Earthquakes in the southern midcontinent: What we know and what we need to know - Current research at KU and the Kansas Geological Survey

Outline

- Seismicity
 - Historical seismicity in Kansas
 - Earthquakes in southern Kansas
 - Trends from the CEUS
- Why care about seismicity?
- Mechanics of induced events
- Mississippian Lime Play
 - Geology
 - Production trends
 - Brine disposal
- Current research
 - Seismic monitoring
 - Fault mapping and stress field analysis
 - Geologic and simulation models
- Future research and need for collaboration

Historical seismicity in KS

KS-NE Network, 1977-1989

Seismicity in southern KS

Source: USGS NEIC catalog (11/21/14)

Trends in the central & eastern US

Modified from Ellsworth (2013)

Documented examples

- RMA, CO, M 5.3, 1962-1968 (Healy et al., 1968)
- Paradox Valley, CO, M 4.3, 1996-2003 (Ake,2005)
- DFW, M 3.3, 2008-2011 (Frolich, 2013)
- Guy, AR, M 4.7, 2010-2011(Horton, 2012)
- Youngstown, OH, M 4.0, 2010-2011 (Kim, 2013)
- Raton Basin, CO/NM, M 5.3 2001-2011 (Rubenstein, 2014)

Mechanics of induced earthquakes

- 1. Increase pore fluid pressure acting on a fault
 - Brine disposal (e.g., Healy et al., 1968)
 - Fracking (e.g., Holland, 2011)
 - Hydraulic connection needed

- 2. Change shear or normal stress acting on fault
 - Reservoir depletion or repressurization (e.g., McGarr, 1991)
 - No direct connection to fault

Why care about seismicity?

Surface hazard

- Injuries
- Property damage

USGS Peak Accel. Map (in %g) : KANSAS Nov 12, 2014 21:40:00 UTC M 4.8 N37.27 W97.62 Depth: 2.9km ID:c000swru

Processed: Fri Nov 21 16:27:30 2014

Subsurface hazard 47 active UIC Class I wells in state 46 dispose of fluid within the Arbuckle

http://maps.kgs.ku.edu/co2/

Why care about seismicity?

Mississippi Lime Play – Definition

-- on Anadarko Basin side of Nemaha Uplift

Relevant structural elements of Arkoma and Anadarko Basin as basis for the MLP

- Concurrent and post Mississippian structural deformation
- <u>Systematic</u> reactivation of basement weaknesses defined by potential fields & basement terrain
- Inherited fracture systems
- Major wrench fault systems directed stress into craton during Late Paleozoic
- Major influence on regional/local maturation of organic matter, migration routes and trapping of oil and gas

Spectrum of potential reservoir lithofacies

Inner Ramp Tripolite to Outer Ramp Basinal Shale Depositional Model

MLP reservoirs

More permeable chert reservoir and greater distance above

free water level \rightarrow *lower water cut*

"High bound water saturations in the tripolitic chert have led to difficulty in estimating reserves and determining producible zones. This problem in water saturations is further complicated by difficulty in establishing free water level. While some fields exhibit apparent structural closure greater than 200 feet, the presence of nearly isolated blocks of production within these fields surrounded by nonproductive areas may indicate that there is not a continuous hydrocarbon column and that free water level is independently established for each block". --Watney, Guy, Byrnes (2001)

Focus of MLP in Sedgwick Basin in south-central Kansas

Mississippian structure (450 ft C.I.) and notable faults (green lines)

Mississippian cherty dolomite reservoir at Wellington Field Toplap (East) and Prograde (West)

Porosity - effective (ft3/ft3)

ol2500 0.25

0.2250 0.2000 0.1750

0.0500

2302000

2304000

2306000

Complex offlapping geometries of porous lithofacies resulting from the westward progradation of the Mississippian -- Looking SW

J. Rush, KGS

-3200

Z-axis

-3400

-3600

2314000

Porosity seismic Inversion in Petrel using core, log, 3D seismic volume for modeling CO2-EOR recovery

Permeability fence diagram of Mississippian oil reservoir within 3D seismic, Wellington Field

--Small faults that tip out above the top of the Mississippian reservoir

- View looks to the northeast
- Fault juxtaposes reservoir and non reservoir facies (at arrow tip)
- Fault offset ~30 ft and laterally discontinuous
- Faults serve as potential barriers to flow or redirect CO₂ plume depending on fault damage and juxtaposed rocks
- Faults aligned SW-NE oblique to maximum horizontal compressive stress

Mississippian isopachous map with horizontal () and Class II wells ()

NW-SE structural cross section across updip edge of Miss ramp

Heart of MLP in the core of the southern extension of the Midcontinent Rift System

(magnetic low)

Total magnetic field intensity reduced to pole 910 m + top Mississippian structure

Harper County (yellow outline)

-- Suggest link of earthquakes to basement structure

Production trends

Change in Gas Production, 2012 to 2013

	Cheyenne		Ra	awlins	Decatur	Norton	Phillips	Smith	Jewell	Republic	Wash	ington	Marsha	all Nemar	Brown	Donipha	N.P.C.
Sherman		an	Thomas		Sheridar	Graham	Rooks	Osborne	Mitchell	Cloud	Cla	Clay Riley Potta		watomie Ja	ackson Je	Jefferson	
	Wallace		Logan		Gove	Trego	Ellis	Russell	Lincoln	In Ottawa		nson	Geary	Vabaunsee	Shawnee	Douglas	Johnson
ŀ	Greeley	Wich	iita	Scott	Lane	Ness	Rush	Barton	Ellsworth				Morris	Lyon	Osage	Franklin	Miami
						Hodgeman	Pawnee	Stafford	Rice	McPherso	m Ma	arion	Chase		Coffey	Anderson	Linn
ł	Hamilton	Kear	arny	Finne	ey		Edwards		Reno	Ha	arvey	Butler		Greenwood	Woodson	Allen	Bourbon
	Stanton	Grant		Haskell	Gray	Ford	Kiowa	Pratt	Kingman	Sed	Sedgwick			Elk	Wilson	Neosho	Crawford
N	Norton	Stevens		Seward	Meade	Clark	Comanche	Barber	Harpe	r Sumner		Ca	owley	ey Chautauqua		Labette	Cherokee
		(*	1000	mcf 0 cubic	feet)	Decr More than -2,000,000	eases in Prod -1,000,001 to -2,000,000	luction 0 to 0 -1,000,000	No Productio	lr 0 0 1,000,0	ncreases] 1,()00 2,(s in Pro	01 Ma 01 Ma 00 2,000	pre an),000			

Figure courtesy of D. Adkins-Heljeson (KGS)

Production trends

Change in Oil Production, 2012 to 2013

	Cheyenr	ne	Rawlins	Decatur	Norton	Phillips	Smith	Jewell	Republic	Washingt	on Marsha	all Nemal	ha Browr	Donipha	
							ļ		Claud					Atchison	
Sherman		an -	n Thomas		Graham	Rooks	Osborne	Mitchell		Clay	Riley	watomie <mark>J</mark>	ackson Je	fferson eav	ven-1
ł					Trego	Ellis	Russell	Lincoln	Ottawa		Geary	hust	Shawnee Osage		dotte
	Wallace	Lo	gan	Gove					Saline	Dickinsor		Vabaunsee		Douglas	Johnson I
ſ	Greelev	Wichita	Coott	Lana		Rush	Bartan	Ellsworth			Morris	Lvon		Franklin	Miami
		, wionita	30011	Lane	Ness		Barton	Rice	McPherson	Marior	Chase	Lyon	Coffey	Anderson	Linn
	Hamilton	Kearnv	Finn	ey	Hodgeman	Pawnee	Stafford	Reno	Harv	vey			Woodson	Allen	
L		1.000.1119		Grav		Edwards					Butler	Greenwood			Bourbon
Stanton		Grant	Haskell	Glay	Ford	Kiowa	Pratt	Kingman		wick		Elk	Wilson	Neosho	Crawford
	Morton			Meade	Clark	Comanche	Barber	1	Sumr	her	Cowley		Mont-	Labette	Cherokee
		Stevens	Seward					Harper	r			Chautauqua	a gomery		
					De	creases in Pr	oduction	Barrels	Inc	reases in I	Production				
					More -* than -225.000 -2	150,001 -75 to 225,000 -150	,001 0 to to	No No production	0 n 75 000	75,001 to 150,000	150,001 to 225,000 2	More than 25.000			

Figure courtesy of D. Adkins-Heljeson (KGS)

Brine disposal trends

- Well count has doubled since 2005
- 6-fold increase in yearly disposal volumes since mid-1990s
- Yearly volumes have tripled since 2011

Data courtesy of the KCC

Brine disposal trends

- Daily disposal data from 22 of 131 SWD wells
- Expect large increase between 2013 and 2014

Current research

- 1. Where are faults or potential hazards located?
 - Seismic monitoring
 - Lineament and fault mapping
- 2. What are the pressures or stress changes needed to trigger or reactivate those faults?
 - In situ stress field analysis
 - Reservoir-geomechanical modeling of fluid injection

Seismic monitoring: USGS

Seismic monitoring: Wellington Field

Wellington seismic network

Courtesy of R. Miller and S. Petrie, KGS

Seismic monitoring: KGS network

Figure courtesy of R. Miller (KGS)

Subsurface lineaments

Well tops database

Harper

etc.)

Compare to surface lineaments and potential field discontinuities

Fault mapping: Subsurface lineaments

Edge Detection on Top Arbuckle Surface

Fault mapping: Wellington area

- Map fault orientations and geometries
- Evaluate slip and dilation tendency
- 3D stress state

Arbuckle edge detection

Stress field analysis: Orientation

Modified from Tingay et al. (2008)

Stress field analysis: Magnitudes

- Principle stresses at depth:
 - S_v Overburden (density logs)
 - S_{hmin} Minimum horizontal stress (LOTs, SRTs, stimulation pressures)
 - S_{Hmax} Maximum horizontal stress (dipole sonic logs)
- Other parameters:
 - Pp Pore fluid pressure
 - Poisson's ratio, Young's modulus (sonic data; lab tests)

Stress field analysis: Statewide

240 well logs available in Kansas

• 131 in paper form

Project Location: Wellington Field, Sumner County, KS **Regional Assessment** of deep saline Arbuckleaquifer

Small Scale Field Test Wellington Field

Reservoir characterization data

- What we know about Arbuckle reservoir we have learned from the CO₂ characterization study
- 2 wells were drilled into Arbuckle Fm
- Core was obtained form well KGS 1-32
- Whole set of modern logs for both wells
- 3D and 2D Seismic data
- Geochemical data
 - Water samples
 - Mineral composition
- Step Rate and Drill Stem tests

Reservoir temperature

Reservoir pore pressure

Well KGS 1-32

Core Porosity

Calculated Ky

Calculated Kh

Arbitrary seismic impedance profile – Wellington Field distinct caprock, mid-Arbuckle tight, lower Arbuckle injection zone

Step-rate test results in 1-32

- Gauge depth: 4869'
- Test interval: 4995-5020'
- k = 113 mD based on Lorenz plot
- Vertical barriers above and below
- Compare to log k = 74mD

Figure from FazelAlavi (KGS)

Interference test results in 1-32 with 1-28 as an observation well

- Distance between 1-32 and 1-28 is 3500ft
- Composite model with dual porositypermeability
- k around well 1-28 to a radius of 2493 ft (region 1) has a lower value (100 mD)
- k in the zone 2 is 124
 D (2493ft).
- Permeability for the farther radius can be associated with fault/fracture between wells.

Core fractures

Br⁻/Cl⁻ and SO₄²⁻/Cl⁻ Baffles and lack of vertical communication

- Br⁻ and Cl⁻ are conservative during water/rock interactions
- Very useful in detecting brine sources and mixing
- Values for brine of Lower Arbuckle vary substantially from Upper Arbuckle
- Lower Arbuckle brines cluster together
- Upper Arbuckle values more spaced out, suggests smaller baffles

Arbuckle reservoir model considerations

- Highly complex system with many sub-zones and different conditions
- Highly fractured system may require dual porosity/permeability model in future
- Unclear medium zone permeability
- Discrepancies in log, core, and SRT permeability estimations

Arbuckle reservoir model assumptions

- Performed with CMG GEM software
- 9 cases with varying porosity and permeability
- Infinite acting Carter-Tracy aquifer with no leakage
- Relative permeability tables from literature sources for carbonates
- Solubility is included in the model
- No mineral reactions were considered

Dynamic simulation model

Sources: ESRI, USGS, Kansas Geological Survey

Vertical pressure distribution at max. stress (before the injection stops)

Delta pre pressure profile at max stress (9 months after start of injection)

Southern Kansas CO₂ storage model 10 sites

Total area gas injection

Southern kansas CO₂ injection model gas saturation 100 years after injection stops

0.00 13.00 26.00 39.00 52.00 65.00 78.00 91.00 104.00 117.00 130.00 miles

Delta pressure after 20 years of water disposal in Harper County, KS (open boundary)

Delta pressure after 20 years of water disposal in Harper County, KS (closed boundary)

Summary

- **1.** The systematic characterization of the structural framework is needed to ascertain stress-strain history.
- 2. Based on current seismicity, faults appear to be reactivated by large volume brine injection. Elements being investigated -
 - a) size and orientation of faults,
 - b) basement heterogeneity (size and length of features),
 - c) maximum and minimum stress direction and magnitudes,
 - d) critical stress and orientation of larger faults,
 - e) time series changes in fluid levels and pore pressure,
 - f) refined reservoir-type model for disposal zone (Φ, kv, kh, flow unit definition and correlation).
- 3. High angle reverse faults common in Kansas
 - a) many faults are also likely related to regional transpression/strike-slip movement (late Mississippian and early Pennsylvanian) with diagnostic fault geometries,
 - b) faults and associated structures act to conduits for fluid migration and trapping of oil and gas in this region and therefore important to understand.

Future research collaboration with industry

- 1. Map faults and refine flow-unit reservoir model of the Arbuckle using seismic and well logs.
- 2. Evaluate earthquake source and mechanisms, refine fault locations.
- 3. Analyze well tests including daily and cumulative volume, rates, pressures, and compare with ambient pre-2011 fluid levels/pressures in the Arbuckle.
- 4. Evaluate stress potentially induced by withdrawal of fluid and pressure decline in Mississippian reservoirs near brine disposal.
- 5. Refine dynamic models of brine disposal in the Arbuckle saline aquifer in areas affected by increased seismicity.
- 6. Continue to explore means to reduce amounts of produced water in the MLP and develop best practices for brine disposal.

Acknowledgements

- Bittersweet Energy Tom Hansen with Paul Gerlach and Larry Nicholson; Dennis Hedke, Martin Dubois and SW Kansas CO2-EOR industry consortium, John Youle, George Tsoflias and students at KU, Gene Williams, and KGS staff supporting the acquisition of data, stratigraphic correlation, regional mapping, and interpretations for the DOE-CO2 project
- Dana Wreath, Berexco, LLC for access and participation in drilling and testing at Wellington and Cutter fields and small scale field test at Wellington
- The DOE-CO2 project supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grants DE-FE0002056 and DE-FE0006821, Jason Rush, Joint-PI, Jennifer Raney, Project Coordinator
- Rick Miller and Shelby Petrie, Wellington seismometer array, high resolution seismic
- Justin Rubinstein, USGS
- Induced Seismicity Task Force -- Rex Buchanan, Chair

