Chester Incised Valley System, Haskell and Seward Counties, Kansas

Martin K. Dubois, John C. Youle, Peter R. Senior, Dennis E. Hedke, Eugene Williams, and Raymond P. Sorenson

Presented at the Kansas Geological Society

Ihr-Ilc.com

Southwest Kansas CO2 EOR Initiative Chester and Morrow Reservoirs

Western Annex to Regional CO2 Sequestration Project (DE-FE0002056) run by the Kansas Geological Survey

CO2 EOR Study Six Industry partners:

- Anadarko Petroleum Corp.
- Berexco LLC
- Cimarex Energy Company
- Glori Oil Limited
- Elm III, LLC
- Merit Energy Company

Support by:

Sunflower Electric Power Corp.

April 16, 2013

The SW Kansas part of project

- CO2 EOR technical feasibility study Chester IVF and Morrow
- Part of larger KGS-industry CCS and EOR study
- Will not inject CO2 paper study only
- Get fields in study "CO2-ready"

Technical Team:

	Project Role	Company
Martin Dubois	Team Lead, geo-model	Consultant - IHR LLC
John Youle	Core & depo-models	Consultant - Sunflower
Ray Sorenson	Data sleuth & advisor	Consultant
Eugene Williams	Reservoir engineering	Williams Petrol. Consultants
Dennis Hedke	3D Seismic	Consultant - Hedke & Sanger
Peter Senior	Reservoir modeling	MS student
Ken Stalder	Geotech	IHR, LLC
Susan Nissen	3D Seismic	Consultant
Lynn Watney	Project PI	KGS
Jason Rush	Project PI	KGS
John Doveton	Log Petrophysics	KGS
Paul Gerlach	Data support	Consultant - Charter

Modeling Status and Outline

Current project status (April, 2013) by field:

3D geomodel and flow simulation complete

Eubank North Unit

Pleasant Prairie South

Shuck

3D geomodel and flow simulation underway

3D geomodel under construction

Outline

Introduction

- Stratigraphic and geologic setting
- Fields' statistics and histories

Geology

- Evolution of Chester incision
- Valley fill and sequence stratigraphy

Modeling and Simulation

- Workflow
- Static 3D modeling
- Flow simulation

Fields in study in relation to Chester Incised Valley

April 16, 2013

EWAR

Stratigraphic setting

Generalized stratigraphic column (Montgomery and Morrison, 1999).

Valley incision took place during exposure of the Meramecian. Subsequent Chesterian transgression, punctuated by still-stands filled the narrow, nearly linear valley with fine-grained reservoir sand.

Osoge tinderhood

Worsow

Osage

 \bigtriangledown

Solett

vouis

5.

Field statistics and histories

		Discov by	/ered	Disc. Year	Develop (pre-3D)	oment)	3D shot	Post 3D	Wate floo	er Inject d ors	Oil Wells	Current Status	EUR - P&S
								drilling	star	t			(mbo)
۶I Pr	easant airie So	Helmri Payne	ch &	1990	Only2w addedp	vells re-3D	1998	19 wells	2002	2 9	13	near end of waterflood	4,600
Ει Να	ıbank orth	Anada Petrole	rko eum	1959	5 total b 9 total p	y 1965; re-3D	1995	26 wells	2004	4 11	24	downslope waterflood	7,500 est. from
Sł	nuck	Anada Petrole	rko eum	1978	have no reviewe	t d history	~1995	few	1989	9 ~13	~22	waterflood end ~2000	7,900
	Oil Volumes Recovery Factor (% OC						(% OOIP)						
			Study	/		OOIP (mbo)	Prima (mb	ary <mark>Sec</mark> o) (m	ond. bo)	Ultimate	Prima	Second ry -ary	EUR - P&S
	Pleasant Prairie S	t outh	SW K	(sCO2	project	14,641	2,32	20 2,3	320	4,640	15.8%	% 15.8%	31.7%
	Eubank	North	Anada	arko		21,177	3,48	34 4,(035	7,519	16.5%	% 19.1%	35.5%
			SW K	s CO2	project	25,261	3,48	<u> </u>	116	(thru 2012)	13.8%	/o	TBD
	Shuck		Anada histor	arko ac y	tual	23,542	3,54	6 4,3	352	7,898	15.1%	% 18.5%	33.5%

Eubank North Unit Geomodel OOIP is based on a seismic-defined valley that is slightly wider than that in Anadarko waterflood study

Shuck Field, Hitch and Etzold Units

1978

Shuck Waterflood Units Unit

Discovered:

(Above) Production plots for Hitch and Etzold waterflood units in Shuck Field, normalized to waterflood initiation.

(Right) Isopach map of the net basal Chester sandstone, >8% porosity, contour interval 20 ft.

⁽from Kim, Philip, and Sorenson, 2010).

Pleasant Prairie South Field Summary

Chester IV (Pleasant Prairie South) cuts through Pleasant Prairie, a faulted anticline producing from the St. Louis (34 mmbo).

Producing zone	Miss. Chester	WF recovery	Appx 50% of cum.
Discovered	1990	Oil wells total	18*
Waterflood	2002	Current oil wells	13
Cumulative Oil	4.4 mmbo	Current wtr inj wells	9
Cumulative Gas	0.7 BCF	*5 oil converted a	to injectors

North Eubank Unit

Discovered	1960	Primary	3,484 mbo
Developed	post 1995 3D	Secondary	TBD
Waterflood	2004	Oil wells total	24
Cumulative Oil	5.9 mmbo	Current oil we	ells 19
Cumulative Gas	7.7 BCF	Current wtr ir	i j wells 11

Outline

Introduction

- Stratigraphic and geologic setting
- Fields' statistics and histories

Geology

- Evolution of Chester incision
- Valley fill and sequence stratigraphy

Modeling and Simulation

- Workflow
- Static 3D modeling
- Flow simulation

Evolution of Chester Incision and Fill

Exposure and incision

- Mississippian carbonate rocks deposited on a broad relatively shallow platform through Meramec
- Widespread post-Meramecian subareal exposure
- **Deep fluvial incision** formed a nearly linear, narrow, deep valley in the Meramecian surface.
- Location of incision in places appears to have been related to reactivated basement fractures and faults and associated karst in the Mississippian and as deep as the Arbuckle
- Incised valley may be more linear over present day major positive structural features

Chester Incised Valley in Kansas

Peasant Prairie South

Pleasant Prairie faulted anticline has produced 39 mbo primarily from the St. Louis. Pleasant Prairie South Chester IVF reservoirs have yielded 4.4 mbo.

Seismic depth-converted Meramec surface (*smoothed*). 1450 ft maximum width at top of valley. *Seismic interpretation by Hedke*

Other Pleasant Prairie views with IVF wells

Pleasant Prairie IV related to deeper, older structure

- Incised valley may be associated with basement fracture and deeper karst in Arbuckle
- Karsted Meramec surface evident in time structure

Interpretation work by Dennis Hedke

Eubank

Seismic depth-converted Meramec surfaces Seismic interpretation by Hedke

KGS, Wichita KS

Eubank – depth ties

Valley walls and irregular floor tied to well measured tops – same view, different perspective. Red dots are Meramec tops intersected by the depth-converted Meramec seismic surface. Isolated lows in valley floor, confirmed by well penetration, may be karst-related sink holes.

18

Post-Chester sinkhole forms trap

Chester Incised Valley Fill

- **Valley fill** (based on work by Youle and Senior, project technical team members)
- As Chesterian seas onlapped the exposed Meramecian surface the valley was filled by a fluvial-estuarine system from south to north
- Incision still may have been occurring north of the Chester shoreline during fill south of the shoreline
- Oldest Chester fill is to the south, youngest is to the north.
- Depositional environments are more marine and tidalinfluenced to the south. More fluvial influence to the north.

IVF Depositional Environment

Shuck and Eubank valley-fill sediments are primarily tidaldominated estuarinetype deposits, although some are more related to Dalrymple et al's (1992) wave-dominated estuary system (Youle).

Pleasant Prairie South has more fluvial influence but still some tidal influence (Senior).

Dalrymple et al (1992) tide-dominated estuary model

KGS, Wichita KS

Eubank – Depositional Facies and Petrofacies

- **Depositional facies** are lithofacies defined in core deposited in a similar depositional environment
- Petrofacies are lithofacies identifiable on wireline logs. Multiple depositional facies may be in same petrofacies class
- Youle defined five petrofacies in Eubank and Shuck that can be defined by log signatures

Petrofacies 5 (main pay lithofacies) Figure 24. Estuary Bar sandstone depositional facies, very-fine to finegrained sandstone lithofacies. Owens 3A core (MD 5465-5475).

Eubank Facies continued

Petrofacies 4 (below left)

Estuary Bar facies sandstones (Petrofacies 5) interbedded with shalier Estuary Bar Margin depositional facies, slightly shaley fine-grained sandstone lithofacies (Petrofacies 4). Facies are depositionally linked - deposited in immediately adjacent settings. (Hugoton Energy Black 4-3 core 5481-5491)

Petrofacies 3 (above) Marine Transgressive Conglomerate lag depositonal facies, conglomerate lithofacies, lies on top of parasequence boundary FS P4. Lithoclasts of limestone, sandstone and shale in sandy bioclastic packstone. Grades upward into the Marine Shale facies (Petrofacies 1). (Hugoton Energy Black 4-3 core 5422.8)

Petrofacies 2 (left)

"Salt Marsh" facies depositional facies, sandy shale lithofacies. Soft sediment deformation and root traces noted. (APC Owens 3A 5595-5601)

Petrofacies 1

Marine shale – not identified in core but recognizable on logs

April 16, 2013

Pleasant Prairie So. Lithofacies in core and e-logs (Senior)

April 16, 2013

KGS, Wichita KS

North Chester Sequence Stratigraphy

The cyclic retrogradational nature of Chester shoreline advances into Kansas are interpreted to have filled incised valleys with a series of 'back-stepping' stacked estuarine sandstone reservoirs. Red dashed lines are postulated sequence boundaries, and purple lines are possible parasequences. (Youle)

April 16, 2013

Parasequence Boundaries recognized in core

Key parasequence boundaries marking acceleration in Chester sea onlap are recognized in core and correlated with wireline logs in wells without core.

(Left) Flooding Surface for PS3 at 5514. Maximum flooding surface for PS3 is appx. 10 ft above this surface. (core 5509-5515)

(Right) **PS2 Flooding surface at 5581.5**, Estuary Bar and Bar Margin facies of PS 2 lying sharply above intertidal to supratidal "Salt Marsh" facies. (core 5579-5586)

(work by Youle)

April 16, 2013

KGS, Wichita KS

Eubank North, Parasequences in logs and model

Four parasequences in North Eubank unit area. Wireline x-sec is not to scale. Model x-sec has true horizontal scale along similar path, but crosses "bumps" in straight line between wells rather than center of valley.

North Eubank Valley fill

Fence diagrams show lithofacies during valley fill stages (parasequences)

April 16, 2013

KGS, Wichita KS

Pleasant Prairie South sequence stratigraphy

Two parasequences. Four

lithofacies (color key slide 23)

Pleasant Prairie South Model framework

- 1. Incised valley cuts through Meramec and into St. Louis during post-Meramec exposure
- Two distinct sedimentary cycles (PS1 and PS2) are recognizable in core and correlated in on wireline logs
- 3. Chester sediments are absent from highlands

Initial modeling work by Peter Senior. Geomod2 by Dubois.

April 16, 2013

KGS, Wichita KS

Traps and Hydrocarbon Fill

Trapping mechanism

- Sandstone reservoir filling incised valley appear to be connected.
- Barriers to northward, updip flow (traps) are structural in nature.
- Pleasant Prairie and Eubank IVF traps occur where the valley "crosses" post-Chesterian faulted structures related to the Ouchita Orogeny and the development of the Anadarko Basin.
- Northern closure to the Shuck field appears to be due to a very localized karst (Sorenson, personal communication)

Hydrocarbon migration and fill

- Oil along the length of the valley are very similar and are primarily of Woodford origin (Anadarko Basin), but with a minor component being of Ordovician age (Kim et al, 2010)
- The Chester IVF system may have been a primary route for the Woodford oil charging the reservoirs in the much of western Kansas (Sorenson, personal communication)

Outline

Introduction

- Stratigraphic and geologic setting
- Fields' statistics and histories

Geology

- Evolution of Chester incision
- Valley fill and sequence stratigraphy

Modeling and Simulation

- Workflow
- Static 3D modeling
- Flow simulation

Integrated Multi-Discipline Project

Petrophysics:

Core K-Phi, corrected porosity, free water level, J-function

Static Model

Engineering:

PVT and fluid analysis, recurrent histories, dynamic modeling

Dynamic Model

Geology:

Formation tops, sequence stratigraphy, core lithofacies, lithofacies prediction (NNet)

Basic Workflow (Pleasant Prairie South) **Static Model** Inputs **Dynamic Model** Framework data: Structural wire frame **History matched** Formation tops model primary and secondary black oil Incised valley by seismic Sequence stratigraphy simulation and well tops • Depth-converted seismic Two parasequences structural surfaces ✓ Forecast CO2 EOR • 0-249 layers Seismic attributes compositional • Cells: XY=55 ft, Z=2ft simulation • 700,000 active cells Well-scale data Lithofacies (by NNet) **Equation of State** Upscale Fine- grid cellular Core data from PVT and model fluid composition Porosity (corrected) property model • Phi, K, Sw Water saturation (Archies) Lithofacies **Recurrent well** • 0-25 layers Porosity history • Cells: XY=55 Sw solution Mechanical Permeability (XY) ft, Z=10 ft Oil/water contacts and • Fluids Water saturation • 65,000 active produced and free water level • OOIP injected cells Sw by Leverett J-function

Lithofacies in core and wireline logs

Two cores of Chester IVF

- Lithofacies
- Petrophysics

Defined lithofacies

- Trained Neural Network on core
- Predict litofacies in wells without core

Pore throats, permeability, Sw are dependent on lithofacies

Pleasant Prairie

- Five core lithofacies have somewhat distinctive K-Phi trends (left), but are not all distinguishable on logs
- Lumped into two lithofacies, Sandstone and Conglomerate (right)

Pore throats, hence permeability and capillary pressure (and Sw) are a function of lithofacies. Thus it is important to distinguish lithofacies in the characterization and modeling process

Pleasant Prairie South

- Lumped lithofacies in Eubank have very similar K-Phi relationships as Pleasant Prairie
- Eubank sandstone has very slightly lower permeability for a given porosity

Pleasant Prairie South Static Model Properties

Inputs: 25 valley wells with *Phi, Lithofacies and Sw* Import LAS curves at half-foot sample rate Upscale to layer scale (2-ft)

Model Lithofacies

- Data analysis and variograms
- Sequential indicator simulation

Model Porosity

- Data analysis and variograms by lithofacies
- Sequential Gaussian simulation by lithofacies

Calculate Kxy by lithofacies

Sandstone Conglomerate Shale K(md)= 0.0047*PHI^3.9365 K(md)= 0.0033*PHI^2.9396 K(md)= 0.01

Estimate Sw by J-Function

Upscale to coarse grid and export for simulation

Fine-grid static model 2ft *h* cells were upscaled to 10-ft *h* cells for simulation.

Basic Workflow

Inputs

Static Model

Dynamic Model

Black Oil Simulation

Reservoir simulation work by Eugene Williams

General workflow

- 1. Match fluid & pressure histories (1990-2011)
- 2. Define 12 patterns (polygons)
- 3. Modify properties to attain match
 - Pore volume modifiers by polygon
 - I-Permeability modifiers by polygon
 - I and J Transmissibility modifiers (by polygon)
 - Relative permeability
 - Psuedo-functions Rocktype, VE, Stratified by polygon
 - End points (SWCR, SOWR, KRW) by region
- 4. CMOST automation to run hundreds of iterations to get close
- 5. QC and manual inputs for final

Simulation model views

Field History - review

Field-scale matches (through waterflood) Lighter colored are actual, darker are modeled

CO2 EOR Projections

Assumptions:

- 1. Convert WIW to CO2 IW
- 2. Oil wells as is
- 3. Inject 5 mmcfd CO2, not exceeding bhp 2600 psi
- 4. Continuous CO2, no WAG
- 5. Injection = production
- 6. No optimization

Projections:

		0-
Cumulative 2011	4.48	
NFA cum. 2026	4.64	↓ N
CO2 case cum.	6.59	
Increment. CO2	1.95	
Cum. 2012-2026	2.11	-
CO2	1	mm tons
CO2 inicated (mmof)	23.2	1 38
CO2 injected (mmcr)	20.7	1.00
CO2 Injected (mmcr) CO2 produced (mmcf)	23.7 13.2	0.77
CO2 Injected (mmcr) CO2 produced (mmcf) CO2 sequestered (mmcf)	13.2 10.5	0.77 0.61
CO2 Injected (mmcf) CO2 produced (mmcf) CO2 sequestered (mmcf) Gross utilization (mcf/bo)	13.2 10.5 11.2	0.77 0.61
CO2 Injected (mmcf) CO2 produced (mmcf) CO2 sequestered (mmcf) Gross utilization (mcf/bo) Net utilization (mcf/bo)	13.2 10.5 11.2 5.0	0.77

13 years injection

RF as f (OOIP)

Primary	15.8%
Secondary	15.8%
CO2	13.3%
	45.0%

assume 56%

CO2 is recycled

Pleasant Prairie South Simulation

Detailed report available online: Appendix A of quarterly DOE report, p 50-143: <u>http://www.kgs.ku.edu/PRS/Ozark/Reports/2012/Q11_2012_v2.pdf</u>

The purpose of the simulation model is to demonstrate incremental volume of oil that might be generated with CO2 injection and to determine the volume of CO2 that might be sequestered.

- There is room for improvement in the static model and justification for further dynamic modeling, but the current models are sufficient to demonstrate with confidence that substantial volumes of CO2 can be injected and sequestered and a significant volume of oil recovered in the process.
- Dynamic flow modeling required a pore volume reduction to a volumeweighted average of 79% of static model pore volume for the best history match of primary and secondary production. This could indicate that 21% of the reservoir is excess volume, or 21% of the modeled reservoir was not in communication with the wellbores.
- The volume of potential oil recovered might be significantly less if residual oil to miscible CO2 is greater than the zero value assumed in these model predictions.

Summary

- 1. Generous operator contributions of data has allowed comprehensive study of Chester IVF system
- 2. Post-Meramec incision was filled by tidally dominated estuarine sediments to south and more fluvial to the north
- 3. Trapping mechanism is structural in nature for the three fields studied
- 4. Shuck, Eubank North Unit, and Pleasant Prairie South were prolific in primary and water flood phases.
- 5. Based on relatively simple modeling and simulation, the fields should be good CO2 flood candidates provided a source of CO2 can be found
- 6. Substantial model and flow simulation improvements are advisable prior to implementing CO2 floods based on these studies

Acknowledgments

We wish to thank the companies participating in the project:

Anadarko Petroleum Corp. Berexco LLC Cimarex Energy Company Glori Oil Limited Elm III Operating, LLC Merit Energy Company

And Kansas Geological Survey, through the Kansas University Center for Research and the U.S. Department of Energy

Material presented is based upon work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DEFE0000002056. This project is managed and administered by the Kansas Geological Survey/KUCR, W. L. Watney, PI, and funded by DOE/NETL and cost-sharing partners.

Disclaimer:

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.