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St S Porosity from core analysis is plotted against Neutron
Density Average porosity from logs. There is a fairly good
match between the two data sets for the Spergen section.
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algebra solution for compositional analysis. The
MINVERSE function within Excel is used to
perform the operation through inversion of the
matrix of the log properties of the components.
The logs used in the composition analysis are:
Gamma Ray, Neutron Porosity (percent), Bulk
Density, and Photoelectric Volumetric Cross
Section. By premultiplying the logs by this inverse
matrix, we can determine the percentage of
calcite, dolomite, quartz, shale, and porosity.

® Mineral compositions estimated from the logs
show good concordance with lithologies described
from core.

The composition graph is a useful quantitiative
representation of lithofacies, porosity, and amount
of dolomitization observed within each core.
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porosity logs shows a fair correlation with porosity
measured in core.

Log Petrophysical Analysis

can be reliably interpreted
across the entire dataset is
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Log Neutron Density Average Phi ‘ the BMS/KYS.

Photoelectric, Grain Density, and Bulk Density.

Inputs - wireline log resistivity and porosity, water salinity, Archie

A modified Pickett crossplot (PfEFFER) was used to analyze
patterns in porosity, resistivity, and saturation in the reservoir.
Each data point on these plots represents a half-foot interval
and points are linked together in sequence by depth to reveal
trends through the reservoir. From the Archie relations,
saturation contours and bulk volume water contours are
superimposed. Details of the methodology in using the
modified Pickett plots are described in Doveton et al. (1996).

parameters (m and n). Porosity, BVW, and permeability cut-offs were
used to identify the net pay at each well.
Archie Parameters and cut-offs:

a=1 m=2 Phi=0.1 S,=0.6

n=2 R, ,=0.06 GR=40 V,=1 BVW=1

® Pickett plot analysis results are consistent with the three intervals of
Spergen (A, B, and C) observed in logs. PfEFFER also locates potential

bypassed pay within the wells for which the analysis has been completed.
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Pickett Plot for Spergen Interval A (red), B (blue) and C (green).

Pickett Plot for Spergen Interval A (red), B(blue) and C (green).
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20-30 (green), 30-40 (blue), >40 (black).

Thickness (0.5 ft.)*Phi*(1-Sw). 20-30 (green), 30-40 (blue), >40 (black). Thickness (0.5 ft.)*Phi*(1-Sw).

Curvature describes how bent a surface is at a particular point
and is closely related to the second derivative of the curve
defining the surface. The more bent a surface is, the larger the °
value of the curvature attribute. Positive curvature refers to an
antiform feature, negative curvature refers to a synform
feature, and zero curvature refers to a planar feature.
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Roberts (2001)

Various curvature attributes reveal useful information relating
to folds, faults, and lineaments contained within the surface
(Roberts, 2001). Most published work of curvature analysis
applied to 3-D seismic data has been limited to calculations
based on gridded interpreted horizons (e.g., Hart et al., 2002;
Masaferro et al.,, 2003; Sigismondi and Soldo, 2003).
However, recently, a suite of volumetric curvature attributes
has been developed, where reflector curvature is calculated
directly from the seismic data volume, with no prior
interpretation required (Al-Dossary and Marfurt, 2006).

Of the numerous volumetric curvatures calculated, the most
positive and most negative curvatures, which measure the
maximum positive and negative bending of the surface at a
given point, are the most useful in delineating faults,
fractures, flexures, and folds (Al-Dossary and Marfurt, 2006,
Blumentritt et al., 2005; Nissen et al., 2005; Sullivan et al.,
2005).

Vertical seismic section through wells with sonic logs from  Section through model based inversion volume
a 5.5 sq. mile 3-D seismic survey in Cheyenne Wells and corresponding to the seismic section at left. The BMS/KYS
Smoky .Cree.k fields. Peaks are black and troughs arered.  horizon (red) is visible as a sharp impedance increase. A
Synthetic seismograms generated from the sonic logs are  deeper continuous horizon corresponding to another

st_lperimposed in blue. The following formation tops are impedance increase is tentatively interpreted as the top of
displayed: Morrow (cyan), BMS/KYS (red),

Mississippian St. Louis (violet), Spergen (dark blue), BMS/KYS subsea depth structure map derived

Seismic Volumetric Curvature Interpretation
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to strong impendance contrasts. The Base Morrow
Shale / Top Keyes (BMS/KYYS) is the closest continuous
seismic reflector.

® The drainage pattern interpreted on the BMS/KYS structure map is reminiscent of karst drainage

consisting of blind valleys. Local topographic depressions as small as 20 acres in size may be sinkholes.

® A down-to-the-south fault at the southern end of the seismic survey aligns with a Precambrian
shear zone.

Acoustic Impedance Interpretation

Average Acoustic Impedance for Spergen Interval

Porosity vs Acoustic Impedance
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Acoustic Impedence

Average acoustic impedance has been extracted from the model-based inversion volume for the interval
between the top and base of the Spergen. (The positions of the top and base of the Spergen in the seismic
data volume have been approximated using the BMS/KYS horizon and isochron maps calculated from
isopach maps and interval velocities from wells with sonic logs.)

The Spergen acoustic impedance map shows spatial variation with broad NE trending bands of high and
low impedance.

Acoustic impedance may be an indicator of porosity variations.

The crossplot of acoustic impedance and average Spergen porosity shows considerable scatter, but in
general, higher acoustic impedance corresponds to lower porosity.

BMS/KYS Negative Curvature Kinderhook (?) Negative Curvature Conc lusions

In the study area, slices through the
most negative curvature and most
positive curvature volumes extracted
along the BMS/KYS and Kinderhook
show several sets of large-scale high

Core, log, and seismic data provide complementary information about the Spergen
reservoir in Cheyenne Wells and Smoky Creek fields. Core and log data show that
productive Spergen exhibits a variety of lithofacies and a wide range of matrix porosities.
Production is not well correlated with matrix porosity, suggesting
that another parameter controls well performance.

The detailed structure map of the BMS/KY'S horizon obtained from the seismic data along
with the Keyes isopach map from well tops indicates a drainage pattern suggestive of
karst. While production is not directly related to overall structure and thickness of the
Spergen, subtle karst features, such as solution-enhanced fractures aligned along
structural trends, may impact production. Various oriented lineaments have been

curvature lineaments. bighangle Animes bighangle Animas identified on seismic curvature maps and these lineaments may relate to compartment
,‘;T.;:ef‘ ¥ 5;":‘ boundaries, closed fractures, and/or open fractures.

Curvature lineaments are aligned along

orientations that parallel basement
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