

Calculation of CO₂ Storage Capacity for Arbuckle Group in Southern Kansas: Implications for a Seismically Active Region

Yevhen Holubnyak, Eugene Williams, Lynn Watney, Tandis Bidgoli, Jason Rush, Mina FazelAlavi, and Paul Gerlach

> 13th International Conference on Greenhouse Gas Control Technologies

> > Lausanne, Switzerland

November 18, 2016

Outline

- Modeling CO₂ storage capacity for South-Central Kansas Arbuckle aquifer
- Current state of seismicity and waste water disposal in Sothern Kansas
- How risk of seismicity affects storage capacity

Plan for Capacity Estimations Study

- Determine formations of interest and outline the area of review
- Select promising sites of interest with known structure (total of 10)
- Gather data
 - Available through existing database at KGS and other sources
 - Drill and core wells, process 3D seismic, well test analysis, process logs, etc.
- Create geologic models for 10 sites and an entire region
- Perform dynamic simulations

Top Arbuckle Structure Map showing Study areas

Core from Lower Arbuckle Injection Interval

5089-92 ft

5053-56

Thin Sections - Baffle Zone (Mid Arb.)

Flow units in the lower Arbuckle injection zone

Lower Arbuckle Injection Zone

Pairs of photomicrographs Plane light and crossed nichols R. Barker, S. Datta, KSU

Well KGS 1-32

Calculated Ky

Calculated Kh

Core Porosity

Br⁻/Cl⁻ and SO₄²⁻/Cl⁻ Identification of Baffles and Lack of Vertical Communication

- Br⁻ and Cl⁻ are conservative during water/rock interactions
- Very useful in detecting brine sources and mixing
- Values for brine of Lower Arbuckle vary substantially from Upper Arbuckle
- Lower Arbuckle brines cluster together
- Upper Arbuckle values more spaced out, suggests smaller baffles

Arbitrary seismic impedance profile – Wellington Field distinct caprock, mid-Arbuckle tight, lower Arbuckle injection zone

Core Features/Fractures

Rock Mechanical Properties vs. Depth

Step Rate Test Analysis Pressure-Time plot

Structural cross section showing regional Arbuckle flow units, southern Kansas

Williams, Gerlach, Fazelalavi, Doveton, KS CO₂

Relative Permeability and Capillary Pressure

Permeability (K90)

Permeability (Vertical)

Rock Type Based on RQI

Rock Type Based on RQI

 $RQI = 0.0314 \sqrt{\frac{Perm}{Porosity}}$

Dynamic Simulation Model

Simulated commercial storage capacity in the Arbuckle saline aquifer for 10 sites

Area	Estimated Storage Capacity (P50), million tonnes	Area, km²	Gross Thickness, m	Net Reservoir Thickness, m	Porosity, %	Average Permeability, md	Depth, m	Limiting Injection Pressure, bar	Reservoir Pressure, bar
1	79	1.4	300	66	5	25	1184	187	144
2	1	5.2	223	49	4	15	1508	223	175
3	49	6.1	258	57	6	15	1388	210	162
4	121	6.6	240	53	6	15	1170	179	138
5	55	1.4	300	66	5	19	1581	240	185
6	98	2.4	205	45	6	23	1310	194	150
7	71	1.2	209	46	3	31	1266	189	145
8	104	2.6	240	53	6	20	1089	169	130
9	98	5.8	230	51	6	18	1377	206	158
10	104	5.4	208	46	6	25	1224	183	141
Regional Model	4000	821	243	54	5	21	1288	195	150

CO₂ Spatial Distributions: 10 sites vs Max Capacity

Predicted Delta Pressure Distributions: 10 sites vs Max Capacity

Kansas Disposal Wells

Sources: Kansas Department of Health and Environment, ESRI, USGS, Kansas Corporation Commission, Kansas Geological Survey

Earthquakes and geology in central KS and OK

Sources: Kansas Geological Survey, Kansas Corporation Commission, NEIC, USGS, ESRI, Oklahoma Geological Survey, Oklahoma Corporation Commission Oklahoma map - Public Justice lawsuit on behalf of the Sierra Club dated 10/29/2015

Seismic and Waste Disposal Trends in Sothern Kansas

Kansas Geological Survey

Common Analogs?

Arbuckle Permeability Model

- What is the capacity?
- Empty Volume = 37M ft³ = 6.6M bbls
- If Ø = 5-7 %
- Volume $_{\phi}$ = ~450K bbls
- If efficiency = 50 %
- Volume_e = \sim 225K bbls
- High volume wells used to deliver up to 30K bbls/day
- Therefore

It would take up to 7-15 days to fill up this volume (<u>without considering</u> <u>existing water</u>)

- It would take 111-222 "ES units" to accommodate 50M bbls injected in 2014
- Translates into 3.9-7.8M ft²
- Harper Co. Area = $22.4B \text{ ft}^2$
- "Plunging" system?

Basement geology from sample rock types in the area of the induced seismicity

→ thick arkosic sediment fill indicative of the Midcontinent Rift System (MRS)

M. Killian, KGS

Downhole Pressure Monitoring

PRESSURE VS TIME

Summary

- Does the risk of induced seismicity affect storage capacity?
 - Yes, absolutely
- Is the risk of induced seismicity a CCS killer?
 IMHO, No; however...
- Arbuckle/basement interface?
- More characterization
- Monitoring strategies
 - Seismicity monitoring
 - Engineering solutions (pressure monitoring, well testing, etc.)
- Injection management strategies

Acknowledgements & Disclaimer

Acknowledgements

• The work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant DE-FE0002056 and DE-FE0006821, W.L. Watney and Jason Rush, Joint PIs. Project is managed and administered by the Kansas Geological Survey/KUCR at the University of Kansas and funded by DOE/NETL and cost-sharing partners.

Disclaimer

• This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Acknowledgements

- Bittersweet Energy Tom Hansen with Paul Gerlach and Larry Nicholson; Dennis Hedke, Martin Dubois and SW Kansas CO₂-EOR industry consortium, John Youle, George Tsoflias and students at KU, Gene Williams, and KGS staff supporting the acquisition of data, stratigraphic correlation, regional mapping, and interpretations for the DOE-CO₂ project
- Dana Wreath, Berexco, LLC for access and participation in drilling and testing at Wellington and Cutter fields and small scale field test at Wellington
- Rick Miller and Shelby Petrie, Wellington seismometer array, high resolution seismic
- Justin Rubinstein, USGS
- Induced Seismicity Task Force -- Rex Buchanan and Rolfe Mandel