A new earthquake monitoring method? Change in shear-wave anisotropy as a tool to monitor induced seismicity in Kansas and Oklahoma

Keith A. Nolte¹, George P. Tsoflias¹, Tandis S. Bidgoli², W. Lynn Watney²

¹ The University of Kansas, Department of Geology

² The University of Kansas, Kansas Geological Survey

Overview

- Earthquakes in Oklahoma and Kansas
- Shear-wave anisotropy
- Shear-wave anisotropy observations in Sumner County, south-central KS
- Conclusions

Earthquakes in Oklahoma and Kansas

Earthquakes near Wellington Network, Sumner County, south-central KS

- 2015 859 eqs
- 2016 1046 eqs
- 2017 1130 eqs (projected)

Shear-Wave Anisotropy

- δt separation in time between fast and slow arrival
- ϕ azimuthal angle of fast arrival

Garnero, 2017

Sources of Anisotropy

Stress-induced

Structure-controlled

- Fast S-wave aligns with S_{Hmax}
- Slow S-wave perpendicular to S_{Hmax}

- Fast S-wave aligns with structure
- Slow S-wave perpendicular to structure Fault

Anisotropy sources in Kansas

Stress-induced

S_{hmax} ~80°

Structure-controlled

Major structure orientations at ~310° and ~30°

Baars, 1995

Calculating shear-wave parameters

Example from station WK01

June-September 2016

April-June 2017

Year to year comparison

What can't be causing the anisotropy change

• Tectonics

- Midcontinent is not undergoing any tectonic change of this magnitude over this time period
- Structure
 - Some 2016 anisotropy lines up with structural trends but does not explain the change temporally
- Volcanism
 - There is currently no volcanism in Oklahoma and Kansas

What is changing? Bottom-hole pressure in KGS 1-28

What could be causing the anisotropy change

- Changing pore fluid pressure
 - Evidence of change over the study period
 - Can force pre-existing fracture sets to open causing anisotropy

Year to year comparison

Conclusions

- Shear-wave anisotropy exhibits a temporal change
- Shear-wave anisotropy change is observed over the same time period of changing Arbuckle (injection interval) pore pressure
- No change in stresses or structure to cause temporal change in shearwave anisotropy

Future Work

- Expansion of shear-wave splitting catalog
- Shear-wave splitting tomography
- Test for spatial and temporal correlation between shear-wave anisotropy and downhole pressure data from regional injection wells
- Test methodology in other regions of injection-induced seismicity

Acknowledgements

Grant No: DEFE0002056

Grant No: INS0074816

แลงไปเป็นจาร์ต่างหมู่การสาวกล่า

Graphs of dt

What could be causing the anisotropy change

- Changing pore fluid pressure
 - Evidence of change over the study period
 - Can force pre-existing fracture sets to open causing anisotropy

Zatsepin and Crampin, 1997; Angerer et al., 2000, 2002; Crampin et al., 2002;