Integrating Modern Suite of Geophysical Logs, Geochemistry, and Seismic Data

for Characterizing Deep Aquifers

W. Lynn Watney, Ph.D.¹, Tiraz Birdie², John Doveton, Ph.D.¹, Jason Rush¹,

Fatemeh (Mina) FazelAlavi¹, Yevhen (Eugene) Holubnyak¹, Aimee Scheffer³, Dennis Hedke⁴, Saugata Datta⁵, Ph.D.5 and Jennifer Roberts, Ph.D⁶

(1)Kansas Geological Survey, University of Kansas, Lawrence, KS, (2)TBirdie Consulting, Inc., Lawrence, KS, (3)Conoco Phillips, Houston, TX, (4)Hedke Saenger Geosciences, Wichita, KS, (5)Kansas State University, Manhattan, KS, (6)University of Kansas, Lawrence, KS

Tools, Techniques and Methods

Thursday, May 8, 2014: 1:20 p.m. -1:40

Outline

- Lower Ordovician Arbuckle Group saline aquifer in Kansas for scCO₂ storage
- Comprehensive log suites and full diameter core data from two anchoring wells (790 m in length)
- 3-D seismic (~400 km²) from 5 oil fields; 65 km2 newly aquired multicomponent (*converted shear wave*)
- Arbuckle Distinct, and at least locally, isolated hyrostratigraphic units
 - defined by petrophysics, geochemistry, and geomicrobiology
- Independent, multi-scale estimates important in defining effective porosity, permeability (kv & kh), and capillary pressure
- Flow Zone Interval (*FZI*), Reservoir Quality Index (*RQI*), and Neural Network used to establish petrophysical correlation to lithofacies and model permeability and capillary pressure for regional storage assessment

Acknowledgements -- The work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Contracts <u>DE-FE0002056</u> and <u>DE-FE0006821</u>, W.L. Watney and Jason Rush, Joint PIs. Project is managed and administered by the Kansas Geological Survey/KUCR at the University of Kansas and funded by DOE/NETL and cost-sharing partners.

The study is a collaboration, multi-disciplinary effort between the KGS, Geology Departments at Kansas State University and The University of Kansas, BEREXCO, LLC., Bittersweet Energy, Inc. Hedke-Saenger Geoscience, Ltd., Improved Hydrocarbon Recovery (IHR), Anadarko, Cimarex, Merit Energy, GloriOil, Dawson-Markwell Exploration, and Noble Energy.

Wellington Field Site of Proposed Small Scale Field Test

20 MM Barrel Oil Field above Arbuckle Group

Digital type wells used to archive well information including stratigraphic correlations, geologic reports

Drop down menu for geologic layers

CO2-EOR & Saline Injection, Wellington Field

 InSAR & CGPS \rightarrow surface deformation IRIS seismometers & 3C accelerometers • Tracers to detect injected CO₂ Monitor ~600 ft deep well below shallow evaporite cap rock • Test for CO₂ in Mississippian wells (Underpressured oil reservoir should trap any vertically migrating CO₂) Inject 28,000 tonnes of CO₂ into Mississippian oil reservoir to demonstrate

reservoir to demonstrate CO₂-EOR and 99% assurance of storage with MVA

Pending Class VI permit and DOE funding -- Inject up to ~40,000 tonnes of CO₂ • U-Tube, CASSM and cross hole seismic

• DTS & acoustic fiber optics (long string fiber pending)

CO₂ Injection Zones in Arbuckle and Mississippian

Wellington Field KGS #1-28 --- Synthetic seismogram and seismic impedance (density x velocity)

Proterozoic granite – bottom of core = 5174 ft (1600 m)

Java App: http://www.kgs.ku.edu/software/SS/

Arbitrary seismic impedance profile

distinct caprock, mid-Arbuckle tight, lower Arbuckle injection zone

CO₂ injection zone in lower Arbuckle

Thin, shallowing-upward peritidal cycles, topped with autoclastic/crackle breccias, silicified in places

The sealing strata (aquitard/baffle) in the middle of the Arbuckle

Thin Sections - Baffle Zone (Mid Arb.)

Flow units in the lower Arbuckle injection zone

Lower Arbuckle Injection Zone

Pairs of photomicrographs Plane light and crossed nichols R. Barker, S. Datta, KSU

Crackle Breccia Common in **Injection Zone** (dissolved evaporites)

- Gamma ray
- Halliburton derived effective porosity
- **Coates Permeability** from NMR
- Microresistivity imaging log (MRIL)

Schlumberger

Brine Samples – Wellington KGS 1-32 Perforation and Swabbing

 11 swabbing interval target specific tight and high porosity zones in Arbuckle

- Overlap of DSTs and swabbing for comparison
- Fluids collected, preserved and analyzed for:
 - Geochemistry
 - Microbiology

 Compared results between the two sampling events

Lower and Upper Arbuckle Are Not in Hydraulic Communication

Upper Mississippian Reservoir Porosity vs. Permeability Resolved by pore type

Permeability vs Porosity for different Rock Types in Well 1-32

Schlumberger

Techlog Wellbore Software Platform

M. Fazelalavi, KGS

Improved permeability realization in the Arbuckle in Wellington anchor wells

- micro, meso, and mega groups defined in the Arbuckle
- based on core FZI & irreducible water saturation (from MRI)
- permeability computed from FZI value (Fazelalavi method)
 - FZI inversely proportional to surface area per grain volume (Sgv):
 - \bullet FZI should be inversely proportional to Swir and Φ_e

Black points = core measured permeability

Range of Pore Types in Arbuckle Group Quantified by Reservoir Quality Index (RQI)

Fazelalavi, KGS

Correlations Between K_v and K_h From Whole Core Analysis & Five *Petrofacies* Groups

(K_v necessary to model interaction between high flow intervals)

"TRIPLE COMBO" PERMEABILITY PREDICTION FROM LOGS Using Neural Network

RHOmaa and Umaa were not found to contribute significantly to permeability prediction, although they suggest that chertier dolomites tend to be more permeable than dolomites. However, gamma-ray, porosity, resistivity were useful as predictors, and so the model input requirements are from a basic triple combo well log suite common in Type Well Database:

- 1. GR (Gamma-ray, API units)
- 2. PHIt (volumetric porosity%)
- 3. PHIr (connected porosity estimated from resistivity log %)

```
PHIDensity[] = (2.71 - RHOB[]) / (2.71 - 1)
```

Rwa[] = (((PHID[]+PHIN[])/2)^2)*(ResDeep[]/1)

```
PHIr[] = (Rwa[]/ResDeep[])^.5
```

Doveton, KGS

Comparison of k_h permeability in validation well by neural network with different numbers of nodes in the hidden layer

---- core-log calibrated (with Swir & Φ_e from NMR)

 $k = 1014 \left[\frac{a}{S_{wir}\phi_e} + b \right]^2 \frac{\phi_e^3}{(1 - \phi_e)^2}$

predicted

Depth, feet sub-KB

Doveton, KGS

Flow units in the lower Arbuckle injection zone

Lower Flow Unit For Regional Modeling in Arbuckle Group

Low K_{v1} –Gasconade & Gunter Sandstone

Isopachous Map top Gasconade Dolómite to base Gunter Sandstone, contour interval = 100 ft

Summary

- Arbuckle Group saline aquifer is stratigraphically and petrophysically heterogeneneous
- Sufficient subsurface information available to adequately characterize the key petrophysical properties to estimate storage and injectivity
- Characterization and modeling accomplished by extensive collaboration
- Believe that the CO₂ plume can be cost effectively and safely managed beneath existing oil fields

