Small Scale Field Test Demonstrating Sequestration in Arbuckle Saline Aquifer and by CO₂-EOR at Wellington Field, Sumner County, Kansas DE-FE0006821

W. Lynn Watney* and Jason Rush, Joint PIs Jennifer Raney, Asst. Project Manager Kansas Geological Survey University of Kansas *presenter

U.S. Department of Energy National Energy Technology Laboratory FY15 Carbon Storage Peer Review March 2-6, 2015

Presentation Outline

Project Objectives

- Demonstrate state-of-the-art MVA (monitoring, verification, and accounting) tools and techniques
- Integrate MVA data and analysis with reservoir modeling studies to demonstrate and ensure 99% CO₂ storage permanence.

Progress to Date on Key Technical Issues

- Evaluated injectivity and storage
- Characterized caprock and internal baffle
- Optimized MVA design to successfully evaluate -
 - CO₂ storage for CO₂-EOR
 - Saline aquifer
- Evaluating USDW & Seismicity

Plans for Remaining Technical Issues

Project wrap-up

Project Team

DOE-NETL Contract #FE0006821

L. Watney (Joint PI), J. Rush (Joint PI), J. Raney (Asst. Project Manager), T. Bidgoli, J. Doveton, E. Holubnyak, M. Fazelalavi, R. Miller, D. Newell, J. Victorine (static & dynamic modeling, well test analysis, highresolution seismic, passive seismic, geomechanical analysis, project management)

Tom Daley, Barry Freifeld (soil gas, CASSM, U-Tube, cross well seismic)

KANSAS STATE UNIVERSITY

Saugata Datta (fluid sampling and USDW monitoring)

TBirdie Consulting, Inc

4705 McCormick Street • Lawrence • KS 66047 • 785 843 1085 • 785 865 0678 (fax) • tbirdie@sunflower.com

T. Birdie, Lawrence, KS (*Class VI* application, engineering, monitoring synthesis, reporting, closure)

Dana Wreath, Adam Beren (field operator and operations, repeat 3D multicomponent seismic)

Department of Geology

Mike Taylor (*cGPS, InSAR*), George Tsoflias (*passive and active seismic*)

Goals and Objectives

• Program goals being addressed :

– Demonstrate that 99 percent of injected CO₂ remains in the injection zone

 Conduct small field test to support characterization, site operations, monitoring, and closure practices for Class VI geosequestration permit, Region 7 EPA, Kansas City, KS

-- Conduct small scale field test to demonstrate geosequestration and improve oil recovery from oil reservoir overlying the saline aquifer test.

• Project benefits of this small scale field test:

 Advance the science and practice of carbon sequestration in the Midcontinent and carbonate reservoirs & saline aquifers

- Evaluate reliable, cost effective MVA tailored to the geologic setting
- Optimize methods for remediation and risk management
- Technology transfer to local petroleum industry for implementation of CCUS
- Enable additional projects and facilitate discussions on regulations and policy

Wellington Field Sumner County Kansas

- Site at rural oil field operating since 1929
- 55 current operating wells, 20.7 MM bbls produced, 46k bbls annually
- Effective waterflood, ready for CO₂-EOR
- Phase I -- Approximately 26,000 tons to be injected in the Mississippian dolomite reservoir for EOR (2015)
- Phase II -- Approximately 26,000 tons to be injected in the Arbuckle dolomite aquifer for CO₂ sequestration (2016)

Progress to Date on Key Technical Issues

Injectivity and storage -- 2 basement tests, 490 m core, extensive log suite, multi-component 3D seismic, multiple well tests

- Flow-unit based injectivity & storage -> Petrel static model
- Characterize complex, multi-scale pore system typical of carbonate reservoirs
- Fracture/fault and geomechanical characterization based on core, microimaging and spectral sonic logs, well tests, step-rate test, 3D seismic
- Compositional simulations to maximize CO₂-EOR oil recovery and predict fate of CO₂ in saline injection zone → CMG dynamic model

Caprock and internal baffle characterization

- Multi-faceted characterization using full core, imaging logs, seismic, lab tests
- In situ geochemical studies including reactive transport modeling (S. Carrol, LLNL via separate contract with NETL)

EPA permit review & assessment of water quality of the USDW

- Received only Request for Additional Information (RAI), but no Notice of Deficiency (NOD) after EPA review of Class VI application
- Drilled three shallow MVA wells to evaluate USDW
- Geochemical analysis and observations indicate non-potable, high TDS brine
- Robust static and dyamic models indicate safe injection levels substantially 6 below regulation thresholds

Wellington Field

Mississippian Oil Reservoir & Arbuckle Saline Aquifer Showing Newly Drilled Wells and Wells with Modern Logs

Rush, KGS

Key Technical Issues Resolved

- 2 basement tests
- Multicomponent 3D seismic
- 490 m (1600 ft) core
- Extensive log suite
- Multiple well tests

Example of core from CO₂ injection zone in lower Arbuckle

- <u>11 swabbing intervals</u> and <u>8 DSTs</u> targeted
- Evaluate both tight and high porosity zones throughout the Arbuckle
- Three distinct hydrostratigraphic units in the Arbuckle

Key Technical Issues Resolved

- 2 basement tests
- Multicomponent 3D seismic
- 490 m (1600 ft) core
- Extensive log suite
- Multiple well tests

Example of core from CO₂ injection zone in lower Arbuckle

- 11 swabbing intervals and 8 DSTs targeted both tight and high porosity zones in all parts of the Arbuckle
- Resolved three distinct and isolated hydrostratigrahic units in the Arbuckle 9

Paragon Geophysical, Wichita

Core Features/Fractures, KGS #1-32 Also Analyzed via Helical CT Scans, Microresistivity Imaging, and Dipole Sonic

Confining Zone Characterization Entry Pressure Analysis

Progress to Date Key Technical Issues

- Milestone 1. Submitted Class VI application, June 2014
 - Vetted application with extensive interval review prior to submission to EPA
 - Response to EPA through 3/1/2015 addressed questions, no USDW in AOR, final discussions to reduce financial assurance → low pressure and small lateral extent of supercritical CO₂
- Task 5 -- Secured reliable CO₂ industrial suppliers (Praxair, Linde), July 2014
- Milestone 2. Refined static and dynamic models of the Mississippian oil reservoir
 - Task 3 -- Obtained Class II to inject CO₂ in Mississippian in February 2015
 - Task 9 -- Drill Berexco Wellington KGS #2-32 in late March 2015
 - Task 10 -- Re-pressurize reservoir to prepare for CO2 injection in April-May
- Milestone 3. Pre-injection MVA baseline recording
 - Obtaining data from a 15 seismometer array since Fall 2014
 - Collecting data from cGPS and inSAR for processing since August 2014
 - Drilling and sampling of three shallow monitoring wells indicate low yield and high salinity (absence of USDW?)

Gamma Ray and Sample Log Cross Section -- Evaluating characteristics of Permian Wellington Shale for USDW potential in the AOR

Permeability Estimation in Well SW -1 → Wellington Shale is an Aquitard

- Low permeability of 0.00005 ft/day ~0.01 md
- An aquitard with properties equivalent to a caprock

T. Birdie

Risk Assessment Freshwater aquifers in Kansas Minor aquifers in Wellington Field area

Required Increase in Pore Pressure (*psi*) in Arbuckle for Migration of Brines from the Arbuckle into Freshwater Aquifers

Milestone 3. Install and Operate Continuous GPS

- → Stable baseline for InSAR study of ground motion
- Trimble NETR9 Receiver
- Zephyr GNSS Geodetic Antenna
- Sampling rate of 15hz
 - Monthly, on-site data collection
 - High resolution ground motion for calibration of SAR images

D. Schwab, M. Taylor, T. Bidgoli (KGS, KU)

Raw cGPS Data (Recorded 9/14 \rightarrow 2/15) \rightarrow a Steady Baseline for Calibration of InSAR

- Data processed at KU under the direction of Leigh Stearns using GIPSY-OASIS
- Noise is primarily due to tidal effects

D. Schwab, M. Taylor, T. Bidgoli (KGS, KU)

Progress to Date Key Technical Issues (Continued)

Seismicity

- Expanded and refined seismometer array augmented by KGS investment to record field operational seismic events down to -0.5 M
 - 1+M events sufficient to observe barriers or conduits of flow,
 - fracture orientation,
 - understand earthquake focal mechanisms and stress regime,
 - improve geomechanical model

Factors impacting CO₂ storage

- Capillary entrapment defined using reservoir quality index
- CO₂ miscibility
- Fracture and parting pressure
- Permeability kv & kh, relative permeability
- Geochemical reactions employ reactive transport models

IRIS Seismometer Installation

Housing setup for Sercel (Mark Products) L-22D-3D sensors, ~5 ft below surface to minimize surface noise; installed below frost line in bedrock

Shelby Peterie, KGS Exploration Services, checking installation in July 2014

Network Sensitivity

- Minimum magnitude versus distance from the network
- Operational seismicity from active waterflood being recorded in Wellington Field
- Research underway to improve location of hypocenters of events

Local Activity

Events detected at \geq 7 stations[†]

total events	53
events/day	4
minimum magnitude	-0.3
maximum magnitude	1.4
average magnitude	0.6

- Earthworm software for automated detection of earthquakes.

- Reporting 2.5+ magnitude per USGS convention.

[†]initial recording over one weeks time

R. Miller and S. Peterie, KGS

Resolution of Hypocenters from IRIS Seismometer Array at Wellington

Refining location of operational seismicity -- Initially for the CO2-EOR injection to evaluate feasibility of methodology

Adapting Java toolset to manage, interpret, and display solutions on project maps (Victorine, KGS) \rightarrow Time, location (x,y,z) of event from seismometers

🍰 E	nter Seismi	ic Info	rmation						. 🗆 🗾	
nter up to 3 Sensor Number from 1 to 15										
#	Latitud	de	Longitude	Elev.(ft)	UTMx		UTMy	Elev.(m)	Distance	
3	37.303385		-97.44998	1239.0	637372.67		4129451.03	377.6472	1411.3	
5	37.307223		-97.43417	1242.0	638766.89		4129899.94	378.5616	510	
	37.318033		-97.425951	1282.0	639475.34		4131111.39	390.7536	1395.2	
=	37.3095		-97.46327	-0.015				-0.00466		
r.	27 200547		-97 4367	0.0	638538 39		4130154.07	0.0		
E	51.309347		01.4001		000000.00		4100104.01			
	Seismic E	Event:	Latitude (ϕ_q)	= 37.309547°,	Longitude	(λ _q)	= -97.4367°, D	epth $(z_0) = 0.0$	[m]	
	Seismic E	Event:	Latitude (ϕ_q) atitude (ϕ_n)	= 37.309547°, longitud	Longitude le (λ _n)	(λ _q) Elev	= -97.4367°, D	epth $(z_0) = 0.0$ Distance	[m] (r _n) [m]	
	Seismic E	Event:	Latitude (ϕ_q) atitude (ϕ_n) 03385	= 37.309547°, longitud -97.449980	Longitude le (λ_n)	(λ _q) Elev	= -97.4367°, D vation (h _n) [km 76472	epth $(z_0) = 0.0$ Distance 1411.3	[m] (r _n) [m]	
	Seismic E <u>n</u> 13 15	Event: 37.3 37.3	Latitude (ϕ_q) atitude (ϕ_n) 03385 07223	= 37.309547°, longitud -97.449980 -97.434170	Longitude le (λ_n)	(λ _q) Elev 0.37 0.37	= -97.4367°, D vation (h _n) [km 76472 85616	epth $(z_0) = 0.0$ Distance 1411.3 510.0	[m] (r _n) [m]	

Mississippian and Arbuckle injection zones have good impedance

KGS #1-32 -- Synthetic seismogram integrated with well logs and stratigraphy – Java app. (Victorine, KGS)

Future Plans and Expectations

- Arbuckle model framework requested and shared with EPA
- Geochemical analyses from USDW well and soil gas lysimeters for baseline & risk mitigation
- Pending supplemental funding from KU for KU Geology & KGS
 - Install several downhole geophones in two T/A wells
 - Install three new 3-component broadband seismometers purchased by KGS
- Spud Mississippian injection well, Berexco Wellington KGS #2-32
 - March (23-27) with Class II permit
- Repressurize and inject CO₂ into Mississippian
 - April/May 2015
 - 120 metric tons per day, up to 26,000 metric tons, ~ 7.5 months maximum
- Drill, complete, and start injection in #2-28 Arbuckle monitoring well
 - 6 mo. fabrication lead time CASSM, U-Tube, and Fiber Optic Array (pending decision); 2 months equip, test, and prepare #1-28 for injection
 - Anticipate public comment period for Class VI permit in May-July, receive permit in August-September
 - Inject ~April 2016 and finish by September 30, 2016 followed by 1 yr. PISC

Future Plans and Expectations (Continued)

- Complete installation and evaluate baseline monitoring data from Wellington Field
- Precise measurements of field response during injection with MVA technology
 - Sampling and analyzing produced fluids during Mississippian injection
 - Actively monitor/process seismometer array data to track events
 - InSAR-cGPS ground motion
- Validation of models and predictions
- Meeting with public in Wellington town hall meeting following commencement of Mississippian injection.

Upper Mississippian, Wellington Field

Rush, KGS 🔎

Milestone 3. Site Characterization of the Mississippian

-RQI+0.45

-ROI+0.25

-RQI+0.154 50-RQI=0.086

-ROW0.055

40-RQI-0.0385

7

Drainage Capillary Pressure Curves for Each RQI Range in the Mississippian

Cherty Sucrosic Dolomite

Sedimentary Features Have Been Masked During

Dolomitization

NW-SE PSDM Seismic Profile Mississippian Oil Reservoir Projected Through 5-Spot Injection (CO₂-EOR)

SE

28

Arbuckle Geocellular Permeability Model

Simulation of Arbuckle CO₂ Injection Bottom Hole Pressure and Free-Phase CO₂ Maximum Plume

Mississippian Reservoir Will Serve as Ideal Trap for Leaking

-- is under-pressured and blanket-like in distribution
-- will act as to capture leaking CO₂ if escape from the Arbuckle test
-- if detect CO₂, run high resolution 2D seismic to characterize leakage

Monitoring, Verification, and Accounting

- Innovative monitoring technologies:
 - cGPS recording since August 2014
 - SAR data being collected ~20 day intervals
 - Observe small (-0.5 to 1 M) operational (waterflood) seismicity since Sept. 2014
 - 33 Prospect remains to secure Disttributed Fiber Optic Arrays with VSP for Arbuckle monitoring

M. Taylor, KU

CASSM Design for Arbuckle Monitoring

DE-FE-OO12700 -- Integrated Temperature and Seismic Sensing for Detection of CO₂ Flow, Leakage and Subsurface Distribution - Rob Trautz, EPRI, PI

Post-injection Repeat 3-D Seismic Can Surface Seismic Methods Detect the CO₂ Plume in the Lower Arbuckle?

- Modeled CO₂ Plume using Gassman Fluid Substitution equation
- Assume 50% Water Saturation Post Injection

Related references on CO2 detection: http://library.seg.org/toc/leedff/29/2

Initial CO₂ Fluid Substitution Modeling with AVO *(ideal case)*

Fluid Substitution Modeling in Hampson-Russell KGS 1-32

Parameters

- Zone: 4910 5050 ft
- Fluids: Brine and CO2
 - Brine Density: 1.09 g/cc
 - Brine Modulus: 2.38 GPa
 - CO2 Density: 0.575 g/cc (Temp = 60°C; Pressure = 2093 PSI)
 - CO2 Modulus: 0.05 GPa (Temp = 60°C; Pressure = 2093 PSI)
- Matrix: 100% Dolomite (Density = 2.87 g/cc;
- Bulk Modulus = 94.9 GPa; Shear Modulus = 45 GPa)
- Matrix parameters are calculated with Hashin-Shtrikman average
- Reuss average used for fluid modulus
- Logs: DTC, Fastshear, RHOB, NPHI

Prestack Model

CO₂ saturation increases from 0 to 100% from left to right with amplitude increase in Arbuckle injection zone

C. Redger & G. Tsoflias, KU Geology

CO₂ Fluid Substitution Modeling with AVO Initial Findings Under Ideal Conditions

- a) Normal incidence (0 deg) reflectivity increase of 50% for CO₂ saturation increase from 0% to 12%
- b) Oblique incidence (AVO) with significant changes at greater than 35 degree offset. CO₂ saturation increases the AVO effect. The large offsets could be obtained in the VSP data.

C. Redger & G. Tsoflias, KU

Project Wrap-Up

Key Findings to Date

o Increased relevancy of this project to the DOE portfolio.

- Potential to improve monitoring of CO₂ plume using passive seismic
- Refined static and dynamic models → calibration for commercial carbon storage in the Midcontinent
- Spectrum of seismic methods, core analyses, and petrophysics improving geomechanical models
- Drilling, coring, logging, testing Mississippian injection well (March 23-27) with Class II permit in hand

Lessons Learned

 Improved methods and outcomes expected from test anticipated using recent efforts to refine Petrel-CMG models

Outstanding Project Issues

o Obtain Class VI in a timely manner

Wellington Will Continue to Serve as a Calibration Site

Regional CO2 Storage Estimates in Southern Kansas Using Numerical Models from DE-FE-0002056

- Max injection rate per well = 5,900 tonnes/day
- Limiting Injection Pressure = 150 % of ambient pressure at site
 - CO₂ Trapping Processes Simulated: Structural, Hydrodynamic, Solubility, Residual, Mineral
- Conservative initial model as a closed system

Initial Commercial scale CO₂ Injection Model

→ Significant CO2 storage can be managed at Wellington Field

G. Williams, Gerlach, Fazelalavi, Doveton, Holubnayak

Conclusion

- <u>Unique integration</u> of Wellington Field with the Kansas CO_2 *Initiative* engaging the entire community – petroleum industry, CO₂ suppliers, lawmakers, and regulators
 - Use of Wellington Field as the focal point for discussion
 - Use of Wellington Field as a calibration site and field demonstration to engage petroleum industry on merits of CO₂-EOR
 - Convey requirements for using and storing anthropogenic sources of CO_2
 - Test best practices
 - cost-effective characterization, modeling, and monitoring to aid in applying next-generation CO₂-EOR methods
 - Refine model realizations to optimize for commercial scaleCO₂ sequestration
 - Managing operation, reduce economic and environmental risks, compliance with regulations
 - Couple the oil field and the underlying saline aquifer to increase the CO_2 sequestration capacity 43

Example Time Lapse Crosswell Imaging of CO2 Plumes

Schematic Crosswell

Drill Stem Test Confirms Underpressured Mississippian

Multiple DST's conducted to characterize formations