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Numerical Solution of the 3-Dimensional Heat Flow Equation

ABSTRACT

A numerical differencing scheme is outlined that gives the
investigator a fast, accurate research tool. The scheme uses
an extrapolation routine coupled with a line solution technique
to solve the heat flow equation. The technique applies equally
well to line or plane symmetry: 2-dimensional as well as fully
3-dimensional problems.

Heat flow problems are commonly handled in an
analytical fashion, e.g., as in Carslaw and Jaeger
(1959) and Ingersoll, et al. (1954). However, many
problems in heat flow cannot be handled in a classical
fashion and various finite difference techniques must
be used. Explicit, successive over relaxation and al-
ternating direction implicit (ADI) techniques are
commonly employed differencing schemes used in the
solution of heat or fluid flow problems (e.g., see
Smith, 1965; Zienkiewicz, 1967; Carnahan, et al.,
1969; Von Rosenberg, 1969). Depending upon the
problem, various differencing forms are superior to
others in terms of computer time, accuracy, or gen-
eral ease of programming,

The primary purpose of this investigation was to
develop a differencing scheme that is fast, has a high
order of accuracy, and is simple to iterate provided
that the non-linear form of the heat flow equation is
the solution objective.

The differential equation of heat flow can be ex-
pressed as

e L LD ra-wed (1)
where
T = temperature (°F)
= time T
Q = heat generation rate per unit volume
Btu/L3-T

Cp = specific heat Btu/lb-°F
= density 1b/L3
= thermal conductivity Btu/T-L-°F

The Crank-Nicholson differencing scheme is used to
approximate (1). This scheme is unconditionally
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stable and has an error of
e = O (Ax?) 4+ O (Ay?) 4+ O (Aaz?) 4 O (ae2).

The resulting system of linear equations forms a tri-
diagonal matrix that is solved using the Thomas al-
gorithm (see, for example, Von Rosenberg, 1969). The
linear equations require two unknown values of tem-
perature at the n-1 time step, the unknown values of
temperature are extrapolated and the equations solved
for the n+1 time. The extrapolation routine used is
n+2 Ath*:
i,i,k ath-%
The computed value of temperature is compared to
the extrapolated value and if the differences are
greater than some epsilon, the computed value re-
places the extrapolated value and the computer solves
the linear equations again. This iterate term is com-
pared again and the iterations continue until the dif-
ference between two successive iterates is below
epsilon.
The difference equation is:

Tn+1
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and Ki, Kj, Kk are Kx(i,jk)> Ky(i,j,k)» and Kz(i,j, k) Yespec-
tively; and «y, «y, , are the thermal conductivities for
the x, y, and z directions in node (ijk). (C, p)ijx is
the specific heat times the density in node (ijk).
Defining:
N+
1,3,k ©

n

n+1
=% (T i,j,k)

PR +
1,3,k

(3)

and assuming (in this development) equal spacing in
each layer (Ax = Ay) and constant spacing in all
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directions, then:  axj = axj4

A5 = My
Azk=AZk+]

LIRS U B I (4)
AX, AX Ax2 T ay? T az?

and similar equations can be developed for spacing,
i—%, j+%, j—% k—%, k+¥% We also can define:

= 2Kis Ky

K,
W Ki+l + Ki

(5)

and here also similar equations can be developed for

conductivities at i—%, j-+%, j—%, k+%, k
For simplicity let

_/2

poo 1.
i T axZ T ay?

1
By = 27 (7)
) _2Ki+1 K
Axi”,i,k King Kiel + Ki (8>
_ _ 2Ki.1 Kj
Bk " N TR R (9)
2Kigq Ki
= = A4
TR T RO ) R—%‘jﬂ T (10)
2Ky K
R R AL (11)
K41 Ky
B aaken = Koo " Ry TR, (12)
FX -k, = 2K K
SRS R S RS (13)
_ 2 o)y,5,k
i,d.k T it (14)
. 204, 5,k
Gy,k = axhaz (15)

Substituting into equation (2), collecting like terms,
and simplifying yields:

A n+1 n+1 n+1 n+1
A T g Tk = A B, 5 (005 - TH 5 )
+ A X, n+1 n+l 1 n+1
R kT T T A D% 5ok (Ti5 .k 1.0t
B, EX, . n+l N AL n+1 n+l -
gk T = Mg = B g - T ) -
(16)
- A A, N =T -
i Mk Mg T + A B g, (1 Lk T Tien !
- A, n
Ay O 1,3,k (T1 Stk T T j.k) A DX ik (T 1,3,k 7 T i,3-1, K
- B, EX, . n. - n -
K5k Mg = THak) * B Py ok Tigk ™ Tk
n+1 n .
FELk (g Tak) - %5
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Letting G;;x equal all the terms on the right-hand
side except E;;x, equation (16) can be rewritten as
follows:

- T (AL AX + A, BX + A, CX + A DX

R T I T I P S
B B T B PR T B A O

] . (17)
n+ n+ n

i3,k A e Tk T Sk T Bk Tk
- A AX, . TM] - A, BX, n+1 - B, EX n+1

§ Mk T, gk T A B Tk T B B gk T ke

n+1
B Pk Tk

If we let all terms to the right of the equal sign equal

H;;x and define the coefficient of T}'; , as Del’, then:

Tn+]

n+1
- T, i,j-1,k

1! ’

T+l A, DX

K Del” + A CX_| Liak 1,3, kA

=Mk
(18)

The system of equations as presented in the form
of equation (18) is then solved using the Thomas
algorithm for tridiagonal matrices. (For explanation
of the algorithm, see Smith, 1965; Von Rosenberg,
1969.)

Introducing X and Y as coefficients in the Thomas
algorithm, we obtain:

1,3,k

n+1 - n+1
Ti,3-1,6 = Mo *Y

Tkt Y0 (19)

and substituting equation (19) into equation (18)
we obtain:

. h+l - n+1 n+1
SO T T Mk T A S g Taek T A P K T gk
- A DX 5k Vi (20)
. n+1 . .
solving for 775 | yields:
n+1 _ _ n+1
Tk =T Mg A D 5 Yo = A O 5 T k) (21)
Del = A L
letting ~ Del = Del” - A DK .\ X,
then:
n+1 n+1
gk T A g ik P A Mg Yo Mg (22)
De1
since
n+1 n+1
T =X, T. . +Y,
i3,k T3 i,d4,k 0 (23)
Xy = A O 5k (24)
e
Y.=A DX, ., Y., -H .
§TAD L3k :;—1 i3,k (25)
e
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After a solution for T*+! is obtained in a given
row, the next row in the same layer is solved. After
a solution is produced for each layer, the routine
proceeds to solve the next lower layer in the same
manner. This procedure continues until a complete
block of space is solved at the n-1 time step (see
Fig. 1 and 2). When a T»*1 time level is solved (the
entire grid is satisfied for some sigma), the time step
is increased as: At"+2 = ¢At*t1 where ¢ ranges from
1. to about 6. depending upon the boundary condi-
tions and spacing. Time is advanced as: Time*+? —
Timer*+! 4 Att+2, The T*+! values are substituted
into the T® array and new T**2 values are solved.
This procedure continues until either a predetermined
time span is satisfied or until the number of computa-
tion cycles is satisfied.

1,J,K=0

(K)+z

AANANANAN

ANANANAN

Ficure 1.—Coordinate and grid system used in the analysis.

A simple program using the preceding developed
coeflicients is available (Halepaska and Hartman,
1971) upon request.

The heat flow equation in rz geometry is

13 T d T _ aT
Fa—r(rKSF)+_§y_(K§j)+Q_Cp°5? (26)
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Ficure 2.—Solution block and coordinate system used in the
analysis.

Let u = In :—W, then equation (26) takes the form

e~ 5

3 (o Ay 4 3¢, 2T - T
?su(‘au%‘ Ky TU= oo

5
3y 3y

(27)

where u = dimensionless length

r, = some basic dimension (radius of the
source or sink term for example).

Use of the transformation on the radial part of the
differential equation allows the investigator to go
from line symmetry (r,y) to plane symmetry (x,y) in
an efficient manner. It also provides for equal grid
spacing in either plane or cylindrical symmetry.

The same procedures outlined in the differencing
of the 3-dimensional equation hold for equation (27).
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