Automated processing of large data volumes for development of the Hugoton-Panoma geomodel

Geoffrey C. Bohling, Martin K. Dubois, John Doveton and Alan P. Byrnes

Kansas Geological Survey

Processing Steps

Generation of geologic constraining variables (logs) from tops set
Prediction of lithofacies from logs
Porosity log correction
Computation of water saturation, OGIP
Back-calculation of free water level

Solution strategy

 Excel add-in Kipling2.xla used for prediction of lithofacies from logs (neural net code in Visual Basic)

 Remaining steps accomplished with special-purpose Excel workbooks

Spreadsheet input driving VB code

Batch processing of LAS files

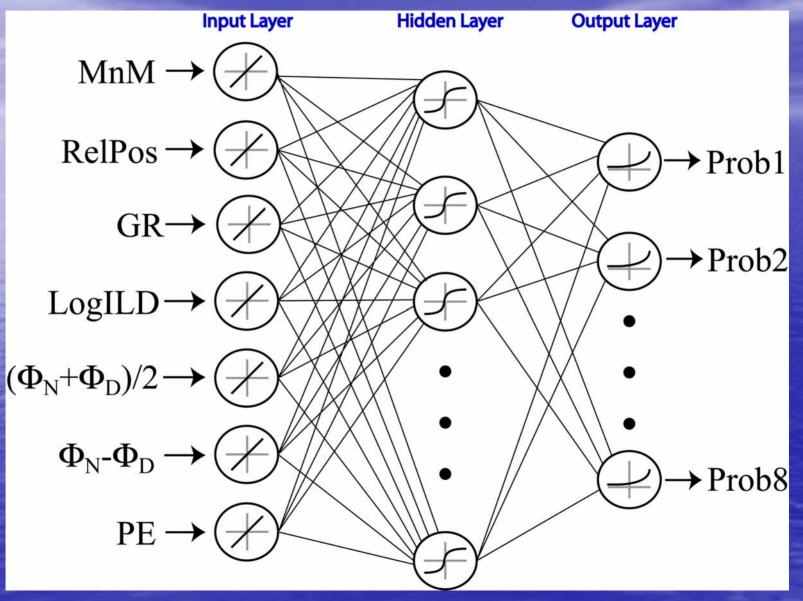
Geologic constraining variables

Depositional environment code (MnM) - 1 for nonmarine -2 for marine - 3 for tidal flat Relative position curve (RelPos) - 0 at bottom of interval to 1 at top • Added to well logs for facies prediction

The solution: GenMnM.xls

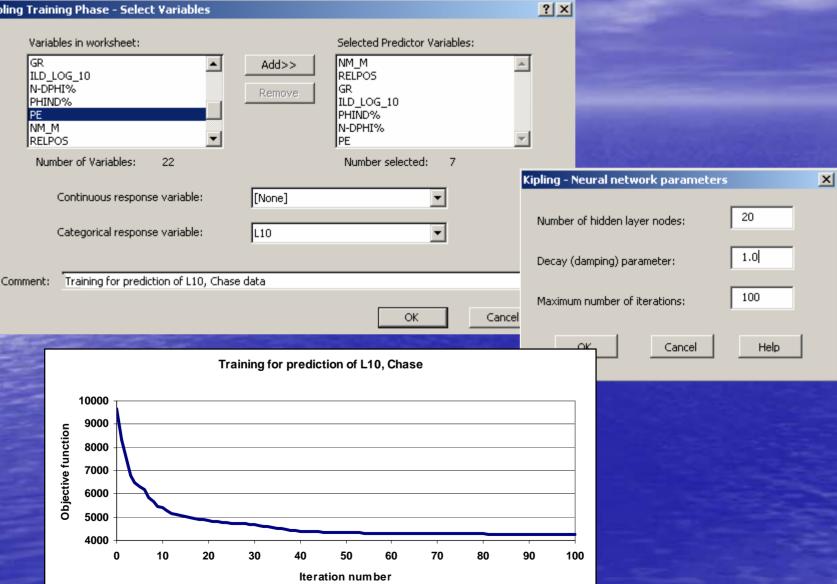
 Spreadsheet with table of tops, depositional environment codes for each interval

 Attached VB code generates LAS files with depositional enviornment code (MnM) and relative position (ReIPos) curves

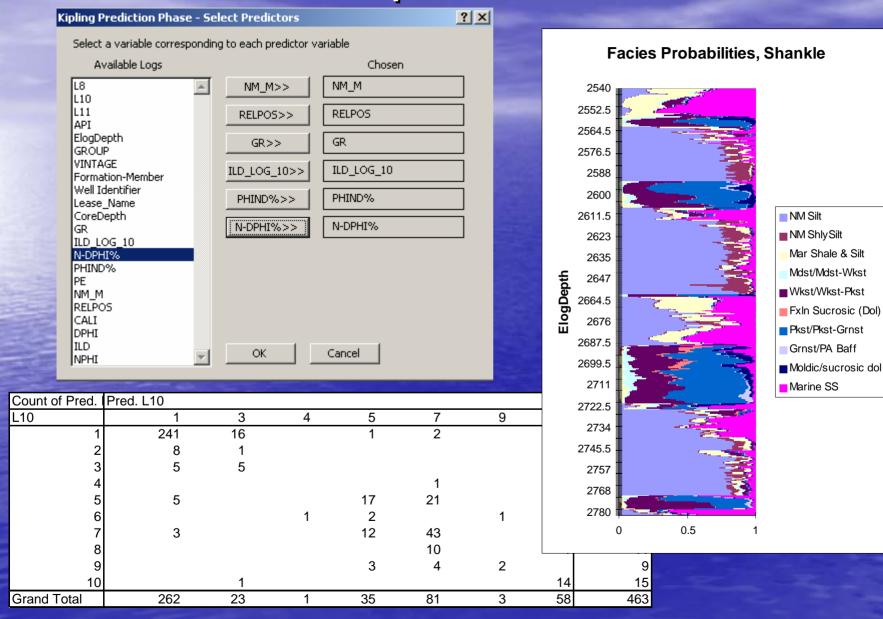

GenMnM.xls

[A	В	С	D	E	F	G	Н		J			
	1													
	2	Output folder:	D:\HugPar	\MnMCurve	es		Generate	MnM Files						
ľ	3	Depth increment:	0.5											
	4													
	5	Formation	HRNGTN	PADDOCK	KRIDER	ODELL	WINE	GAGE	TWND	B/TWND	FTRLY			
	6	Code	3	3	2	1	2	1	2	3	2			
	7	Default Thickness	10	10	5	10	10	10	0	10	10			
	8	UWI/API												
	9	15075205440000	2736	2744	2750	2756	2780	2802	2842		2876			
	10	15075205670000	2704	2713	2715	2718	2748	2769	2791		2846			
	11	15075205800000	2701	2710	2715	2722	2744	2763	2792		2842			
	12	15075205450000	2714	2719	2722	2736	2756		2798		2850			
	13	15075205630000	2710	2718	2727	2737	2756		2796		2847			
	14	15075205650000	2683	2683	2683	2694	2728		2762		2816			
	15	15075205460000	2644	■ MnM150	550007000	occo 00 las - Wor	rooc heQb	0704	0700					
	16	15075205730000	∠040°	_		Format He								
	17	15075205470000	2395	File Ealt V	iew Insert	Format He	ap 							
	18	15093208740000	2482	0 🚔 日	I 5 🛯	M 38 [te 💼 🗠	B 🔤						
	19	15075204350000	2390											
	20	15075202120000	2438	FM22.		3018.						iv code: 1 iv code: 2		
	21	15187000570000	2348	FM23. FM24.		3022. 3040.						r code: 2		
				FM24.		3070.						code: 2		
				FM26.		3125.						code: 1		
				~A DEF	TH NM		s FMNO							
				2612.0	3.0	1.000	1							
			1000	2612.5	3.0	0.971	1							
				2613.0	3.0	0.941	1							
				2613.5	3.0	0.912	1							
				2614.0	3.0	0.882	1							
			-	2614.5	3.0	0.853	1							
				2615.0	3.0	0.824	1							
				•										

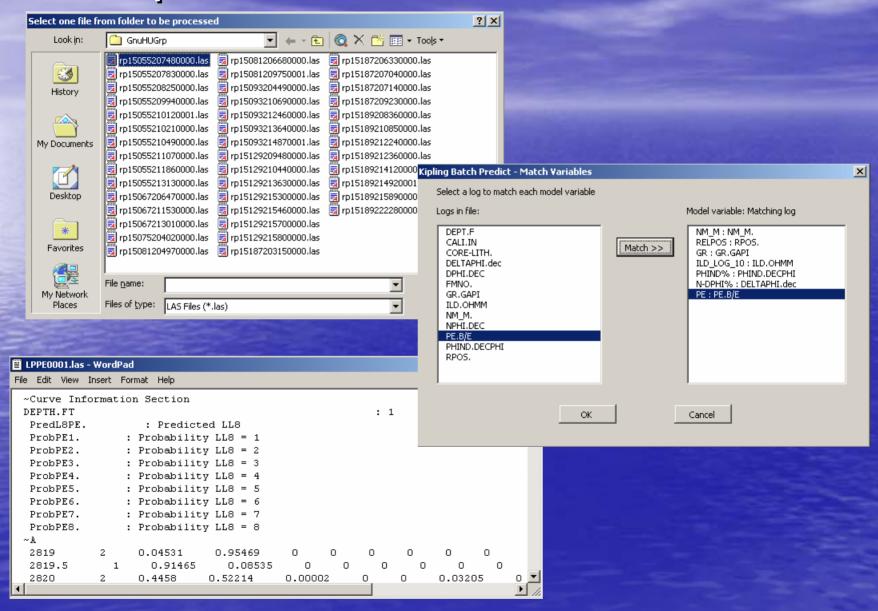
Prediction of facies from logs


- Using neural net in Excel add-in Kipling2.xla
- Until recently, Kipling2.xla called neural net function in "R" statistical language for training; now all in VB
 Includes batch prediction over LAS files

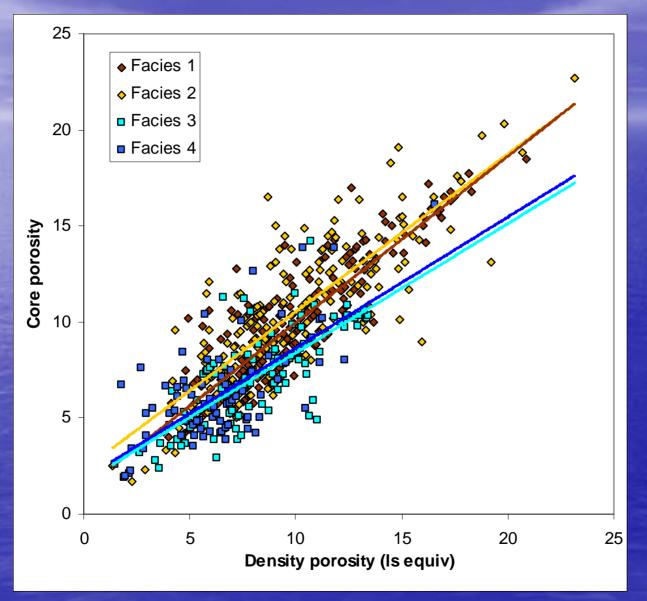
Neural Net

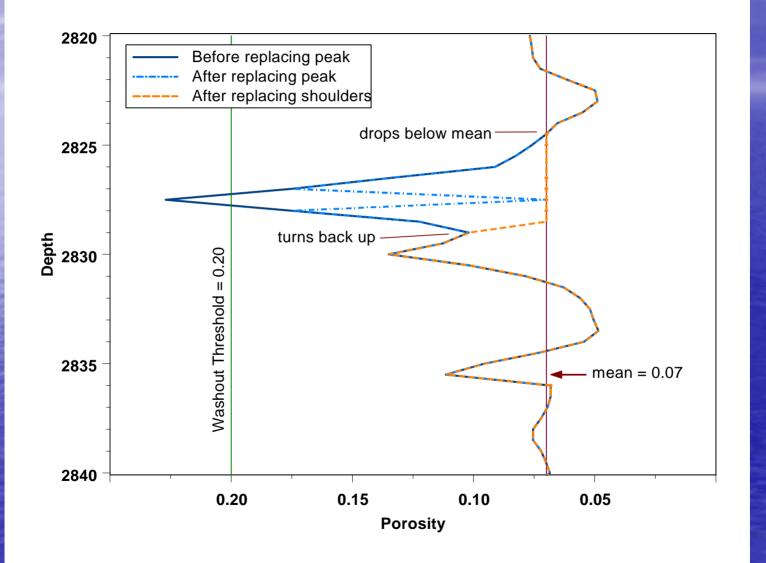


Training the neural net


Kipling Training Phase - Select Variables

Prediction on spreadsheet data


Batch prediction on LAS files


Porosity log correction

• Variations from reference mineralogy (limestone) - Regression of log vs. core porosities • Washouts in shales Remove spikes and associated shoulders Excel worksheet with VB code attached - Processes LAS files in specified folder

Log-core porosity relationships

Washout correction

Porosity correction worksheet

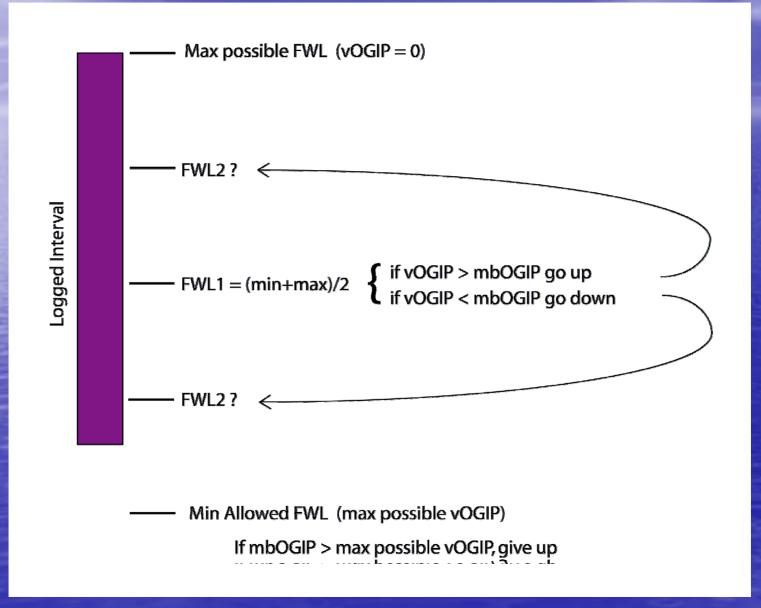
	atchOGI	(P.xls															١×١
	A	B	С	D	E	F	G	H		J	K	L	М	N	0	Р	
1			n, Geoff Bohling					05 to rea	d coef	icients from	n table						
2	Moo	dify values a	is appropriate a	ind click Ru	n! (but don'i	t move thing	gs around)										- 1
3																	- 1
5					Run!												-
6																	
7		Input file f	folder	D:\Panoma	a\KLP												
8		Lithology	curve	LITHOLOG	şγ						Por	Por	Por	Washout	Washout		
9			prosity curve	DPHI		(Should be	e decimal)				Correction	Correction	Correction	Corection	Correction		
10			orosity curve	NPHI		(ditto)					Intercept	Dphi	Nphi	PhiND	PhiCorr		- 1
11		PhiND cur		PHIND		(also ditto)			,			Coefficient	Coefficient	Threshold	Replacement		- 1
12		Output file Output file		D:\Panoma PhiCorr2	alklpCorr	(You need	to create t	nis folder	.)						Value		- 1
13		Output me	e prenx	Fniconz_						LithCode	A	B	С	Thresh	RepVal		-
15		Computat	ions:	(Code is in	Module1 o) f VBAProje	ect for this '	workbook)	1	0.0178	0.8434	0.0000	0.2000	0.0700		-
16		Base corre		Ĺ			,	2	0.0178	0.8434	0.0000	0.2000	0.0700				
17			PhiCorr = A +	⊦B*Dphi+	C*Nphi					3	0.0185	0.6619	0.0000	0.2000	0.0700		
18				using A, B	, C for app	propriate li	thology			4	0.0185	0.6619	0.0000	0.2000	0.0700		
19										5	0.0000	0.6102	0.3985	0.2250	0.1000		
20		Washout o	correction:							6	4.6303	0.5321	0.2591	0.2250	0.1000		
21			lf PhiND > Thre	esh (for litho	logy)					7	0.0000	0.6102	0.3985	0.2250	0.1000		
22				Set PhiCo	rr = RepVal	l (for litholog	gy)			8	0.0000	0.6102	0.3985	0.2250	0.1000		
23				Apply shou	ulder correc	tion				9	4.6303	0.5321	0.2591	0.2250	0.1000		
24										10	5.2480	0.4730	0.1510	0.2250	0.1000		
25										11	0.0178	0.8434	0.0000	0.2000	0.0700		
26																	
	⊥ I ► ₩[\	OGIP Param	eters 🏑 FWL Pa	rameters λP	orosity Cori	rection /					•					I	I Č

Batch OGIP calculation

Computes Sw & OGIP vs. depth at wells from facies, porosity in LAS files • Uses porosity-Sw transforms by facies; need HFWL and initial pressure Constant FWL (from spreadsheet) or by well (from headers) Ditto for initial pressure Generates LAS files with Sw, OGIP curves

Batch OGIP spreadsheet

🗳 Ba	BatchOGIP.xls														
	A	В	С	D	E	F	G	Н		J	K	L	M	N	
3															-
4		FW Eleva	tion	0					Pc	Pc	Pc	Pc]		
5						R	un!		Slope	Slope		Threshold			1 -
6									"Pchs"	"Pchs"	Height	Height			
7		P =	res pr, psia	400					Pchs=	Pchs=	logPche=	logPche=			
8		T =	res temp, F	95					APhii+B	APhii+B	APhii+B	APhii+B			
9		T =	res temp, R	555							(ft)	(ft)			
10		Psc =	psia	14.7				LithCode	A1	B1	A2	B2			
11		Tsc =	F	60				1	-0.1764	0.1961	-0.1942				
12			R	520				2	-0.1051	-0.4778					
13		Z =		0.95				3	-0.0456		-0.1993				
14								4	-0.0698		-0.1510				
15								5	-0.0698		-0.1510				
16								6	0.0000		-0.0453				
17								7	-0.0698		-0.0857	2.4301			
18								8	-0.0698	-1.2748	-0.1283	2.4881			
19															
20		Input file		D:\Panoma		LithPor									
21		Lithology		LITHOLOG											
22		Porosity o		PHI_CORR				e decimal)							
23				EKB				elevation dat						<u> </u>	
24		FWL nam		FWL				FWL in LAS							
25 26			sure name	IWHSIP	VIZ			initial pressu					. pressure	in cell D7)	
26		Output fil		D:\Panoma	ivkeystone	UGIP	(You need	to create th	nis tolder be	etore runnin	g BatchUG	aP.)			
27		Output fil	e prenx	OGIP_											_
28		Computat	tions	(Code is in	Modulo1 o	f V R A Denie	l oct for this :	vorkhook)							
30		Phi% = 10		Code is iff	wouder 0	i voAFroje	set for this '	workdook)							
31			evDatum - Dept	th											
32			Elev - FW Eleva												
33			A1*Phi% + B1												
34			A2*Phi% + B2												
35			HFWL * 10^(2*	Term1 - Ter	rm2))^(1 / Term1) ISet a	at 10000 if >	> 100001						
36			% / 100 limited												
37			43.56*Phi*(1-Sv			ZI) IMCE/2	acre-ft]								
38			640 * OGIP1 / 2		-/ \	// L									
39															-
H 4	→ N\OG	P Paramete	ers / FWL Parame	eters / Porc	sity Correction	on /									


Backcalculating FWL from OGIP

 Computes FWL at each well that produces best match between volumetric OGIP and mass balance OGIP

 Mass balance OGIP (target) for each well read from LAS headers

 Other than fitting FWL, works like Batch OGIP

Bracketing search for FWL

Concluding remarks

 Flexible, easy batch processing crucial to a project of this scale

 Excel with VB provides reasonably accessible & inexpensive environment for developing customized processing code

Hugoton Asset Management Project industry partners

- Anadarko Petroleum Corporation
- BP America Production Company
- Cimarex Energy Company
- ConocoPhillips Company
- E.O.G. Resources Inc.
- Medicine Bow Energy Corporation
- Osborn Heirs Company
- OXY USA, Inc.
- Pioneer Natural Resources USA, Inc.