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Introduction

There are few things in life that we are certain about
(notably death and taxes), and water is not one of them.
Of course, there will always be water: some of it, some-
where, for some time. However, for planning purposes we
need to know how much water will be available, where,
and when. Furthermore, we need to know it with a high
degree of confidence in order to have reliable water
supplies. There are two ways to know these things: either
we measure or we estimate. But we do not always get to
choose; some variables we can measure (e.g., water levels)
and some we can only estimate (e.g., rock permeability).
In both cases there can be significant uncertainty as to the
actual values at a given time and location.

Uncertainty can be of two types: natural variability or
lack of knowledge. Most people are familiar with uncer-
tainty due to natural variability, as they evaluate weather
forecasts on a daily basis. River stages are another
example: we have years of daily records, but still cannot
predict future water levels much in advance. However,
rainfall, temperatures, and river stages are accessible to
measurement; when we measure them, we register their
natural variability. On the other hand, uncertainty due to
lack of knowledge relates to things that we cannot measure
but still affect the prediction to be made. This latter
category is very pervasive in subsurface hydrologic

“Doubt is not a pleasant state
but certainty is a ridiculous one.”

~—Voltaire

systems, because we can seldom measure the variable that
we need to predict. Examples include water yield and
aquifer permeability.

Regardless of their origin, we deal with all uncertain-
ties in a similar way. We only have two choices: ignore it
or recognize it. The price of ignoring it can be too high in
water-resources planning: we will fail to get the needed
quantity of water. A better choice is to explicitly recognize
all sources of uncertainty and evaluate their impact on the
variables that we need to estimate (e.g., water yield).
Because uncertainty and risk are companions, evaluating
uncertainty allows the assessment of risks and manage-
ment of its consequences.

Water-resources planners face an irreducible dilemma.
They realize that our knowledge of the hydrologic system
is fraught with uncertainties, but decisions still need to be
made. The key question is: Will those uncertainties affect
the decisions to be made? The only way to know is to
incorporate uncertainty into the analysis in a quantitative
fashion, by means of probabilities. This alternative is
always superior to neglecting uncertainty to avoid dealing
with it. By doing this, decision-makers can set policies
that meet acceptable levels of risk. In this chapter, I
advocate such an approach and show how this can be done
using available information.

Example: Uncertainty in Hydrologic Systems

A simple example will serve to illustrate some basic
ideas about uncertainty. Consider the daily discharges in
the Kansas River near Lecompton. Sixty years of daily
records, from 1937 to 1996, are summarized in fig. 9.1.
Figure 9.1A shows the histogram of relative frequency;
fig. 9.1B shows the cumulative relative frequencies (the
maximum value of 1 corresponds to certainty). The
relative frequency is the number of times a given value
occurs, divided by the total number of observations. Both
plots in fig. 9.1 provide a wealth of information: we
observe not only the range of possible values (from 185
cfs to 398,000 cfs [5—-11,270 m>/s]), but also the likelihood

of observing values in a given interval. We can use the
sample data to make inferences about particular events.
However, to do that we first need to assign a likelihood to
each event: this measure is called probability. In view of
the sample data it seems reasonable to make the relative
frequencies equal to the corresponding probabilities (this is
true in the limit of large sample size). In what follows, we
will use the term probability instead of frequency.

We wish to estimate the probability of a flood on any
given day. To do this we need to group the information in
fig. 9.1A into two exclusive events: smaller or larger than
a given threshold value. This is done automatically in fig.
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9.1B, which measures the probability of having discharges
less than a given value. For example, we can read in fig.
9.1B a probability of 80% of having discharges smaller
than 10,000 cfs. Because probabilities of complementary
events add up to one, we calculate a probability of 20% of
having a flood with discharges larger than 10,000 cfs.

This example shows all the basics of dealing with
uncertainty. Information can be grouped to display the
relative likelihood of events of interest, including mutually
exclusive events (e.g., discharges larger or smaller than a
given value). Probabilities can be read directly from the
cumulative distribution function (CDF) depicted in fig.
9.1B. The CDF is obtained by adding up the values of the
probability density function (pdf) depicted in fig. 9.1A.
Risk is the probability of an undesirable event. We can
either select the event and calculate the risk, as done
above, or set the maximum acceptable risk level and
determine the corresponding event. For example, in fig.
9.1B we read that a flood risk of 50% corresponds to a
discharge of 3,300 cfs.

0.1

0.08

0.06

0.04

0.02

pdf

0.0 A5T1) IR S S S R L) 110
102 10%® _10% 105 10°
Q (cfs)

TT T T T T T T T T T TTT

IERTIne 11 el

10+ 10%  10°
Q (cfs)

00 I (77|
102 10°

FIGURE 9.1—VARIABILITY OF DAILY DISCHARGES IN THE KANSAS
R1ver ar LECOMPTON. (A) Probability-density function (pdf).
(B) Cumulative-distribution function (CDF).

Example: Uncertainty in Ground-water Yield Estimates

Water-yield estimates are the result of a hydrologic-
balance calculation, based on the initial stock of water, the
additions (e.g., precipitation), and subtractions (e.g.,
evaporation). Since these quantities vary over time, so
does the water-yield estimate. This presents a potential
problem for defining unique yield values to guide policy
making. One possibility is to perform the balance calcula-
tions under long-term average conditions (which might
materialize or not). This might be appropriate for ground-
water systems with long response times, but not for
systems that are relatively fast to respond to changes in
major fluxes. For those systems, a better choice might be
to evaluate yield under conditions of relative drought,
when additions are much less than those during average
conditions; this is perhaps the simplest way to hedge
against the risk of running out of water.

Estimates of ground-water yield are always uncertain
because—unlike river stages—they are not directly
measurable. They are estimated using a model of the
hydrologic system, in terms of other variables that are
estimates themselves (by contrast, the yield from a
surface-water reservoir has significantly less uncertainty).

Here we use the term yield estimates to emphasize the fact
that they are inherently uncertain.

We will illustrate yield uncertainty by way of an
example. Consider an unconfined aquifer subject to
recharge from precipitation and otherwise not connected to
surface-water bodies; an underlying aquitard prevents
recharge from below. We wish to evaluate the feasibility
of pumping water from this aquifer for irrigation, on a
long-term equilibrium basis. This system can be described
at different levels of detail; here we choose the simplest
conceptualization using the lumped parameters shown in
fig. 9.2. The corresponding steady-state mass-balance
equation is

I+R-P=0 (eq.9.1)
where R is the recharge, P is pumping, [ is the regional-
flow input, and O the regional-flow output. Pumping is a
decision variable that can take one of three possible
values, P = {1; 2; 3}. Other available information allows
us to estimate values of I and R as follows (all numerical
figures in this example have the same arbitrary units):




I=1{9;10;11}
R=1{1;2;3}

mean [I] =10
mean [R] =2

These values portray uncertainty in a very simple fashion:
each variable can take on three possible values, all equally
likely (each one has a probability of occurrence equal to
1/3). Because in reality both / and R are continuous
variables, the three-point discrete representation can only
approximate their true variability. However, the math-
ematics are much simpler, and we can still illustrate the
same points. Figure 9.3 shows the relative frequency plots
for I and R. There is a direct equivalence with the plots in
fig. 9.1, but by custom the discrete functions have different
names: the relative frequency plot is the probability mass
function (pmf), and the cumulative one is the cumulative
mass function (CMF). Otherwise we use them in much the
same way as their continuous counterparts. The only
difference is that the CMF has sudden jumps at points
where the pmf is nonzero (fig. 9.3 shows vertical bars of
height equal to 1/3 that describe the pmf of both 7 and R).

We assume a realistic constraint on the regional flow
output O: due to an agreement with the authorities of the
downgradient groundwater management district, O cannot
be arbitrarily lowered to satisfy pumping needs. The
agreement recognizes that uncertainty is a fact of life, and
establishes a risk-based constraint: O has to equal or
exceed nine units with a probability of 80% or better (if we
assume that uncertainty is due to interannual variability,
this constraint is equivalent to accepting that O can be less
than nine units in one out of every five years, on average).
Here risk is the probability of failing to meet the standard
that O equals or exceeds nine units. Alternative standards
could be expressed in terms of other variables, such as
maximum water-level declines, maximum concentration of
dissolved solids at the pump, etc. The novelty of this
approach is that a (small) risk of noncompliance is
accepted to build some flexibility into management
policies. Knowing that the complement of risk is reliabil-
ity, and that both quantities add up to unity, we can see that
the above policy has a reliability of 80% and a risk of

20%.
R P
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FIGURE 9.2—BoXx DIAGRAM DEPICTING FLUXES IN AND OUT OF AN
AQuIFER: freshwater recharge (R), pumping (P), regional
ground-water flow input (/), and regional ground-water flow
output (0).
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Armed with this information, we can evaluate the
behavior of the system with and without pumping. That is,
using the above balance equation we calculate values of
the output O, corresponding to each value of pumping P.
Under predevelopment conditions (P =0),/+ R=0.
Because I and R can each take on three different values, O
can take on the following nine values: {10; 11; 12; 11; 12;
13; 12; 13; 14}. Each of the nine values is equally likely
(each has a probability equal to 1/9), but some of them
occur more than once. This can be easily accounted for by
counting repeated occurrences and adding their original
probabilities as shown in table 9.1; the resulting values of
O and their probabilities are summarized in the following
table and displayed in fig. 9.4B.

The corresponding cumulative probabilities, Prob[O <
x], are obtained by adding up the individual values smaller
than a given threshold, as shown in the last column of
table 9.1 and plotted in fig. 9.4A. We can use this figure to

TABLE 9.1—REPEATED OCCURRENCES OF VALUES OF CALCULATED
OUTPUT AND THEIR ORIGINAL PROBABILITIES.

X Prob[O =x] Prob[O<x]
10 1/9 0
11 2/9 1/9
12 3/9 3/9
13 2/9 6/9
14 1/9 8/9
A C
A A
1+ 1+
R
1 2 3 4 10 11
B
A DA
1, L 1
TILL "
» R
1 2 3 4 10 11

FIGURE 9.3—UNCERTAINTY IN THE ESTIMATES OF FRESHWATER
RECHARGE R AND REGIONAL GROUND-WATER FLOW INPUT I, as
measured with three-point probability mass functions (pmf)
and cumulative mass functions (CMF). (A) CMF of
recharge R. (B) pmf of recharge R. (C) CMF of ground-
water-flow input . (D) pmf of ground-water-flow input 1.
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evaluate the probability of compliance with the minimum-
flow requirement: the risk of having O less than nine units
has to be smaller than 20%. Examination of fig. 9.4A
reveals that the probability Prob[O < 9] is zero, because all
values are larger than nine units. Then, in the absence of
pumping, this constraint is easily met.

To analyze the impact of pumping, we simply repeat
the calculation of O for different values of P. The results
are displayed in fig. 9.5 and shown in table 9.2. From
table 9.2 we can read the probability of compliance with
the minimum flow requirement, for each value of P. We
observe that when P = 3 the requirement is not met, since
Prob[O < 9] = 3/9 = 33%. However, P = 2 is acceptable,
because Prob[0 <9]=1/9=11%.

Now examine the alternative of neglecting uncer-
tainty. We change the risk-based constraint to an equiva-
lent deterministic one: the output O can have a minimum
value of 10 units. We adopt the mean values for 7 and R (I
= 10; R = 2), and find out that a pumping level of P =2
units is acceptable. By coincidence this value is the same
as the one determined with full knowledge of uncertainty.
However, there is a large chance (1/3) that O will be less
than 10 units, as shown in table 9.2 and in fig. 9.5. In
other words, we are taking a risk of 33% of not meeting
the minimum-flow requirement, but we do not know it. In
general we can expect such apparently risk-neutral policies
to carry an even larger risk (called risk-neutral because
uncertainty and risk are neglected altogether). We can
easily see that this is true even in the above example.

A
Prob (O = x)

A

1/3_

2/9 L

1/9_

10 1 12 13 14
B
Prob (O < x)
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1+ —

2/3_

1

/3

0 [ 1 L 1 1 » O
10 11 12 13 14

FIGURE 9.4—UNCERTAINTY IN THE ESTIMATES OF REGIONAL GROUND-
WATER FLOW OUTPUT O IN THE ABSENCE OF PUMPING, a8
predicted with a steady-state mass balance model. (A)
Probability-mass function (pmf). (B) Cumulative-mass
function (CMF).

TABLE 9.2—PROBABILITY OF COMPLIANCE WITH MINIMUM FLOW
REQUIREMENT FOR EACH VALUE OF PUMPING (P).

P=1case: x Prob[O =x] Prob[O < x]
9 1/9 0
10 2/9 1/9
11 3/9 3/9
12 2/9 6/9
13 1/9 8/9
P=2case: X Prob[O =x] Prob[O < x]
8 1/9 0
9 2/9 1/9
10 3/9 3/9
11 2/9 6/9
12 1/9 8/9
P=3case: x Prob[O = x] Prob[O < x]
7 1/9 0
8 2/9 1/9
9 3/9 3/9
10 2/9 6/9
11 1/9 8/9
A (A) P=
11 Prob (O < x)
0 : > 0
5 10 15
A Prob (O<x) B) P=2
1
0 L L—» O
5 10 15
A Prob (O < x) () P=3
1}
0 L L—» O
5 10 15

FIGURE 9.5—UNCERTAINTY IN THE ESTIMATES OF REGIONAL GROUND-
WATER-FLOW OUTPUT O FOR THREE DIFFERENT LEVELS OF PUMPING
P, as predicted with a steady-state mass-balance model.
Cumulative-mass functions are shown for (A) P=1,(B) P =

2,(C)P=3.



Imagine that we improve the resolution of our estimates by
using more than three points to represent both / and R; the

result will be a CMF with more steps than those in fig. 9.5.
As we increase the number of points, the CMF approaches
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a smooth curve, while the mean value of O approaches 10
units; this process is schematically depicted in fig. 9.6. Ina
symmetric distribution, this means that there is a risk of
about 50% of having actual values smaller than 10 units!

Managing Uncertainty and Making Decisions

Review the essence of the previous two examples. We
recognized that each problem had a significant component
of uncertainty and chose to incorporate it into the analysis.
We tested a simple way to quantify uncertainty by means
of three-point discrete distributions for each uncertain
quantity. We learned how to graphically display informa-
tion about uncertain quantities in terms of appropriate
probability distributions (pdf and CDF for continuous, and
pmf and CMF for discrete quantities). We also evaluated a
risk-based constraint and made a decision based on it. In a
nutshell, we learned a proactive approach to uncertainty
management and decision-making under uncertainty.

The two examples illustrate that dealing with uncer-
tain quantities is not a complicated process. However, it
requires a sustained interest in exploring all possibilities,
and a determination not to discard information too early in
the process. By seeking and preserving the most informa-
tion, we can present more alternatives to the decision
makers, who can then make choices in terms of the risk
level that they deem acceptable. This approach is superior
to the alternative, where one makes a decision disregarding
uncertainty and then hopes that the actual risk will turn out
to be small.

On the other hand, there is a small price to pay to
incorporate uncertainty in analyses and quantify the risk of
alternative decisions. First, we may need to entertain more
complex models of the hydrologic system in order to
incorporate all possible sources of uncertainty. Second,
we need to seek more information to define a range of
values for each quantity (instead of a single estimate).
However, this is not hard to do: all we need are realistic
upper and lower bounds. With these bounds and a best
estimate for each quantity, we can easily conduct a three-
point uncertainty analysis, as demonstrated in the ground-
water-yield example.

There is more to decision-making under uncertainty
than the regulatory framework used in this example, where
we assumed that an acceptable risk level had already been
fixed. In most cases, decision-makers will evaluate the
tradeoff between risks and consequences, often consider-
ing a suite of decision variables. There are many ways to
combine disparate quantities in a single criterion, which
can then be optimized to reduce the risk of an adverse
event (cost-benefit analysis is a well-known example). An
important advantage of using such a unified framework is
that the impact of procuring additional information can be
measured in terms of whether it can change the optimal

decision (these are known as value-of-information
analyses).

This points to the fact that uncertainties are not
important per se, but only to the extent that they change
the decisions to be made. This is especially important in
water-resources management; we could be rather uncertain
about some aspect of the hydrologic system, but if this
uncertainty does not change the decision, it becomes
irrelevant for management purposes. For this reason it is
crucial to propagate uncertainties in the analysis all the
way to the decision-making step. This also makes life
easier because we do not need to decide a priori which
uncertainties are of scientific interest and which of
management relevance; this is decided automatically in
the framework of decision-making under uncertainty.

;} Prob (O < x)

A Prob(O<x)

A Prob(O<x

0 ' Ly 0
5 10 15

FIGURE 9.6—DISTRIBUTION OF REGIONAL GROUND-WATER-FLOW
ouTpPUT O FOR PUMPING P = 2. Schematic illustration of the
effect of refining the calculation by using more points to
represent the variability of both recharge R and regional
ground-water-flow input /.
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Uncertainties Affecting Ground-water-yield Estimates

In the ground-water-yield example, we used the
simplest possible balance model to determine an accept-
able water yield (pumping rate). This was useful to
illustrate the main concepts, but hardly realistic as to the
type and amount of information that would be needed in
practice. Dealing with more information requires hydro-
logic models that incorporate more details of the natural
system, and this means more sources of uncertainty. In
this section we review some of those sources and their
impact on ground-water-yield estimation.

A hydrologic model is always a simplified representa-
tion of the real system. Regardless of the scale of phe-
nomena included in the model, details at smaller scale are
not explicitly represented. If necessary they can be
accounted for as additional uncertain variables. For
example, spatial variability in aquifer properties can be
represented in reasonable detail at the scale of a well field,
but disregarded at the basin scale. Although average
property values can be used at the basin scale, we can still
preserve some information on its variability by treating it
as an uncertain variable.

Consider a ground-water model. Once the scale and
the spatial boundaries of the model are selected, we deal
with four types of quantities: inputs, outputs, parameters,
and decision variables. Decision variables , such as
pumping rates, are controlled by the decision-makers and
therefore carry no uncertainty. Outputs, such as water-
table elevation, are the measures of system response
predicted by the model; as we have seen, the model can
predict uncertainty in outputs if desired. Then, it is only
inputs and parameters that we need to assess as uncertain
quantities. In the rest of this section we discuss model
inputs and parameters as sources of uncertainty, and their
impact on the uncertainty of model outputs, such as water
yield.

Parameters of a ground-water model are related to the
geology: thickness and spatial extent of aquifers and
aquitards, lithology, porosity, permeability, etc. These
quantities are spatially variable and only accessible to
measurement at selected locations; at other locations we
may obtain estimates by interpolation. Such estimates can
then be treated either as perfectly known or as uncertain
quantities in the model. Depending on the scale of the
model, more than one spatially variable quantity may have
to be considered. For example, uncertainty in hydraulic
conductivity is relevant at the local scale (e.g., a well
field); at the regional and basin scale other variables, such
as formation thickness and horizontal continuity, com-
pound their uncertainty to make the aquifer transmissivity
an uncertain variable.

Figure 9.7 illustrates the natural variability in hydrau-
lic conductivity in an aquifer, obtained from core samples
(this distribution can also be interpreted as a measure of
the uncertainty at unmeasured points in the same aquifer).

The figure shows two distributions with the same mean
value but different spread about the mean. Depending on
whether the real distribution follows curve A or B, the
ground-water system will behave very differently, and
calculations that rely only on the mean value will miss
significant information. Curve B has a larger spread than
curve A, and therefore more extreme values on both ends
of the spectrum displayed in fig. 9.7; the left tail of curve
B corresponds to K values of smaller magnitude than the
smallest values in curve A, while the right tail represents
the reverse situation. The larger hydraulic-conductivity
values at the right tail in curve B will correspond to larger
velocity and shorter travel times than in curve A. This will
affect yield estimates when subject to water-quality
constraints. For example, if salinity transport from
underlying aquifers is of concern, the critical travel time
will be measured from a salt source to the point of interest,
such as a well or a gaining stream.

Inputs of a ground-water model are a diverse group of
variables. They include water fluxes in and out of the
model area, and water levels at reference locations such as
lakes and streams. Water levels are regularly measured
and carry little uncertainty, while fluxes are usually
estimated and may carry significant uncertainty. Inflows
to a ground-water model include incoming regional flow,
recharge from underlying aquifers, and freshwater re-
charge from precipitation. Outflows include outgoing
regional flow, discharge to streams, and pumping wells.
These model inputs reflect the influence of external
processes on the ground-water system, among them human
activities and climate.

1 4

P(K<x)

pdf

FIGURE 9.7—HETEROGENEITY IN HYDRAULIC CONDUCTIVITY K IN A
SINGLE AQUIFER. Two distributions with the same mean but
different standard deviation.



As discussed in Chapters 2 and 4, estimating ground-
water yield is highly dependent on estimates of ground-
water recharge and discharge change, which are subject to
considerable uncertainty even under stable climatic
conditions. Recharge estimates should reflect the natural
variability in precipitation and temperature, with seasonal
and multi-year cycles. Climate change would greatly
increase the uncertainty in recharge estimates; this effect
can be so dramatic as to overwhelm the uncertainty due to
natural variability under a stable climate (see Chapter 8).

Estimating uncertainty in climate-related variables
such as precipitation, temperature, and evapotranspiration
presents unique difficulties. The primary reason is that we
have to make inferences based on relatively short records
(a hundred-year-long record is short in terms of climate
processes). These records can capture at best some of the
natural variability, but they provide no information about
periods of qualitatively different climate. However, a
number of such scenarios can be obtained from climate
models and appropriately translated into ground-water
models in terms of freshwater recharge. For example, we
might want to examine the impact of an increase in
precipitation. Figure 9.8 displays one possible scenario,
where the whole distribution of mean annual precipitation
is assumed to have shifted by a constant amount (curve A
is the original distribution; curve B is the shifted one with
a larger mean value). Under the scenario represented by
curve B, wet years will have larger precipitation, while dry
years will not be as dry as earlier (both in comparison to
curve A). By conducting quantitative analyses like these,
we can incorporate a realistic source of uncertainty that is
not based on past data, but on analysis of possible futures.
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FIGURE 9.8—EFFECT OF CLIMATE CHANGE ON THE DISTRIBUTION OF
MEAN ANNUAL PRECIPITATION, assuming that all values are
increased by the same constant amount.
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This is a type of knowledge uncertainty that we can only
uncover through what-if analyses. The same applies to
changes in land-use and agricultural practices.

Uncertainties in model inputs and parameters translate
into uncertainty in those variables chosen as model
outputs. Examples include water-level decline, ground-
water discharge to streams, and salt content. Existing
records for such variables provide a summary of system
response, which can be useful to calibrate or constrain
model parameters. However, the response is not immedi-
ate and there is always a lag between changes in inputs and
the corresponding changes in outputs. Ground-water flow
and transport processes reflect changes in inputs, accord-
ing to their own characteristic time scales. Ground-water
flow adjusts to changes in pumping and/or regional
recharge within a time period that depends on the average
aquifer properties at the appropriate scale. For example, a
pumping well in the Dakota aquifer may take months or
years to generate a steady-state-capture zone (see fig.
4.18). An example at the basin scale is the depletion time,
which can be calculated with the linear-reservoir model
(see fig. 2.8).

Water managers need to assess typical time scales
such as these to characterize the transient response of the
system before evaluating management options. The next
step is to assess how much information we really have in
the corresponding records. In simple terms, even assum-
ing that the system is in steady-state, long records are
needed to reliably define statistics such as the mean and
standard deviation. However, the length of a time series is
not measured by the raw number of data points; instead,
what matters is the number of times that the time scale of
interest fits into the record length.

Let us consider an example under typical conditions
of central Kansas. If we are interested in the time scale of
freshwater recharge, we have to consider only the years
that had rather large precipitation events. This is because
there is no recharge in those years with small or average
precipitation events (Chapter 7 justifies this statement,
using detailed modeling of water percolation through soils
typical of central Kansas). As depicted in fig. B7.1.2, only
eight such events occurred in the 40-year period from 1953
to 1993, Thus, in terms of the variable of interest, the
records are five times shorter than originally thought! The
importance of this issue cannot be overstated, because the
flip side of extracting less information from the data is an
increase in uncertainty. This applies equally to model
inputs and outputs.
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Ground-water Management Under Yield Uncertainty

Being aware of the uncertainties discussed in the
previous section, we can now address some of the implica-
tions for ground-water-yield management policies in
Kansas.

First we should note that current ground-water-
management policies do not incorporate uncertainty
considerations, in contrast to regulations pertaining to
surface-water reservoirs (see Chapter 6). At the most basic
level this means that the risks associated with current
policies are unknown. We suggest that a first step in the
right direction would be to start working towards defining
risk-based policies. This will require a preliminary
assessment of the uncertainties involved in yield estimates.

A practical advantage of recognizing uncertainty in
yield estimates is that the concepts of safe yield or
guaranteed yield lose much of their meaning. This should
make easier the shift to a new management paradigm,
based on achieving an equilibrium yield sometime in the
future. Such a long-term equilibrium value will be highly
dependent on the level of risk that can be tolerated. By
openly dealing with risk, ground-water managers have to
periodically define the meaning of safe yield (by changing
either the risk level and/or the total ground-water appro-
priation). We can view this process as essentially deciding
how much protection is necessary or affordable, much the
same as individual decisions about insurance.

Assuming that the long-term objective would be some
sort of sustainable yield policy (defined as a new achiev-
able equilibrium), the preliminary appraisal will measure
the imbalance between the current level of appropriations
and the level required in the long term. In most of western
Kansas, it is obvious that the long-term appropriation level
will be significantly smaller than the current one. That
much can be said in general, and beyond this point there
will be many policy options to consider. Basically we will
have to decide how to go from point A to point B (the two
appropriation levels), and how much time we will allow
for the transition. However, as long as there is going to be
a transition, it will require a dynamic appropriation policy,
even if that means making changes every 10 or 20 years.
The financial impacts on current water-rights holders
could be minimized by placing a cap in the reduction of
rights that can be mandated (e.g., 10% every 10 years).
Such a policy would keep water rights relatively stable in
the scale of one or two generations (25 to 50 years), while
allowing the necessary corrections over a century or two.

Because of the many uncertainties involved, the
process of adjustment should be viewed as a learning

experiment in itself. Therefore, decisions will have to be
revised and updated periodically. Analyses will have to be
refined and more information procured to reduce the
overall uncertainty. One possibility would be to rank the
individual components of uncertainty in the analysis, and
then focus on reducing those that contribute the most to
the overall uncertainty. Such a ranking will have to be
case-specific and scale-specific to be both accurate and
useful to guide decisions. Repeating this process as new
information becomes available will lead to better estimates
of ground-water yield, reducing the associated uncertainty.

The above discussion cannot be construed to imply
that the uncertainties are so important as to preclude any
action until we obtain more information. On the contrary,
incorporating uncertainty is just a way to make the most of
the available information and evaluate actions in terms of
the risks involved. Parallel analyses, with and without
consideration of uncertainty, would often lead to the same
course of action. Take the example of the Ogalalla aquifer
in western Kansas, where continuous water-level declines
in the last few decades clearly indicate an overexploitation
of the resource. Yield estimates that neglect uncertainty
will predict diminishing yields of a given magnitude in the
future. Yield estimates that incorporate uncertainty will
predict a high risk of having yields of smaller magnitude
than the present ones. However, in both cases, the
recommended action would be similar, recognizing that
the system is rapidly moving towards depletion under the
current level of appropriations. Hence, this region is a
prime candidate for implementing a policy of gradually
decreasing total appropriations, starting now. The level of
reduction in appropriations can be adjusted periodically, as
explained above, as we learn more about the system by
monitoring its response to reduced pumping.

In other words, there are cases where a clean signal
can be extracted from the available information in spite of
the uncertainties. In those cases (e.g., the Ogalalla in
western Kansas), we can clearly define where the system
is today and the trend in the near future if we do nothing
about it. The anthropogenic impact on the Ogallala system
has been of such magnitude that the first-order picture is
clear, and uncertainties only add a confidence band to it.
We need to consider uncertainties in order to make
detailed hydrologic and economic calculations to support
specific decisions, but not to put together a one-page white
paper on the availability of ground water in western
Kansas.
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Concluding Remarks on Risk and Uncertainty

“If a man will begin with certainties, he shall end in doubts,

but if he will be content to begin with doubts, he shall end in certainties.”

The most basic idea presented in this chapter is that by
recognizing uncertainty we can make the most of the
available information, thus leading to better decisions.
Fortunately, dealing with uncertain quantities is not a
complicated process. It only requires a determination not
to discard information too early in the process, and a
sustained interest in exploring all possibilities.

Uncertainties enter the analysis when we evaluate not
only what we know, but also what we do not know about
the hydrologic system. The uncertainties inherent in
hydrologic characterization bring an element of risk to
water management and decision making, because there is
always a finite risk that the action taken will not produce
the desired result. Thus, risk and uncertainty are insepa-
rable companions.

Although natural systems can never be perfectly
known, decisions still need to be made. Uncertainty must
not paralyze decision making. On the contrary, if properly
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handled, it can only enrich and facilitate decision making.
At the most basic level, explicitly evaluating uncertainty
provides a wider range of possible scenarios or outcomes
from which to choose management actions. Ideally, full
consideration of uncertainty will result in the implementa-
tion of risk-based water-management policies.

The practical lesson of this chapter is that any value of
water yield has a risk of not being realized 100% of the
time. It is the job of water managers to reach a balance
between the desire for larger yields and the reality of larger
risks associated with them. The need to balance risks and
water yields is independent of the degree of uncertainty.
More studies can reduce some uncertainty but not all,
because part of the uncertainty depends on controlling
factors outside the systems studied, such as climate
change. Ultimately, the right answer to any yield-
estimation question is . . . We do not know for sure: it
depends on the risk that we want to accept.
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