Earthquakes in Kansas Induced by Extremely Far-Field Pressure Diffusion

Shelby Peterie Richard Miller, David Newell, John Intfen, Julio Gonzales, Rex Buchanan, *Kansas Geological Survey*

Brandy DeArmond, Kansas Department of Health and the Environment

KDHE 2018 Fall Seminar

October 10, 2018 Wichita, KS

Fluid Injection Wells Can Have a Wide Seismic Reach By Shelby L. Peterie, Richard D. Miller, Rex Buchanan, and Brandy DeArmond 17 April 2018

High-volume fluid injection can cumulatively increase underground pore pressure and induce earthquakes in regions unexpectedly far from injection wells, recent Kansas studies show.

What is Induced Seismicity?

from Grigoli and Wiemer (2017)

- Earthquakes caused by human activity
 - reservoir impoundment
 - mining
 - injection
 - geothermal stimulation
 - enhanced oil recovery
 - wastewater disposal
- Effects of induced seismicity
 - microearthquakes (M 2 or less)
 - a few cases of M 4 or M 5 (minor damage)
 - potential for a damaging event
 - important to understand mechanisms

What is Induced Seismicity?

from Ellsworth (2013)

- Mechanism well understood
- Key factors:
 - existing fault
 - deep crystalline basement rocks
 - large crustal stresses
 - "critically stressed" faults
 - close to failure
 - small change in pressure
 - pore pressure
 - injection interval
 - reduces frictional resistance
 - 2-30 psi
- Traditional Model
 - one well, one series of earthquakes
 - begin near well
 - migrate away
 - pressure diffusion
 - pressure perturbation 5-10 km

Case Study: Rocky Mountain Arsenal

1970 1971

1972

1963 1964 1965 1966 1967 1968 1969

6 42

g 20

e١

1962

Denver, Colorado

- Wastewater disposal well
 - operated 1962-1967
 - terminated in basement
 - 7,000 bbl/day
- First earthquake within weeks
 - more than 1,500
 - three M 5
 - within 8 km
- Conclusion
 - direct correlation
 - pore pressures
 - basement faults
 - injection terminated
- Working hypothesis

Case Study: Oklahoma

Mississippian limestone

- oil bearing formation
- not productive with conventional techniques
- more economical with horizontal drilling

Development

- Oklahoma: 2009
- Kansas: 2012
- water bearing
- large volumes formation water
- Class II saltwater disposal wells
 - historic: 5,000 bbl/day
 - 10,000-30,000 bbl/day
- Arbuckle Group
 - basal aquifer
 - hydraulically connected to basement

credit: Christopher Liner

Case Study: Oklahoma

- Earthquake history
 - pre-2009: I/year
 - 2009-present: hundreds/year
 - strong correlation
 - widespread earthquakes
 - regional saltwater disposal
 - Arbuckle Group
 - basement faults
- Doesn't fit the traditional model
 - little direct correlation
 - cumulative pressure effect
 - pressure diffusion up 20 km

from Langenbruch and Zoback (2016)

Kansas Earthquake History

- Natural earthquakes
 - 1977 to 2012
 - mostly microearthquakes
 - basement structures
 - M 3 every 1-2 years
- Possibly induced seismicity
 - 2013-2014
 - increase in rate, magnitude
 - M 3 or larger = 44
 - Harper and Sumner
 - few historic earthquakes

Deep Fluid Disposal in Kansas

- Decades long history
- Class II
 - regulated by KCC
 - >5,000 SWD wells (gray)
 - scaled relative to volume
 - 50% Arbuckle Group
- Class I
 - regulated by KDHE
 - 50 wells (red)
 - Arbuckle
 - pressure falloff
 - fluid pressure
 - time history
 - regional pressure

Increased Disposal Volume

Induced Seismicity

2013-2014 Earthquakes -102 -100 -98 -96 40 - 40 39 - 39 38 - 38 37 - 37 -102 -100 -98 -96 Harper 36 18 27 change in volume (MM bbl)

unique vantage to observe long-range effects

Seismic Networks

Migration of Earthquakes

- Initially dense swarms
 - 2015-2016
 - Harper and Sumner
- Earthquake migration
 2016-2017
 - Persist in HP and SU
- Migrate progressively farther
 - radially away
 - up 90 km
 - challenges previous belief (20 km)

Magnitude Distribution

- Total earthquakes: 6,944
- Vast majority are microearthquakes

 M < 2 = 4,958 (70%)
 M 2-3 = 1,912
 - $-M \ge 3 = 74$
- Regional network (USGS) M~3
 - no obvious trend
 - isolated, unrelated
- Value of local network
 - microearthquake data
 - improved understanding
 - insight into causal factors

Arbuckle Fluid Pressure

X UIC Class I

- Correlation with SWD
 - what's the driver?
 - pore pressure
 - other effects
- Geomechanical modeling
 - estimate pressure and stress
 - time intensive
 - difficult
 - expensive
 - non-unique
- Direct P* measurements
 - Class I PFO
 - time history
 - several in study area

Arbuckle Fluid Pressure

Arbuckle Fluid Pressure

- Preliminary regional map
 - sparse statewide measurements
 - interpolate
 - limited local detail
 - insights into regional pressure
- Normalized pressure
 - absolute pressure varies
 - change in pressure
 - relative to baseline (2002)
- Insight into pressures affecting basement faults

- Earthquake consistent with pressure
 - supports cumulative effect
 - pore pressure primary driver
- Previous studies
 - a few high-volume wells
 - 10,000 bbl/day
- Kansas
 - spatially dense group
 - dozens of high-volume wells (4 km)
 - 500 MM bbl in 2015
 - equivalent to >100 wells
- Unprecedented

What's happening now?

M≥2 Jan-Jun 2018

What's happening now?

What's happening now?

Arbuckle pressure (HP2)

- Regional Arbuckle pressure
 - continued to climb in 2017
 - -2018
 - stabilizing in Harper county
 - elsewhere unclear
- Exceed triggering threshold
 - 30 psi above
 - faults will be sensitive
 - small fluctuations
 - operations previously tolerated
- "The new normal"
 - could take years
 - maintain pressure

Conclusions

Summary

- increased high-volume SWD
- regionally elevated pressure
- migration of seismicity
- Regional pore pressure change
 - affecting basement faults
 - primary driver of seismicity
 - farther than previously observed
 - 90 km
 - studies in OK suggest 20 km limit
 - challenge previous
 - value of local monitoring
- Implications
 - "the new normal"
 - rising fluid levels

Arbuckle fluid pressure

Ongoing Research: Arbuckle Fluid Levels

Ongoing Research: Arbuckle Fluid Levels

Acknowledgements

- Co-authors
- KGS field crew
 - Brett Bennett
 - Jeremy Scobee
 - Brett Wedel
 - Joe Anderson
- Earthquake analysts
 - Carl Gonzales
 - Luke Kingsley
 - Will Dufresne
 - Brittany Cost

