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Abstract 
 
The Permian Council Grove Group in the Panoma Field of southwest Kansas has yielded 80 x 109 meter3 
of gas from approximately 2600 wells from a 60-meter interval at depths of 800-1,000 meters since its 
discovery in the 1960’s.  Initial gas saturation, production rates and cumulative production in the Panoma 
Field are controlled by the distribution of porosity and permeability in the field, which are in turn 
controlled by the distribution of facies.  We have used a single hidden-layer neural network to compute 
facies membership probabilities from geophysical well logs measured in approximately 470 wells 
throughout the field.  The network was trained using facies assignments from detailed core descriptions in 
eight wells.  For ease of use, the neural net prediction (feed-forward) code has been implemented as part 
of an Excel add-in using Visual Basic.  However, the training of the network via backpropagation is too 
computationally intensive a task for this environment, and so is accomplished through an automated 
invocation of the neural network function provided as part of the public-domain R language.  Code for the 
batch application of the trained neural network to log data from a large number of LAS (Log ASCII 
Standard) files is also implemented in the Excel add-in, providing an easy means for computing facies 
membership probabilities at a large number of wells.  We then use public-domain Markov chain 
simulation code to produce a gridded realization of the facies architecture throughout the field, 
conditioned on the facies probabilities computed by the neural network.  The simulation employs a 
transition probability model based on the facies sequences observed in core for the eight training wells, 
augmented by geological understanding of the expected facies relationships.  This process provides an 
ideal means for merging geological knowledge with the dense quantitative information provided by 
geophysical well logs. 
 
Introduction 
 
In the Panoma Field, facies-controlled petrophysical properties dictate gas saturations and accurate 
discrimination of facies reduces error in predicted permeability and gas volume (Byrnes, Dubois, and 
Magnuson, 2001; Dubois and others, 2003).  However, developing robust geologic models for reservoir 
analysis of large heterogeneous reservoirs like that in the Panoma Field is impractical by traditional 
methods.  This study presents a possible solution to facies prediction using neural network and Markov 
chain techniques that will make possible the construction of a geologic and petrophysical model with 
sufficient detail to accurately represent the fine-scale vertical and lateral heterogeneities, a requirement 
for accurate reservoir modeling of the entire field. 
 
Gas production in the Panoma Field is from seven, stacked fourth-order nonmarine-marine sequences in 
Council Grove Group (Permian, Wolfcampian) in the Hugoton Embayment of the Anadarko Basin (Fig. 
1) deposited in a proximal, shallow position on a gently dipping ramp.  Broad facies belts (Fig. 2) 
migrated in response to cyclical sea level fluctuations resulting a predictable vertical succession of facies 
within each sequence: 1) nonmarine redbeds, siltstone and fine sandstone or clay-rich siltstone and shale 
(Coastal Plain, two facies) deposited on an exposure surface (unconformity) on the underlying marine 
carbonate rock unit, 2) transgressive marine, shallow water carbonates with grain-supported textures 
(Shoal and Mound), 3) deeper water dark marine siltstones (Marine Siltstone and Shale) or silty carbonate 
mud- and wackestones (Normal Marine Carbonates), 4) agitated, shallow water packstones and 
grainstones (also categorized as Shoal and Mound) or quiet, shallow water dolomitized carbonate 
mudstones and peloidal wackestones (Tidal Flat and Lagoon) , and 5) tidal influenced, laminated and 
fenestral mudstones (also Tidal Flat and Lagoon).  Subaerial exposure is evidenced by well-developed 
calcretes, root molds, and other weathering and pedogenic features.  This categorization represents a 
combination of both lithofacies and depofacies designations. 
 



 
 
Figure 1.  The Panoma Field is located in the Hugoton Embayment of the Anadarko Basin in southwest 
Kansas. 
 

 
 
Figure 2. Idealized depositional model. 



 

 
Figure 3.  Cross-validation results for determination of optimal neural network model parameters 
(network size and damping parameter) for prediction of facies (DEv2) from specified logs. 
 
Neural Net Predictions of Facies Probabilities 
 
Based on the observed associations between geophysical well logs and facies designations from core in 
eight “keystone” wells distributed throughout the Panoma field, we have developed a neural network 
model for predicting facies from well logs.  For this purpose we have used a standard single hidden-layer 
neural network (Duda, Hart, and Stork, 2001) with input-layer nodes corresponding to the selected 
geophysical well logs (plus a marine-nonmarine indicator curve generated from “tops” data in the well 
database) and output-layer nodes representing the set of facies membership probabilities.  For ease of use, 
we have added Visual Basic code for neural network training and prediction to an existing Excel add-in 
for nonparametric regression and classification (Bohling and Doveton, 2000).  However, the training 
routine invokes the public-domain “R” data-analysis system to perform the computationally-intensive 
optimization of network weights, using the nnet function developed by Venables and Ripley (1999).  Both 
trial-and-error testing and automated cross-validation with keystone well data guided the prediction 
variable selection process.  The final variables selected were marine/nonmarine indicator (MnM), gamma 
ray (GR), average (AvgPhi) and difference (DeltaPhi) of neutron and density porosity, deep resistivity 
(Rt), and photoelectric factor (PE) where available.  We have focused our model calibration efforts on the 
selection of an appropriate number of hidden-layer nodes (network “size”), which governs the richness of 
the model, and an appropriate damping parameter, which constrains the magnitude of the network 
weights to help prevent overtraining.  Cross-validation was automated using R (a.k.a. “S”) language 
scripts.  For each combination of network size and damping parameter, summary prediction statistics 
were computed for 10 different splits of the keystone well data into training (2/3) and prediction (1/3) 
subsets.  Figure 3 shows the objective function values (a measure of the overall difference between “true” 
facies indicators and predicted probabilities) computed over the 10 prediction subsets for each 
combination of network size and damping parameter for the model without PE.  Based on these and other 
results, we chose to use 50 hidden-layer nodes and a damping parameter of 0.1 for both models (with and 
without PE.) 



 
 
Figure 4.  Vertical transition probabilities computed from core facies assignments together with discrete-
lag and embedded transition probability models.  The facies are: F1) coastal plain siltstone and sandstone, 
F2) coastal plain shale, F3) tidal flat and lagoon, F4) shoal and mound, F5) normal marine carbonate, and 
F6) marine siltstone and shale. 
 
Transition probability modeling 
 
The Markov chain simulation efforts so far have focused on the shallowest of the seven fourth-order 
sequences comprised of the Speiser Shale and Funston Limestone Formations, informally designated the 
A1 interval.  For this work we have employed the T-PROGS modeling and simulation programs 
developed by Carle (1999).  The Markov chain simulation employs a transition probability model 
representing the probability of occurrence of each facies at location (x + h) given the occurrence of a 
specified facies at location x, as a function of the lag vector h.  As discussed in Carle and Fogg (1997), 
the development of a transition probability model from an observed facies sequence is similar in many 
ways to the development of an indicator covariogram model for that sequence.  However, the transition 
probability approach allows more direct and intuitive incorporation of geological knowledge, including 
information regarding mean lengths of facies bodies in the principal coordinate directions.  Figure 4 
shows the transition probabilities versus vertical lag for the core facies in the A1 interval in the eight 
keystone wells together with two transition probability models, one derived from fitting to the empirical 
probability values at the fourth (0.6-meter) lag, and another derived from embedded transition 
probabilities and mean lengths computed from the same data.  Embedded transition probabilities are 
computed by tallying transitions from one facies to another (ignoring “self-transitions”).  Taking 
advantage of Walther’s law, an embedded transition probability model derived from denser vertical data 
may be extended to lateral dimensions by changing the associated mean lengths in accordance with 
geological expectations.  That is the approach used in this study.  A transition probability model must 
obey a number of constraints in order to produce legitimate probability vectors at each lag.  These 
constraints simplify inference somewhat but also contribute to discrepancies between empirical and 
modeled probabilities, as seen in Figure 4. 



 
 
Figure 5.  One realization of the Markov chain simulation for the A1 interval (Speiser Shale and Funston 
Limestone Formations) in the northern portion of the Panoma Field. 
 
Markov chain simulation 
 
Figure 5 shows a single Markov chain simulation of the facies distribution in the A1 interval in the 
northern portion of the Panoma Field, conditioned on facies occurrence probabilities predicted by the 
neural network.  Batch application of the neural network model to well logs from 83 wells in this portion 
of the field produced facies occurrence probabilities at 8723 data points in this portion of the field, at a 
vertical spacing of 0.15 meters (0.5 feet).  The model without the PE curve, representing a larger number 
of wells, was applied first.  Then the model including PE was applied to those wells with a PE curve, 
overwriting the probabilities from the first model.  The vertical coordinate employed in the model is 
actually a transformed “stratigraphic” elevation, adjusted to a nominal thickness of 16 meters 
(approximately the average thickness) at each location.  There are 32 layers of cells in the vertical 
direction, each with a nominal thickness of 0.5 meters.  The cells are 1000 meters long in each horizontal 
dimension, with 57 cells in the east-west direction and 58 north-south.  Because the Markov simulation 
code accepts only one conditioning datum per grid cell, the probability vectors were “upscaled” from 
their initial vertical spacing (approximately three per grid cell) to a single probability vector for each cell 
intersecting a well.  Since a set of facies membership probabilities can be regarded as a composition, the 
upscaled probability vector was computed as the closed geometric mean of the contributing probability 
vectors.  Pawlowsky-Glahn and Egozcue (2002) suggest the closed geometric mean as the natural choice 
for representing the center of a set of compositional data. 
 
The Markov simulation code generates an initial realization using sequential indicator simulation (based, 
in this case, on the transition probability model, rather than a covariogram model) and then performs 
several steps of simulated quenching (zero-temperature simulated annealing), updating facies assignments 
in order to more closely match the spatial structure dictated by the transition probability model while still 
honoring the conditioning data.  However, although the T-PROGS code allows the option to condition on 
facies probabilities, as well as on “hard” facies indicators, as of this writing is not clear whether the code 
is in fact retaining and honoring the input probability vectors at the conditioning points during the 



quenching steps.  Instead, the code appears to sample from the input probabilities to seed the initial 
simulation, but then ignores these data during the quenching process.  The quenching process could 
continue to honor the input probabilities by sampling from them at the conditioning nodes during the 
quenching process.  We will investigate this issue further and modify the code as appropriate in ensuing 
work. 
 
Conclusions 
 
The Markov chain simulation technique provides a powerful means for fusing a conceptual geological 
model with quantitative information provided by subsurface measurements.  In this study we are 
investigating the integration of facies probabilities derived from well logs using a neural network with a 
statistical representation of the facies architecture derived from detailed core investigations and a 
conceptual model of the associated depositional environments.  A related study (Dubois and others, 2003) 
employed a sequential indicator simulation (SIS) based on indicator variograms to generate gridded 
realizations of the facies architecture from the neural network facies predictions at wells.  Relative to this 
more traditional geostatistical approach, the transition probability modeling used in this study “. . . was 
developed to encourage infusion of subjective interpretation by simplifying the relationship between 
observable attributes and model parameters” (Carle, 1999, p. 5).  In future work we will carry out more 
detailed comparisons of the SIS and Markov chain simulation techniques in order to evaluate the relative 
accuracy (or credibility) or their results as well as the relative ease of model development and inference 
for each approach. 
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