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aquifers and analyzed for hydrogeochemistry

* 1600 feet of core was taken from well KGS 1-32 for mineralogical investigation

* Core samples have been analyzed with X-ray diffraction, thin section petrography and
scanning electron microscopy

* Supercritical flow-through experiments at the National Energy Technology Laboratory
(NETL, Pittsburgh) provide experimental data to constrain geochemical models,
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site with preferential dissolution of dolomite and formation | i T T
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