix of uncorrected sums of squares and cross-

products of the independent variables, g is the column vector of the sums of the dependent variable and its

crossproducts with the independent variables, and B is the column vector of estimated linear coefficients.
Coefficient space, developed in the earlier part of this report, is further examined here, and the
extension of map analysis to the estimation of "trends" in coefficient matrices is introduced with an example.

INTRODUCTION

Analysis of contour-type maps by computer
has undergone several stages of evolution since its
introduction into geology a dozen years ago. The
search for the underlying "true trend" in a given set
of map data has been broadened by recognition that
low-order fitted surfaces, such as the linear and
quadratic, also give important insight into the struc-
ture of the mapped data. Secondary trend compo-
nents, i.e., systematic effects of relatively high
order that seem to linger in the residuals, have also
proved valuable in map interpretation, as have the
map residuals themselves. All of these influence
selection of prediction models for map interpolation
and extrapolation, of techniques for map comparison,
and development of process models that account for
the observed systematic map patterns.

l/ This research was conducted under ONR Task No.
388-078, Contract Nonr-1228(36), Geography
Branch of the Office of Naval Research, This paper
is an extension of a report on the "Classification of
map surfaces based on the structure of polynomial
and Fourier coefficient matrices, " published in
Computer Contribution No. 7 of this Series (1966).
These two papers constitute Technical Report No. 5
of the contract specified above. Reproduction in
whole or in part is permitied for any purpose of the
United States Government,
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The classical polynomial model, widely
available in computer programs for gridded and non-
gridded data since the late 1950's, has been supple-
mented in recent years by the double Fourier series
model, also programmed for gridded and nongridded
map data. The Fourier model opened the way for
study of periodic patterns in maps, in contrast to
the nonperiodic surfaces obtained with the poly-
nomial model, The problem of identifying the "true
map trend" is, if anything, slightly more complicated
now that two ways of structuring map data for trend
analysis are available.

The purpose of this paper is to examine map
analysis in I'Ee larger framework of map preparation,
analysis, interpretation, and comparison, as an
extension of an earlier report (Krumbein, 1966) in
which the structure of coefficient matrices under the
polynomial and Fourier models was examined.

Four aspects of map study are summarized in
Table 1. Kinds of variables used in facies mapping,
and methods of preparing maps, which include
topics (1a) and (1b), are discussed and described in
Bishop (1960) and Forgotson (1960). Multivariate
maps in topic (1¢) are illustrated by Q-mode factor
(vector) maps as introduced with a computer pro-
gram by Imbrie (1963). Griffiths and his students

(cited in Griffiths, 1966) have used discriminant
functions in mapping barren and potentially favor-
able sands in Pennsylvania. Pelto (1954) applied
statistical entropy functions to multivariate map-
ping. The subject is further treated by Forgotson

(1960), and an example is given in Miller and
Kahn (1962, p. 427).



Table 1.-Topics in the study of areally distributed data.

(1) Map Preparation, i.e., ways of structuring areally distributed data for contour mapping.

(Ta) Raw data used directly for univariate maps (thickness of a stratigraphic unit, isolith maps of par-
ticular rock types, elevation of marker beds, etc.).

(1b) Simple combinations of raw data (percentages, ratios, etc.).

(1c) Maps based on multivariate attributes (Q-mode factor maps, discriminant function maps, statis-

tical entropy maps).

(2) Map Analysis, i.e., ways of seeking "trends" in mapped data, by fitting surfaces of various orders to

maps prepared as in (1).

(2a) Polynomial analysis (nonperiodic fitted surfaces).

(2b)  Fourier series analysis (periodic or cyclical fitted surfaces).

(2¢) lterative polynomial or Fourier analysis of coefficient-matrices and 72 -matrices.

(3) Map Comparison, i.e., ways of evaluating the similarities or differences between maps.

(3a) Direct comparison of individual coefficients.

(3b) Comparisons based on orders of fitted surfaces.

(4) Map Interpretation, i.e., ways of deriving generalizations from areally distributed data.

(4a) Conceptual process models.

(4b) Deterministic or probabilistic models designed to "explain" the observed patterns of areal variation.

(4c) Development of predictor models.

Map analysis, shown as topic (2) in Table 1,
includes the polynomial and Fourier models as men-
tioned, and topic (2c) extends these models into the

analysis of coefficient-matrices and 22 -matrices in
"coefficient space." This topic is expanded in a
later section. Map comparison, topic (3) in Table
1, is based partly on direct comparison of polynomial
or Fourier coefficients, or on various orders of sur-
face. The last topic in the Table is that of map
interpretation. This is largely substantive, although
various statistical techniques can be helpful. In
general, the intent of map interpretation is to de-
velop conceptual or other kinds of models to account
for trends and residuals, as well as to derive gen-
eralizations about sedimentary, tectonic, and other
influences in basin development and fill. Potter
(1962), for example, developed a "basin model" by
analysis and interpretation of maps showing the
distribution of Pennsylvanian sandstones in the
Illinois Basin,

A striking feature of Table 1 is that topics
(1¢), all of (2), and part of (3) represent applications
of the general linear model to the study of areally
distributed data. This model, in various forms, is
the connecting thread that weaves through much of
map preparation, map analysis, and map comparison,
as well as forming the foundation, in conjunction
with substantive geological reasoning, for map
interpretation. The following section affords a brief
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review of the particular forms that the linear model
may take in this context. These variants are some-
times used sequentially; thus, Q-mode factor anal-
ysis may be used to obtain factor maps, which can
be analyzed for trends with the polynomial or
Fourier models, and compared with other maps by
study of common elements in linear coefficient
vectors or matrices.

THE GENERAL LINEAR MODEL

The general linear model in its conventional
form can be stated as follows:

k
W =8, +EE] B.X. +e (1)

where W is an observable random variable; X],
Xor eeer Xk represent observable independent

variables measured without error; the B's are un-
known parameters; and e is an unobservable random

variable with mean zero and variance 02.

Factor analysis and two-group discriminant
functions can be directly derived from this model,
which thus serves its purpose in the preparation of
the corresponding multivariate maps. For map
analysis the general linear model is expressed in
its two-dimensional form, as follows:



m n
W =By + E—_] JE] B XY *e (2)

Here W is an observable random variable (the mapped

variable in this context), X,, X,, +.., X _and Y.,
1 2 m 1

Y2, cees Yn represent observable independent vari-

ables measured without error (these become functions
of geographic coordinates in the present context),
the B's are unknown parameters (the coefficients of
the fitted surfaces), and e is an unobservable random

. . . 2
variable with mean zero and variance o°, represent-
ing the residuals on the fitted surface.
The polynomial version of equation (2) in-
volves simply the change of the subscripts on X and
Y to superscripts:

m n A
— I

W=gpot Z T B X'V +e (3)

i=1 Jj=1

Here X' and Y/ represent successive powers of the
map coordinates X and Y.

The Fourier model can be expressed in the
general form of equation (2) as follows:

M N
W =Byo + zij ? F(BijPin) te (4)
i=1 Jj=1
where Pi =21iX/M and Qj =2mjY/N. Here
“M=m+1,and N=n+1, The Bijoffhe general

model of equation (2) now become a series of sine
and cosine terms, yielding generally four Fourier
coefficients for each iJj:

F(BijPin) = cc; ;08 Pi cos Qj +
Csij cos Pi sin Qj + Scij sin Pi cos Qj +

S, ; sin Pi sin Qj (5)

Thus, instead of having simply By s for example,
the corresponding Fourier coefficients are €3 s
CSpa s $Coa s and SS9 - /The function F has value

1.0 in equations 2 and 3.)

The close relations between the conventional
and the two-dimensional forms of the general linear
model becomes more apparent when equations (1) and
(2) are expressed in matrix form, whereupon all
variants can be condensed to the relatively simple
expression:

E=g (6)
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where S is the matrix of uncorrected sums of squares
and crossproducts of the X's in equation (1), of the
X's and Y's in equations (2) and (3), and of the P's
and Q's in equation (4). The column vector of

estimated linear coefficients is represented by 8,
and g is the column vector of the sums of W and of
its crossproducts with the independent variables in
each equation,

The forms of the S-matrix and vector-g
differ according to the structure assigned to a par-
ticular variable W, For the conventional linear
regression case of equation (1), where W is struc-
tured as:

W=BOO+B]X]+-000+Bka+e (7)

the matrix-S and vector-g have the form shown in
Krumbein and Graybill (1965, p. 287). For a
discriminant function the S-matrix is more comp-
licated in that it is a combination of two sub-
matrices S] and _5_2 , one for each multivariate

population, and vector-g is generated by taking the
differences between the means of the several vari-
ables in the two populations. The factor analysis
model can also be reduced to the form of equation
(6). Of equal importance is the fact that both the
polynomial and Fourier models, representing two-
dimensional versions of the general linear model,
can also be expressed directly in the same form.
The matrix=S and vector-g for the nongridded poly-
nomial model are given in Krumbein and Graybill
(1965, p. 330), and for the double Fourier series
model in James (1966).

The fact that all versions of the general
linear model, as used in the preparation and anal-
ysis of multivariate maps, can be reduced to a
relatively simple expression, has certain advantages
for computer use. Once programs have been written
for generating the particular forms of matrix-S and
vector-g involved in a given map model, equation
(6) can be solved by an operation that consists
simply in multiplying both sides of the equation by

the inverse of S, _S_'-1:

ss8=s"'g

1

Inasmuch as ™ 'S = I, the identity matrix, this

solution reduces to:

=5y (8)

| >

An added advantage of the condensed model
of equation (6) is that the inverse of the matrix-S$,

-1. . . .
S ' is the variance-covariance matrix of the



coefficients, and hence this may be used in setting
confidence intervals on individual coefficients, or
even on the fitted surfaces, at least those of low
order (Krumbein, 1963). Although the factor-
analysis model can be reduced to the form of equation
(6), it appears that conventional computational
methods, as described by Harman (1960), and used by
Imbrie (1963) are more convenient than the con-
densed form for the whole succession of obtaining
eigenvalues, extracting the principal components,
and rotating them into the final factor output.

Map comparison methods, insofar as they
involve the estimated coefficients of the maps being
prepared, (Miller, 1964; Merriam and Sneath, 1966),

are based on comparisons of B-vectors (or matrices)
derived from the polynomial or Fourier models. How-
ever, both of the above references describe other
techniques of map comparison, and Merriam and
Sneath include references to other approaches, based
in large part on the simple linear model (use of
correlation coefficients, for example) or on the gen-
eral linear model.

B-VECTORS AND ARRAYS IN COEFFICIENT SPACE

The previous section emphasized the general
linear model for nongridded map data. In this section
we shift to gridded data for convenience of discus-
sion, although the same general remarks apply in

both instances. The vector-B of equation (6), as it
applies to equation (1), becomes a matrix [Bij] for

the two-dimensional cases of equation (2), although
in practice the matrix may be printed out in vector
form by computer programs. In the gridded case,
when the map is analyzed by the polynomial or

Fourier models, the matrix [Bij] has as many coef-
ficients and [ZZU.] values as there are elements in
the data matrix [Wij]' As developed in the earlier

part of this report (Krumbein, 1966, p. 12) the coef-
ficients can be considered as occupying (i, ./) points
on a plane with coordinates that are subscripts of the
coefficients. The coefficients themselves (and their

associated 22 array) become maps in that space, and
these new maps can be analyzed in turn for their
own "trends,"

We illustrate the polynomial case with a
"trend map" of the coefficients. Table 2 lists the
original data, the polynomial coefficients obtained
from the data, and the polynomial coefficients of the
coefficients. Figure 1 shows the linear and quadratic
surfaces associated with the two coefficient matrices.
The left map is fitted to the original map data, which
represent the mean grain size of beach sand dis-
cussed on page 16 in the earlier part of this report.
Several interesting features are shown by the two
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maps. Thus in terms of the observed beach data,
collected on a geographic grid, the surface is a
hyperboloid (left map), and the linear plus quad-
ratic components account for 44,1 4+ 33.0=74,1%
of the total sum of squares of the observed data.
The other map has the linear and quadratic com-
ponents of the coefficients in (i, .f) space. It is an
ellipsoid, with some negative values, and the sum
of squares accounted for are 32,1 + 32,9 = 65.0%
of the sum of squares associated with the observed
map coefficients, Thus, the "coefficient trend"
map has a different form and a smaller linear com-
ponent than the "geographic trend" map of the
original observations. The total corrected sum of
squares of the observed beach data, 0.6176, has
dropped to 0,0849 for the coefficients themselves.

This sequential analysis of map data, fol-
lowed by analysis of the map coefficients, then by
analysis of the coefficients of the coefficients, and
so on, tends toward a matrix of zeroes after several
iterations, The justification for including this topic
is to suggest that inasmuch as the coefficient matrix
based on the observed data represents a degree of
generalization of the original map data, the prop-
erties of this generalization may well be worth
additional study.

PROPERTIES OF COEFFICIENT SPACE

Partitioning of coefficient space according
to diagonals, blocks, etc., covered in the earlier
part of this report, led to some applications, as in
map screening, and to several interesting specu-
lations. One concerned the nature of polynomial
maps based on noninteger values of the coefficients.
An example presented orally with the first report is
included here mainly as a matter of record. It is

based on equation (3), in which X' and Y/ have
powers equal to the subscripts in Bij' If we set

i=J=1/2, and for simplicity let Boo = Bij =1,
then a "linear map" with i + 7 = 1 can be developed
with the model:

W=8, sz'/zvl/z 9)

Figure 2 shows this map, and its linear
property is the equidistant spacing of the intercepts
of all rays from the origin as they cut across the
curved contours of the surface itself. It was sug-
gested that such "linear" maps may have potential
value in studying the curvature of a linear surface
around the edge of an elongate sedimentary of
structural basin,

An additional potentially important aspect
of noninteger (i, ) positions in coefficient space
is related to the equestion of the orthogonalization
of a regression function for nongirdded map data.



Table 2.-5 x 5 grid of beach geometric means Lake Michigan, Evanston, Illinois (iterative analysis by

polynomial model).

Data by Rows

0.210 0.197 0.205 0.200 0.200
0.322 0.230 0.239 0.224 0.200
0.224 0.211 0.203 0.213 0.198
0.210 0.233 0.223 0.214 0.236
0.350 0.584 0.521 0.703 0.726
Coefficients by Rows
0.2910 0.0117 -0.0006 0.0009 -0.0023
0.0729 0.0206 -0.0035 0.0048 -0.0031
0.0480 0.0145 -0.0024 0.0025 -0.0018
0.0414 0.0032 0.0002 -0.0019 -0.0010
0.0025 0.0020 -0.0005 0.0002 -0.0004
Coefficients of Coefficients by Rows
0.0200 -0.0195 0.0121 -0.0075 0.0005
-0.0129 0.0126 -0.0083 0.0056 -0.0006
0.0051 -0.0052 0.0040 -0.0030 0.0005
-0.0039 0.0043 -0.0034 0.0025 -0.0006
0.0004 -0.0004 0.0002 -0.0002 0.0000

W.R. James has examined some aspects of this ques-
tion with the Fourier model at Northwestern Univer-
sity, and the following as yet unpublished material
is included with his permission.

James started with gridded data, which
yields independent integer-valued coefficients of the
Fourier surface, The cosine-cosine coefficients
were then examined as frequencies over the coef-
ficient plane, to establish the following properties
of coefficient space

(1) The space is continuous.

(2) Mirror images of contoured coefficient
space occur over every interval equal to the normal
highest harmonic frequency. Thus all information is
contained in a finite area.

(3) Relative strengths of trends in grid-
parallel directions are maintained ot least approxi-
mately.

(4) Directional properties and the scale of
variability are retained in the Fourier transform.

There is no reason to anticipate that these
properties do not also apply to coefficient space
when the map data are nongridded. However, in
nongridded data the integer-valued coefficients are
not independent, but it appears at least intuitively
sound to suggest that such independent coefficients
may occupy noninteger positions on the coefficient
plane. Still, the search for uncorrelated frequencies
(wavelengths) proved to be unusually difficult, and
has thus far been unsuccessful. Nevertheless, the
preliminary study has led to techniques for continuous
mapping of the (i, ./) plane in coefficient space in

terms at least of the cosine-cosine Fourier coefficients.
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CONCLUDING REMARKS

This paper shifted its emphasis more than
once during preparation, owing in part to the influx
of additional concepts and questions as the work
proceeded. Initially it was intended to enlarge
upon some topics developed in the earlier part of
the study, especially with regard to the use of
combinatorial models in map analysis. A typical
example of this is the use of the polynomial model
to extract one or more low-order surfaces from the
map data, followed by examination of the residuals
by Fourier analysis. It seemed more appropriate
within the intent of this Colloquium to bring out
the pervasiveness of the general linear model in
trend analysis as well as in the development of
multivariate mapping techniques.

It is also appropriate to remind the reader
that trend analysis is in practice largely a search
procedure, in which fitted surfaces are obtained
that reflect to some "reasonable" degree the attri-
butes of the real-world phenomenon under study.
Trend-surface analysis has amply demonstrated its
worth in the development of models for exploration
of natural resources, as well as for the building of
process models for better understanding of under-
lying physical processes that produce the trend
surfaces as natural responses. In the long run, how-
ever, this search procedure will be supplemented
by an approach to trend analysis that starts with a
conceptual, probabilistic, or deterministic model
that predicts certain kinds of surfaces, and then
uses observational data to test the models. In this



extension it is likely that nonlinear models may
prove equally as valuable as the general linear

model. James in this Colloquium (1967) develops
some preliminary aspects of this approach.
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Figure 1.- Linear + quadratic fitted surfaces on (left map) geometric mean diameter in mm of beach sand;
and (other map) on polynomial coefficients of observed beach data (see Krumbein, 1966, p. 16).
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Figure 2,-"Linear" map based on noninteger coefficient, W = 81/2 ]/2X

of surface (solid lines) and rays from origin (dashed lines).
See text for details,

(U, V), with origin at upper left.
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TREND-SURFACE ANALYSIS OF NOISY DATA

by

Donald B. Mclntyre

Pomona College

INTRODUCTION

In a normal day's trading, the stock of a
single company varies erratically in price. While it
is true that this variation is sometimes obviously re-
lated to announcements of financial, political, or
military actions, the short term fluctuations are
usually dependent on a multitude of minor causes
(in themselves of no lasting importance) that obscure
the general pattern of the market. |f a smooth curve
is drawn to approximate the data, without necessarily
passing through any individual point, the background
noise is filtered out and the trend can be seen more
clearly: price is then considered as a simple function
of time alone.

In the more complex models of multivariate
statistics, the dependent variable is treated as a func-
tion of more than one independent variable; and the
case we are to consider is the mapping problem in
which a measured quantity (y) varies with map coor-
dinates (u, v), and possibly with elevation (w). First
applications were to geophysical (gravity) maps of
areas where the regional effect could be assumed to
be given by

y'=a+b.u+c.v

This is the equation of a plane; and, because no
powers higher than unity are involved, it is a first-
degree trend surface. If Y; is an observed value and

y; is the predicted value at the same locality, then

the residual (yi - yl‘) estimates the local effect; and

this may be what is of interest. Thus, trend-surface
analysis can szparate two factors when it is known
that one (the regional trend) is simple and the other
is superimposed upon it. On the other hand, if the
local effects are considered to be noise and hence of
no immediate interest, then the trend surface -- like
the economic trend -~ is an expression of the mean=-
ingful part of the raw data. This is the aspect of
trend-surface analysis that we are to consider here.
If in this sense the computed surface does
represent the data, the map has been expressed as an
equation; and this is of great importance as a partial
solution to the problem of storing maps in digital
form. Whether this is possible in practice depends on
the complexity of the pattern, scale considered,
noisiness and distribution of the data, and computing
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power available. It should be noted that the word
trend implies a simple pattern, and one would ex-
pect a trend surface to display a general tendency
for the values to change in particular directions.

If the surface is a complicated one it loses this pro-
perty; but the principle of fitting a smooth surface
(not necessarily passing through the individual data
points) is unchanged if the surface is made more com-
plex, and the term trend surface is used even when
no general tendency is evident.

LEAST-SQUARES CRITERION

The fitting of a trend surface is an extension
of regression procedures from two (y, x) to three
(y, u, v) or four (y, u, v, w) dimensions, and poly-
nomial equations in the independent variables are
normally used. The highest power to which u and v
are raised is the degree of the polynomial; and, un-
less specifically stated otherwise it is assumed that
all cross products are included. As in standard me-
thods of interpolation, no theoretical meaning is
sought in the form of the equation or in its individual
terms. The justification is the practical utility of
the results, and the preference for polynomials is
based on the extension of the mean and the simple
linear model, and on the straightforward algebra
involved. Other forms can be developed for special
cases, but it is doubtful whether an ad hoc approach
is worth the trouble and computing costs that would
normally be involved. If, as with chemical analyses,
the data must lie within a given range, it is usually
satisfactory to prescribe limits and, where the trend
surface goes out of bounds, admit that the data are
inadequate .

The criterion for best fit must be decided
upon before the coefficients can be computed, and
a common approach is as follows: consider each
value (yi) as consisting of a meaningful part (yl' --
the value on the trend surface) plus noise (yi—y; = ei);
and suppose that the noise is compounded of many
small independent parts each of which has an equal
probability of being positive or negative. Then the
probability of an error between e, and e +d.y s

Pi = k— e_-k ei2 . dy
where 2 Vi 2
k“=1/2¢



Different surfaces give different predictions (yi), and
it seems reasonable to accept as the best surface that
one making the observed values (yi), most probable.

The probability of n independent events all occurring
together is the product of the individual probabilities;
hence

2 q

= constant e_k r

P ei2

total N
which is a maximum when X(y, - yi')2 is a minimum.

This is the least-squares criterion, and for its justifi-
cation in terms of maximum likelihood, it is necessary
that the data points be independent and that the
residuals (noise) be normally distributed about the
surface. But, if these conditions are insisted upon,
we must exclude the attempt to separate regional and
local effects; for, if the latter are meaningful, they
will not be normally distributed. And, if the loca-
tions of data points are independent, they will be
clustered, so that some important areas will be omit-
ted from the sample. Moreover, this clustering may
involve serial correlation (Southworth, 1960; Agter-
berg, 1965), and hence lack of independence, of
the values measured. In my experience, it is neces-
sary to supplement a random sample by points as stra-
tegic locations; for a bad distribution is likely to be
a more serious consideration than is defense of the
applicability of the principle of maximum likelihood.
It should a'so be remembered that Gauss himself
justified the least-squares method in a different way
and without any assumptions concerning normality:
namely, the coefficients are to be those unbiased
estimates whose sampling variance is minimal

(Plackett, 1949).

COMPUTATIONAL PROBLEMS

The steps involved in the computer program
are as follows: (i) accumulation of the sums of pow-
ers of the coordinates, and of their crossproducts;
(ii) arranging these values into a matrix; (iii) invert-
ing the matrix; and (iv) solving for the coefficients.
The first and last of these are trivial, but because
the matrices are large intermediate steps are not. If
all crossproducts are included, the number of co-
efficients is related to the degree of the polynomial
surface as follows:

2
Ny .y = 1+3/2d+1/24
1 +11/6d+d?+1/6d

My, v,w
The corresponding matrix has q2 terms, and in double
precision this means 2q4 computer words.

The instructions for building a large matrix
may occupy more space in the memory of the com-
puter than the matrix itself does; and the execution
time may also be appreciable. The reason is that
each element has to be individually placed; except
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that the matrix is symmetric, the pattern is not a
simple one. Moreover, high-level languages, such
as FORTRAN, are not designed for this purpose, and
lack the ability to look far enough ahead to do an
efficient job. For instance the value to be stored
may already be in the accumulator, but the com-
piler does not take advantage of this, and a redun-
dant instruction to load the accumulator is inserted.

The only way of solving this problem is to
write an assembly language program that makes use
of the features of the particular computing system.
But such programs are very tedious to write. | have
done this in practice by writing a preliminary pro-
gram that computes all necessary addresses and gene-
rates the required source program. Unfortunately,
such programs are dependent not only on the parti-
cular machine but on the particular operating system
that controls it. Thus, on the IBM 7094 at Western
Data Processing Center, | had to change from an
older system in which arrays were stored downwards
to a newer one in which they were stored upwards;
and storage for double precision numbers changed
from separate arrays for the more and for the less
significant words to an interleaved mode that per-
mitted use of double-load and double-store instruc-
tions. But the gain is great: e.g., a FORTRAN
subroutine, which required 8371 36-bit words for
the instructions to build a 45 by 45 double-precision
matrix, was replaced by a FAP subroutine of only
1231 words. | am now using a general routine that
writes programs for building any matrix in powers
and cross products of u, v, w (in either single or
double precision) for IBM System 360.

The other programming problem is the main-
tenance of significant figures during the inversion
of a large matrix; and again the routines should be
written in assembly language. | use a very efficient
double-precision routine that occupies fewer than
500 bytes (125 words). But most important of all is
to insure that the raw data are well scaled (for high
powers will be generated), and that the matrix is
further scaled by making use of the property that its
elements tend to increase in size towards the bottom
right-hand corner (Mandelbaum, 1963; Mclntyre,
1963). When high-order surfaces are involved, it
is difficult to maintain significant figures when short
cuts of the form

Zyz-ch—bey

are used to compute the residual sum of squares. |t
is safer to compute this quantity from the definitional
form; and this procedure also has the advantage that
the individual residuals can be stored on tape for
subsequent plotting or for testing the assumption that
they form a normal distribution.

EVALUATION OF NOISE

The most common sources of noise in quanti-
tative mapping arise from lack of precision in the



analytical or measurement technique and form de-
fective sampling procedures. Sometimes, as at seq,
the location is in error; but it can usually be assumed
that the coordinates u, v, w are independent varia-
bles without appreciable error. Composition of
ground water gives an example of dependent variables
that may change rapidly with time; so that, if the
survey of a basin takes several months or years to
complete, the conditions will not have been con-
stant, and a high noise level results. In this case

it may be essential to plan the work so that the area
is covered in a shorter time, even if this is at the
expense of the number of sampled points.

Usually there is a hierarchy of nested vari-
ances that control the precision, and it is essential
that the variances be analyzed so that it is known
where the largest contributions arise (for examples
see Baird, MacColl, and Mcintyre, 1962; Mclntyre,
Welday, and Baird, 1965; Baird, Mclntyre, and
Welday, 1967). Because of the peculiar arithmetic
involved by additivity of variances, one large stan-
dard deviation will dominate many smaller ones.

The common dichotomy between laboratory and field
work should be minimized; for noise can be genera-
ted at any level, and the anthropomorphic term
error can be misleading when the cause is a natural
variation in the material sampled.

If each station is represented by at least two
samples, and it can be assumed that the variance on
the scale of a collecting station is approximately
constant, a pooled estimate of total variance within-
stations can be determined. This can provide the
standard necessary for judging the significance of
variance between-stations. However, when we con-
tour a map, we expect each data point to be more
or less representative of an area much larger than a
single collecting locality. It is as if each locality
could be expanded until the whole is subdivided into
polygonal domains with a single point in each. But
we have no degrees of freedom for estimating the
variance within these domains. A possible solution
to this problem is offered if the sum of squares of the
residuals appears to approach a constant value as
the degree of the surface is increased; for it seems
reasonable to suppose that most of the meaningful
part of the data has then been incorporated in the
trend surface, so that inclusion of further terms in
the equation does little to improve the fit.

It is very likely that some of the terms in a
high-order polynomial contribute little to the per-
centage sum of squares accounted for, and it is per-
haps appropriate to examine the contributions of
various coefficients. However, no coefficient can
be deleted without an effect on all the others; and
the computational time required for the permutations
of a complete stepwise regression seems unjustified -=
especially because we are not seeking physical sig-
nificance in the individual coefficients (see, however

Mandelbaum, 1963). On the other hand, if we
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carry redundant coefficients, we cut down the num-
ber of degrees of freedom; for even when a coeffi-
cient is known a priori to be zero, if an estimate is
computed from the data then the number of degrees
of freedom must be reduced. Perhaps this helps to
offset an overestimate of degrees of freedom result-
ing from a nonideal distribution of data points. As
an extreme example, if 100 coincident or collinear
points are used to fit a plane, we will not have 97
degrees of freedom for its attitude.

Although the least-squares criterion does
not require any assumption of normality, tests of
significance usually do. Fortunately it seems that
most tests are robust, i.e. departure from normality
is not critical. What may be more important is
possible correlation where independence is assumed,
and it is difficult to test this. Formal evaluation of
trend surfaces invites a variety of approaches, and
this is an area of current research interest (see for
example, Krumbein, 1963; Krumbein and Graybill,
1965; Merriam and Sneath, 1966a, 1966b; Mandel-
baum, 1966; Baird, Mclntyre, and Welday, 1967).
However, even in the ideal case -- where the errors
all have zero mean, are uncorrelated, and are nor-
mally distributed -- it is easy to show that a high-
degree surface can give a significant improvement
when lower degree surfaces do not; the plot of re-
sidual variance against complexity of surface is not
necessarily a smooth curve.

AUTOMATIC CONTOURING

Closely connected with the computation of
trend surfaces is the problem of automatic contouring
-- particularly when the data are randomly distributed
and noisy. In approaching this problem, it is impor-

. tant to recognize that a plotter can only be directed

to draw straight lines, and consequently the map must
be divided into domains in which the surface is taken
as planar. | do this by constructing a square grid

and dividing each square into four triangles. The
contours within any triangle can then be determined
as straight lines, and the pattern of contours will be
consistent over the whole area. Rectangular, hex-
agonal, or curved grids can be used, but | have found
no occasion to prefer these patterns to the square grid,
which is computationally convenient.

If a trend surface is to be contoured, the
grid points can be computed from the equation of the
surface; otherwise the first problem is to construct the
grid. Obviously, a grid point should be determined
from the data points nearest to it, and these can be
found by drawing a circle around the grid point and
taking all data points that fall within it. But this
step must be carefully programmed, or else the time
required for execution will be excessive. Some pre-
liminary ordering of the data is advisable. If too few
points are found within the circle, either the circle
must be enlarged or the attempt to assign a value to



that grid point must be abandoned. So there are
many options to choose from, and few theoretical
principles to guide the choice.

There is some minimum number of data points
on which any grid point should be based, and it seems
reasonable to use a least-squares fit to these data
points. If a second-degree surface is fitted, that
minimum number is é; but in practice, because an
exact fit is not desirable when data are noisy or badly
distributed, a greater number must be insisted upon.
| have found 8 to be a satisfactory number in hun-
dreds of maps, mainly of gravity anomalies, water
quality determinations, and rock chemistry. If the
minimum number is made too large, then the area
around the grid point can often no longer be repre-
sented by such a simple surface, and consequently
results deteriorate. The optimum number depends on
the density of data relative to complexity of the sur-
face. In a gravity study of part of the Los Angeles
basin, a contoured map based on 18 stations was al-
most the same as one of the same area based on 282
stations; in this case the pattern was simple and a
small number of points sufficed to define it. This
situation is exceptional, and in most of my work |
find the data to be noisy and badly distributed.
Alignment and clustering of data points are sometimes
very serious, particularly with oceanographic and
mining data, and it should be kept in mind that a
high density of data along one line cannot make up
for absence of data off the line. For instance, one
oil company complained that the trend-surface pro-
gram would not work; but on investigation it emerged
that the data used consisted of collinear points.-

It is very wasteful to permit highly discrepant
grid points to Ke used for contouring, and yet it is
expensive to test the selected data points for orien-
tation. |If a value calculated at a grid point lies
inside the range of the data, or not more than + 20%
beyond that range, | include it; otherwise it is arbi-
trarily rejected. This criterion works well in practice.
Data near the grid point should count for more in
estimating it than data farther away, and consequently
| weight the data as a function of their distances from
the grid point. The weighting factor 1/d2 works well
but | have tried 1/d and 1/d° and the results are not
very different. This of course, depends upon the data.

In order to test the procedures that have been
described in the preceding paragraphs, a contour map
was drawn freehand (Fig. 1) and attempts were made
to reconstruct this map from sample data drawn from
it. Obviously the relative success of the tests is con-
siderably dependent on the nature of the surface to be
sampled; and, if the surface is made more complex,

a greater density of sample points would be required.
To define 100 random points on the map, 200 random
numbers were used and data values were assigned to
these points by visual inspection and interpolation.
The contour map (Fig. 2) generated from these data
seems to be a very satisfactory representation of the
original surface. For a second test, the first 50 and

48

the second 50 of these random samples were used
separately (Fig. 3, 4). As would be expected, the
resolution is poorer. But the closure of contours on
the west side of the map is remarkable when the
distribution of the sample points is taken into account.
The eighth-degree surface based on the 100 random
points is given in Figure 5. To minimize marginal
effects, the map was extended beyond its original
bounds and new data, based on a grid (squares of

1% area), were used for contouring (Fig. 6) and for
computation of an eighth-degree trend surface (Fig. 7).
Such exceptionally good data would justify a surface
of even higher degree.

The polygonization that can be detected on
these maps is due to the use of an open grid, in this
case with squares of area 1% of the whole. If this
feature is undesirable, or if the data points are to
be more clearly honored, a finer grid can be con-
structed; but this will cost more in computing time,
and spurious wiggles will be introduced. An alter-
native is to use an analog rather than a digital plotter.
Filtering of the data is possible when the magnetic
tape with plotting information is being read, and the
momentum of the plotter arm can be used to advantage.
| have experimented with this technique, but | nor-
mally use a digital plotter because of availability
and cheaper price. The polygonization is likely to
be no more than a psychological disadvantage if
data are noisy. '

If an analog plotter is to be used to smooth
the contours, it is necessary that the line segments
be ordered so that one contour will be continuously
followed across the map. And, even with a digital
plotter such optimization is an important factor,
because it costs as much to move the plotting head
with the pen up as with the pen down. In planning
an economic system for automatic plotting, it is
important to consider the relative costs of computer
and plotter time when balancing the sizes of the
various buffers that are required. | have used both
off-line and on-line plotters, as well as computers
at different centers (including teleprocessing); and
these different configurations call for very djfferent
systems The economit importance of systems analy -
sis is often overlooked.

The method of automatic contouring described
here results in a map that can be considered as a
moving average low-degree trend surface. It has
proved to have serious disadvantages when used with
badly distributed, noisy data. Ground-water data
tends to be of this sort, particularly when a consid-
erable time elapses before the sampling is completed.
Neighboring wells may be recorded with very differ-
ent readings. Contouring by hand then becomes very
subjective, and automatic contouring can give plots
that are almost useless. But even in such a case,
good results can be obtained by contouring a trend
surface fitted to the data as a whole. In many cases
| have found this to be the only way of extracting
meaningful information from noisy data. When one



is looking for a pattern in the residuals from a low-
degree surface, the signal to noise ratio is often low
and contouring correspondingly difficult. A useful
technique is then to fit a high-degree surface to
these residuals; and, because the residuals are writ-
ten on magnetic tape, it is very simple to read them
back for this purpose.

It has been suggested (Dodd, Cain, and Bugh,
1965) that apparently significant contour patterns
can be demonstrated with random data. My exper-
ience is that only highly subjective contouring is
possible; the automatic contouring program rejects
such data as too noisy to process; and trend surfaces
account for only a small percentage of the total sum
of squares.

SIMULATION OF SAMPLING

Trend-surface analysis combined with auto-
matic contouring provides a method for testing var-
ious sampling schemes by simulation. The geologist
can sketch a contour map of his preferred model, pre-
ferably one based on a pilot study; a high-degree
trend surface can then be fitted and contoured; and
this surface becomes the test model. Various samp-
ling schemes are used to extract data from the model,
and results are plotted for comparison with the orig-
inal. Costs of the different schemes can be weighed
against the success of results. In the program that |
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have developed for this purpose, random errors from
several normal populations can be introduced at
different levels to simulate actual analytical and
field variances.

Studies of this sort suggest that a random dis-
tribution of sampling localities may be better than
grid data under certain conditions. A particularly
interesting case was an attempt to digitize terrain
as recorded on a topographic map: random sampling
gave better results than either a grid or a selection
of points made by a skilled cartographer. This is a
topic that deserves further investigation.
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Figure 1.- Test pattern drawn by hand. Locations of 100 random points are shown. Values assigned at these
locations were based on visual interpolation from contours.
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Figure 2. - Automatic contouring of values at 100 random points of Figure 1. Grid squares are 1% of
total area, and each grid point is based on a minimum of 8 data points.
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Figure 3.- Automatic contouring of values at first 50 random points of Figure 1. Conditions for constructing
grid are same as in Figure 2.
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Figure 4.- Automatic contouring of values at second 50 random points of Figure 1.
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Figure 5. - Eighth-degree trend surface of same data contoured in Figure 2. Percent sum of squares accounted
for by surface is 97.7.
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Figure 6.~ Pattern of Figure 1 was extended beyond bounds of original, and values were assigned by eye
to intersections on grid of same mesh as used in Figure 2. This provides control around the edges;
169 points were automatically contoured, and this map is result for same area as shown in other
figures.
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Figure 7. - Eighth-degree trend surface of same data contoured in Figure 5. Percent sum of squares accounted
for by surface is 94.5 .
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APPLICATION OF RESPONSE-SURFACE ANALYSIS
TO SEDIMENTARY PETROLOGY

by

John C. Davis

Kansas Geological Survey

Factors controlling mineral distribution
patterns in sedimentary rocks are poorly understood,
in part because of a general lack of raw data., Few
studies have been made on the petrology of sedimen-
tary units which involve enough samples for adequate
descriptions of the units, Stratigraphers and petrog-
raphers have been content to characterize units
comprising thousands of cubic miles from a small
collection of samples gathered in a haphazard man-
ner along a narrow strip of outcrop. This situation
is unavoidable to a certain extent. Samples must be
taken where there are exposures or drill holes, and
there is a limit to the number of specimens that can
be justifiably analyzed in any study. Nevertheless,
geologists have been notoriously naive about the
statistical validity of most of their efforts.

Recent advances in analytical technology
have greatly increased rates at which samples may
be processed. It is now practical to make detailed
three-dimensional studies of rock units, involving
analysis of hundreds or even thousands of samples.
Unfortunately, this wealth of information is lost in
many cases because investigators are unable to im-
part data efficiently. A common practice for
handling sample information from measured sections
is to compute average values for each section, plot
these values on a map, and contour the averages.
Vertical variation, which may be more significant
than lateral variation, is completely lost.

In many cases, three-dimensional polynomial
response surfaces are effective for producing summary
representations of spatially distributed data. They
have been applied to studies of igneous plutons by
several workers (Peikert, 1962, 1963, 1965; Whitten
and Boyer, 1964) and to hydrocarbon distributions
in sedimentary rocks (Harbaugh, 1964; Smith and
Harbaugh, 1966). However, they have not been
widely applied to other stratigraphic problems.

Polynomial response surfaces are power-
function regressions in which independent variables
are geographic coordinates, Values of the regressed,
or predicted, variable form the response surface,
which may be expressed as a contoured map in the
case of two geographic variables, or a block dia-
gram when three geographic variables are used. In
the latter case, a solid enclosed by equal-value sur-
faces represents the functional approximation of the
regressed variable., Harbaugh (1964) refers to these
as "hypersurfaces.” In my investigations, | have
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called these isopleth envelopes, an extension of a
term first used by Krumbein and Pettijohn (1938).

Use of a polynomial expansion as an ap-
proximating function does not imply any belief that
sedimentary components are distributed according to
a power-function law. The power series is simply
the easiest of a number of approximating functions
to program and utilize in three dimensions, It seems
premature to attempt to fit simulation models to
composition data from sedimentary rocks, because
not enough is presently known about spatial relations
in sedimentary bodies to quantitize controlling
factors.,

RESPONSE SURFACE ANALYSIS OF THE MOWRY
SHALE

Polynomial response surfaces were used to
analyze mineral distribution in the Mowry Shale of
Wyoming. The Mowry is a black, highly siliceous
fine-grained Lower Cretaceous unit. Because of the
structural pattern of Wyoming, the formation could
be sampled at many localities which are widely
distributed geographically. Over 300 specimens
were analyzed by x-ray diffraction and other methods
for four components: quartz, feldspar, analcite, and
cristobalite., Approximately 500 additional analyses
of organic carbon from the Mowry were obtained
from Gulf Research and Development Company.
Clays were not quantitatively measured because the
highly silicic shale could not be adequately dis-
persed. No other constituents are present in signi-
ficant quantities.

Four problems were involved in the analysis
and presentation of this data:

(1) Representing the distribution of a single
component through space .

(2) Comparing the distribution pattern of
one component with another.

(3) Integrating organic carbon analyses
into the study even though carbon samples were
collected at localities different from those used for
the rest of the investigation.

(4) Measuring the amount of variation with-
in components and computing "goodness" of
representation of the distribution.

These problems were solved to varying degrees of
satisfaction by utilizing an experimental response-



surface program being developed at the Kansas Geo-
logical Survey. This program will compute regres-
sions having up to 35 terms, automatically generate
polynomial expansions up to 35 terms from one fo
seven original independent variables, compute error
measures and related statistics, and produce slice-
maps or graphs through any specified level. Any
coefficient may be deleted at will and the loss in
goodness-of-fit computed. Using this feature, a
"best" regression equation may be found in a manner
similar to the backward elimination procedure sug-
gested by Draper and Smith (1966). The procedure
requires the following steps:

(1) The maximum polynomial regression is
computed. With our program, the fourth order is
the highest that can be computed for three indepen-
dent variables.

(2) Each variable is successively eliminated
from the regression, but restored before elimination
of the next variable. The significance level of each
loss in regression sum of squares is computed for a

fixed value of F .
1, n-m-1

(3) Least significant variables are eliminated
and the regression recomputed. If the loss in good-
ness—of-fit is not significant, additional variables
with low significance may also be eliminated.

In practice, step 2 can be simplified by
examining the standard partial regression coefficients
and considering only those variables having low
values. Choosing the "least significant variables"
in step 2 requires subjective judgment; in this
example, individual variables having significance
levels below about 70% would not produce a signi-
ficant loss of fit in step 3. Variables having signi-
ficance levels of about 80% produced unacceptable
losses in fit when included in the deleted group.

Table 1 is an abbreviated ANOVA for re-
gressions fitted to organic carbon data from the
Mowry Shale. Computer-printed lists of deviations
from the final regression were examined for trends.
None were apparent, indicating that residual vari-
ation probably could not be reduced significantly
even if larger regression programs were available.

It has been suggested that deviations could be re-
gressed in an attempt to determine if significant
trends exist within them, but this approach has not
been tested.

The response surface corresponding to the
"best" regression in the ANOVA table can be shown
as an isopleth envelope, or as a series of slice-maps
through the sample space (Fig. 3). The latter
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illustration is useful for showing details, whereas
the generalized block diagram shows overall relation-
ships more clearly. -For comparison, Figure 2 is an
isopleth block diagram of the distribution of quartz
in the Mowry Shale and Figure 4 isthe corresponding
series of slice-maps. Isopleth envelopes on the
block diagrams enclose areas having above average
concentrations of constituents. The distribution
pattern of quartz canbe compared visually to organic
carbon distribution, even though raw data were not
derived from the same sampling localities.

One of the more pleasing aspects of this
example is that the response surfaces can be inter-
preted geologically. The lobate low extending from
the northwestern corner of Wyoming into the carbon
isopleth diagram corresponds to a tongue of tuff-
aceous sandstone in the upper Mowry. The gen-
erally arcuate patterns of the two isopleths reflect
influence of a transgressing clastic unit which over-
lies the Mowry and is in part laterally equivalent.
The main bodies of the two isopleth envelopes
coincide; rocks in this area contain abundant fine
quartz silt and large numbers of radiolarian tests
and algal (?) spores. High carbon and quartz
values apparently reflect specialized ecologic
conditions that prevailed through this region. In
southeastern Wyoming, carbon content increases
and quartz decreases because the sediments are
increasingly finer grained and richer in clay in this
direction.,

Polynomial response surfaces have proven
useful in this study and provide adequate, easily
represented discriptions of distribution patterns,
They are less successful for comparison on one
distribution to another; true multivariate tech-
niques, which consider many dependent variables
simultaneously, are needed. We are experimenting
with regressions of variables condensed by principal
components analysis, and with covariance analysis,
as possible approaches to this problem. Response
surfaces provide measures of variability, but as
already noted, examination of residuals needs
further development.
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Table 1.-Abbreviated ANOVA table for regressions on organic carbon data from the Mowry Shale.

3rd Order (20 terms) R=.68
S . 113.15
regression ...
F=16.5%*
Ssdeviqfion cees 131.18
4th Order (35 terms) R=.70
S . 123.82
regression ... .
F=11.0%*
sSdeviation ceese 120,51
Significance of 4th over 3rd order (15 terms)
S . 10.67 F= 2,15%*
regression «...
4th order without 11 nonsignificant variables I (24 terms) R=.70
SS . 122.47
regression ....
F=16,12%*
S'Sdevicxfion 121.86
Significance of deleted variables (11 terms)
S . 1.35 F=.36"
regression ....
Total Sum of Squares ... 244,33
1 2 3 2 3 3 3

Deleted variables are X3 , X]X3 , X]X3 , X2 , XZX3 , X]X3, X]X2, X2X3,
4 2

X3, X]X2X3, X%Xg , where X] is east-west dimension, X2 is north-south

dimension, X3 is depth below top of formation.
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Figure 1.- Isopleth block diagram showing distribution of organic carbon in Mowry Shale. lIsopleth envelope
encloses areas having > 2% carbon. Thickness of block is approximately 500 feet. Horizontal limits
of block coincide with Wyoming state boundaries.

Figure 2.~ Isopleth block diagram showing quartz distribution in Mowry Shale of Wyoming. Isopleth envelope
encloses areas having > 50% quartz. Dimensions of block are same as Figure 1.
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Figure 3.-Slice-maps at successive levels through Mowry Shale, showing organic carbon distribution in
percent. Large numbers indicate level of slice-map in feet below top of Mowry. Map at lower

right shows limits of control. Margins of maps coincide with Wyoming boundaries.
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Figure 4.-Slice-maps at successive levels through Mowry Shale, showing quartz distribution in percent.
See Figure 3 for explanation of diagrams.
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COMPUTER CONTRIBUTIONS

Kansas Geological Survey
University of Kansas
Lawrence, Kansas

Computer Contribution

—t

. Mathematical simulation of marine sedimentation with IBM 7090/7094 computers, by J.W.

Harbaualis ! 1R66 1 4  Bor Siire i cuapd - oty b s ol s : . $1.00

2. A generalized two-dimensional regression procedure, by J.R. Dempsey, 1966 . . . . . $0.50
3. FORTRAN 1V and MAP program for computation and plotting of trend surfaces for degrees 1

through 6, by Mont O'Leary, R.H. Lippert, and O.T. Spitz, 1966 . . . . . . . . $0.75
4. FORTRAN Il program for multivariate discriminant analysis using an IBM 1620 computer, by

4G Davisiand Rid wstmpsan, 1966, & Rl S it SRRl SR 1L et U N b e ey 510
5. FORTRAN IV program using double Fourier series for surface fitting of irregularly spaced

dgpe, By WER D Jddies, 1I0G6 1 . LD LT R el R G s e G e S S0 18
6. FORTRAN 1V program for estimation of cladistic relationships using the IBM 7040, by R.L.

BarkCher i 4966 AT RS SR 0L LR i [t S P USSR i e e $1.00
7. Computer applications in the earth sciences: Colloquium on classification procedures,

edifed byeBckl Mereiim, 1266 davosdin iG-St ool oved e, iU CHlg e el Lo D, $1.00
8. Prediction of the performance of a solution gas drive reservoir by Muskat's Equation, by

Apalohior Bacay 19dZma W bRl i Gt R bR UREEIR 1 T il e e iy e $1.00
9. FORTRAN |V program for mathematical simulation of marine sedimentation with IBM 7040

or 7094 computers, by J.W. Harbaugh and W.J. Wahlstedt, 1967 . . . . . . . $1.00
10. Three-dimensional response surface program in FORTRAN |1 for the IBM 1620 computer, by

R.J. Sempson and J.C. Davis, 1967 <1 2/l Lk, S SUES

11. FORTRAN 1V program for vector trend analyses of direc.:ﬁo.nol data, |;y \;V.T. Fc;x, 1267 wite 5200 8,00
12. Computer applications in the earth sciences: Colloquium on trend analysis, edited by D.F.
Meritin ind 29I Wo cleal  dR67 eyl Ui et - UG ORSIT RS e T T e i e T 60

Reprints (available upon request)

Finding the ideal cyclothem, by W.C. Pearn (reprinted from Symposium on cyclic sedimentation, D.F.
Merriam, editor, Kansas Geological Survey Bulletin 169, v. 2, 1964)

Fourier series characterization of cyclic sediments for stratigraphic correlation, by F,W. Preston and
J.H. Henderson (reprinted from Symposium on cyclic sedimentation, D.F. Merriam, editor, Kansas
Geological Survey Bulletin 169, v. 2, 1964)

Geology and the computer, by D.F. Merriam (reprinted from New Scientist, v. 26, no. 444, 1965)

Quantitative comparison of contour maps, by D.F. Merriam and P.H.A. Sneath (reprinted from Journal
of Geophysical Research, v. 71, no. 4, 1966)

Trend-surface analysis of stratigraphic thickness data from some Namurian rocks east of Sterling, Scotland,
by W.A. Read and D.F. Merriam (reprinted from Scottish Journal of Geology, v. 2, pt. 1, 1966)

Geologic model studies using trend-surface analysis, by D.F. Merriam and R.H. Lippert (reprinted from
Journal of Geology, v. 74, no. 5, 1966)

Geologic use of the computer, by D.F. Merriam (reprinted from Wyoming Geol. Assoc., 20th Field Conf.,
1966)

Computer aids exploration geologists, by D.F. Merriam (reprinted from the Oil and Gas Journal, 1967)

Comparison of cyclic rock sequences using cross-association, by D.F. Merriam and P.H.A. Sneath
(reprinted from Essays in Paleontology and Stratigraphy: R.C. Moore commemorative volume, edited by
C. Teichert and E. Yochelson, Dept. Geology, Univ. Kansas, 1967)
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