#### **QUARTERLY PROGRESS REPORT**

To DOE-NETL David P. Cercone, Program Manager Award Number: DE-FE0006821

#### SMALL SCALE FIELD TEST DEMONSTRATING CO<sub>2</sub> SEQUESTRATION IN ARBUCKLE SALINE AQUIFER AND BY CO<sub>2</sub>-EOR AT WELLINGTON FIELD, SUMNER COUNTY, KANSAS

Project Director/Principal Investigator: W. Lynn Watney Senior Scientific Fellow Kansas Geological Survey Ph: 785-864-2184, Fax: 785-864-5317 Iwatney@kgs.ku.edu

> Joint Principal Investigator: Yevhen 'Eugene' Holubnyak <u>eugene@kgs.ku.edu</u> Ph: 785-864-2070

Prepared by Lynn Watney, Yevhen Holubnyak, Jennifer Hollenbach, Tiraz Birdie, Mina Fazelalavi, Tandis Bidgoli, Drew Schwab, Alex Nolte, George Tsoflias, John Victorine, Brandon Graham, John Doveton, Jason Bruns, Brett Blazer, Dana Wreath

> Date of Report: April 28, 2017 DUNS Number: 076248616

Recipient: University of Kansas Center for Research & Kansas Geological Survey 1930 Constant Avenue Lawrence, KS 66047

Project/Grant Period: 10/1/2011 through 9/30/2017 Twenty Second Quarterly Report Period Covered by the Report: January 1, 2017 through March 31, 2017

> Signature of Submitting Official: eugene holubnyak Yevhen 'Eugene' Holubnyak

### EXECUTIVE SUMMARY PROJECT OBJECTIVES

The objectives of this project are to understand the processes that occur when a maximum of 70,000 metric tonnes of  $CO_2$  are injected into two different formations to evaluate the response in different lithofacies and depositional environments. The evaluation will be accomplished through the use of both in situ and indirect MVA (monitoring, verification, and accounting) technologies. The project will optimize for carbon storage accounting for 99% of the  $CO_2$  using lab and field testing and comprehensive characterization and modeling techniques.

 $CO_2$  will be injected under supercritical conditions to demonstrate state-of-the-art MVA tools and techniques to monitor and visualize the injected  $CO_2$  plume and to refine geomodels developed using nearly continuous core, exhaustive wireline logs, and well tests and a multicomponent 3D seismic survey. Reservoir simulation studies will map the injected  $CO_2$  plume and estimate tonnage of  $CO_2$  stored in solution, as residual gas, and by mineralization and integrate MVA results and reservoir models shall be used to evaluate  $CO_2$  leakage. A rapid-response mitigation plan will be developed to minimize  $CO_2$  leakage and provide comprehensive risk management strategy. A documentation of best practice methodologies for MVA and application for closure of the carbon storage test will complete the project. The  $CO_2$  shall be supplied from a reliable facility and have an adequate delivery and quality of  $CO_2$ .

#### **SCOPE OF WORK**

Budget Period 1 includes updating reservoirs models at Wellington Field and filing Class II and Class VI injection permit application. Static 3D geocellular models of the Mississippian and Arbuckle shall integrate petrophysical information from core, wireline logs, and well tests with spatial and attribute information from their respective 3D seismic volumes. Dynamic models (composition simulations) of these reservoirs shall incorporate this information with laboratory data obtained from rock and fluid analyses to predict the properties of the  $CO_2$  plume through time. The results will be used as the basis to establish the MVA and as a basis to compare with actual  $CO_2$  injection. The small scale field test shall evaluate the accuracy of the models as a means to refine them in order to improve the predictions of the behavior and fate of  $CO_2$  and optimizing carbon storage.

Budget Period 2 includes completing a Class II underground injection control permit; drilling and equipping a new borehole into the Mississippian reservoir for use in the first phase of  $CO_2$  injection; establishing MVA infrastructure and acquiring baseline data; establishing source of  $CO_2$  and transportation to the injection site; building injection facilities in the oil field; and injecting  $CO_2$  into the Mississippian-age spiculitic cherty dolomitic open marine carbonate reservoir as part of the small scale carbon storage project.

In Budget Period 3, contingent on securing a Class VI injection permit, the drilling and completion of an observation well will be done to monitor injection of  $CO_2$  under supercritical conditions into the Lower Ordovician Arbuckle shallow (peritidal) marine dolomitic reservoir.

Monitoring during pre-injection, during injection, and post injection will be accomplished with MVA tools and techniques to visualize CO<sub>2</sub> plume movement and will be used to reconcile

simulation results. Necessary documentation will be submitted for closure of the small scale carbon storage project.

# PROJECT GOALS

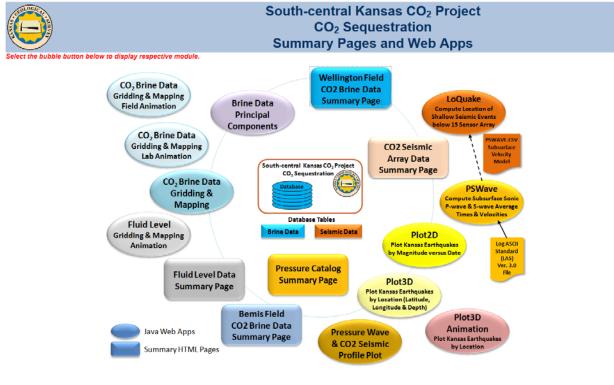
The proposed small scale injection will advance the science and practice of carbon sequestration in the Midcontinent by refining characterization and modeling, evaluating best practices for MVA tailored to the geologic setting, optimize methods for remediation and risk management, and provide technical information and training to enable additional projects and facilitate discussions on issues of liability and risk management for operators, regulators, and policy makers.

The data gathered as part of this research effort and pilot study will be shared with the Southwest Sequestration Partnership (SWP) and integrated into the National Carbon Sequestration Database and Geographic Information System (NATCARB) and the 6th Edition of the Carbon Sequestration Atlas of the United States and Canada.

# **Project Deliverables by Task**

1.5 Well Drilling and Installation Plan (Can be Appendix to PMP or Quarterly Report)

- 1.6 MVA Plan (Can be Appendix to PMP or Quarterly Report)
- 1.7 Public Outreach Plan (Can be Appendix to PMP)
- 1.8 Arbuckle Injection Permit Application Review go/no go Memo
- 1.9 Mississippian Injection Permit Application Review go/no go Memo
- 1.10 Site Development, Operations, and Closure Plan (Can be Appendix to PMP)
- 2.0 Suitable geology for Injection Arbuckle go/no go Memo
- 3.0 Suitable geology for Injection Mississippian go/no go Memo
- 11.2 Capture and Compression Design and Cost Evaluation go/no go Memo
- 19 Updated Site Characterization/Conceptual Models (Can be Appendix to Quarterly)
- 21 Commercialization Plan (Can be Appendix to Quarterly Report).


30 Best Practices Plan (Can be Appendix to Quarterly or Final Report)

# **CO<sub>2</sub>-EOR Accomplishments**

- 1. Day-to-day field operations similar to that reported in previous two quarters (Q20 and Q21) and are a continuation of Tasks 12–15
- 2. Continued monitoring of CO<sub>2</sub> plume movement
  - a. Recorded volumes of CO<sub>2</sub> produced, oil, and brine recovered
  - b. Only seven wells are being monitored based on past geochemical analyses that indicate the CO<sub>2</sub> plume has largely stabilized. Wells are currently being sampled for on-site (performed by KGS) and lab-based geochemical analyses (performed by Baker Chemicals). CO<sub>2</sub> gas quality measurements are being performed by Berexco staff.
- 3. The primary  $CO_2$  plume has been managed by pressure maintenance including use of two nearby injection wells and targeted fluid withdrawal in eight surrounding wells. The  $CO_2$ injection conforms largely to the stratigraphic architecture recorded in the geocellular model. Key work for the remainder of the  $CO_2$ -EOR phase is to continue measuring all inputs and

outputs to obtain accurate measurement of  $CO_2$  sequestered in the reservoir and the incremental oil produced from a single injection cycle.

- 4. On March 31, 2017 the daily CO<sub>2</sub> amount recorded was 1-8 MCFD. As of March 31, 2017, the cumulative produced CO<sub>2</sub> accounts for 18% of the injected volume (no change from December, 2016).
- 5. The re-processed 3D seismic was analyzed using AVAZ (Amplitude Variation with AZimuth) pre-stack methods which allowed mapping of fracture density and orientation in the Mississippian reservoir and the Arbuckle saline acquirer.
- 6. CO<sub>2</sub> fluid substitution seismic modeling in the Mississippian was completed.
- 7. Data collected for the project is constantly being updated and pre-processed for uploading into web-based interactive database catalogue (Figure 1).



http://www.kgs.ku.edu/PRS/Ozark/Summary/CO2\_II.html

Figure 1. Wellington Field project data processing and archiving activities.

# Geological storage and Class VI Permit Accomplishments

1. Wellington project team continues earthquake activity with 15 seismometer stations on loan from IRIS, 3 KGS seismometers and regional USGS stations: over 1,900 earthquakes have been documented (magnitude 0.4-2.5) since April 2015, northward progression from Oklahoma is recorded, 1.5 TB of Wellington earthquake data provided to DOE NETL in February 2017, several publications are in preparations or have been accepted.

- 2. Since mid-April 2016, continuous (1-sec) baseline pressure measurements have been acquired in the perforated lower Arbuckle zone in the shut-in Class VI injector. Because of this monitoring, the well has not been retrofitted for installation of MVA tools (BP2 Milestone).
- 3. In this quarter KGS and Berexco have received additional 14 Requests for Information (RfI) from EPA team. Per verification from EPA Region VII Director, all RfI with the exception of financial responsibility questions were successfully addressed and closed.
- 4. Significant accomplishment for this quarter is determination of Area of Review (AoR) and closure of CO<sub>2</sub> plume migration modeling RfI's.
- 5. Berexco's financial and insurance teams are researching viable approaches for providing insurance or alternative methods to satisfy financial responsibility requirements for UIC Class VI permit.

# Q22 TASKS

### Site Characterization of Mississippian Reservoir for CO<sub>2</sub>-EOR –Wellington Field

The CO<sub>2</sub> injection was completed in 165 days or approximately 5 months with an average of 120 tonnes per day of CO<sub>2</sub> injected (Figures 1 and 2). Oil production rates remain at about 22–25 BOPD with no sign of decline. On March 31, 2017 the daily CO<sub>2</sub> amount recorded was 0 MCFD; however, some wells occasionally still produce CO<sub>2</sub> with the total average production rate of 1-8 MCFD. As of March 31, 2017, the cumulative produced CO<sub>2</sub> remains at approximately 18% of the injected volume. Only the seven innermost wells are currently being sampled for on-site (performed by KGS) and lab-based geochemical analyses (performed by Baker Chemicals). The low amounts of recovered CO<sub>2</sub> (Figures 2 and 3) and evidence of diffusion in brine data indicate the flood is conformable and is not bypassing through conductive fractures. Key observations this quarter:

- 1) Incremental oil production is 2X greater than before injection (Figure 2);
- 2) The pH in well 69 stabilized (5.41) and still remains at the same level since December, 2016;
- 3) The temperature in Well 47 continues to fluctuate from  $9^{\circ}$  to  $15^{\circ}$  C;
- 4) The amount of  $CO_2$  vented remains very low (Figures 2 and 3).

These observations are consistent with the cessation of  $CO_2$  injection and the flood-front sweeping laterally away from the injector. In addition, efforts were made in the field to control  $CO_2$ -related corrosion within the pilot area.

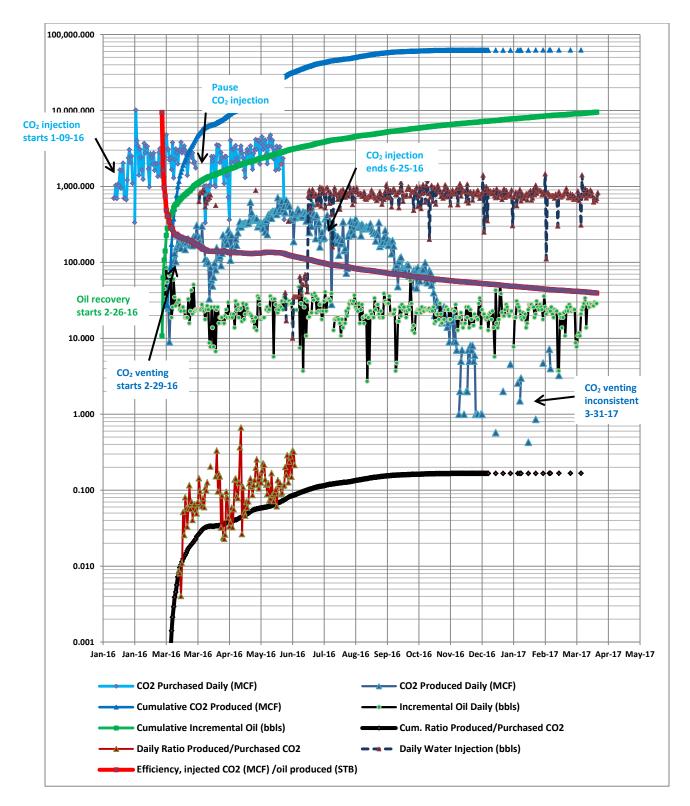



Figure 2.  $CO_2$  injected and  $CO_2$  and oil recovered in pilot scale injection in the Mississippian oil reservoir in Wellington Field.

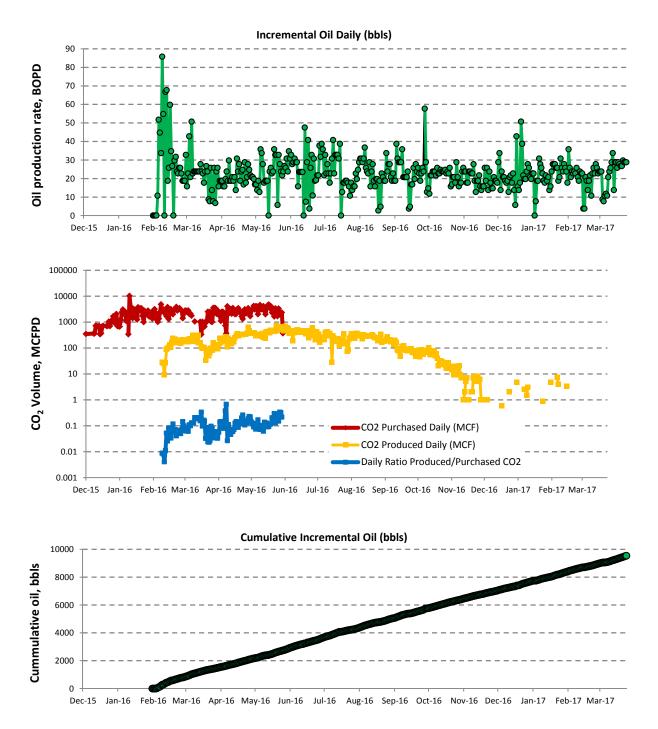



Figure 3. Update for incremental and cumulative barrels of oil recovered, comparison of  $CO_2$  recovered vs. purchased.  $CO_2$  recovered has remained at low levels compared to the amount of  $CO_2$  that has been injected. Incremental oil has actually increased slightly since water injection began indicating that the  $CO_2$  is being pushed rather uniformly away from the injection well, #2-32. The response closely resembles what has been forecast from the simulations.

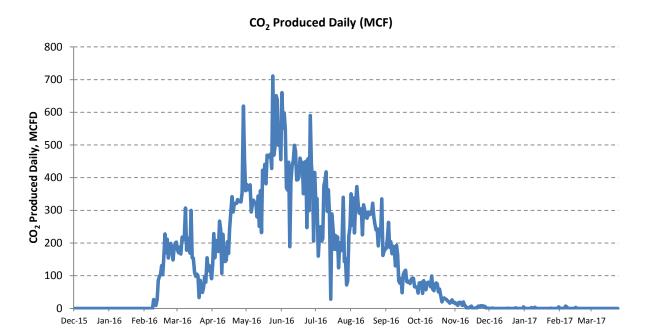



Figure 3. Total CO<sub>2</sub> vented in MCFD. The amount vented has declined to 1–8 MCFD.

#### Seismic reflection monitoring of the CO<sub>2</sub> injection in KGS 2-32

One 2D seismic line was acquired along KGS 2-32 by Paragon in early summer of 2016 (June-July) immediately following completion of the  $CO_2$  injection in the Mississippian reservoir. The new 2D seismic line, along with two previously acquired 2D lines and the original 3D survey were processed by Fairfield. The processed data were delivered in December 2016.

- 1. The re-processed 3D seismic was analyzed using AVAZ (Amplitude Variation with AZimuth) pre-stack methods which allowed mapping of fracture density and orientation in the Mississippian reservoir and the Arbuckle saline acquirer. Fracture orientation prediction from AVAZ aligns with fractures observed in KGS wells and the main fault mapped in the 3D data (Figure 4). Furthermore, seismically mapped fractures in the Mississippian reveal reservoir permeable paths that are in agreement with borehole monitoring of CO<sub>2</sub> migration through the reservoir (Figure 5).
- 2.  $CO_2$  fluid substitution seismic modeling in the Mississippian was completed and it predicts 15% change in zero-offset (stacked seismic) reflectivity. Modeling of pre-stack seismic predicts reflectivity change up to 45% introduced by the presence of  $CO_2$  in the pore space.
- 3. Analysis of the new 2D stacked seismic line is inconclusive due to low reflectivity change, potentially as large as 15% according to modeling, masked by noise. Ongoing analysis is examining data in the pre-stack domain employing AVO (Amplitude Variation with Offset) analysis and impedance inversion in order to determine if seismic reflection imaged the CO<sub>2</sub> plume in the Mississippian.

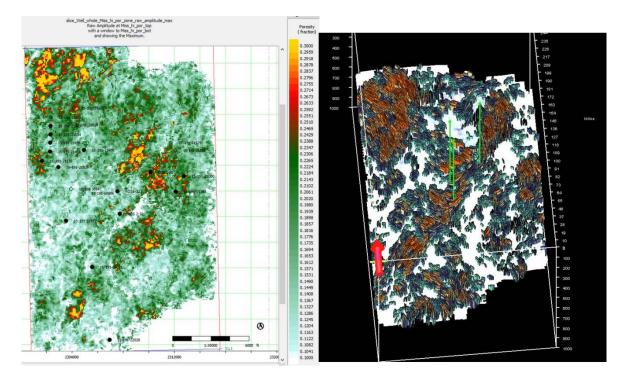



Figure 4. Re-processed 3D seismic analysis results for Mississippian reservoir illustrating fracture network density and orientations.

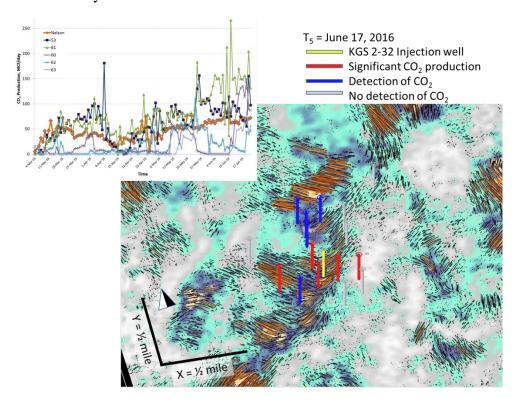
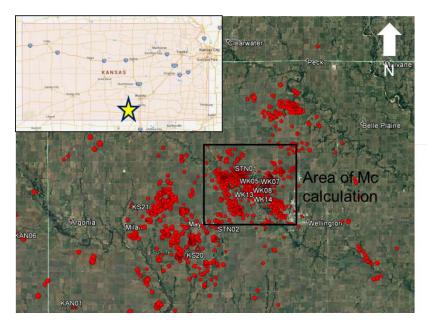




Figure 5. Re-processed 3D seismic analysis: discrete fracture network in agreement with field  $CO_2$  MVA data

# Induced seismicity monitoring at Wellington Field and surrounding area

Monitoring earthquake activity is accomplished using 15 seismometer stations on loan from IRIS, 3 KGS seismometers and regional USGS stations (Figure 6).

- 1. Over 1900 earthquakes have been documented from April 2015 to present, ranging in magnitude from 0.4 to 2.5, constituting a uniquely dense, high-resolution<sup>1</sup> seismicity data set.
- 2. No seismicity was detected at the Mississippian CO<sub>2</sub> injection.
- 3. The regional earthquake data has revealed a northward progression of seismicity during the monitoring period, from the Oklahoma border to now reaching the Wichita metropolitan area.
- 4. Time-lapse analysis of seismic anisotropy by observation of S-wave splitting shows that fluid pore pressures in the area have increased. This is the first direct observation of pore fluid pressure induced earthquakes in the region (Nolte et al., in review Science Advances).
- 5. This unprecedented pore pressure increase inferred by earthquake observations has also been monitored by pressure/temperature sensing in KGS 1-32 at the lower Arbuckle (30 m above basement).
- 6. 1.5 TB of Wellington earthquake data provided to DOE NETL, Pittsburgh, PA in February 2017 for comparison of Wellington events to Farnsworth EOR seismicity.



- 1905 total earthquakes: April 2015 - December 2016
- ➢ Mc ~1.2
- Smallest earthquake M<sub>w</sub> 0.4

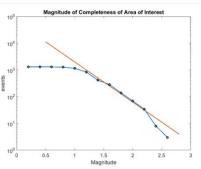



Figure 6. Visualization of Wellington Field earthquake catalog.

<sup>&</sup>lt;sup>1</sup> It should be noted that the USGS reports earthquakes greater than magnitude 2.5, thus information on smaller magnitude induced events is only available through the Wellington network.

#### Economical Monitoring of Pore Pressures in the Arbuckle Aquifer at Wellington, Kansas

In support of the Class VI injection permit, KGS is required to acquire background pre-injection pressures in the Arbuckle aquifer. This subject has acquired urgency since disposal of brine from oil and gas operations within the Arbuckle in Kansas and Oklahoma has resulted in increased pore pressures, which are suspected to be the source of induced seismicity in the region. Information about pressures is necessary to validate geomechanical and groundwater flow models, both of which are necessary to develop technical tools for predicting the likelihood of earthquakes at the Wellington site and to allow injections to commence. Downhole pressure in the proposed Wellington Arbuckle injection well (KGS 1-28) have been recorded continuously at a depth of approximately 5,000 feet since spring 2015 at an interval of 1 second. The acquired data has enabled KGS to identify increasing pressure trends at the site and additionally, the hydraulic manifestations of several earthquakes in the region.

It is commonly assumed that gauges for monitoring pressure in deep aquifers need to be installed at the perforation depth to obtain useful data. However, an experiment at the Wellington site was recently conducted to demonstrate that both pressure changes and absolute pressures within deep aquifers can be accurately estimated by monitoring pressures at the top of the water column in a well. Such shallow data can be obtained for a fraction of the cost of acquiring downhole pressure data, thereby enabling economic monitoring of deep aquifers. The water level at KGS 1-28 is at approximately 508 feet below ground. A shallow 50 psi pressure gage was attached in this well 522.5 feet below ground, approximately 14.5 feet below the top of the water column. The pressure was recorded in the shallow gage for a period of one week at 1 minute interval. The comparison of pressures in the shallow and deep gages is presented and discussed in Appendix A.

Due to a need for additional pressure data and to seek low-cost methods of acquiring downhole pressures, the shallow gauge will be reinstalled in KGS 1-28 in the coming month using a transmitting cable to capture measurements at 1 sample per second. These observations will help mitigate concerns regarding increased seismicity in the region and will help to calibrate the existing dataset providing a higher resolution. Pending successful measurements, this technique will be deployed for more long-term observation in wells surrounding injection activities.

#### SUMMARY

- 1. Produced (i.e., vented) CO<sub>2</sub> accounts for 18% of the CO<sub>2</sub> injected, no significant changes from previous quarter.
- 2. The Wellington seismometer array provides a dependable earthquake catalog and is updated on a weekly basis.
- 3. CO<sub>2</sub> fluid substitution seismic modeling in the Mississippian was completed and it predicts 15% change in zero-offset (stacked seismic) reflectivity.

- 4. Additional confirmations of Arbuckle saline aquifer reginal pore pressure increase are continue to arrive from various sources
- 5. Mapping of fracture density and orientation in the Mississippian reservoir and the Arbuckle saline acquirer was performed and it is currently in agreement with field performance and geochemistry data.
- 6. Shallow vs. deep pressure monitoring techniques were compared and initial results are being prepared for a peer-revived publication.
- 7. AoR related RfIs were successfully closed with EPA UIC Class VI well permit review team.

# **PROJECT SCHEDULE**

# Schedule and costs for Arbuckle CO<sub>2</sub> injection

Wellington project currently is scheduled to end is September 30, 2017. The information for the Determinations and Findings (D&F) was submitted February, 2017. This new D&F suggest changes in scope of work for Wellington project if difficulties with EPA UIC well Class VI permit are going to continue.

Under currently approved by EPA Post Injection Site Closure plan, KGS and Berexco are expected to continue MVA activities for four years after  $CO_2$  injection is ceased. This additional requirement changes previous schedule estimations. The updated Gantt Chart is provided below (Figure 7). This requirement will also expand required budget for the project (see Budgetary Information section).

| DEFENDO623.1<br>DEFENDO623.1<br>Task TBank Mame<br>Task To Lask Mame<br>Task To CL2 Transported to Mississispipain Injection and Mississippian Injection Mark<br>Task II. CL2 Transported to Mississispipain CL2 Injection<br>Task I3 Compare Performance of Mississispipain CL2 Injection<br>Task I3 Compare Performance of Mississispipain CL2 Injection<br>Task I4 Evaluate Carbon Storage Potential During the Mississippian CC2 Injection<br>Task I5 Compare Performance of Mississippian CL2 Injection<br>Task I5 Compare Performance of Mississippian CC2 Injection<br>Task I5 Compare Performance I 2:281 or Carbon Storage in the Mississippian CC2<br>Subask I5.1 Cobin Permit to Dill Monitorng Berehole<br>Subask I5.1 Copin Permit to Dill Monitorng Berehole | Kt2<br>5 Nov 151                                                     | Hr2<br> 1, Gn4                                                                       | 822 822 822 822 822 822 822 822 822 822 |                                   |                                         |                                               |                               |                                                                                                            | PISUYH4                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------|-----------------------------------------|-----------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------|
| k Task Name<br>k 10 Lask Name<br>k 10 Build Infrastructure for CO2 Pressurization at Mississippian Inteck<br>k 10 CD2 Transported to Mississippian Intector and Intection Begins<br>k 13 Compare Performance of Mississippian CD2 Intection well with Model<br>k 13 Compare Performance of Mississippian Intection Well with Model<br>k 15 Compare Performance of Mississippian Intection Well with Model<br>k 15 Compare Performance of Mississippian Intection Well with Model<br>k 15 Compare Performance of Mississippian Intection Subask R 2011 Monitoring Borehole<br>Subask R 10 Chain Permit to Dnil Monitoring Borehole<br>Subask R 21 Chain Permit to Dnil Monitoring Borehole<br>Subask R 21 Chain Permit to Dnil Monitoring Borehole                          | ISI. NoN                                                             | <mark>)L, GNY</mark>                                                                 | <ol> <li>Ind. 11, 11</li> </ol>         |                                   | 011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                               |                               | 1 100 1 100                                                                                                |                         |
| K 10 Build Infrastructure for CD2 Pressurization at Mississisptian Inject<br>K 11 CD2 Transported to Mississippian Injector and Injection Begins<br>K 12 Montion Performance of Mississippian Injection Well with Model<br>K 15 Compare Performance of Mississisptpian Injection Well with Model<br>K 15 Evaluate Potential to Move Dil and Dprimize for Carbon Storage in<br>K 16 Evaluate Potential to Move Dil and Dprimize for Carbon Storage in<br>Subask K2 1 Dbran Fermi to Dnil Montioning Borehole<br>Subask K2 1 Dhan Fermi to Dnil Montioning Borehole<br>Subask K3 1 Datan Fermi to Dnil Montioning Borehole<br>Subask K3 1 Datan Fermi to Dnil Montioning Borehole                                                                                            | Ţ                                                                    |                                                                                      |                                         |                                   | Det 1/ Jan 'I' April 'I'' Uet 'I'' Uet  | AL. INC.L. INDER AL. UNCL. 100                | RL. JON RL. INC L. INC        | 17. UPC 17. INC 17. UPC 1                                                                                  | Apr Jan Jul '22 Oct '22 |
| K. 11. CL2. Transported to Mississippian Injection and Injection Begins.<br>T. Z. Monitor Performance of Mississippian Injection Well with Model<br>X. 3 Compare Performance of Mississippian Injection Well with Model<br>K. B. Evaluate Carbon Storage Potential During the Mississippian CD2<br>K. B. Evaluate Potential to Move CD1 and Optimize for Carbon Storage in<br>K. B. Suluate Potential to Move CD1 and Optimize for Carbon Storage in<br>K. B. Suluate Potential to Move CD1 and Optimize for Carbon Storage in<br>Subask KB. 1 Obtan Permit to CD1 Minder Borehole<br>Subask KB. 1 Obtan Permit to CD1 Minder Borehole<br>Subask KB. 2 Inter and SST Montoring Borehole                                                                                    |                                                                      |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| 12 Monitor Performance of Mississispipan CL2 Injection Well with Model<br>13 Compare Performance of Mississispipan Injection Well with Model<br>14 Evaluate Performance of Mississippian Cu22<br>Line Subate Performant to Move Oil and Optimize for Carbon Storage in<br>5 Subask 12 Unit and DST Monitoring Borehole<br>Subask 15 1 Obtain Permit to Drill Monitoring Borehole<br>Subask 13 Log Monitoring Borehole<br>Subask 13 Log Monitoring Borehole                                                                                                                                                                                                                                                                                                                 | Mississippian Inje                                                   | Mississippian Inje 100 metric tons per day, approx. 26,000 metric tons, 9 months max | oer day, approx                         | . 26,000 metric                   | tons, 9 months r                        | nax.                                          |                               |                                                                                                            |                         |
| I. K. Evaluate Carbon Storage Potential During the Mississippinan CD21<br>(1) E. B. Valuate Carbon Storage Potential During the Mississippinan CD21<br>(1) E. Drill Monitoring Borehole (2-28) for Carbon Storage in<br>Subtask fiz. 1 Dtain Permit to Drill Monitoring Borehole<br>Subtask fiz. 1 Dtain Permit to Drill Monitoring Borehole<br>Subtask fiz. 3 Log Monitoring Borehole                                                                                                                                                                                                                                                                                                                                                                                     | Baerite                                                              |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| t. D. Fuulate Potential to Move UII and ULImizer for Lation Storage in<br>R. B. Drill Monitoring Borehole (2-28) for Carbon Storage in Arbuckle St.<br>Subask 16.1 Obtain Permit to Drill Monitoring Borehole<br>Subask 13.2 Juni and DST Monitoring Borehole<br>Subask 13.2 Juni and DST Monitoring Borehole                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Subtask 15.1 (Dtkain Permit to Drill Monitoring Borehole<br>Subtask 15.2 Drill and DST Monitoring Borehole<br>Subtask 15.3 Logi Andri Dort Monitoring Borehole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n the Mississippian Heservoir -<br>Saline Aquifer                    | Welling                                                                              | Î                                       |                                   | contir                                  | contingent on Class VL                        | nermit and funding            |                                                                                                            |                         |
| Subtask 16.2 Drill and DST Monitoring Borehole<br>Subtask 16.3 Log Monitoring Borehole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |                                                                                      |                                         |                                   |                                         |                                               |                               | 2                                                                                                          |                         |
| Sublask Ib.d Log Monitoring Borehole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Subtask 16.4. Complete Monitorion Borehole ner MVA reguirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Subtask 16.5 Conduct Mechanical Integrity Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Subtask 16.6 Analyze Wireline Logs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Subtask 16.7 Perforate, Test, and Sample Fluids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Lask 1/ Heenter, Deepen, & Complete Existing Plugged Arbuckle Borehole (Peasel 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e (Peasel 1)                                                         |                                                                                      |                                         | 'Likely vill drill                | × .                                     |                                               |                               |                                                                                                            |                         |
| Subtask 17.1 Ubtain Permit to He-Enter, Unit, and Hecomplete Borehole for Approval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pproval                                                              |                                                                                      |                                         | downhole pressure                 | monitoring                              |                                               |                               |                                                                                                            |                         |
| Sublask Ir.2. Until borenole into upper Arbuckle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |                                                                                      |                                         | maintain original tasks for Pease | sks for Peasel                          |                                               |                               |                                                                                                            |                         |
| Cutholt 17.4 Complete Derekola Following KOC Borningereta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Guideak 17.6 Conduct Machanical Intervity Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Subtack 17.6 Analize Wireline I on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Curbled 17.7 Perforate Test and Cample Fluide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |                                                                                      |                                         | -                                 |                                         |                                               |                               |                                                                                                            |                         |
| Task 18 Bevise Site Characterization Models and Simulations for Carbon Stora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Storade and                                                          |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| submit a revised Site Characterization Modeling and Monitoring Plan to DOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Plan to DOF                                                          |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Subtask 18.1 Revise Geomodels With New Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Subtask 18.2 Update Arbuckle and Mississippian Simulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| 19 Retrofit Arbuckle Injection Well [#1-28] for MVA Tool Installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Subtask 19.1 Install CASSM Source(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Lask 20 Equipment Dismantlement from Mississippian Injector and Install at Arbuckle Injector<br>Track of Dataget Arbushle, Observation Wight #2, 201 For MMA, Trail Installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I at Arbuckle Injector                                               |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Cubited 211 Install LTube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |                                                                                      |                                         |                                   | o mon                                   | 6 months rabilication - Uctober 17 - March 18 | er if - March 18              |                                                                                                            |                         |
| Subtask 212 Install CASSM Beceiver (for cross-hole tomography)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      |                                                                                      |                                         | Sent 3                            | 1. 2016 fe                              | nd of original project an                     | project and field activities) |                                                                                                            |                         |
| Subtask 21.3 Install DTPS Sensors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |                                                                                      |                                         |                                   |                                         | Dec 1.18                                      |                               |                                                                                                            |                         |
| Task 22 Begin Injection at Arbuckle Injector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                      |                                         |                                   | Arbuc                                   | kle Injection 12                              | 0 metric tons per             | 120 metric tons per day; up to 26,700 tonnes, 7.5 months                                                   | nes, 7.5 months         |
| 23 MVA During Arbuckle Injection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Subtask 23.1 CASSM Monitoring & Vertical Seismic Profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                      |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Subtask 23.2 boil thas Chemistry and CU2 Flux Sampling and Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Surhask 20.0 OF table regimenting<br>Surhask 23.4 Shallow Groundwater Sampling and Analusis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Subtask 23.5 Head Gas & Water Sampling and Analusis from Existing Mississippi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ssinnian Boreholes                                                   |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Subtask 23.6 InSAR & Seismometer Data Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Subtask 23.8 Integration of CASSM and Cross-well Tomography VSP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Task 24 Risk Management Related to Carbon Storage in Arbuckle Saline Aquifer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Aquifer                                                              |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Subtask 24.1 Integrate MVA Analysis and Observations to Detect CO2 Leakage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                                                    |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Subtask 24.2 Activate Mitigation Plans if Leakage Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| l ask 25 Lompare Simulation Hesults with MVA Uata and Analysis and Submit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ibmit Update of Site Characterization, Modeling, and Monitoring Plan | ation, Modeling, a                                                                   | nd Monitoring                           | Lan                               |                                         |                                               |                               |                                                                                                            |                         |
| Sublask 25.1 Hevise beomodel to Improve Match with MVA Uata<br>Task 26 Post interview MVA - Carbon Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |                                                                                      |                                         |                                   |                                         |                                               | Jan I 19<br>Doct inio         | Post injection MVA limited to 4 nears in Class V                                                           | l ase in Class          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |                                                                                      |                                         |                                   |                                         |                                               | See full require              | r ost injection MYA IIIIIteu (o + years in Lias)<br>See full remitements in 00SP: Shallow arounduster Mice | years III Class         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |                                                                                      |                                         |                                   |                                         |                                               | Geochemistry.                 | Geochemistry, pressure, water level, U-Tube, microseismic                                                  | be, microseismic        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |                                                                                      |                                         |                                   |                                         |                                               | 2D seismio, 3D sei            | ismic, cGPS, InSAR                                                                                         |                         |
| Task 27 Evaluate Carbon Storage Potential in Arbuckle Saline Aquifer at Wellington                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Wellington                                                           | _                                                                                    |                                         | _                                 |                                         | _                                             |                               |                                                                                                            |                         |
| Task 28 Evaluate regional Carbon Storage Potential in Arbuckle Saline Aquifer in Kansas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | quifer in Kansas                                                     | -(                                                                                   |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Task 29 Closure of Carbon Storage Project in Arbuckle Saline Aquifer at Wellington field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Wellington field                                                     | Origir                                                                               | Original DOE Site Closure               | osure                             |                                         |                                               |                               |                                                                                                            |                         |
| Subtask 29.1 Acquire 3D and Process Seismic Data Around the Arbuckle Injector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ector                                                                |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Subtask 29.2 Interpret Acquired 3D Data and Compare with Baseline Survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                      |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| Subtask 29.3 Integrate MVA Analysis with 3D Surveys to Establish CO2 Containment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ainment                                                              |                                                                                      |                                         |                                   |                                         |                                               |                               |                                                                                                            |                         |
| The 20 Develop a Deet Develop Manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                                                      |                                         |                                   | "Uriginal Project                       | ect                                           |                               |                                                                                                            |                         |

Figure 7. Previous page. Updated Gantt Chart of Wellington Project with revised schedule for proposed BP3 Arbuckle injection.

| Task     | Budget<br>Period | Number | Milestone Description                                                                                                              | Status      |
|----------|------------------|--------|------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Task 2.  | 1                | 1      | Site characterization of Arbuckle Saline Aquifer System – Wellington Field                                                         | Completed   |
| Task 3.  | 1                | 2      | Site Characterization of Mississippian reservoir for CO <sub>2</sub> EOR – Wellington Field                                        | Completed   |
| Task 10. | 2                | 3      | Pre-injection MVA – establish background baseline readings                                                                         | Completed   |
| Task 13. | 2                | 4      | Retrofit Arbuckle injection well (#1-28) for MVA tool installation                                                                 | Completed   |
| Task 18. | 3-yr1            | 5      | Compare simulation results with MVA Data and analysis and submit<br>update of site characterization, modeling, and monitoring plan | Completed   |
| Task 22. | 3-yr1            | 6      | Recondition Mississippian boreholes around Mississippian CO <sub>2</sub> -EOR injector                                             | Completed   |
| Task 27. | 3-yr2            | 7      | Evaluate CO <sub>2</sub> geologic storage potential of CO <sub>2</sub> EOR pilot                                                   | Completed   |
| Task 28. | 3-yr2            | 8      | Evaluate potential of incremental oil recovery and $CO_2$ geologic storage by $CO_2$ EOR – Wellington Field                        | In Progress |

# **MILESTONE STATUS REPORT**

# **FUTURE PLANS**

- 1. Continue post-injection monitoring on a monthly basis for wells that are responding to flood.
- 2. Continue weekly sampling of wells to monitor production including CO<sub>2</sub>, oil, and brine recovered
- 3. Perform XRD and XRF geochemical sampling on recovered cores from wells KGS 1-32, KGS 2-32, and KGS Cutter 1 to verify geochemical fluid changes observed during MVA activities and to improve geochemical modeling.
- 4. Perform on-site and lab geochemical analysis for select wells with the exception of alkalinity that is limited only to measurements at the well.
- 5. Continue operation of the Wellington seismometer array.
- 6. Continue baseline pressure measurements in the perforated lower Arbuckle zone of the shutin Class VI injection well.
- 7. Continue to acquire SAR satellite images and recording cGPS for analysis of ground motion
- 8. Continue contrast 2-D seismic (pre-and post-CO<sub>2</sub> injection in the Mississippian) to determine plume's extent.
- 9. Passive seismic monitoring will continue as a very important component for DOE and EPA.

# PRODUCTS

#### Publications, conference papers, and presentations

Schwab, D.R., Bidgoli, T.S., and Taylor, M.H., accepted with revisions, Characterizing the potential for injection-induced fault reactivation through subsurface structural mapping

and stress field analysis, Wellington Field, Sumner County, Kansas: Journal of Geophysical Research.

- Nolte K.A., Tsoflias G.P., Bidgoli T.S. and L.W. Watney, Shear-Wave Anisotropy Reveals Pore Fluid Pressure Induced Seismicity in the US Midcontinent, Science Advances (in review).
- Nolte K.A., G.P. Tsoflias, Bidgoli T. and W.L. Watney (2017) Temporal Changes in Shear-Wave Anisotropy in the US Midcontinent, Society of Exploration Geophysicists 87th Annual Meeting Transactions (in review).
- Molina Z., Nolte K. and G. Tsoflias (2017), Monitoring Induced Seismicity in Sumner County, Kansas, KU Undergraduate Research Symposium, Lawrence, Kansas, April 22, 2017.
- Nolte A., Tsoflias G. P., Bidgoli T. S. and W. L. Watney (2017), Direct Evidence of Pore Fluid Pressure Increases Inducing Seismicity in the US Midcontinent Through Analysis of Shear-Wave Anisotropy, 2017 Annual Meeting of the Kansas Interdisciplinary Carbonate Consortium, Lawrence, Kansas, March 5-7, 2017.
- Nolte A., Tsoflias G. P. and W. L. Watney (2017), Monitoring the Northward Advance of Injection Induced Seismicity in Southern Kansas, 2017 Annual Meeting of the Kansas Interdisciplinary Carbonate Consortium, Lawrence, Kansas, March 5-7, 2017.
- Graham B., Tsoflias G. P. and W. L. Watney (2017), Seismic Determination of Azimuthal Anisotropy in the Mississippian Chert and Arbuckle from 3D P-P Reflection Data in Wellington Field, South-Central Kansas, 2017 Annual Meeting of the Kansas Interdisciplinary Carbonate Consortium, Lawrence, Kansas, March 5-7, 2017.
- Graham B., Tsoflias G. P. and W. L. Watney (2017), Re-processing of 3D Seismic for Enhanced Imaging of the Mississippian and Arbuckle at Wellington Field, South-Central Kansas, 2017 Annual Meeting of the Kansas Interdisciplinary Carbonate Consortium, Lawrence, Kansas, March 5-7, 2017.
- Haga L., Tsoflias G. P. and W. L. Watney (2017), Time-Lapse Imaging of CO<sub>2</sub> Injection at the Mississippian Reservoir, Wellington Field, South-central Kansas, 2017 Annual Meeting of the Kansas Interdisciplinary Carbonate Consortium, Lawrence, Kansas, March 5-7, 2017.
- Holubnyak, Y., Watney, W., Birdie, T., Rush, J., Fazelalavi, M., Wreath, D., Pilot Scale CO<sub>2</sub> EOR in Mississippian Carbonate Reservoir at Wellington Field in South-Central Kansas, Energy Procedia, 2017, EGYPRO30710

Holubnyak, Y., Williams, E., Watney, W., Bidgoli, T., Rush, J., Fazelalavi, M., Gerlach, P.,
 Calculation of CO<sub>2</sub> Storage Capacity for Arbuckle Group in Southern Kansas:
 Implications for a Seismically Active Region, 2017, Energy Procedia, EGYPRO30482

# PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS

A project organization chart follows (Table 1). The work authorized in this budget period includes office tasks related to preparation of reports and application for a Class VI permit to inject  $CO_2$  into the Arbuckle saline aquifer, and operational field activities relevant to the project.

Table 1. Updated Organizational Chart.

| Small Scale Field Test – Wellington Field (FE0006821) |                           |                                                                                                    |  |  |  |  |
|-------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|
| UNIVERSITY OF KANSAS Center for Research              |                           |                                                                                                    |  |  |  |  |
|                                                       | Kansas Ge                 | eological Survey                                                                                   |  |  |  |  |
| Name                                                  | Project Job Title         | Primary Responsibility                                                                             |  |  |  |  |
| W. Lynn Watney                                        | Project Manager, Joint PI | Geology, Information Synthesis, Point of Contact                                                   |  |  |  |  |
| Jason Rush                                            | Joint PI                  | Geology, Static Modeling, Data Integration, Synthesis                                              |  |  |  |  |
| Yevhen 'Eugene' Holubnyak                             | Petroleum Engineer        | Reservoir Engineering, Dynamic Modeling, Synthesis                                                 |  |  |  |  |
| Tiraz Birdie                                          | Consulting Engineer       | Hydrological Engineering, Dynamic Modeling, Injection Permit<br>Application Preparation, Synthesis |  |  |  |  |
| John Doveton                                          | Co-PI                     | Log-petrophysics, geostatistics                                                                    |  |  |  |  |
| Kerry D. Newell                                       | Co-PI                     | Fluid geochemistry                                                                                 |  |  |  |  |
| Fatemeh 'Mina' FazelAlavi                             | Engineering Assistant     | Log analysis, well test analysis, reservoir engineering                                            |  |  |  |  |
| John Victorine                                        | Software Programmer       | Database management, well tool design, data processing                                             |  |  |  |  |
| KU Department of Geology                              |                           |                                                                                                    |  |  |  |  |
| George Tsoflias                                       | Co-PI                     | Wellington Seismometer Array, Seismic imaging                                                      |  |  |  |  |
| Jenifer Roberts                                       | Co-PI                     | Microbial geochemistry                                                                             |  |  |  |  |
| Leigh Sterns                                          | Affiliated Scientist      | cGPS processing for InSAR interpretation                                                           |  |  |  |  |
| Berexco, LLC                                          |                           |                                                                                                    |  |  |  |  |
| Dana Wreath                                           | Vice President            | Management, engineering                                                                            |  |  |  |  |
| Staff at Wellington Field                             |                           | Daily operations                                                                                   |  |  |  |  |
| Berexco Drilling Team                                 |                           | Drilling, completions                                                                              |  |  |  |  |
| Lawrence Berkley National Laboratory                  |                           |                                                                                                    |  |  |  |  |
| Tom Daley                                             | Co-PI                     | Geophysics, crosshole and CASSM data                                                               |  |  |  |  |
| Barry Freifeld                                        | Co-PI                     | Mechanical engineering, U-Tube                                                                     |  |  |  |  |
| T.Birdie Consulting                                   |                           |                                                                                                    |  |  |  |  |

#### **Organizational Structure** Small Scale Field Test – Wellington Field (FE0006821)

Trilobite Testing, Inc.

### IMPACT

The response of the  $CO_2$ -EOR has been successful. Downhole pressure monitoring is important in validating hypotheses to explain the effects of large scale injection and induced seismicity in Mid. Continent region. All of information requested by EPA by has been submitted for the application of a Class VI injection permit with exception of financial responsibility documents.

#### **CHANGES/PROBLEMS**

P.I. Lynn Watney has been away since November 1, 2016 due to an illness. He is expected to return to the office in early June, 2017. During this period of time Yevhen 'Eugene' Holubnyak (Joint PI) will fulfill the obligations of the project P.I. Lynn Watney has forwarded all files relevant to the project to the joint P.I., which includes draft reports, memos, and proposals related to the project. Funds are very tight due to the no cost time extensions necessary to permit review and response to for the Class VI permit.

Jason Rush has accepted an offer from Occidental Petroleum Corporation and left KGS Energy Section crew. Dr. John Doveton has retired from KGS in early April, 2017. The search for candidates for these positions has started. Meanwhile, Yevhen Holubnyak, current P.I. for the project, would like to add Dr. Tandis Bidgoli in a role of Co-PI to DE-FE0006821. The request letter is drafted in will be provided to DOE Management separately.

# **BUDGETARY INFORMATION**

# **Cost Status Report**

|                   | NCE #2 12/1/15 - | NCE #3 3/1/16 - | NCE #4 10/1/16 - | NCE #5 4/1/17- | 09/1/14 -    |
|-------------------|------------------|-----------------|------------------|----------------|--------------|
|                   | 2/29/16          | 9/30/16         | 3/31/17          | 9/30/17        | 09/30/17     |
| Budget Category   | Actual           | Actual          | Actual           | Projection     | TOTAL        |
| 11002-Unclas Sal  | 50,741.52        | 133,289.35      | 70,487.10        | 120,488.49     | 472,059.74   |
| 11003-Key Salary  | 34,405.15        | 51,607.71       | 5,338.73         | ŕ              | 139,696.72   |
| 11006-Statebonus  |                  | -               |                  |                | -            |
| 11101-Stud Salar  | 10,675.00        | 8,815.39        | 4,157.75         | 12,600.26      | 65,670.50    |
| 11701-Fringe      | 24,635.35        | 51,003.24       | 21,362.75        | 43,052.99      | 181,786.70   |
| 12001-Sup & Exp   | 2,473.56         | 120.76          | 3.02             | 8,000.00       | 24,150.73    |
| 12002-Other Exp   | 8,010.14         | 4.071.41        | 58,046.22        | 65,245.12      | 139,430.75   |
| Other             | 6,804.53         | 1,659.11        | 00,010.22        | 62,815.12      | 71,507.63    |
| Verizon           | 1,205.61         | 2,412.30        | 3,529.22         | 2,430.00       | 13,406.12    |
| FairfieldNodal    |                  |                 |                  |                | -            |
| Trilobite Testing |                  |                 | 9,000.00         |                | 9,000.00     |
| Paragon           | 700.04           | (104.45)        | 45,517.00        | 7 00 4 00      | 45,517.00    |
| 13001-Dom Travel  | 780.84           | (491.15)        | 836.07           | 7,234.00       | 23,177.08    |
| 14001-Equipment   |                  | -               |                  |                | -            |
| 19000-Fac & Adm   | 27,747.67        | 64,588.36       | 41,660.23        | 66,721.42      | 284,953.00   |
| 19001&12003-Subs  | 119,260.80       | 2,758,183.88    | 193,969.25       | 236,500.00     | 4,133,913.78 |
| Berexco           | 112,800.80       | 2,681,890.71    | 192,344.25       | 198,000.00     | 3,852,361.85 |
| TBirde            | 6,460.00         | 46,865.00       | 1,625.00         | 38, 500.00     | 214,968.18   |
| KSU               |                  | 29, 428. 47     |                  |                | 66,584.05    |
| LBNL              |                  |                 |                  |                | -            |
| 19003-Tuit No Fa  |                  | 2,089.04        | 2,837.00         | 1,329.00       | 17,686.36    |
| Total DOE         | 278,730          | 3,073,278       | 398,698          | 561,171        | 5,482,525    |
| Cost Share        |                  |                 |                  |                |              |
| 11002-Unclas Sal  |                  | 36,785.52       |                  |                | 36,786       |
| 11003-Key Salary  |                  | 18,982.16       |                  |                | 18,982       |
| 11701-Fringe      |                  | 15,434.23       |                  |                | 15,434       |
| 19000-Fac & Adm   |                  | _               | 18,513           |                | 18,513       |
| 19006-Nonku Cs    |                  | -               |                  |                | 1,563,073    |
| Total Cost Share  | -                | 71,201.91       | 18,513           | -              | 1,652,788    |
| % Cost Share      |                  |                 |                  |                |              |
| Grand Total       | 278,730.03       | 3,144,479.90    | 417,211          | 561,171        | 7,135,313    |

#### **APPENDIX** A

#### Economical Monitoring of Pore Pressures in the Arbuckle Aquifer at Wellington, Kanas

In support of the Class VI injection permit, KGS is required to acquire background pre-injection pressures in the Arbuckle aquifer. This subject has acquired urgency since disposal of brine from oil and gas operations within the Arbuckle in Kansas and Oklahoma has resulted in increased pore pressures, which are suspected to be the source of induced seismicity in the region. Information about pressures is necessary to validate geomechanical and groundwater flow models, both of which are necessary to develop technical tools for predicting the likelihood of earthquakes at the Wellington site and to allow injections to commence. Downhole pressure in the proposed Wellington Arbuckle injection well (KGS 1-28) have been recorded continuously at a depth of approximately 5,000 feet since spring 2015 at an interval of 1 second. The acquired data has enabled KGS to identify increasing pressure trends at the site and additionally, the hydraulic manifestations of several earthquakes in the region.

While the pressure from the deep gage has been invaluable, it is fairly expensive to acquire. It is commonly assumed that gages for monitoring pressure in deep aquifer need to be installed at the perforation depth. An experiment at the Wellington site was recently conducted to demonstrate that both pressure changes and absolute pressures within deep aquifers can be accurately estimated by monitoring pressures at the top of the water column in a well. Such shallow data can be obtained for a fraction of the cost of acquiring downhole pressure data, thereby enabling economic monitoring of deep aquifers. The water level at KGS 1-28 is at approximately 508 feet below ground. A shallow 50 psi pressure gage was attached in this well 522.5 feet below ground, approximately 14.5 feet below the top of the water column. The pressure was recorded in the shallow gage for a period of one week at 1 minute interval. The comparison of pressures in the shallow and deep gages is presented and discussed below.

#### **Pre-injection Period**

The pressure in the shallow and deep gages between 12:30 pm and 2:00 pm at the start of the test is presented in Figure 1. A pressure drop of approximately 0.2 psi is recorded during this period. Due to low sensitivity of the deep gage, the measurements oscillated in a range of approximately 0.1 psi, and are a reflection of noise in the data. On the other hand, the relatively more sensitive shallow gage recorded steady non-oscillatory measurements, and closely followed the pressure trend in the deep gage. As can be noted from Figure A1 pressure fluctuations in each gage are nearly identical.

#### **Injection Period**

As brine injection commenced at 2:00 pm and water levels rose, the pressure in the deep and shallow gages had an identical rise (Figure A2). As pressure in the shallow gage exceeded 50 psi, the gage was removed in order to prevent damage.

### **De-pressurization Period**

As water levels subsided following cessation of injection, the shallow gage was re-inserted at approximately 4:40 pm. The pressure in both the gages during the de-pressurization phase is presented in Figure A3, from which a nearly identical pressure trend can again be inferred in both the shallow and deep gages.

### **Post-Injection**

Pressure in the two gages for the post-injection period is presented in Figure A4. The pressure varies within a range of approximately 0.15 psi due to tidal effects, but a slight increasing trend is also present. The tidal fluctuations in both gages are fairly synchronized and of similar magnitude.

### **Estimating Downhole Pore Pressure**

The absolute downhole pressure at the elevation of the deep gage was estimated by several alternative methods which utilize the pressure data collected in the shallow well. The results are presented in Table A1 and indicate that the downhole pressure can be estimated to within 0.03% accuracy.

### **Summary and Conclusion**

The pressure data collected during the pressure monitoring test confirms that pressure variations in the shallow and deep gages are of similar magnitude. Additionally, it is demonstrated that it is also possible to accurately estimate the absolute downhole pressure using pressure information recorded in a shallow gage. These results are encouraging and make it possible to economically measure pressure variations in deep aquifer using a shallow pressure gage. The experiment is to continue at the Wellington site in order to validate the results over a longer period of time. The data acquisition interval for the shallow gage has been reduced to one second in order to coincide with the data logging period in the deep well. The acquired data will allow KGS to determine if the very minute seismic pressure responses measured in the deep gaga can also be captured in the shallow gage. The results will be documented in the next quarterly report.

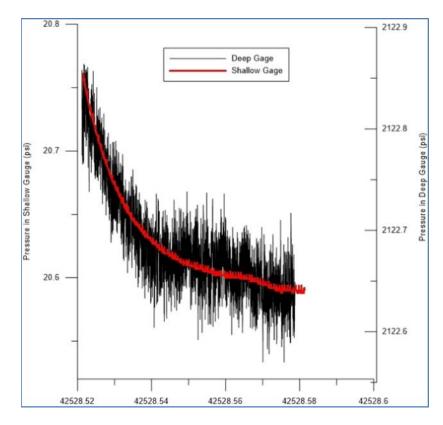



Figure A1. Pre-injection pressure in shallow and deep wells in KGS #1-28.

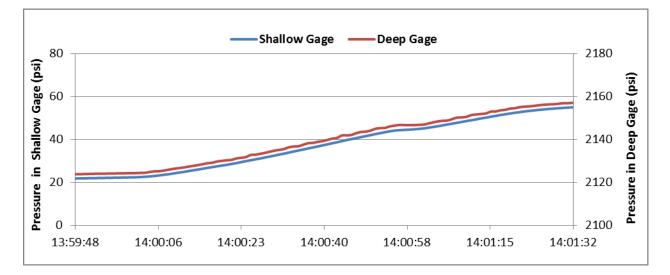



Figure A2. Pressures in shallow and deep gages during brine injection in KGS #1-28 on June 7, 2016.

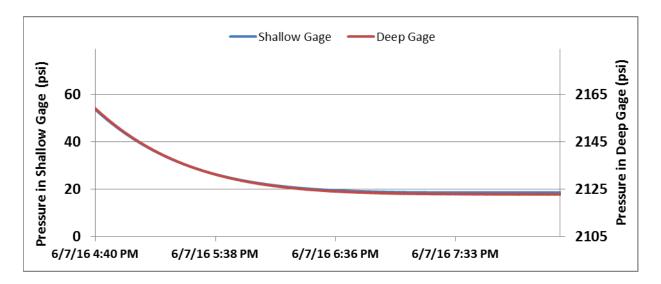



Figure A3. Pressure in shallow and deep wells during recovery (de-pressurization) phase of the injection test.

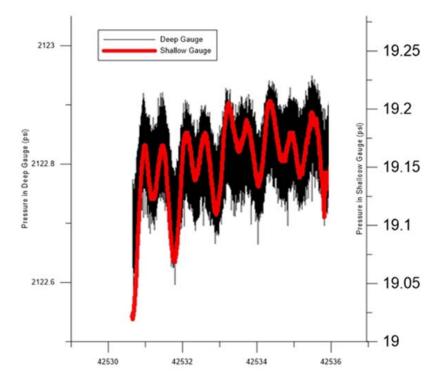



Figure A4. Post-injection pressures in shallow and deep gages in KGS #1-28.

Table A1. Estimated downhole pressure in deep gage at KGS 1-28 using information in the shallow pressure gage.

|                           |                   | Method                             |            |
|---------------------------|-------------------|------------------------------------|------------|
|                           | Pressure Gradient | Average Density of<br>Water Column | Equation I |
| Calculated Pressure (psi) | 2122.52           | 2122.78                            | 2123.27    |
| Measured Pressure (psi)   | 2122.65           | 2122.65                            | 2122.65    |
| Error (psi)               | 0.13              | -0.13                              | -0.62      |
| Error (%)                 | 0.006%            | -0.006%                            | -0.03%     |