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CHAPTER 1.  INTRODUCTION 
Martin K. Dubois and Alan P. Byrnes 
 
The Hugoton and Panoma fields represent a major resource for the companies that own 
leases, royalty owners, and the state of Kansas. Although these fields have been 
producing for over 70 years there is much that is not fully understood about the nature of 
original and remaining gas-in-place, distribution of lithofacies, and the properties of the 
rocks that control reserves and production. To be able to efficiently manage the field at 
the lease- to field-scale an accurate static and dynamic model(s) of the fields was needed. 
This report is a result of a collaborative, multi-disciplinary study (Hugoton Asset 
Management Project (HAMP)) conducted by the Kansas Geological Survey and industry 
partners from 2004 through 2006.  It follows a five-year study, the “Hugoton Project” 
(1998-2003) where the primary focus was on building a comprehensive geologic tops 
database.  In the last few years of the Hugoton Project a cellular geomodel for the 
Council Grove (Panoma) in Kansas (Geomod1) was built in collaboration with Pioneer, 
where Shane Seals provided PetrelTM modeling with the assistance of David Hamilton, 
SCM, Inc. Industry partners as well as KGS staff were encouraged by the results and the 
methods, and the workflow developed served as an initial template for the more 
ambitious HAMP models of the entire Permian gas system in Kansas and Oklahoma. The 
nine-industry partner HAMP, later expanded to ten (five from Hugoton plus five new 
participants), was begun in January 2004 as a two-year project.  Building an accurate 
static model for the entire Hugoton field (Hugoton and Panoma in Kansas and Guymon-
Hugoton in Oklahoma) became the primary objective in the Hugoton Asset Management 
Project (HAMP) with the goal of developing a model with sufficient detail to represent 
vertical and lateral heterogeneity at the well, multi-well, and field scale, that could be 
used as a tool for reservoir management.  
 
Importance of the Hugoton field study extends beyond the borders of Kansas and 
Oklahoma.  Both the knowledge gained and the techniques employed have implications 
for understanding and modeling reservoir systems worldwide that have similar geologic 
age, reservoir architecture, production characteristics, problems in determining water 
saturation, large data sets, multiple operators, or state of maturity.  The full-field model of 
the 10,000-mi2 (26,000-km2) reservoir area provides a detailed three-dimensional view of 
thirteen shoaling-upward cycles vertically stacked in a low-relief shelf setting. The nature 
of the model and its construction provide a good analog for similar thin, stacked-cycle 
reservoir systems including the Aneth field in the Paradox basin (Weber et al., 1994; 
Grammer et al., 1996), fields in the prolific Permian basin of west Texas (Dutton et al., 
2005), and the Khuff Formation in Gwahar and North fields in the Arabian Gulf 
(McGillivray and Husseini, 1992; Konnert et al., 2001).  Fine-scale cellular models are 
particularly important for modeling thin-layered, differentially depleted reservoir 
systems, and methods used in building the model demonstrate the construction of a 
cellular petrophysical model for a giant field.  The project also demonstrates the benefits 
of pooling proprietary geologic and engineering data in settings having multiple operators 
(Sorenson, 2005).  As the world’s giant fields mature, high-resolution modeling at the 
full-field scale in data-rich environments will become increasingly important. 
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Approach 

Building an accurate static model for the entire Hugoton field (Hugoton and Panoma in 
Kansas and Guymon-Hugoton in Oklahoma) was the primary objective in the Hugoton 
Asset Management Project (HAMP). The goal was to develop a model with sufficient 
detail to represent vertical and lateral heterogeneity at the well, multi-well, and field 
scale, which could be used as a tool for reservoir management including accurate 
prediction of remaining-gas-in-place.  This required that the model be finely layered (169 
layers, 3-foot (1 m) average thickness), and have relatively small XY cell dimensions 
(660x660 ft, 200x200m; 64 cells per mi2). These criteria resulted in development of a 
108-million cell model for the 10,000-mi2 (26,000 km2) area modeled.  Although 
lithofacies geobodies tend to be laterally extensive, covering multi-section to township 
scales, small XY cell dimensions were required to allow the extraction of portions of the 
model for local reservoir simulation.  Water saturations needed for original gas-in-place 
(OGIP) determination were estimated using capillary pressure methods and not 
measurements from induction wireline logs because accurate determination of water 
saturations using conventional wireline logs is complicated by deep mud filtrate invasion 
for typical drilling programs (Olson et al., 1997; George et al., 2004).  Material balance 
methods for estimating OGIP are equally problematic because the reservoir is layered and 
differentially depleted and wellhead shut-in pressures (WHSIP) are strongly influenced 
by high-permeability interval properties, and do not accurately represent all interval 
pressures; and pressure data for individual layers are sparse. The Hugoton geomodel may 
be the largest model of its kind (lithofacies-controlled, property-based water saturations).  
 
The general workflow for developing the Hugoton geomodel shown in Figure 1.1 can be 
characterized as comprising four principal steps: 1) Compile data for stratigraphy 
(formation tops) and core lithologic properties, petrophysical properties, wireline logs, 
fluid properties, and production and analyze data to certify that the data meet quality and 
accuracy criteria; 2) Define properties/develop algorithms including training a neural 
network and predicting lithofacies at node wells and developing wireline-log analysis 
algorithms (including corrections) and petrophysical properties algorithms (e.g., 
permeability-porosity (k-φ), capillary pressure (Pc), relative permeability(kr) ), 3) 
Develop databases of properties for use in geomodel construction including lithofacies, 
porosity, tops, free-water level at node wells, and 4) Develop geomodel by constructing 
3-D cellular model using tops database, populating node-well cells with lithofacies and 
porosity database properties, upscaling properties as appropriate and populating 3-D 
model with basic properties, then utilizing petrophysical algorithms, populate 3-D 
cellular model with lithofacies-specific petrophysical properties and fluid saturations. Not 
illustrated in the static model workflow diagram, are reservoir simulations performed on 
upscaled portions of intermediate and final static models in different geologic settings. 
Simulations were performed concurrent with model building and served to validate the 
static model properties and model workflow. Chapters of this report summarize key 
aspects of the workflow as discussed below. 
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Background and Prior Work 
 
The combined Kansas Hugoton and Panoma, Texas Hugoton and West Panhandle fields, 
and Oklahoma Guymon-Hugoton, with an estimated ultimate recovery of 75 tcf (2.1 
trillion m3) gas (Sorenson, 2005) represent the largest gas field in North America. 
Covering southwest Kansas and portions of the Oklahoma and Texas panhandles; these 
fields are situated in the Hugoton embayment of the Anadarko basin (Figure 1.2).  Since 
discovery in 1922 and development in the 1950’s, 35 trillion standard cubic ft gas (tcf, 
963 billion m3) have been produced from >12,000 wells over 6200 mi2  (16,000 km3) in 
the Kansas and Oklahoma portion of the Hugoton field (Figure 1.3).  Unless otherwise 
noted, the term “Hugoton” in this report combines the Hugoton (Kansas), Panoma 
(Kansas and Oklahoma) and Guymon-Hugoton (Oklahoma) fields. Production is from the 
lower Permian Chase and Council Grove Groups (Figure 1.4) containing 13 stratigraphic 
intervals each comprising a wide range of lithofacies including continental and marine 
siltstones to sandstones, mudstone to grainstone limestones, fine- to medium-crystalline 
dolomites, and phylloid algal bafflestones (Figure 1.5).  In most areas inside the Panoma 
field boundary, the gas column is continuous between the two stratigraphic intervals 
(Pippin, 1970; Parham and Campbell, 1993) and reaches a maximum thickness of 500 ft 
(150 m) in the west-central part of the study area.  One exception may be in a relatively 
small portion of the field near the west margin in Morton County, Kansas, which is 
described by Olson et al. (1997) as being compartmentalized by faults. In Oklahoma, 
production outlined as “other Council Grove” (Figure 1.2) is from intervals in the 
Council Grove that are up to 300 ft (100 m) below the lowest perforations in the Chase.  
The reservoir is shallow, with depth to the top of the Chase ranging from 2100 to 2800 ft 
(640-850 m) and lower and upper productive limits, referenced to sea level, of 
approximately +100 ft (+30 m) on the east and +1250 ft (+380 m) on the western updip 
margin, respectively.  Original wellhead shut-in pressure in Kansas was 437 psi (3013 
kPa) (Hemsell, 1939), significantly less than half of a seawater pressure gradient, and 
similar, anomalously low initial pressures were recorded in Oklahoma (Sorenson, 2005).  
Average 72-hour wellhead shut-in pressure in Kansas in 2003 was 32 psi (221 kPa). 
Annual production in 2004 was 265 billion cubic ft (BCF, 7.5 billion m3).  Early 
completions in the Chase were commonly open hole or used a slotted liner followed by a 
large acid treatment.  After 1960 typical completions commonly involve casing, 
perforating and acidizing as many as six zones separately, followed by a large hydraulic-
sand-fracture treatment, sometimes exceeding 200,000 lb (91,000 kg) of sand, to the 
entire perforated interval (Hecker et al., 1995).  
 
Although much has been published on the Hugoton over the 70-year life of the field, 
most of the studies have been broad in scope (Hemsell, 1939; Mason, 1968; Pippin, 
1970). Sorenson’s (2005) recent paper presents a paleostructural and pressure history for 
the reservoir system stretching from the Texas Panhandle to west-central Kansas and 
provides a good recent overview of the field history and prior work. Detailed studies 
involving reservoir characterization have been limited geographically and 
stratigraphically.  For example, Siemers and Ahr (1990) investigated the Chase in the 
Oklahoma panhandle, Olson et al. (1997) studied the Kansas Chase, and Heyer (1999) 
focused on the Council Grove in a small area of the Oklahoma Panhandle. Following the 
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Kansas Corporation Commission proration order permitting a second well in each unit, 
several studies on reservoir characterization (Seimers and Ahr; 1990; Caldwell, 1991; 
Olson et al., 1997) and reservoir simulation (Fetkovitch et al., 1994; Oberst et al., 1994) 
were published.  The work by Fetkovich et al. (1994) and Oberst et al. (1994) represent 
the only two reservoir simulations published to date, and neither included the Council 
Grove in their simulations.  Past studies by industry have been generally confined to 
areas where they have assets and data.  This report provides details of the most 
comprehensive reservoir characterization and simulation effort to date, both 
geographically (entire field) and stratigraphically (the entire reservoir system, Chase and 
Council Grove Groups). 
 
 
Report Organization 
 
Figure 1.1 illustrates the general workflow process involved in construction of the 
Hugoton geomodel. This report is generally organized to cover key aspects of tasks and 
products involved in the workflow. We have attempted to write each chapter in a manner 
that it can stand alone, but in some cases the reader will be referred to other chapters or 
the subject is best understood in context of other chapters or the entire body of the report.   
 
Chapter 1. Introduction 
A general overview of the project and this report, including some historical context, 
purpose of the study, problems, and approach is provided.  Also covered is the 
importance of the field-wide geomodel as an example for similar layered reservoir 
systems worldwide.  Earlier work by numerous authors is given a brief, but 
comprehensive review. 
 
Chapter 2. Geologic Setting 
This chapter discusses the regional geologic and tectonic history of the Hugoton 
Embayment of the Anadarko basin with emphasis on the large-scale geometry and 
sedimentation pattern on the low-relief Hugoton shelf.  A general description by prior 
authors of the “giant stratigraphic trap” is also provided. 
 
Chapter 3. Depositional Model 
More detailed context for deposition of the 13 marine-continental, carbonate-siliciclastic 
cycles that compose the Hugoton reservoir system is developed, including evidence 
supporting a 1 ft/mi slope and a maximum of 100 ft of relief on the shelf. The influence 
of climate, shelf geometry, glacially forced sea level oscillation and their changes through 
Wolfcampian (icehouse towards greenhouse conditions) on lithofacies stacking patterns, 
lithofacies distribution patterns, and depositional models is presented.   
 
Chapter 4. Reservoir Characterization  
This chapter covers the models/equations used in geomodel development including the 
digital lithofacies classification system, petrophysical properties equations (e.g., routine 
and in situ properties, lithofacies-specific permeability-porosity relations, capillary 
pressure relations, and relative permeability relations), and wireline porosity-log analysis. 
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Chapter 5. Technology to Manage Large Digital Datasets 
This chapter describes data management and the automated analysis tools developed to 
handle the large databases used for lithofacies-prediction and computation of porosities 
corrected for mineralogical variations between lithofacies and for washouts. Tools 
facilitated the efficient handling of large data volumes, and the ability to perform the 
multiple iterations required to test preliminary and intermediate algorithms and solutions. 
 
Chapter 6. Static Reservoir Model 
Building an accurate static model for the entire Hugoton field was the primary objective 
in the study.  This chapter discusses the overall workflow, and provides details on the 
construction of the lithofacies, porosity, and petrophysical models not covered in other 
chapters (e.g., lithofacies prediction using neural networks, lithofacies and porosity 
variogram analysis, and permeability upscaling). The resulting lithofacies model is 
examined in detail. 
 
Chapter 7. Water Saturations and Free Water Level 
Due to frequent deep filtrate invasion during drilling water saturations estimated from 
wireline logs are problematic. Aspects of water saturation determination including the 
capillary-pressure properties of Hugoton rocks, the relationship between saturation and 
free water level, the FWL surface geometry, and sensitivity of the estimated water 
saturations and original-gas-in-place (OGIP) to capillary-pressure and FWL uncertainty 
are discussed. 
 
Chapter 8. Reservoir Communication 
This chapter analyzes the relative contribution of lithofacies/beds within defined 
productive intervals and the nature of communication between intervals. It further 
examines the potential and evidence for communication between intervals 
(formation/member) and groups (Chase/Council Grove) by natural causes and hydraulic 
fracture stimulations.   
 
Chapter 9. Reservoir Simulation  
Successfully matching pressure and production history at the well scale was an effective 
and important method for testing the validity of the static model(s) constructed. This 
chapter reviews the four simulation studies conducted, one single-well and three multi-
well simulations, covering areas as large as 12-mi2 and including up to 38 wells. Model 
inputs, pressure and production histories, model properties, and adjustments required of 
the model to acquire a match are documented through the entire simulation process in 
each case study.  
 
Chapter 10. Original and Remaining Gas in Place 
A volumetric model of original-gas-in-place (OGIP) at the well- to field- scale is an 
outcome of the Hugoton cellular geomodel and one of the main products sought by 
HAMP. Model OGIP is compared with cumulative gas produced at varying scales and 
validates the static model and free-water-level elevation for most areas.  Pore volumes 
(PV), hydrocarbon-pore volume (HCPV), and ratio of HCPV/PV by lithofacies illustrate 
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the relative contribution by the 11 lithofacies. Remaining GIP by zone is examined 
through analysis of simulation results and is discussed qualitatively with respect to the 
field static model. 
 
Chapter 11. Conclusions 
In the final chapter we provide a comprehensive review that includes key findings, a 
detailed summary of the processes involved in building the model, discuss specific 
findings at the workflow component level, and suggest additional work that could 
improve the model and topics deserving further investigation. 
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Figure 1.1. Workflow for field-scale Hugoton model.  Workflow can be divided into three 
broad tasks: 1) gather and qualify data; 2) process data to provide basic geomodel input 
files (Develop/ Define/ Properties/ Algorithms); and 3) build the geomodel.  The figure 
suggests the process is linear, while in reality, there are more feed back loops, multiple 
iterations at sub task level, and testing and validation at smaller scales. 
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Figure 1.2. Regulatory boundaries for Permian (Wolfcampian) gas and oil 
fields, Kansas, Oklahoma, and Texas.  Wolfcampian structure in feet, after 
Pippin (1970) and Sorenson (2005). 
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Figure 1.3.  Gas production from the Wolfcampian (Hugoton and Panoma fields) in the 
Kansas portion of the study area through 2004.  The Oklahoma portion of the study 
area produced 7 tcf  (198 billion m3) Wolfcampian gas in the same time period that 27 
tcf (765 billion m3) was produced in Kansas.  The spike in production beginning in the 
early 1980’s was due to infill drilling the Hugoton field in Kansas. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.4. Stratigraphic column, Hugoton field area with the names of gas fields in 
Kansas and Oklahoma adjacent to the intervals from which they produce (compiled 
from Zeller, 1968; Pippin, 1970; Baars et al., 1994; Sawin et al., 2006). The combined 
Hugoton and Panoma fields in Kansas and the Guymon-Hugoton field in Oklahoma are 
lumped as “Hugoton” in this paper. 
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Figure 1.5. Formation- and 
member-level stratigraphy 
correlated to wireline well log in the 
Flower A-1 well, Stevens County, 
Kansas (after Dubois et al., in 
press). Commonly used 
formation/member letter-number 
combinations are shown for the 
Council Grove.  Twelve of the 13 
marine-continental (carbonate-
siliciclastic) sedimentary cycles that 
are gas productive are shown 
(Grenola Limestone, C_LM is not 
logged).  Stratigraphic names that 
include “Limestone” are marine half 
cycles when combined with an 
adjacent continental half-cycle, 
intervals with stratigraphic names 
that include “Shale,” form a 
complete cycle. Color-coded 
lithofacies are derived from core. 
Three were deposited in a 
continental setting, L0- sandstone, 
L1- coarse siltstone, and L2- shaly 
siltstone, and eight in a marine 
environment, L3- siltstone, L4- 
carbonate mudstone, L5- 
wackestone, L6- very fine-
crystalline dolomite, L7- packstone-
grainstone, L8- phylloid algal 
bafflestone, L9- fine-medium 
crystalline moldic dolomite, and 
L10- sandstone. Wire-line-log 
abbreviations are caliper (CALI), 
gamma ray (GR), corrected 
porosity (PHI_GM3), photoelectric 
effect (PEF), density porosity 
(DPHI), neutron porosity (NPHI), 
core permeability (K_MAX, and 
core porosity (CORE_POR). 
Logged interval is 520 ft (160 m). 
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