"Carbon Storage and Utilization in Kansas – Are We Ready?"

based on --

a) Characterization of CO₂ storage capacity southern Kansas evaluation of CO₂ sources and sinks (DE-FE0002056)

b) Small scale field test at Wellington Field, Sumner County (DE-FE0006821) Arbuckle modeling with horizontal drilling (DE-FE0004566)

W. Lynn Watney & Jason Rush, Joint Pls

Oil and Gas Seminar August 7, 2014

KANSAS GFOLOGICAL

The University of Kansas

Outline

- 1. Framing the opportunity for CO₂ utilization in the oil patch
- 2. Highlight current and potential CO₂ supplies
- 3. Opportunities, risks and uncertainties for CO₂-EOR
- Brief summary of selected case studies that highlights approaches to next-generation CO₂-EOR applicable to Kansas oil reservoirs

1. Framing the opportunity for CO₂ utilization in the oil patch

Implementing CO₂ Utilization and Storage (CCUS) in Kansas

- Carbon storage and utilization offers significant potential to revitalize Kansas' oil fields.
 - A 2010 report for the Midwest Governor's Association indicated more than 750 million barrels of oil are potentially recoverable in Kansas with enhanced recovery methods using carbon dioxide
 - Over 50 million metric tons of CO₂ are injected annually into oil reservoirs in the US, mainly in West Texas, with roughly 400,000 bbls of incremental oil recovered per day using the available supplies of naturally occurring CO₂.

• Why now?

- Sustained oil prices
- Improved reservoir characterization with the widespread use and availability of cost-effective 3D seismic
- Improved engineering models and recovery technologies
- All combined will likely overcome the decades of inertia that have faced the implementation of CO_2 -EOR in Kansas

Are you ready to be part of this?

Utilization of CO₂ in Kansas

- Establish demand for CO_2 in the oil field
- Future use develop scenarios for implementation and infrastructure
- Technical timeframe
 - Oil field and operator readiness
 - Field modeling and implementation plan to ensure success
 - Scenarios for aggregating CO₂ supply and distribution to the field
 - Economic incentives?

Kansas has considerable remaining technically recoverable oil reserves using CO₂

Potential Technically Recoverable Incremental Oil with "best practices" CO₂ EOR Technology

February 26, 2012 | Washington D.C.

- Kansas holds more than **750 million barrels** of technical CO_2 -EOR potential.
- Kansas has by far the largest oil resources in the MGA region.
- Economic results based on Hall Gurney field suggest an after-tax project IRR of about 20%.
- Kansas ...would have access to the significant volumes of ethanol-based CO₂ in Nebraska, which produces approximately 6 million metric tons per annum.

750 million barrels of oil would utilize --

- ~240-370 million metric tons of CO₂ (4.62-7.12 BCF CO₂).
- ~30 years of a 500 MW coal-burning plant

Basin	EOR potential (Mil bbl)	Net CO ₂ Demand (MMT)	Direct Jobs Created
Illinois/Indiana	500	160 – 250	1,550 – 3,100
Ohio	500	190 - 300	1,550 – 3,100
Michigan	250	80 – 130	800 - 1,800
Kansas	750	240 – 370	2,300 - 4,600
TOTALS	2,000	670 – 1,050	6,200 – 12,400

19.25 Mici / tonne	\$38.50 cost per tonne	
19.25 MCF/tonne	\$2.00 cost per MCF	

2. Highlight current and potential CO₂ supplies

Midwest is rich in ethanol based CO2...

Arkalon Coffeyville Ethanol Plant Fertilizer Plant MRICK DIS Koch Fertilizer Plant Agrium Fertilizer Plant GOLDEN TREND- Bradley, Purdy SHØ-VEL-TUM Existing CO₂ Pipelines Planned CO₂ Pipelines Proposed CO₂ Pipelines Oklahoma's CO₂ Pipelines +Source: Chaparral Energy, 2012 JAF2012_089.PPT September 21, 2012

Oklahoma's CO₂ Pipelines

Over 400 miles of CO_2 pipelines already exist in Oklahoma.

 A new 50+ mile, 50 MMcfd pipeline is under construction linking the Coffeyville Fertilizer Plant with the Burbank oil field.

 Western Oklahoma CO₂-EOR projects are linked to natural as well as anthropogenic CO₂ supplies.

Linde Group – A CO₂ supplier for the Wellington Field pilot CO₂ injection

Hammerfest LNG Project Norway - CO₂-Reinjection au

THE LINDE GROUP

World's first industrial project to deliver $\rm CO_2$ separated on shore back offshore and injected into a reservoir

- Europe's first export facility for liquified natural gas (LNG)
- Terminal and process plant on Melkøya island outside Hammerfest in northern Norway
- Annual LNG export: 5.67 billion sm³
- CO₂ Content: 5.0% to 8.0 %
- CO₂ captured in onshore plant
- Conveyed back with subsea pipeline
- Storage underground
- Emission reduction of more than 50 %
- Norwegian CO₂-Tax: 50 Euro/ton

taking the lead

Praxair -- CO₂ supplier for Wellington Pilot

PRAXAIR

Upstream Oil and Gas

Enhanced Oil Recovery

- Over 30 years experience with Gas Displacement Recovery (GDR)
 - Nitrogen
 - Carbon Dioxide
- More than 25 projects

Well Stimulation Services

- Fracing
- Wellbore damage cleanup
- CO₂/N₂ EOR Services
 - Pilots
 - Injection test and huff-n-puffs
- CO₂ Capture & Purification

Exxon Hawkins Field, 85 MMscf/d 2,000 psi

Opportunities for utilizing CO₂ from power generation...

Mid-Kansas Electric Company in Hays Summer 2014 Newsletter

Rubart Station engine-generator sets undergo extensive testing

From an outside view of Rubart Station, it appears that the majority of the work is complete at the new electric generating facility. However, inside major work and fine tuning continues on state-of-the-art technology.

All 12 of the 120 MW Caterpillar engine-generator sets have undergone early commissioning tests, such as firing the engines

Rubart Station's gen-sets, the first of Caterpillar's G20CM34 units anywhere in the world, are in place awaiting commissioning tests. The natural gas-fueled reciprocating engines offer high availability, long life, low fuel consumption, and low maintenance requirements. All 12 gen-sets will be on-line by the end of September.

with natural gas but at no load, verifying proper fuel management and engine speed controls, measuring temperatures on numerous key engine components, and synchronizing the generators to the grid.

Each engine-generator set must then log at least several hours of operation at full load in order to produce enough engine heat to "run in" the engine prior to loading the catalyst into each engine's selective catalytic reactor module. Once the catalyst is loaded, each engine-generator set is operated at various load points to start and tune the urea injection system.

Simultaneous with all of these tests are countless other tests and checks for details, such as checking the adequacy of operating procedures, ensuring effectiveness of communications systems, verifying instrumentation accuracy, and validating control and alarm systems.

Once the project team accomplishes all of these tests and more, the facility will be taken through a formal battery of tests to demonstrate the ability to meet contract requirements, such as output, fuel efficiency, emissions performance, and reliability.

Even after verifying all these complicated tests on the individual units, staff will conduct more tests to verify that the facility is capable of meeting those same requirements running all 12 units simultaneously or any combination of unit operation.

Rubart Station is an important system asset that will serve the needs of our Members and regional consumers, and by this fall all units will be available for service that will last for decades to come.

Mid-Kansas Electric Company, LLC ~ PO Box 980 ~ Hays, KS 67601 ~ 785-628-2845 ~ www.midkansaselectric.net

An Example of Onsite CO₂ Generation for EOR

- NeuStream[®] CO₂ systems for EOR are readily adaptable to a range of CO₂ sources including steam generators, flare-gas burners, natural gas power generators and diesel generators. (http://www.neustream.com/products/co2eor.html)
- Alternatively the system can provide its own CO₂ source. The modular, factory-built, design approach allows deployment in a range of sizes from 50 ton/day to over 1000 ton/day of EOR ready CO₂.
 - A. 50 to 1000 tons (17 MMCF) per day EOR quality CO₂
 - B. Adaptable to any CO₂ source, or generates its own CO₂
 - C. Transportable system

Products *CO2 for EOR *CO2 for Coal *SOx for Coal *SOx DSI *Chemical *Recovery *NOx Add-On

Existing anthropogenic CO₂ sources being used for EOR!

Ethanol and Biodiesel Plant Activity in Kansas September 2012

MGY = Millions of gallons per year of permitted capacity. Capacities courtesy of Kansas Department of Health and Environment and the Kansas Department of Revenue.

* Permitted and Permit Pending codes refer to KDHE Bureau of Air and Radiation – Air Construction permits.

Ethanol Plants

- Existing: 12 plants, 519.5 MGY
- Under Construction: 3 plants, 170 MGY
- Permitted*: 0 plants, 0 MGY
- Permit Pending*: 1 plants, 60 MGY
- Idle: 0 plants, 0 MGY

Biodiesel Plants

- Administrative Services, GIS September 12, 2012
- ★ Existing: 3 plants, 7.4 MGY
- ★ Under Construction: 0 plants, 0 MGY
- ★ Permitted*: 0 plants, 0 MGY
- ★ Permit Pending*: 0 plants, 0 MGY
- 🖈 Idle: 1 plant, 1.8 MGY

Rail map – South-Central Kansas to examine potential to ship CO₂ by rail to Wellington Field

Potential to deliver CO₂ by train and run short pipeline to Wellington Field

3. Opportunities, risks and uncertainties for CO₂-EOR

Carbon storage in saline aquifers currently has high technical risk; CO₂-EOR low risk

Next generation CO_2 -EOR methods and <u>anthropogenic</u> <u> CO_2 </u> are essential to sustain this type of oil recovery in U.S. beyond 2030

Phil DiPietro, 2013, Carbon Dioxide Enhanced Oil Recovery in the United States, DOE-NETL

Next Generation CO₂-EOR is needed to <u>improve</u> <u>efficiencies of oil recovery</u> <u>and CO₂ storage</u>

CO2 Efficiency: Entrapment and Stabilization of CO₂ in Reservoirs

(...besides forming oil bank)

<u>Injected CO₂ gets entrapped (stored) in the reservoir in 4 different ways – estimated by reactive transport models and reaction kinetics, modeled via compositional fluid flow simulators \rightarrow </u>

based on field and lab measurements of rock and brine

- Colleagues in Kansas & California -- A. Scheffer, R. Barker, C. Jackson, B. Huff, B. Campbell, M. Vega, K. Leslie, S. Datta, J. Roberts, D. Fowle, S. Carrol, M. Smith, M. Fazelalavi, E. Holubnyak, T. Birdie, J. Doveton

- some dissolves in brine
- some gets locked as residual gas (saturation)
- some trapped as minerals
- Remaining CO₂ resides as free phase
 - Sub- or super-critical as per in situ conditions
 - (depth/pressure and temperature)

Kansas oil and gas fields are currently isolated from the major regional CO₂ pipeline systems ... when will this change?

Oil-bearing formations favorable for CO₂-EOR, onshore lower 48 states. (Source: ARI disaggregated database, Ventex Velocity Suite Database)

Government Incentives

Kansas H.B. 2419 creates tax incentives for carbon capture and storage, namely income tax deductions for the amortization of CCS equipment costs and property tax exemptions.

HOUSE BILL No. 2419

AN ACT enacting the carbon dioxide reduction act; providing for income tax reductions and property tax exemptions; providing for regulation of carbon dioxide injection wells; amending K.S.A. 2006 Supp. 79-32,117, 79-32,120 and 79-32,138 and repealing the existing sections; also repealing K.S.A. 2006 Supp. 79-32,117l.

Be it enacted by the Legislature of the State of Kansas:

New Section 1. Sections 1 through 7, and amendments thereto, may be cited as the carbon dioxide reduction act.

New Sec. 2. $\ \ (a)$ As used in sections 2 through 5, and amendments thereto:

(1) "Carbon dioxide injection well" means any hole or penetration of the surface of the earth used to inject carbon dioxide for underground storage or for enhanced recovery of hydrocarbons and any associated machinery and equipment used for such injection of carbon dioxide. "Carbon dioxide injection well" does not include underground storage.

(2) "Commission" means the state corporation commission.

(3) "Underground storage" means any underground formation where carbon dioxide is injected for sequestration.

(b) For the purposes of protecting the health, safety and property of the people of the state, and preventing escape of carbon dioxide into the atmosphere and pollution of soil and surface and subsurface water detrimental to public health or to plant, animal and aquatic life, the commission, on or before July 1, 2008, shall adopt separate and specific rules and regulations establishing requirements, procedures and standards for the safe and secure injection of carbon dioxide and maintenance of underground storage of carbon dioxide. Such rules and regulations shall include, but not be limited to: (1) Site selection criteria; (2) design and development criteria; (3) operation criteria; (4) casing requirements; (5) monitoring and measurement requirements; (6) safety requirements, including public notification; (7) closure and abandonment requirements, including the financial requirements of subsection (e); and (8) long-term monitoring.

But, we need more CO₂... and we need to bring the costs of capture and transport down...

	Transportation Cost	Core Scenario Capture Cost	Core Scenario + Transp. Costs (A)
Power Plant Tranche	(\$/tonne)	(\$/tonne)	(\$/tonne)
		(30-year Payback)	
Pioneer - First of a Kind Projects	\$10	\$60	\$70
Projects #2-#5	\$10	\$50	\$60
Nth of a Kind (Projects #6-onward)	\$10	\$45	\$55
Industrial - Low Cost Tranche	(\$/tonne)	(\$/tonne)	(\$/tonne)
		(15-Year Payback)	
Pioneer- First of a Kind Projects	\$10	\$28	\$38
Projects #2-#5	\$10	\$28	\$38
Nth of a Kind (Projects #6-onward)	\$10	\$28	\$38
Industrial - High Cost Tranche	(\$/tonne)	(\$/tonne)	(\$/tonne)
		(15-Year Payback)	
Pioneer- First of a Kind Projects	\$10	\$55	\$65
Projects #2-#5	\$10	\$45	\$55
Nth of a Kind (Projects #6-onward)	\$10	\$35	\$45

NEORI CO₂ Capture & Transport Cost Assumptions (\$/tonne)

http://neori.org/NEORI_CoalGen2012.pdf

Mississippian Oil and Gas Producing Fields in Kansas

Spivey-Grabs Basil - largest Mississippian oil field in Kansas

- 69 MM BO & 841 BCFG
- promising for future CO₂-EOR after CH4 produced

Gerlach, Sept. 2011

NETL

Welllington Field

Welch-Bornholdt-Wherry Field McPherson & Rice Counties – near McPherson Refinery

- 60+ million bbls cumulative production
- 80 active wells
- Producing zones Mississippian, Basal
 Pennsylvanian, and Lansing Kansas City

Economic viability

- \$500-\$1,000 million investment on ammonia plant will yield
 ~ \$50 million in annual profits*
- +50% potential income* from waste CO2 byproduct

\$50 million + \$25 million

= \$75 million potential annual profits

Market for CO2:

- CO₂ Utilization in Enhanced Oil Recovery (EOR)
- Geologic resources in Kansas for CO2 disposal
- Existing infrastructure within petroleum industry

*assuming 5-10% ROI *assuming \$25 per ton CO2 & 1 million tons annual production (dotyenergy.com)

Role of Anthropogenic CO₂

- Due to limits of natural CO₂ supply, CO₂ will necessarily come from man-made sources such as ammonia, ethanol, refinery, and power plants
- Their utilization will require varying but large capital investments in addition to preparing oil fields to receive the CO₂
- Success will require all of the stakeholders including CO₂ suppliers, oil companies, local and state policy makers, and the research community
- Unified understanding of the potential CO₂ supply, oil resources, field readiness
 - infrastructure requirements, field readiness
 - financial and human resource needs, and
 - environmental and regulatory guidelines and incentives

Total Kansas 2012 CO2 emissions from point sources = 44.5 million metric tons (846 BCF)/yr. http://ghgdata.epa.gov/

Kansas could become a hub to receive CO₂ by regional pipeline systems to serve EOR

Potential Inter-Regional Pipeline Corridors

- NEMS Electricity Market Model Supply Regions
- Major Oil Basins with CO2-EOR Potential in the Lower 48

Advanced Resources International, 2010, White Paper --U.S. OIL PRODUCTION POTENTIAL FROM ACCELERATED DEPLOYMENT OF CARBON CAPTURE AND STORAGE

Dooley, Dahowski, and Davidson, 2010, CO2-driven Enhanced Oil Recovery as a Stepping Stone: to What? PNNL Rpt-19557. 4. Brief summary of selected case studies that highlights approaches to next-generation CO₂-EOR applicable to Kansas oil reservoirs

CO₂-EOR Field Implementation Sites and Study Areas

Western Calibration Site Cutter Field (BEREXCO, INC.)

Chaparral Energy Liberal & Coffeyville CO2 ----- Regional study assessing carbon storage potential → ~25,000 sq. miles

50 miles

CO₂ Oil & Gas Mapper With Type Logs (green) access to well and lease data and assist in screening of fields

http://maps.kgs.ku.edu/co2

Java Applets (freeware)

-- assist in geoengineering analysis of reservoirs

U.S. DEPARTMENT OF

http://www.kgs.ku.edu/Gemini/Tools/Tools.html

CO₂ and Oil & Gas Mapper Cumulative Oil Fields with LKC Production

Northwest Kansas

grainstone – *elevated GR*

Colliver #7 (new oil)– (cuttings) bioclastic, oolitic pkst-grnst.
 with some interparticle Ø, forams, crinoids, encrusters; 40% ooid
 – thin clean GR

• Colliver #CO2-1 (CO2 injection) and Colliver #16 (upper) – (cored) oomoldic grainstone, clean porous (shoal #2); Shoal #1 in well #16; finer grained and less porous, lower permeability -- #2 lowest GR, youngest shoal

Thickness of low GR interval

1000 ft (300 m)

4.0

3.5

3.0

2.5

2.0 1.5 1.0

0.5

0.0

Southwest Kansas CO2 EOR Initiative Chester and Morrow Reservoirs

Western Annex to Regional CO2 Sequestration Project (DE-FE0002056) run by the Kansas Geological Survey

CO2 EOR Study Six Industry partners:

- Anadarko Petroleum Corp.
- Berexco LLC
- Cimarex Energy Company
- Glori Oil Limited
- Elm III, LLC
- Merit Energy Company

Support by:

Sunflower Electric Power Corp.

April 16, 2013

The SW Kansas part of project

- CO2 EOR technical feasibility study Chester IVF and Morrow
- Part of larger KGS-industry CCS and EOR study
- Will not inject CO2 paper study only
- Get fields in study "CO2-ready"

Technical Team:

	Project Role	Company
Martin Dubois	Team Lead, geo-model	Consultant - IHR LLC
John Youle	Core & depo-models	Consultant - Sunflower
Ray Sorenson	Data sleuth & advisor	Consultant
Eugene Williams	Reservoir engineering	Williams Petrol. Consultants
Dennis Hedke	3D Seismic	Consultant - Hedke & Sanger
Peter Senior	Reservoir modeling	MS student
Ken Stalder	Geotech	IHR, LLC
Susan Nissen	3D Seismic	Consultant
Lynn Watney	Project PI	KGS
Jason Rush	Project PI	KGS
John Doveton	Log Petrophysics	KGS
Paul Gerlach	Data support	Consultant - Charter

Southwest Kansas CO₂-EOR Initiative

Evaluate CO₂ sequestration potential in Arbuckle Group saline aquifer and CO₂-EOR in four fields in southwestern Kansas – Anadarko, Berexco, Cimarex, Glori, Elm III, Merit

Oil production unevenly distributed in valleys shown by well and OOIP in North Eubank unit

Dubois, Youle, and Williams, in prep.

Reservoir heterogeneity-- stratigraphically complex -- Four Parasequences in North Eubank unit

Sandstone = yellow; Sandy shale = brown; Gray = shale Length of section ~ 5 miles

Dubois, Youle, and Williams, in prep.

- By 2011 water injection exceeded production by approximately one million barrels per year.
- 2. The reservoir system was significantly underpressured, having an original BHP of 1572 psig.
- Normal BHP for the reservoir depth would be 2350 psi (5500 ft deep x 0.43 psi/ft).
- Rock fracture pressure is likely to be approximately 3500 psi if the fracture gradient is 0.65 psi/ft.
- Fractures and conduits were not open until reservoir pressure exceeded approximately 2500 psi

Seismic depth maps, Top Meramec and location of probable sinkholes in North Eubank unit

--- sinkholes possibly responsible for loss of injected water \rightarrow <u>limit injection pressures</u>

Reservoir simulations done with four suspected leak points

Dubois, Youle, and Williams, in prep.

CO₂ EOR Projections – Pleasant Prairie South Field

Assumptions:

- Convert WIW to CO2 IW 1.
- Oil wells as is 2.
- 3. Inject 5 mmcfd CO2, not exceeding bhp 2600 psi
- 4. Continuous CO2, no WAG
- Injection = production 5.
- No optimization 6.

Projections:

OIL (mmbo)		
Cumulative 2011	4.48	
NFA cum. 2026	4.64	
CO2 case cum.	6.59	_
Increment. CO2	1.95	
Cum. 2012-2026	2.11	-
CO2		n
CO2 injected (mmcf)	23.7	
CO2 produced (mmcf)	13.2	
CO2 sequestered (mmcf)	10.5	
Gross utilization (mcf/bo)	11.2]
Net utilization (mcf/bo)	5.0	
		۰.

13 years injection

RF as f (OOIP)

Primary	15.8%
Secondary	15.8%
CO2	13.3%
	45.0%

nm tons

- 1.38 assume 56% CO2 0.77 0.61
 - is recycled

SMALL SCALE FIELD TEST Wellington Field, Sumner County, Kansas

Awaiting permission from DOE to commence field work on September 1, 2014

- <u>Beginning April 2015 --Inject 26,000 tonnes of CO₂ into Mississippian oil reservoir to demonstrate CO2-EOR and 99% assurance of storage with MVA</u>
- InSAR, CGPS surface deformation
- 15 seismometers and 3 active 3-component accelerometers possibly monitor low energy fluid movement and far-field earthquakes in region
- Monitor produced fluids for tracers, CO2, aqueous geochemistry

Wellington Field Site of Proposed Small Scale Field Test

20 MM Barrel Oil Field above Arbuckle Group

Instantaneous seismic attributes

Ayrat Sirazhiev, M.S. Geology, 2012

Amplitude envelope map of the Mississippian reflection

Instantaneous frequency map of the Mississippian reflection

Can we relate real data seismic amplitude and frequency to reservoir thickness as it has been suggested by the modeling?

Extensive monitoring network Wellington Field CO₂ Injection Tests

Mississippian pay zone in Berexco Wellington KGS #1-32

Luis G. Montalvo 1, Luis Gonzalez 1, Lynn Watney 2, 2014,Department of Geology, University of Kansas, Lawrence,

KS, Kansas Geological Survey

MOZ

Mega Model CO₂ Storage Capacity of the Arbuckle in Southern Kansas (25,000 mi²)

- 10 local modeling sites including Cutter and Wellington fields
- Simulation of entire 25,000 mi2 based on estimation of rock properties

Lower Flow Unit For Regional Modeling in Arbuckle Group 25,000 mi² in southern Kansas

Initial Coarse Grid 7/18/2014 Arbuckle, Southern Kansas

Grid Top (ft) 2015-01-01

File: MegaModel Jul18-2014.dat

Date: 7/19/2014

6.000

5.602

4,124 3,912 3,701 3,490 3,279 3,067 2,856 2,645 2,434

2,223 2,011 1,800

1,589 1,378 1,166 955 744

Implementing Large-scale CCUS in Kansas (A)

• Key Ingredients

- CO₂ supply sources and transportation
- CO₂ utilization -- Readiness and needs
- Aggregation of CO₂ supply and CO₂ utilization in Kansas oil fields
- Economic incentives for CO₂ capture and CO₂ suppliers
- Regulation
 - Well and Field permitting
 - Primacy of Class VI Injection permitting and implications of using added storage for CO₂ beneath the oil reservoir in deep saline aquifers
- Environmental Concerns
 - Secure CO₂ storage
 - Induced seismicity

Implementing Large-scale CCUS in Kansas (B)

- Working with CO₂ suppliers to get CO₂ to Kansas oil fields
- Refine KGS interactive CO₂ oil and gas mapper for access to key information
 - Highlight and extract cumulative oil; pressure; temperature; oil gravity
 - Screen and highlight candidate fields/plays for CO₂ miscibility, total field and lease performance, recoverable reserves and CO₂ requirements (volume and rates)
 - CO₂-EOR resources via interactive map of Kansas oil fields utilizing web apps to analyze the data "on the fly"
- Scoping models of oil fields to forecast technical success and favorable economics
- Apply results of CO₂ test injection at Wellington Field (DE-FE0006824)
 - and model results of four fields (Shuck, Eubanks, Cutter, and Pleasant Prairie South) in SW Kansas (DE-FE0002056)

Implementing Large-scale CCUS in Kansas (C)

- Engage stakeholders to develop, support and underwrite strategic initiative
 - Administrate (Dept. of Commerce?) and develop components of a Kansas CO₂ initiative/Kansas Model for CO₂ Utilization and Storage
 - Secure advisory group of operators, gas suppliers, officials with Department of Commerce and KU, lawmakers and regulators
 - Define needs to address uncertainties and concerns, weigh challenges and concerns against benefits to affect public perception, sequestration defined, state of readiness, engaging community, leveraging what has been learned, priorities, and opportunities via Governor's Conference
 - Timetable and costs for planning and development
 - Establish state of the technology in Kansas via research and workshop workshops and share resources and scoping models

CO2 EOR & Geologic Storage

DOE project team -- DE-FE002056

Principal Investigators

Jason Rush -- Joint PI

W. Lynn Watney - Joint PI

UNIVERSITY OF KANSAS				
Kansas Geological Survey	KU Department of Geology			
Co-Principal Investigators	Co-Principal Investigators			
Kerry D. Newell stratigraphy, geochemistry	Evan Franseensedimentology, stratigraphy			
Jason Rush Petrel geomodeling and data integration	Robert Goldstein diagenesis, fluid inclusion			
Richard Miller geophysics	David Fowle reactive pathways, microbial catalysis			
John Doveton log petrophysics and core-log modeling	Jennifer Roberts reactive pathways, microbial catalysis			
Jianghai Xia gravity-magnetics modeling & interpretation	George Tsoflias geophysics			
Marios Sophocleousgeohydrology				
	Grad Research Assistants			
Key Personnel	Aimee Scheffer (graduated) biogeology & geochemistry			
John Victorine Java web app development	Breanna Huff biogeology			
David Laflen manage core & curation	Christa Jackson biogeology and geochemistry			
Mike Killion modify ESRI map service for project	Ayrat Sirazhiev (graduated) geophysics			
Jennifer Raney asst. project manager	Yousuf Fadolalkarem geophysics			
Debra Stewart, Dan Suchy data management	Brad King diagenesis			
Yevhen 'Eugene' Holubnyak, Petroleum Engineer				

SUBCONTRACTS

Berexco, Beredco Drilling -- Wichita, KS

Fatemeh "Mina" FazelAlavi, Engineering Research Assistant

Wellington Field access; drilling, coring, completion and testing; modeling and simulation

Key Personnel

Dana Wreath - manager, reservoir and production engineer Randy Koudele - reservoir engineer

Bill Lamb - reservoir engineer

Kansas State University

Seismic and Geochemical Services

Co-Principal Investigators

Saugata Datta -- reactive pathways and reaction constants Abdelmoneam Raef -- seismic analysis and modeling

Grad Research Assistants

Robin Barker (graduated) Derek Ohl - seismic analysis and modeling Randi Isham -- seismic Brent Campbell - aqueous geochemistry

Southwest Kansas CO2 EOR Initiative - Chester Morrow

Martin Dubois, IHR, LLC -- team lead, geomodeling John Youle, Sunflower Energy -- core and depositional models Ray Sorenson, consultant -- data acquisition and advising Eugene Williams, Williams Engineering -- reservoir modeling

Bittersweet Energy, Inc., Wichita, KS

Tom Hansen, Principal, Wichita, Geological Supervision - regional data, Arbuckle hydrogeology Paul Gerlach -- regional data acquisition, 2 yrs. Larry Nicholson -- regional data acquisition, 2 yrs. Anna Smith -- regional data acquisition, 2 yrs. Ken Cooper, Petrotek Engineering, Littleton, CO- engineer, well injection, hydrogeology John Lorenz, Scott Cooper, FractureStudies, Edgewood, NM -- core fracture study

Services

LOGDIGI, LLC, *Katy, TX* - wireline log digitizing
David G. KOGER, *Dallas, TX* - remote sensing data and analysis
Weatherford Laboratories, *Houston, TX* -- core analyses
CMG - Simulation Services, *Calgary, Alberta* --greenhouse gas simulation and software
Halliburton, *Liberal, KS* -- wireline logging services
Hedke-Saenger Geoscience, LTD., *Wichita, KS* - geophysical acquisiton, interpret & design
Susan E. Nissen, *McLouth, KS* -- Geophysical Consultant, volumetic curvature
Lockhart Geophysical, *Denver, CO* -- acquis & interpret 2D shear wave, gravity & mag
Fairfield Industries, Inc., *Denver, CO* -- 2D, 3D multicomponent seismic processing
Paragon Geophysical, *Denver, CO* -- 3D seismic processing
Converging Point - QC seismic acquisition
Noble Energy, *Houston, TX; Denver, CO* -- collaborating co., fields adjoining Wellington

Acknowledgements & Disclaimer

Acknowledgements

• The work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant DE-FE0002056 and DE-FE0006821, W.L. Watney and Jason Rush, Joint PIs. Project is managed and administered by the Kansas Geological Survey/KUCR at the University of Kansas and funded by DOE/NETL and costsharing partners.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

