0.5. Department of Energy FEDERAL ASSISTANCE REPORTING CHECKLIST AND INSTRUCTIONS FOR RD&D PROJECTS

DOE F 4800.2 03/11) Al Other Editions Are Obsciete

1. Identification Number: DE-FE0006821		2. Program/Project Title: Small Soale Field Test Demonstration CO2 Sequestration							
3. Recipient: University of Kansas Center for Research, inc.		L							
4. Reporting Requirements:		Frequency	Addressees						
A. MANAGEMENT REPORTING									
Research Performance Progress Report (RPPR)		~	FITS@NETL.DOE.GOV						
Special Status Report		Ā							
			FILSONEIL.DOE.GOV						
B. SCIENTIFIC/TECHNICAL REPORTING									
(Reports/Products must be submitted with appropriate 241 forms are available at <u>www.osti.gov/eink</u>)	e DOE F 241. The								
Report/Product	Form		http://www.osti.gov/elink-2413						
K Conference constraints and the port	DE F 241.3	FG	http://www.oefl.cov/elipik-2412						
Software/Manual D(DE F 241.3	~	100210000000000000000000000000000000000						
Other (see special instructions)	DE F 241.3								
* Scientific and technical conferences only									
C. FINANCIAL REPORTING			FITS@NETL.DOE.GOV						
☑ 8F-425 Federal Financial Report		Q, FG							
D. CLOSEOUT REPORTING			ETRONETI DOS COM						
Patent Certification		FC	FITS ONE TLOOP GOV						
SF-428 & 4288 Final Property Report		FC	FITSBARE IL.DOE.BOV						
Other			mailto:FITS@NETL.DOE.GOV						
E. OTHER REPORTING									
Annual Indirect Cost Proposal		0	See block 5 below for instructions.						
Audit of For-Profit Recipients									
SE-478 Tappible Personal Property Report Forms	Family		FITS@NETL.DOE.GOV						
Other - see block 5 heinw	- anny	^	FITS@NETL.DOE.GOV						
FREQUENCY CODES AND DUE DATES: A - Within 5 calendar days after events or as s; FG- Final; 30 calendar days after the project per FC- Final; End of Effort. Y - Yearly; 30 calendar days after the end of th 8 - Semiannually; within 30 calendar days after Q - Quarterly; within 30 days after end of the rec Q - Quarterly; 180 days after the end of the rec Q - Quarterly; 180 days after the end of the rec	pecified. riod ends. ie reporting period. r end of project year and porting period. ipient's fiscal year	project half-year.							
5. Special instructions:									
Annual Indirect Cost Proposal – If DOE is the Cog Otherwise, it should be sent to the Cognizant Federal	nizant Federal Agency, fr I Agency.	ten the proposal s	hould be sent to FITS@NETL.DOE.GOV.						
Other - The Recipient shall provide all deliverables a	s contained in Section D	of Attachment 2 8	Statement of Project Objectives.						

QUARTERLY PROGRESS REPORT

То

DOE-NETL

Brian Dressel, Program Manager

Award Number: DE-FE0006821

SMALL SCALE FIELD TEST DEMONSTRATING CO₂ SEQUESTRATION IN ARBUCKLE SALINE AQUIFER AND BY CO₂-EOR AT WELLINGTON FIELD, SUMNER COUNTY, KANSAS

Project Director/Principal Investigator: W. Lynn Watney Senior Scientific Fellow Kansas Geological Survey

> Ph: 785-864-2184 Fax: 785-864-5317 lwatney@kgs.ku.edu

Joint Principal Investigator: Jason Rush

Date of Revised Report: April 30, 2012

DUNS Number: 076248616

Recipient: University of Kansas Center for Research & Kansas Geological Survey 1930 Constant Avenue Lawrence, KS 66047

Project/Grant Period: 10/1/2011 through 9/30/2015

Second Quarterly Report

Period Covered by the Report: January 1, 2012 through March 31, 2012

Signature of Submitting Official:

EXECUTIVE SUMMARY

Project Objectives

The objectives of this project are: (1) inject under supercritical conditions approximately 40,000 metric tons of CO_2 into the Arbuckle saline aquifer; (2) demonstrate the application of state-of-the-art MVA (monitoring, verification, and accounting) tools and techniques to monitor and visualize the injected CO_2 plume; (3) develop a robust Arbuckle geomodel by integrating data collected from the proposed study area, and a multi-component 3D seismic survey; (4) conduct reservoir simulation studies to map CO₂ plume dispersal and estimate tonnage of CO₂ sequestered in solution, as residual gas and by mineralization; (5) integrate MVA data and analysis with reservoir modeling studies to detect CO_2 leakage and to validate the simulation model; (6) develop a rapid-response mitigation plan to minimize CO_2 leakage and a comprehensive risk management strategy; and (7) establish best practice methodologies for MVA and closure. Additionally, approximately 30,000 metric tons of CO_2 shall be injected into the overlying Mississippian to evaluate miscible CO₂-EOR potential in a 5-spot pilot pattern. The CO₂ shall be supplied from the Abengoa Bioenergy ethanol plant at Colwich, Kansas who has operated the facility since 1982 demonstrating reliability and capability to provide an adequate stream and quality of CO₂. The project shall install compression, chilling, and transport facilities at the ethanol plant for truck transport to the injection site.

Project Goals

The proposed small scale injection will advance the science and practice of carbon sequestration in the Midcontinent by refining characterization and modeling, evaluating best practices for MVA tailored to the geologic setting, optimize methods for remediation and risk management, and provide technical information and training to enable additional projects and facilitate discussions on issues of liability and risk management for operators, regulators, and policy makers.

The data gathered as part of this research effort and pilot study will be shared with the Southwest Sequestration Partnership (SWP) and integrated into the National Carbon Sequestration Database and Geographic Information System (NATCARB) and the 6th Edition of the Carbon Sequestration Atlas of the United States and Canada.

Project Deliverables by Task

1.5 Well Drilling and Installation Plan (Can be Appendix to PMP or Quarterly Report)

- 1.6 MVA Plan (Can be Appendix to PMP or Quarterly Report)
- 1.7 Public Outreach Plan (Can be Appendix to PMP)
- 1.8 Arbuckle Injection Permit Application Review go/no go Memo
- 1.9 Mississippian Injection Permit Application Review go/no go Memo
- 1.10 Site Development, Operations, and Closure Plan (Can be Appendix to PMP)
- 2.0 Suitable geology for Injection Arbuckle go/no go Memo

- 3.0 Suitable geology for Injection Mississippian go/no go Memo
- 11.2 Capture and Compression Design and Cost Evaluation go/no go Memo

19 Updated Site Characterization/Conceptual Models (Can be Appendix to Quarterly Report)

- 21 Commercialization Plan (Can be Appendix to Quarterly Report).
- 30 Best Practices Plan (Can be Appendix to Quarterly or Final Report)

ACCOMPLISHMENTS

ONGOING ACTIVITIES –

TASK 1. PROJECT MANAGEMENT AND REPORTING

Subtask 1.1. Finalize Program Management Plan

A revised Program Management Plan was submitted in February following discussions with EPA on the efficacy of a Class VI permit application for this small scale injection. Modifications were made to the plan in order to begin the pilot CO2-EOR injection in the Mississippian oil reservoir at Wellington Field. This change in order of injection will provide approximately one year for the application and review process for the Class VI Injection in the Arbuckle saline aquifer.

The final PMP will include a copy of the infrastructure requirements for CO2 injection, access documents (surface and subsurface), and a completed contract and commitment for supplying CO2. Contract negotiations with the large subcontractors, Abengoa (supplier of CO2) and Berexco (field activities for small scale test) will be completed next quarter. NEPA environmental questionnaires have been submitted for review for the injection and monitoring boreholes and for the CO2 supply facility.

Subtask 1.5. Drilling and Well Installation Plan

Well Drilling and Installation Plans will be completed early next quarter for all of the wells and boreholes including drilling and installation methods, the well-borehole designs (casing design, centralizer plan, cement design, etc.), method for determining perforation zones, contingencies for anticipated problems encountered during drilling such as loss circulation zones, completion and development plan. Additionally, the drilling and well installation plan will include a description of mud logging, wire line logging, coring, swabbing and laboratory analysis of samples, and any other testing that may be performed on the well-borehole.

Subtask 1.6. Monitoring Verification and Accounting (MVA) and Mitigation Plan:

The MVA and mitigation plans will be completed next quarter as part of the Class VI application and submitted as a separate report.

Subtask 1.7. Public Outreach Plan:

The Public Outreach Plan will also be submitted next quarter as part of the Class VI application. The document will describe workshops, presentations, and publications in technical and trade journals to be used to transfer lessons learned best practices, geomodels, simulation results, MVA data and observations to the public, regulators, legislators, and local industry.

Subtask 1.8. (Go-No Go Decision for CO2 saline formation sequestration) Arbuckle Injection Permit Application

An application for a Class VI underground injection control (UIC) permit for injecting CO_2 into the Arbuckle Group will be submitted next quarter. Substantial progress is being made to ensure timely completion. Key issues to be addressed in the permit application have been addressed as described below.

The final draft permit, after all negotiations are completed, shall be reviewed and a short report submitted to the DOE with a copy of the permit, indicating any potential implementation issues that may arise. This report shall be used to support a go/no go decision by the DOE on continuing this test injection into the Arbuckle.

Key issues in the Class VI injection permit have been discussed with EPA, DOE, and others who are applying for Class VI permit as well as review of pending permits. This has provided an understanding of the course being taken to successfully negotiating the application and to successfully implement the project under these new regulations. Issues identified and addressed include: 1) length of application process with EPA Region 7, 2) monitoring requirements in the context of the funds and duration of the project, and 3) financial assurance requirements. Discussions have included phone conversations, emails, and personal visits with EPA staff in Kansas City's Region 7 and EPA's Washington Headquarters. PI met with key EPA officials from Washington at the Annual Groundwater Protection Council Annual UIC Meeting in Houston in January 2012 to specifically meet and discuss the issues expressed by participants in this project and DOE regarding pursuit of the Class VI permit. The questions posed and comments of EPA are briefly summarized below. Following these discussions, the decision was made by all parties to move ahead with a better understanding by all of the specific attributes of this small scale injection. It was also a joint decision with DOE to delay deployment of the Arbuckle saline formation injection until after the Mississippian CO2-EOR test injection to allow more time to obtain the Class VI injection permit.

Key questions posed to EPA to address decision to proceed or not with application for a Class VI permit –

- What exactly does EPA need to see in our modeling/monitoring results?
- What corresponding relief in the monitoring/bonding obligations can we expect?
- We need a better idea about the expected duration of the Class VI application phases.

• Need concrete numbers associated (to the best extent possible) with these key modeling, monitoring, and application parameters and processes.

Key comments of discussions with EPA ---

- Provision in Class VI Final Rule to reduce the monitoring period by demonstrating through modeling/monitoring that there is <u>no danger to the freshwater aquifers</u>.
- 50-yr period monitoring is by <u>default</u>.
- Show by modeling and monitoring that the pressures and plume have <u>"stabilized"</u>.
- Up to applicant to demonstrate by modeling that there will be minimal impacts.
- If the pressures and the CO2 plume have stabilized and that no alarming trends have been observed in the monitoring network, <u>then the monitoring can also be shortened</u>.
- Bonding is a function of risk, duration, and type of monitoring needed to reach closure.
- Recognition that saline aquifer beneath oil field inherently <u>reduces uncertainty</u> <u>of containment</u>.

Information shared on project pertinent to making decision to pursue Class VI permit

- Operator of oil field, Berexco, LLC, is single owner of 12 mi2 field (unitized).
- Berexco has purchased pore space from land owner in area of CO2 plume in the Cambro-Ordovician Arbuckle saline formation.
- Berexco has accepted the liability and risk for CO2 injection into saline formation and the overlying oil field.
- Berexco has operated Wellington Field since late 1980's and plans to do so for years to come, ~20 yrs at current operations and longer if CO2-EOR is implemented.
- Berexco has suggested that they could monitor for CO2 after 4-yr project with acceptable cost-effect monitoring technologies and additional funds to do so.
- Mississippian oil reservoir is a continuous stratigraphic layer in Wellington Field that is also currently underpressured relative to underlying saline formation and can act as a pressure trap for any CO2 migrated from beneath.
- Demonstrated sealing caprock above 20 million barrel oil reservoir with 1000's of feet of shale and 200 ft of evaporite separating intervals of CO2 injection from marginal, thin unconfined shallow freshwater overlying Wellington Field and the area of review.
- Comprehensive geologic, geophysical, and geochemical data from existing study (FE0002056) being used to provide a refined geomodel (Petrel-based geocellular static model) and simulation (CMG full compositional simulator) with nearly complete core and extensive core testing being used in calibration of models.

- Proposed CO2 injection interval in Arbuckle ~5000 ft lies ~1300 ft below the Mississippian oil reservoir and ~900 ft below the top of Arbuckle with intervening caprocks and measured high and low permeable hydrostratigraphic units that comprise the mid and upper Arbuckle saline formation.
- Initial basic dynamic model injected 40,000 tonnes of CO2 into lower permeable 120 ft thick Arbuckle over a 12-month period resulted in a CO2 plume with lateral extent under 300 ft radius of injection well with vertical migration within the confines of the lower Arbuckle formation.
- Initial dynamic model does not include geochemical trappings, brine solubility, and imbibition (capillary entrapment mechanisms) that would lead to further degradation of the plume.
- Step-rate flow test in 20 ft interval within proposed injection zone conducted between two boreholes drilled in project DE-FE0002056 confirmed conformable communication of the hydrostratigraphic unit a low injection pressures.
- Small experimental scale of injection relative to others with extensive testing, modeling, monitoring would be a beneficial for this emerging technology and demonstration to stakeholders by providing quantitative parameters on the potential for storage of CO2 in a saline formation.
- Data will be used to further calibrate regional characterization of storage capacity of the Arbuckle saline formation underway in project DE-FE0002056.

It is also understood that EPA officials desire to have test injections of CO2 to evaluate new geologic sequestration regulations. A successful small scale test at Wellington Field will provide this information. EPA continues to develop rule-related guidance for in areas of financial responsibility, public participation, site characterization, area of review and corrective action, well construction, testing and monitoring, and project plan development. Our project will address these new guidelines and contribute to the continuing dialog with stakeholders.

The Class VI application for this small scale injection includes fundamental components that closely address the EPA guidelines and recommendations, focused on reduction of uncertainties.

- The small scale test involves injecting CO2 in deep saline aquifer beneath existing Wellington Field inherit with assurances of the integrity of the caprock overlying the oil field (**Figure 1**).
- Significant past and ongoing characterization in project DOE-FE0002056 will provide 2nd generation static and dynamic models to further improve quantification and prediction of flow, storage, and sealing associated with a CO2 plume. Information to be included in application will sufficiently reduce the risk and uncertainty of the small scale injection, and develop compliance with EPA regulations and anticipated flexibility required for a successful project that meets budget and practical implementation.

- Monitoring, verification, and accounting (MVA) methodologies developed for this study are cost effective and practical, yet state-of-the-art techniques providing a comprehensive system to characterize CO2 plume to be compared with and to calibrate the 2nd generation simulation. *In situ* and remote monitoring of the injection zone; the immediate overlying portions of the saline formation; oil reservoir; shallow, near surface brine formation beneath shallow evaporite; the unconfined freshwater aquifer; soil zone; and surface deformation will all provide means of rapid detection of any unanticipated movement of CO2 plume, so action can be quickly taken to cease operation and mitigate (**Figure 2**).
- Project will utilize best practices in geology and engineering to manage the CO2, protect freshwater aquifers, and avoid contamination of other subsurface natural resources.

Figure 1. Proposed injection site into Arbuckle saline formation at Wellington Field identifying initially modeled lateral extent of CO2 plume (yellow) and location other Arbuckle boreholes in the area.

Figure 2. Map locating boreholes penetrating the Mississippian in Wellington field and location of Mississippian wells to be monitored above and beyond the predicted CO2 plume around the location of the Arbuckle injection borehole (yellow-filled circle).

Guidelines from other stakeholder groups such as Carbon Sequestration Council are being reviewed, e.g., resolving means to establish that CO2 storage is "permanent" as noted as follows from the CSC (Van Voorhees, 8-9-11 to MRSCP Partner Meeting):

- Delineate the maximum monitoring area (MMA) the area expected to contain the free phase CO2 plume until injected CO2 is not expected to migrate in the future in a manner likely to result in surface.
- Identify potential surface leakage pathways in the MMA and assess the likelihood, magnitude, and timing, of surface leakage of CO2 through these pathways.
- Strategy for setting monitoring baselines for surface leakage.
- Strategy for detecting and quantifying any CO2 surface leakage.
- For Class VI, develop emergency and remedial response plan.

Also information provided by the Carbon Sequestration Council

(<u>http://www.carbonsequestrationcouncil.org/</u>) cites considerations for obtaining a successful Class VI application including:

- EPA's focus on site selection and characterization.
- Additional focus on performance standards, site specificity, flexibility and adaptability [*up to the application to carefully establish this perspective*].
- Design permit applications to maximize flexibility.
- State permitting programs should use flexibility.

- Permits plans key to adaptation and site specificity.
- Plans define how performance standards apply.
- Plan modifications key adaptations to project learning.

Subtask 1.10. Site Development, Operations, and Closure Plan

A draft of the plan will be developed in the next quarter (*during BP1 as specified by DOE*) to describe the details of the site development, operations, and site closure including:

- list of available infrastructure in and around Wellington Field related to small scale CO2 injection;
- identify all major activities, roles of responsibility, and environmental health and safety issues that the Applicant will face during all stages of the project;
- identify the necessary permits and respective agencies;
- describe the information required for each permit;
- schedule of when permit applications shall be submitted and anticipated approval dates.
- A list of responsible persons for completion and negotiation of the permits shall be identified for each permit.

Task 2. Site Characterization of Arbuckle Saline Aquifer System - Wellington Field

A considerable amount of geologic, geophysical, core and log based petrophysical and geochemical information is being compiled and interpreted in project DE-FE0002056 to quantify the hydrostratigraphic units in the Arbuckle saline formation and overlying caprocks and Mississippian oil reservoir. This information is being used produce the 2nd generation static geocellular model and dynamic simulation for the Class VI application. New models will be obtained in the next quarter for use in the application. Further updates and refinements will be shared with EPA and stakeholders during the evaluation process as per communications with Region 7 EPA officials.

An example for the variability of the permeability in the Arbuckle saline formation, a very key element in the modeling, is illustrated by results of whole core analysis obtained during the quarter from Wellington KGS #1-32 (**Figure 3**).

Seismic processing to obtain conversion of time to depth and to interpret the converted shear wave data in Wellington Field has taken additional time (**Figure 4**). The depth conversion is now completed and will be used without the shear wave interpretation in the model used in the initial submittal of the Class VI application.

Figure 3. Simple plot (log permeability in millidarcies vs. depth in feet) of whole core analysis of maximum permeability (Kmax) measured in the Mississippian, Chattanooga, and Simpson Group (above 4160 ft depth, left side of plot) and the Arbuckle saline formation, below 4160 ft. Entire 1600 ft interval was cored in this plot from Wellington KGS #1-32. Fewer whole rock samples were analyzed above the Arbuckle in what were visually determined to be low visual permeability. Instead, CT scans were obtained in the low permeable intervals. Entire interval was logged with nuclear magnetic resonance (NMR) tool that is being used to calibrate effective porosity, pore size, and permeability that will be used to quantify the permeability. Moreover, special core analysis of tight zones has being done at NETL labs that have obtained permeability in the microdarcy to picodarcy permeability range in the lower organic argillaceous carbonates of the Mississippian. Note the considerable vertical heterogeneity of permeability in the Arbuckle with Kmax varying from less than 0.10 millidarcy to several hundred millidarcies. No core samples have measured permeability that has reached the 1 Darcy level or above, which is consistent with the estimates of permeability from the NMR tool. Moreover, fracture heights measured in the core indicate that they are closely correlated to the hydrostratigraphic linked lithofacies, i.e., enhance the matrix pores, but closely constrained by the stratigraphic zonation. Larger matrix pores, and particularly, thin inter-formational breccias have more fractures.

Nov-Dec-Jan-Activity-Entity / Timeline 11 12 11 Wellington Area х PreStack Depth Migration (PSDM) -FarifieldNodal **PSDM Volumetric Curvature Processing - Geo-Texture PSDM Volumetric Curvature Interpretation - Nissen PSDM Interpretation -HS Geo** Х Impedance Inversion - PSDM input-HS Geo Х х Elastic Inversion - Pre-stack Time Migration (PSTM) Input-HS Geo Spectral Decomposition (Frequency Domain Processing)-HS Geo х 2D Shear Wave Processing-FairfieldNodal х 2D Shear Wave Interpretation-HS Geo Х **Converted Wave Processing-FairfieldNodal** Х Х Converted Wave Interpretation- HS Geo х

Remaining Seismic Work at Wellington Field

Figure 4. Prior estimates of the extensive geophysical processing and interpretation being done for Wellington 3D multicomponent seismic survey in project DE-FE0002056. All of the activities will be completed in the next quarter.

Task 3. Site characterization of Mississippian Reservoir for CO2 EOR -Wellington Field

New seismic processing and interpretations as described above are underway and will be integrated in the second quarter for use in the Class II injection permit for the CO2-EOR test injection into the Mississippian oil reservoir at Wellington Field. The new prestack depth migration volume will be of major importance in the simulation of the CO2-EOR flood (**Figures 4 and 5**). The additional seismic profile in **Figure 6** illustrates the detailed information from the seismic in the Paleozoic interval down to the Precambrian surface at the base of the Arbuckle saline formation.

Figure 4. Prestack depth migration top Mississippian (left) compared to the Mississippian structure map using well control only (right). Correspondence of the two maps is excellent with additional resolution provided by the seismic data. Both sets of data will be integrated into the geocellular static model of the Mississippian reservoir. Note index line locating the shear wave survey shot at Wellington for calibration of the converted wave of the 3D seismic survey. 2D survey is shown in Figure 5.

Figure 5. Preview of the converted shear wave, prestack depth migrated multicomponent 3D seismic volume in Wellington Field coincident with southwest-tonortheast oriented shear wave line #1 identified in Figure 4.

Figure 5. PSDM of an arbitrary profile running southwest to northeast intersecting the two test boreholes drilled under DE-FE0002056. Stratigraphic horizons are identified. Precambrian basement is the lower pink line at the base of the Arbuckle saline formation.

The rich core and log petrophysical database at Wellington KGS #1-32 borehole located 3000 feet southwest of the CO2 injection well, #1-28, provides an exemplary view of the strata extending from the 100 ft thick Cherokee Shale above the Mississippian into the upper Precambrian. These data are summarized in **Figures 6-10**.

The 430-foot thick Mississippian interval includes both the oil reservoir at its top (**Figures 6, 7, and 8**) and a lower 110 ft interval (**Figure 10**, referred to as dark Cowley facies) that is comprised of dark, organic-bearing argillaceous quartz and dolomite siltstone that is being characterized as added caprock to the underlying shales in the Simpson Group and Chattanooga Shale.

- <u>Vertically stacked siliceous dolo-siltites</u> reflect upward-shallowing, retrogradationally/progradationally stacked cycles comprising a depositional sequence.
- Cycles consist of argillaceous dolo- and lime mudstone and wackestones, siliceous dolo-siltites, and increasingly sponge-rich, skeletal wacke-packstones that cap shallowest portions of cycles on higher portions of the ramp.

- <u>Shallowest cycles deposited along higher edges of ramp were affected by bottom</u> <u>currents and were subaerially exposed after deposition.</u>
- <u>Rock properties typically change systematically upward through the reservoir</u> succession with molds and vugs, pore throat size, and connectedness varying between each successive cycle affecting cementation exponent & bound water.

Cored Well, Berexco Wellington KGS #1-32 Top Mississippian to Kinderhook Shale

Figure 6. Well log and interpreted lithologic profile from logs on left. Right side illustrates porosity and permeability measurements from core, sedimentary structures, and color for Wellington KGS #1-32 borehole.

Figure 7. Three boxes of slabbed core (3 ft long) from Wellington KGS #1-32 borehole showing upper portion of the oil reservoir in Wellington Field overlain by shales of the Pennsylvanian Cherokee Group.

Figure 8. Interpreted nuclear magnetic resonance (NMR) log profile of the Mississippian oil zone in Wellington KGS #1-32 borehole, annotated with summary information: low one ohm-m resistivity, moderate porosity of around 100 md,

medium sized pores (intercrystalline dolomite), most of which is free pore space with minor bound water.

TS provided by Datta & Barker, KSU

Figure 9. Thin section photomicrograph with blue epoxy impregnation of Mississippian oil reservoir from Wellington KGS #1-32 borehole. Reservoir is a finely crystalline dolomite with mottling of silica cement and replacement of the dolomite.

Figure 10. (*previous page*) Spectral gamma ray profile (uranium, potassium, and thorium) of the Mississippian strata in Wellington KGS #1-32 borehole and comparison of these elements in cross plots to right show elevated uranium content in lower Mississippian "Cowley lithofacies. Photos of 3 ft high core boxes illustrating the dark colored, tight, low permeability argillaceous siltstones of the "Cowley" lithofacies shown in lower left.

Figure 11. Core flow apparatus used at NETL in Pittsburgh to measure the microdarcy and picodarcy permeability in the lower Mississippian organic bearing, argillaceous quartz/dolomitic siltstones that are being evaluated to serve as additional caprock that overlies the Arbuckle saline formation.

Subtask 9.2. Install LIDAR Survey Reflectors, CGPS, and Seismometers in a Grid Pattern near the Injection borehole.

Mike Taylor constructed a base station on the KU campus in February 2012 and received training during Spring Semester for the operation of the CGPS (continuous GPS that is used to calibrate InSAR and LiDAR surveys), and a seismograph station. The equipment installation in Lawrence is essential for training on the use of equipment and to test materials before being sent to the field before equipment is deployed in Wellington Field. Issues such as earthquakes and fracking are on everyone's mind and these surveys will insure that we are not doing either.

Figure 12. CGPS and seismometer training station installed at KU campus for instruction and testing of equipment before deploying to the field.

Schedule and Budget Update

Schedule - Seismic processing of converted shear wave and interpretation of the seismic at Wellington Field continues. We will update the Petrel geocellular geomodel and run the 2^{nd} generation CMG simulations in the next quarter to include in the application for the Class VI injection permit. Our objective of the new model will be to reduce excessive default monitoring and financial bonding by adequately characterizing the geology of the saline aquifer, caprocks, and overlying oil reservoir.

The provisional schedule to inject CO2 into the Mississippian oil reservoir ahead of the Arbuckle is provided in the series of Gantt charts included in **Figures 12 through 15**.

Expenses -- The expenses charged to the DoE for January 1, 2012 through March 31, 2012 on this project total \$17,208.52, and include supplies (such as cowhide and leather gloves, scratch brush, fasteners, bars, ear plugs and wire); Galetzka airfare and mobile welder (an expense provided by Geology Dept); TBirdie Consulting; travel to San Francisco, Pittsburgh, Houston, and Long Beach; and associated F&A. Cost share contribution for in-kind appointments for Watney. Rush and Newell total \$6,475.85.

			BP1	, Cla	ss II	Missi	issip	pian	First										
				1			1	Vr 1 - 201	2										-
			0	N	D	Jan '12	F	M	A	м	J	Jul	Α	S					F
_																			
Task 1.	Project Manag	ement and Re	porting																⊢
	Subtask 1.1.		Finalize F	r <mark>ogram Ma</mark>	nagement	Plan	1		1	1			1	1					
	Subtask 1.2.		Planning	and Report	ing														-
	Subtask 1.3. Subtask 1.4		Develop In Develop F	nterface Ca Project Web	pability to	NAICARB	Database												⊢
	Subtask 1.5.		Drilling an	d Well Inst	allation Pla	an													1
	Subtask 1.6.		Monitoring	g Verificatio	on and Acc	ounting (M	IVA) and M	litigation PI	an:										
	Subtask 1.7.	Go-No Go1	Public Ou	Itreach Plai	n inction Roy	mit Applic	ation												-
	Subtask 1.9.	Go-No Go2	Mississip	pian Class	Il Injection	Permit Ap	plication				1	1	1						t
	Subtask 1.10.		Site Deve	lopment, O	perations,	and Closu	re Plan												
Teelso	City Changester				Current and C	18/ - 11 ¹	- Field												-
Task 2.	Site Character	Go-No Go3		ie Aquiter	System -	weilingto	n Field												-
Task 3.	Site characteri	ization of Missi	issippian F	Reservoir f	or CO2 EC	D <mark>R - Well</mark> i	ington Fiel	ld											
		Go-No Go4																	-
Task 4.	Subtask 4.1	g sorenoie for	CO2 Sequ	estration	IN ARDUCK	ie Saline	Aquiter		-	-				-				+	+
	Subtask 4.2.																		
	Subtask 4.3.				MOVED	TO BP2													F
	Subtask 4.4.		-												1				+
	Subtask 4.6.		1																F
	Subtask 4.7.																		
Tack 5	Drill CO2 Int	tion Porchol-	at the Core	tor of Mi-	decinate	002 505	Dattern												-
TASK D.	Subtask 5.1	uon Borenole	at the Cen		ssippian	COZ-EOR	Obtain pe	ermit to drill	injection v	vell for CO2	-EOR								+
	Subtask 5.2.						obtain pe	Drill and [DST injectio	on well	2011								
	Subtask 5.3.							Log inject	tion well										
	Subtask 5.4.							Complete	injection v	vell as per l	KCC requir	ements							-
	Subtask 5.6.							Conduct	Analyze	vireline loa	est								+
	Subtask 5.7.								Perforate,	, test, and s	sample flui	ds							
																			-
Task 6	Subtask 6 1	en, & Complet	e Existing	Plugged /	Arbuckie i	Borenole	(Peasel 1)				Obtain ne	mit to re-e	neter drill	and recon	nlete hore	hole			-
	Subtask 6.2.										obtain po	Drill the b	orehole inte	o upper Art	ouckle				1
	Subtask 6.3.											Log boreh	ole						
	Subtask 6.4.											Complete	borehole a	as per MVA	requireme	ents			-
	Subtask 6.5.											Conduct r	Analyze v	vireline loa	st				-
	Subtask 6.7.												Perforate,	test, and	ample flui	ds			
																			-
Task 7.	Revise Site Ch	aracterization	Models ar	nd Simula Modeling	tions for C	:02 Seque	estration a	nd											+
	Subtask 7.1		1	lineacing							Revise ge	omodel wit	h new data	1					
	Subtask 7.2.										Update A	rbuckle and	d Mississip	pian simul	ations				
Tack 9	Inventory Well	and Boroholo	Completi	one within	Aroa of I	nfluonco	of Small S	calo CO2	Soquostra	tion Broin	et .								-
Task u.	inventory wen	and Borenoie	Completi		Area or i	indence	or Sman S		Sequesua										+
Task 9.	Establish MVA	Infrastructure	- Around C	CO2 Injecto	or for CO2	Sequestr	ation	11/4 00000	monto and	fabrication									-
	Subtask 9.1. Subtask 9.2.		Install LID	AR Survey	Reflectors	. CGPS. a	nd Seismo	meters in a	a Grid Patte	ern near the	Injection I	orehole							+
	Subtask 9.3.				Establish	protocols	for InSAR c	data collect	ion										
	Subtask 9.4.					Drill two o	cluster of sh	hallow fresh	n water mo	nitoring bor	eholes	-1-							1
	Subtask 9.5.					Drill two r	Fstablich	wells below	/ snallow e	vaporite tert	monitoring	CK arid and in	stall soil a	as samplin	a pointe or	ound inject	or		+
	Subtask 9.7.						Outfitting	existing M	ississippia	n boreholes	for head g	jas samplir	ig	ao sampili	g points di	Sana inject			
			L																F
Task 10	Pre-injection M	/IVA - Establish	Backgrou	ind (Baseli	ine) Read	Ings Analuai	of InSAR	lata										-	-
	Subtask 10.1		1			Analysis	Collect ar	nd analysis	LiDAR dat	ta									+
	Subtask 10.3.								Shallow g	round wate	r sampling	and analys	sis						
	Subtask 10.4.								Soil gas o	chemistry a	ind CO2 flu	x sampling	and analy	sis					F
	Subtask 10.5.		1						Head gas	Water sa	ampling and	a analysis -	 existing N targeting 	AISSISSIPPI	an wells	oir			+
	JUDIASK IV.D.		1							righteso	ation 2D S	ciannic iine	a rargering	wii5515510	an reserve				t
Task 11.	Design and Co	nstruct CO2 Co	ompression	n & Loadir	ng Facility	at CO2 S	ource												
	Subtask 11.1					Design C	O2 Compre	ession and	Loading Fa	acility	and Crit	reasi P	olan						-
	Subtask 11.2. Subtask 11.3	Go-No Go5	-			-			Submit C	02 Capture	eand Comp ession and	oression De Loading ⊏	auipment	-		-		-	+
	Subtask 11.4.	00 110 005							Install CC	02 Compres	sion and L	oading Fac	ilities at C	O2 Source					t
												-							F
Task 12.	Build Infrastrue	cture for CO2 F	Pressurizat	tion at Arb	uckle Inje	ection Bor	ehole for (CO2 Seque	estration	-	Build a B	aceiving on	d Storage	Eacility of t	he Inicatio	n Site		-	-
	Subtask 12.1.										Bund a R	soewing an	Install Pu	mping Faci	lity at Wel	I Site for Si	uper Critica	I CO2 Inier	tio
														,]				
Task 22.	Recondition M	ississippian Bo	oreholes A	round Mis	sissippian	CO2-EOR	injector		Dec. C.		hand to		0.505.11					<u> </u>	1
	Subtask 25.1.							_	Reconditi	on existing	porenoles	around CO	2-EOR inje	ector		_			⊢

Figure 12. Revised schedule BP1.

			BP2	- Cla	ass II	Missi	issip	pian	first				
				1		, ,	Yr 2 - 201:	3	1			1	
		0	N	D	Jan '13	F	M	Α	M	J	Jul	Α	S
Took 1	Droject Monor	amont and Banarti											
IdSK I.	Subtask 1.2.	Progra	m manademe	nt and repo	ortina								
	Subtask 1.8.	Go-No Go1 Arbuck	de Class VI In	jection Per	mit Applica	ation	******						
	Subtask 1.10.	Site D	evelopment, O	perations,	and Closur	e Plan							
Tack /	Drill Monitoring	a Borebole for CO2	Sequestratio	n in Arbu	ckle Salin	e Aquifer							
Table 4.	Subtask 4.1.	Obtain	permit to drill	monitoring	well	Aquiler							
	Subtask 4.2.		Drill and D	OST monito	ring well								
	Subtask 4.3.		Log monit	oring well			-						
	Subtask 4.4.		Complete	monitoring	well as pe	er MVA requ	irements						
	Subtask 4.6.		Conduct I	Analyze v	vireline loa	551							
	Subtask 4.7.			Perforate,	test, and s	ample fluid	s						
					L								
lask 6	Subtask 6 1	en, & Complete Ex	sting Plugge	d Arbucki neter drill	and recom	e (Peasel 1 Inlete horeh	l) ole						
	Subtask 6.2.	Obtain	Drill the b	orehole into	and recon	ouckle							
	Subtask 6.3.		Log boreh	ole									
	Subtask 6.4.		Complete	borehole a	is per MVA	requiremen	nts						
	Subtask 6.5.		Conduct r	nechanical	integrity te	est							
	Subtask 6.7.			Perforate.	test, and s	ample fluid	s						
					1								
Task 10.	Pre-injection N	IVA - establish bac	kground (bas	eline) rea	dings	(Delete 3	months o	f pre-injec	tion monit	oring)			
	Subtask 10.1	Analys	sis of INSAR d	ata									
	Subtask 10.2.	Shallo	and analysis	LIDAR dat	a and analys	sie							
	Subtask 10.4.	Soil ga	as chemistry a	nd CO2 flu	x sampling	and analys	is						
	Subtask 10.5.	Head	gas & water sa	ampling and	d analysis	- existing M	ississippia	an wells					
	Subtask 10.7.	1st cro	osshole tomog	rapahy - pr	e-injection								
Tack 13	Retrofit Arbuck	le Injection Well (#1-28) for MV	A Tool Ins	tallation								
Taak 15.	Subtask 13.1.	de <u>injection</u> ven (#1-20/101 101					Install CA	SSM sourc	e(s)			
Task 14.	Retrofit Arbuck	de Observation We	II (#2-28) for I	IVA Tool	Installatio	n							
	Subtask 14.1.							Install U-tu	ube SSM receiv	er (applies	able for cros	s-hole tom	ography)
	Subtask 14.3.							Install DTF	S sensors				logiaphy)
Task 15.	Begin Injection	n at Arbuckle Inject	or										
	Subtask 15.1.												
	Subtaak 13.2.												
Task 16.	MVA During In	jection - Mississipp	ian and Arbu	ckle CO2	Sequestra	tion							
	Subtask 16.1.				CASSM r	nonitoring.							
	Subtask 16.2.				Soil gas o	chemistry ar	nd CO2 flu	x sampling	and analys	SiS			
	Subtask 16.4.				Shallow g	round water	sampling	and analys	sis			1	
	Subtask 16.5.				Head gas	& water sa	mpling and	d analysis -	existing M	lississippia	an borehole	s	
	Subtask 16.6.				LiDAR su	rveys							
	Subtask 16.7.				InSAR da	ta analysis		Lielf ver Th		41 a.a.			
	Subtask 16.8.				Second C	of CASSM	I and Cros	swell Tomo	araphy.	tion-			
	Cublack Ford				intogratio				grapity				
Task 24.	CO2 Transporte	ed to Mississippian	Injector										
	Subtask 24.1.				Transport	CO2 to inje	ction bore	hole					
	Subtask 24.2.			-			OK Inject	ion boren	ole under	miscible	conditions		
Task 25.	Monitor Perform	mance of CO2-EOR	Pilot										
Task 26.	Compare Pilot	EOR Performance	with Model F	Results	Com	fald a str		alian de di	a fe call a se				
	Subtask 26.1.				Compare Revise co	neld perform	nance with	simulation	studies				
	Subtask 26.3.				Update si	mulation - if	necessar	y					
		De!	n inioetie		llinte *	linningir	sion le-		12 2	the et-		ininel in i	lootien
		веді	in injection		the term	nssissipp ad of PD2	Jan Jan	iuary 201	is, s mor	iuns ane		iginal in	Jection
			injectito	n a mon	uis to er								1

Figure 13. Revised schedule BP2

		BP3	Yea	r 1 -	Class	i II M	ssis	sippi	an fir	st				
			,											
							Yr 3 - 2014	4						
		0	N	D	Jan '14	F	М	Α	М	J	Jul	Α	S	
Task 1.	Project Management	and Reportin	g											
	Subtask 1.1.	Program n	nanageme	ent and repo	orting									
Task 15.	Begin Injection at Arbuckle Injector													
	Subtask 18.1.	CO2 Trans	sportation	to Arbuckle	e Injector									
	Subtask 18.2.		ercritical	02										
Took 16	MV/A during injection	cha same	tration d											
Task TO.	Subtack 16 1	- Coz Seque:	Su auon Si	CASSM	nonitoring									
	Subtack 16.2	Soil as chemistry and CO2 flux sampling and analysis												
	Subtask 16.3	U-tube monitoring												
	Subtask 16.4	Shallow ground water sampling and analysis												
	Subtask 16.5. Head ogs & water sampling and analysis - existing Mississippian wells													
	Subtask 16.6. LiDAR surveys													
	Subtask 16.7. InSAR data analysis													
	Subtask 16.8.	2nd crosshole tomography halfway through injection (optional)												
	Subtask 16.9.	Integration of CASSM and crosswell tomography hanway through hijection (optional)												
Task 17.	Risk Management Related to CO2 Sequestration in Arbuckle Saline Aquifer													
	Subtask 17.1. Integrate MVA analysis and observations to detect CO2 leakage													
	Subtask 17.2. Activate mitigation plans if leakage detected													
Task 18.	Compare Simulation Results with MVA Data and Analysis and Submit Update of Site Characterization, Modeling, and Monitoring Plan													
	Subtask 18.1.	Revise Ge	omodel to	Improve M	atch with M	VA Data				1	1			
Took 10	Post injection MVA	rhuskis CO2	So muo otr	ation										
-1 d bh 18.	FUSI INJUCTION MI A - A		. aaquasu	auon										
Task 20	Evaluate CO2 Seques	tration Poten	tial in Ark	uckle Sal	ine Aquife	r at Wellin	aton							
Task 21.	Evaluate Regional CO	2 Sequestrat	ion Poten	tial in Art	uckle Sali	ne Aquife	in Kansa	s						
Task 22.	Recondition Nississip	oian Borehol	es Around	d Mississip	pian CO2-I	OR inject	or -							
	Subtask 25.1.	Recondition	on existing	boreholes	around CO	2-EOR inje	stor							
Task 23.	Equipment Øismantlement													
Task 24.	CO2 Transported to M	ississippian l	njector (if	Class VI	permit not	granted)								
	Subtask 24.1.	Transport	CO2 to inj	ection bore	hole		The Lease state of the	(*						
	Subtask 24.2.	Inject CO2	at CO2-E	OR Injection	on borenoie	under mise	cible condi	tions						
Took 25	Manitar Darformanaa	of CO3 EOB I	Dilet (if Cl	acc VI nor	mit not are	nto d)								
1 d SK 20.	wonitor renormance	OI CO2-EOR I		ass vi per	init not gra	nieu)								
Task 26	Compare Pilot FOR P	erformance v	vith Mode	Results (if Class VI	permit no	t granted)							
	Subtask 26.1. Compare field performance with simulation studies													
	Subtast 26.2.	tasi 26.2. Revise geomodel - if necessary												
	Subtask 26.3.	Update sir	nulation -	if necessar	v									
		57												
·														
	Begin Class VI inie	ection into	Arbuck	e. Octob	er 2013 f	or 12 mc	nths to	end of B	P3 Yr1					

Figure 14. Revised schedule BP3-Year 1.

		BP3,	Yea	r 2 -	Class	s II N	lissis	sippi	an fi	rst				
							Yr 4 - 201	5						
		0	Ν	D	Jan '15	F	M	Α	M	J	Jul	Α	S	
Task 1.	Project Managemer	nt and Reporting												
	Subtask 1.1.	Program m	anageme	nt and repo	orting									
_														
Task 16.	MVA during injectio	n - CO2 Seques	tration SI	ŧe										
	Subtack 16.1.	Soil goo ob	omiotry c		w compling	and analy	voio.							
	Subtask 16.2													
	Subtask 16.4	Shallow ground water sampling and analysis												
	Subtask 16.5	Head ass & water sampling and analysis												
	Subtask 16.6	LiDAR surves												
	Subtask 16.7.	InSAR data analysis												
	Subtask 16.8.	2nd crosshole tomography balfway through injection (ontional)												
	Subtask 16.9.	Integration	of CASSI	Vi and cros	swell tomor	raphy (do	ne in BP3	Yr1)						
						, , , , , ,		1						
Task 17.	Risk Management F	Related to CO2 S	equestra	tion in Ar	buckle Sal	ine Aquit	er							
	Subtask 17.1.	Integrate MVA analysis and observations to detect CO2 leakage												
	Subtask 17.2.	Activate mitigation plans if leakage detected												
Task 19.	Post injection MVA	- CO2 sequestrat	tion site											
Task 20.	Evaluate CO2 Sequ	estration Potenti	ial in Art	ouckle Sal	ine Aquife	r at Welli	ngton							
Task 21.	Evaluate regional C	O2 Sequestratio	n Potent	tial in Arb	uckle Salir	e Aquite	r in Kansa	IS						
To also 4	000 T	Manager												
1ask 24.	CU2 transported to	Truck CO2	jector to inicoti	on woll										
	Subtask 24.1.	Injoct CO2	at CO2 E	OP iniocti	on woll unde	r miscibl	condition							
	JUNICOL 1.1.1	HIJOCI COL		. Ort ingout				•						
Task 25	Monitoring Perform	ance of CO2-EO	R Pilot											
Task 26.	Compare Pilot EOR Performance with Model Results													
	Subtask 26.1.	Revise geo	model - if	necessar	4									
		Ŭ												
Task 27.	Evaluate CO2 Sequ	estration Potenti	al of CO	2-EOR Pil	ot									
Task 28.	Evaluate Potential	of Incremental O	il Recov	ery and C	O2 Seques	tration b	y CO2-EOI	R - Welling	ton field					
	Subtask 28.1.						Revise Wellington field geomodel							
	Subtask 28.2.	Use simulation studies to estimate field-wide CO2-EOR potential												
	Subtask 28.3.						Estimate	field-wide (CO2 seque	estration po	tential of C	O2-EOR		
1 a sk 29.	Closure of CO2 Seq	uestration Proje	ct in Arb	uckle Sal	ine Aquifer	at Welli	lington field							
	Subtask 29.1	Acquire and process 3D seismic data around Arbuckle injector (#1-28)												
	Subtask 29.2						Interpret	NAV(A open	ned 3D da	ita and com	pare with b	aseline sun	vey	
	Subtack 29.3.						Sook roo	ulaton nor	niccion for	s with 3D SU	invey to est	abiisii CO2	containine	
Task 30	Develop a Rest Prac	ctice Manual:					Seek leg	diatory pen	1135101110	closure				
	Loverop a Dear Fla	e									1			
		Will boy	o full	Voar o	fnaini	otion	to mor	itor ho	foro ol	000000	fthon	releat		

Figure 15. Revised schedule BP3, Year 2.

Presentations

Invited presentation on Mississippian reservoir at AAPG GeoScience Technology Workshop (GTW), "New Directions in Carbonates", February 27-29, 2012, Fort Worth, Texas

Invited presentation on DOE projects including small scale injection to Kansas Geological Society technical meeting, March 6, 2012.

Key Findings

Discussions early in the quarter (January) with EPA and others who are applying for Class VI injection permit have allowed us to move forward to prepare the application. Large contracts are nearing final negotiations so that field operations can begin. Environmental questionnaires for drilling and CO2 source plant have been submitted for review.

Plans

- 1. Submit revised Program Management Plan
- 2. Finalize and submit application for Class VI injection permit with updated geomodel and simulation of the Arbuckle saline formation
- 3. Submit well drilling and installation plan
- 4. Submit MVA plan.
- 5. Submit Public Outreach Plan
- 6. Submit Mississippian Injection Permit Application (Class II injection well under Kansas primacy, regulated by Kansas Corporation Commission) using updated geomodel and simulation of the Mississippian oil reservoir.
- 7. Once permission granted for field deployment, install LiDAR, InSAR, CGPS, seismometers, groundwater monitoring wells above and below evaporite beds, drilling of Mississippian CO2 injection well, and construction of facility at Abengoa Biofuels ethanol plant to capture CO2.