Geologic Carbon Storage in the Lower Ordovician Arbuckle Group Saline Aquifer in Kansas

W. Lynn Watney¹, Ph.D., Tiraz Birdie², Ph.D., Yevhen (Eugene) Holubnyak¹, Jason Rush¹,
Fatemeh (Mina) FazelAlavi1, John Doveton1, Ph.D., Thomas Hansen³, Connie Walker⁴,
Ken Cooper⁴, PE, Dana Wreath⁵, Jennifer Raney¹

¹Kansas Geological Survey, University of Kansas, Lawrence, KS
 ²TBirdie Consulting, Inc., Lawrence, KS
 ³Bittersweet Energy, Inc., Wichita, KS
 ⁴Petrotek Engineering Corporation, Littleton, CO
 ⁵Berexco, LLC, Wichita, KS

Tuesday, May 6, 2014: 3:00 p.m. Confluence C (Westin Denver Downtown)

Overview

- Small scale field test at Wellington Field
- One of two calibration sites for southern Kansas CO₂ storage assessment (65,000 km²)
- Plans remain to inject up to 40,000 tonnes (0.75 BCF) scCO₂ into Gasconade Dolomite of Arbuckle Group at Wellington Fld.
- 3D geocellular geomodel based on two basement tests and 434 m of core, wireline logs, 3D multi-component seismic volume and well testing
- Predict behavior of scCO₂ plume based on compositional simulator
- Monitor overlying Mississippian oil reservoir for leakage

Acknowledgements -- The work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant DE-FE0002056 and DE-FE0006821, W.L. Watney and Jason Rush, Joint Pls. Project is managed and administered by the Kansas Geological Survey/KUCR at the University of Kansas and funded by DOE/NETL and cost-sharing partners.

The study is a collaboration, multi-disciplinary effort between the KGS, Geology Departments at Kansas State University and The University of Kansas, BEREXCO, INC., Bittersweet Energy, Inc. Hedke-Saenger Geoscience, Ltd., Improved Hydrocarbon Recovery (IHR), Anadarko, Cimarex, Merit Energy, GloriOil, Dawson-Markwell Exploration, and Noble Energy.

Wellington Field Site of Proposed Small Scale Field Test

20 MM Barrel Mississippian Oil Field above Arbuckle Group

Initial CO₂ Storage Capacity Estimate Deep Arbuckle Saline Formation

- Ø_{tot} = total bulk volume of pore space available
- ρ = CO2 density
- E_{saline} = fraction of the total pore volume that will be occupied by the injected CO2
- E_{saline} ranges between 0.40 and 5.5 percent over the 10th to 90th percent probability range

Thickness (ft) (top) & Initial (P90) Estimate of CO₂ Storage (millions tonnes/10 km² cell) (bottom) in Southern Kansas

CO2-EOR & Saline Injection, Wellington Field

 InSAR & CGPS → surface deformation • IRIS seismometers & 3C accelerometers • Tracers to detect injected CO₂ • Monitor ~600 ft deep well below shallow evaporite cap rock • Test for CO₂ in Mississippian wells (Underpressured oil reservoir should trap any vertically migrating CO2) Inject 28,000 tonnes of CO₂

into Mississippian oil reservoir to demonstrate CO₂-EOR and 99% assurance of storage with MVA

Pending Class VI permit and DOE funding -- Inject up to ~40,000 tonnes of CO₂ • U-Tube, CASSM and cross hole seismic • DTS & acoustic fiber optics (long string fiber pending)

Primary Confining Zone Continuous in the Wellington Area (Mississippian argillaceous Cowley facies + Chattanooga Shale + Simpson Group) West-East Seismic Impedance PSTM

Aquifer Characterization Arbuckle Saline Aquifer

- Dominantly cherty dolomite
- Permeable Upper 70 m: porous medium pelleted dolomitic packstones and grainstones

 Baffle - Middle 110 m: tight, dense, micritic dolomite

 Permeable - Lower 110 m: thin dolomitic strataform breccias created by dissolution of evaporites, packstones and grainstones with discontinuous solution enhanced fractures

Plenty of Microporosity, Even in the Lower Arbuckle CO2 Injection Zone

Lower Arbuckle (Gasconade) Lower hydrostratigraphic unit Flow unit – Proposed Injection unit

whole core: phi 2.2% 89 md

Rock fabrics in aquitard of middle Arbuckle Group -- Thin section photomicrographs

Anticipated reaction of CO₂ with – 1) argillaceous and sulfide/oxide material in the fracture pores, 2) reaction rims and microporosity in chert & dolomite and increased surface area along pore systems

4515.5 ft Chert nodule with pyrite(?) in moderately microporous (moldic peloid), finely crystalline dolomite/chert with pyrite

Permeability Profile of Arbuckle in Cored Well - #1-32

with concentrations of redox reactive ions (Fe²⁺, SO₄²⁻, CH₄, NO₃⁻) from KGS #1-32 & #1-28

Lower and Upper Arbuckle Are Not in Hydraulic Communication

Variable Zonal Fracturing Through the Arbuckle Spectral (dipole) acoustic log and visual core description

Stratigraphic Cyclicity and Corresponding Lithofacies

Define Flow units Lower Arbuckle Injection Zone

Upscaled Horizontal Permeability in CMG Dynamic Model

Permeability I (md) 2014-01-01 J layer: 66

Bottom Hole Pressure, 325 psi max. (0.485 psi/ft) 120 tonne/day, 40,000 tonne total CO₂

KGS 1-28 base case 4 aq t.irf

Summary

Key Findings

- Suitable injection zones, caprock, and isolation from USDW
 - Arbuckle highly stratified three distinct hydrostratigraphic units
 - Significant amounts of the scCO₂ are predicted to be <u>trapped</u> in or near the injection zone due to decreased velocity of CO₂ travel through less permeable medium -- <u>residual and solubility trapping</u>
 - Pressure increase (325 psi) is insignificant

Lessons Learned

- Water geochemistry and biogeochemistry have proved extremely useful
- Multiple independent means required to assess permeability in complex carbonate aquifer system requires

Future Plans

- Submit application for Class VI injection permit in May 2014
- Begin field work for Class II EOR activities after negotiations with new source of CO₂ are completed
- Inject CO₂ into Mississippian oil reservoir first (Fall 2014), followed by saline aquifer (mid 2015)