Advanced Subsurface Characterization for CO₂ Geologic Sequestration and Induced Seismicity Evaluations

Tiraz Birdie, Lynn Watney, Aimee Scheffer, Jason Rush, Eugene Holubnyak, Mina Fazelalavi,

John Doveton, Jennifer Raney, Saugata Datta, Dennis Hedke, and Jennifer Roberts

Carbon Management Technology Conference

November 19th 2015

Sugarland, TX

Sedimentary Basins in the US

Suitability of Sedimentary Basins for Geologic Sequestration

Evolution of Sedimentary Basins

Carbonates

Evaporites

Shales (Caprock)

Present Day Evolution of Evaporative Cap - Arabian Gulf

Analog to portions of the Arbuckle CO2 injection zone at Wellington Field, KS

Tidal Effects Reflected in Geologic Logs

Time	GR/CGR/		Nauture Day Da				Reflection	Synthetic				
Time	SP/Cdi		Neutron-Den-Pe	Sonic		Impedance Automatics	Coefficient	Synthetic Selemia	Balos Wards	Sitratig	raphic Units	
240	CR DP LINE	1 MENOR LOSS 4	D B TE DE 0 B-3 D J NESU 4.1 2.4 AHKUB 3.0 D J DESU 4.1	ST.	a la	Alb. 10000 0 20000 0 A Alb. 10000 0 Abs. 10000 0	Ub 10000 0 0.25 Au 0	100 Hz	4.0 RE 1.0	Members	Formations	Sing
168			Top Cher	okee Gp.		and a second	W		Seconda	ry caproo	k	
Depth Equiv.			Top Mis	sissippian		and the second	Pay		CO2-EO	R pilot		
270 <u>- 1000 17</u>		Ca	prock Chatt	son Fm.		3		<i>))))</i>	Prim I	ary capro nterval	ck	independent
289		- E	Simps	on Group	1	New Constant						1
ears		Carbonate Top Arbuckle										
llion y		Ev	aporite Jeff	erson City- Cotter		all and a second	Baff	ile/barrier		nr)		
50 mi				An Ala Martin		and which	- Hiş im	gh pedance		ICE NOV IN		-
2	E		Rou	ubidoux Frr		when				CC BOILDS	December Polyceph	
- 540 LO.			Gase	conade Do				02 Injec zone	tion	EE NOV IN		
		3	GI	unter Ss.	ŝ	3				LASUIZ		

Importance of Characterization on CO2 Plume and Pressure Projections

Coarse Vertical Characterization

Meter-scale Vertical Characterization

Wellington CO₂Sequestration and EOR Site

Nuclear Magnetic Resonance Image Logging

Effect of Pore Space on Time to Return to Equilibrium

NMR Variables and Their Influence on Petropohphsical Properties

T1 Time: Time to align the protons with the magnetic field

T2 Time: Time for protons to recover, through bulk, diffusion, and surface relaxivity

Caprock MRI

SURVEY

The University of Kansas

• Organic matter ~2% TOC

Flow Units in the Lower Arbuckle Injection Zone

Porosity and Hydraulic Conductivity Comparsion with Core Data

MRI and PHND Estimates of Porosity

MRI effective porosity and neutron-density crossplot porosity in the Arbuckle of Wellington #1-32

Conclusion: there is a good match between MRI porosity and lithologycorrected neutron-density porosity which is a useful cross-validation of these logs

Permeability Profile of Arbuckle

Ion Based Verification of Baffle Zone and Caprock

- Brine of Lower Arbuckle vary substantially from Upper Arbuckle
- Lower Arbuckle brines cluster together
- Upper Arbuckle values more spaced out, suggests smaller baffles

Isotopic Verification of Baffle Zone and Caprock

Microbial Ecology and Validation of Baffle Zone

- Lowest biomass coincides with low perm zone (Lower JCC) and low DOC
- Highest biomass coincides with high perm and high concentrations of sulfate
- Same 9 genera were found in brine from Upper Arbuckle depths
- Brine from tight zone had 7 genera; 3 less and 1 unique
- Supports mixing of Upper Arbuckle and some degree of separation below

Seismic Profile Confirms Permeability Stratification in Arbuckle

Hedke, 2012

Seismic Structure Mapping Confirms Regional Presence of Caprock

Entry Pressure Analysis

$$Pc = k * \frac{1}{T2}$$

٠

Rhomaa-Umma Analysis

Depth-Constrained Clustering

Significant flooding surface from core description

Simulated Plume and Pressure Projections

Sources: ESRI, USGS, Kansas Geological Survey

Earthquake Trends in Southern Kansas

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

Induced Seismicity - Physical Mechanisms

Subsurface stress field

Faults slips when principal stresses exceed threshold

Drilling Induced Fractures and Leak-off Test Used to Estimate Principal Stresses

Fault Identification

 Extensive data acquisition required to identify faults and assess seismic risk regionally

3D Stress Analysis Used to Estimate Fault Slip Tendency

ST= 0.3 (lower than of 0.5 for fault slippage)

