Sedimentologic and Stratigraphic Effects of Episodic Structural Activity During the Phanerozoic in the Hugoton Embayment, Kansas USA

W. Lynn Watney¹, John Youle², Dennis Hedke³,

Paul Gerlach⁴, Raymond Sorenson⁵, Martin Dubois⁶,

Larry Nicholson⁷, Thomas Hansen¹⁰,

David Koger⁸, and Ralph Baker⁹

¹Kansas Geological Survey, The University of Kansas, Lawrence, KS.

²Sunflower LLC, Longmont, CO. ³Hedke-Saenger Geoscience, Ltd., Wichita, KS.

⁴Charter Consulting, Miramar, FL. ⁵Consultant, Tulsa, OK. ⁶Improved Hydrocarbon Recovery, LLC, Lawrence, KS. ⁷Western Frontier Inc., Hanover, KS. ⁸Koger Remote Sensing, Ft. Worth, TX. ⁹Consultant, Houston, TX. ¹⁰Bittersweet Energy, Inc., Wichita, KS.

Outline

- Anadarko Basin Proterozoic extension to Phanerozoic compression
- Hugoton Embayment (HE) 10,000 km² northern extension of Anadarko Basin
- Major structures in the HE prominent evidence of compressional reactivation along basement lineaments
- Episodic structural movement post tectonic movement affecting sedimentation/stratigraphy throughout Phanerozoic
- Pattern of deformation strongly influenced by basement weaknesses (the template) and evolving stress field
- Summary

Extensional faults and folds dominated the cratonic platform during the Proterozoic

- Two dominant directions of extensional structures in Proterozoic
- Faults reactivated during Phanerozoic compressional orogenies (Kluth and Coney, 1981)
- Inversion of once normal faults leading to reverse & oblique-slip

Marshak, Karlstrom, and Timmons (2000)

Ancestral Rockies Structures

Early Chesterian - Late Leonardian deformation

Ages from Dickinson and Lawton (2003)

Intraplate fault reactivation is mainly dependent on orientation of (weak) fault zones relative to plate margin... deformation in interior can be represented by simple rheological models (van der Pluijm et al., 1997)

Prominent Tectonism during Morrowan and Atokan time

• Palinspastic restoration oblique slip (left reverse slip) on the uplift bounding faults (McConnell, 1989)

(Higley, 2011)

Strong correlation between many Proterozoic structures exemplified by magnetic field and Phanerozoic structures

Total Intensity of Magnetic Field Reduced to Pole overlain with configuration of Precambrian surface

- Very close correspondence of Phanerozoic structures to magnetic anomalies
- Local and subregional changes in strike and dip appear to closely correlate to magnetic map
- Major influence on lithofacies distribution and characteristics of sequences

50 mi

(Cole, 1976; Kruger, 1999)

Stratigraphic setting

reservoir sand

Generalized stratigraphic column (Montgomery and Morrison, 1999).

Dubois (2013)

transgression, punctuated by still-stands filled

the narrow, nearly linear valley with fine-grained

Chester valley incision and fill predated post-Mississippian – pre-Middle Pennsylvanian Ouachita related structural events

- However, traps in valley fill sand pools were sprung by Ouachita events.
- No channel deflection around features.
- Ubiquitous fractures in Chester IVF cores.
- Antecendent paleogeomorphology controlling valley location is discussed in context of more subtle structural deformation
- Subsea structure on top of Mississippian Meramec (Ste. Gen. in most of the area). 25' C.I. (smoothed)
- Chester incised valley axis shown as white line.
- Chester valley fill fields located within pink rectangles.
- Horst blocks at Cutter, Victory, Eubank, and Pleasant Prairie are faulted on south and west flanks
- Horst blocks on north sides of regional NW-trending lineaments

Youle (DOE-CO2)

Chester Incised Valley in Kansas

The cyclic retrogradational nature of Chester shoreline advances into Kansas are interpreted to have filled incised valleys with a series of 'back-stepping' stacked estuarine sandstone reservoirs. Red dashed lines are postulated sequence boundaries, and purple lines are possible parasequences. (Youle)

55% expansion of the Mississippian-to-Upper Ordovician Viola Limestone interval across major fault

-- Chester incised valley coincide with location of N-NE fracture set

Arbitrary Time Profile B-B', W – E

8.37

6.28

4.18

2.09

0.00 . -2.09

-4.18

-6.28 _

Meramec Time Structure Pleasant Prairie Field

Pleasant Prairie structural block

orientation of faults suggest right lateral component of faulting along a restraining bend

Strike-Slip Faults – flower structures & restraining bends

Flower Structures Positive (Palm Tree) → Transpression Right lateral

Restraining Bends-

transpressional zones

occurring at fault bends

Push Up Ridges

Modified from http://www4.uwsp.edu/geo/faculty/hefferan/geol320/strikeslip.html

Fault bounded orthogonal structural block paleo Arbuckle karst (Ordovician in age) and Meramec karst developed along regional NW-trending lineament

- Meramec age karst define partly define location of Chester incised valley
- Intersecting
 with NW trending
 Arbuckle karst
 trend with
 north-trending
 fault
 corresponding
 with location of
 Chester IVF

2 mi

- Chester valley incision and fill predated post-Mississippian – pre-Middle Pennsylvanian Ouachita related structural events
- However, traps in valley fill sand pools were sprung by Ouachita events.
- No channel deflection around features.
- Ubiquitous fractures in Chester IVF cores.
- Antecendent paleogeomorphology controlling valley location is discussed in context of more subtle structural deformation
- Subsea structure on top of Mississippian Meramec (Ste. Gen. in most of the area). 25' C.I. (smoothed)
- Chester incised valley axis shown as white line.
- DOE investigated Chester valley fill fields located within pink rectangles.
- Horst blocks at Cutter, Victory-Eubank and Pleasant Prairie are faulted on south and west flanks
- Horst blocks on north sides of regional NW-trending lineaments

Youle (DOE-CO2)

COMPARTMENTALIZATION:

Structural Compartments: Post Chester Fault Seals?

Cutter & Cutter South Field Areas

Current max. horizontal stress regime in midcontinent is NE-SW. Could Chester sands be locally sealed on the downthrown side of NW-SE trending faults?....if juxtaposed against tight Meramec Limestones?

Datum: Lower Permian Wellington

Cutter & Cutter South Field Areas

Up to at least Wellington time, subsidence continued on downthrown side of fault. However, amount of downthrown subsidence appears to have decreased over time at close to a constant rate.

Since Wellington time Laramide tectonic events impacting the Keyes Dome, Sierra Grande Uplift, and Las Animas Arch resulted in 55' of uplift and <u>dip reversal</u> on the Wellington in the downthrown well.

•	 · • ·
MOBIL OIL	MOBIL OIL
YNOLDS UNIT B 3	DAVIS 1-13
C SW SE	C SW SE
Range: 35 W - Sec. 22	TWP: 31 S - Range: 35 W - Sec. 13

M. L. REYNOLDS

C SW S VP:31 S - Range:

Structural Section

- Chester valley incision and fill predated post-Mississippian – pre-Middle Pennsylvanian Ouachita related structural events
- However, traps in valley fill sand pools were sprung by Ouachita events.
- No channel deflection around features.
- Ubiquitous fractures in Chester IVF cores.
- Antecendent paleogeomorphology controlling valley location is discussed in context of more subtle structural deformation
- Subsea structure on top of Mississippian Meramec (Ste. Gen. in most of the area). 25' C.I. (smoothed)
- Chester incised valley axis shown as white line.
- DOE investigated Chester valley fill fields located within pink rectangles.
- Horst blocks at Cutter, Victory-Eubank and Pleasant Prairie are faulted on south and west flanks
- Horst blocks on north sides of regional NW-trending lineaments

Shuck Field - Chester incised valley broadening into estuarine embayment to south near Oklahoma-Kansas line

- Time Meramec surface (unconformity)
- Prominent Chester IVF with rectilinear NW- and NE-trend
- Multiple drainage features on edge of topographic break bordering estuarine embaymenet
- Channel widths ~ 300 ft
- NW-trending and NEtrending regional structural lineaments appear to depositional system

2 mi (3.2 km)

Shallower structures and surface lineaments suggest episodic movement of NW- and NE-trending deep-seated structures along N-S Chester IVF

Dominance of the NE-trending regional lineaments controlling lower Permian deposition in SW Kansas (more northerly paleo σ_1 ?)

Isopach Lower Permian Hutchinson Salt to Neva Ls. (top Pennsylvanian)

Gray scale DEM of SW KS Postive above thicker Blaine halite

Surface elevation, gray scale (light = higher). Central portion of mapped area is topographically low.

Bedrock elevation at base Pliocene Ogallala formation Macfarlane and Wilson (2006)

Isopach of halite-bearing Lower Permian Blaine Fm.

Structure top of Blaine Formation

Proposed dissolution of lower Permian evaporites (~1000 ft below surface) during Late Tertiary & Neogene providing accomodation space for High Plains aquifer

• Inferred influence of NW- & NE-trending basement structures

• Timing of dissolution corresponds to regional uplift and tilting of Rocky Mountains and Great Plains during mid Miocene (McMillian et al., 2006; Goes and van der Lee, 2002)

 Timing similar to emplacement of gas into Hugoton Field (Sorenson, 2005)

Regional surface lineaments maintain northwest and northeast dominant trends

Summary & Conclusions

- Anadarko Basin Proterozoic extension to Phanerozoic compression <u>from rift</u> <u>basins to horst & graben system</u>
- Hugoton Embayment (HE) 10,000 km² northern extension of Anadarko Basin <u>and</u> <u>structurally integrated</u>
- Major structures in the HE prominent evidence of <u>coupled and complex</u> compressional events <u>from far field stresses including diagnostic features such as</u> <u>flower structures and restraining bends developed along reactivated basement</u> <u>lineaments</u>
- Episodic structural movement post tectonic movement affecting sedimentation/stratigraphy throughout Phanerozoic <u>including High Plains Aquifer</u> and surface lineaments and topography
- **Pattern of deformation** strongly influenced by prominent basement weaknesses (the template) revealed by potential fields and lineament analysis interacting with an evolving stress field

Acknowlegements -- The work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant DE-FE0002056 and DE-FE0006821, W.L. Watney and Jason Rush, Joint PIs. Project is managed and administered by the Kansas Geological Survey/KUCR at the University of Kansas and funded by DOE/NETL and cost-sharing partners.

The study is a collaboration, multi-disciplinary effort between the KGS, Geology Departments at Kansas State University and The University of Kansas, BEREXCO, INC., Bittersweet Energy, Inc. Hedke-Saenger Geoscience, Ltd., Improved Hydrocarbon Recovery (IHR), Anadarko, Cimarex, Merit Energy, GloriOil, Dawson-Markwell Exploration, and Noble Energy.

