Reservoir Characterization and Modeling of a Chester Incised Valley Fill Reservoir, Pleasant Prairie South Field, Haskell County, Kansas

Martin K. Dubois, Peter R. Senior, Eugene Williams, Dennis E. Hedke

Presented at the Geophysical Society of Oklahoma City 2012 Continuing Education Seminar

Ihr-Ilc.com

DKE-SAENGER GEOSCIENCE, LTD

Southwest Kansas CO2 EOR Initiative Chester and Morrow Reservoirs

Western Annex to Regional CO2 Sequestration Project (DE-FE0002056) run by the Kansas Geological Survey

CO2 EOR Study Six Industry partne

Six Industry partners:

- Anadarko Petroleum Corp.
- Berexco LLC
- Cimarex Energy Company
- Glori Oil Limited
- Elm III, LLC
- Merit Energy Company

Support by:

Sunflower Electric Power Corp.

May 22, 2012

The SW Kansas part of project

- CO2 EOR technical feasibility study Chester IVF and Morrow
- Part of larger KGS-industry CCS and EOR study
- Will not inject CO2 paper study only
- Get fields in study "CO2-ready"

Technical Team:

	Project Role	Company
artin Dubois	Team Lead, geo-model	Consultant - IHR LLC
ohn Youle	Core & depo-models	Consultant - Sunflower
lay Sorenson	Data sleuth & advisor	Consultant
ugene Williams	Reservoir engineering	Williams Petrol. Consultants
)ennis Hedke	3D Seismic	Consultant - Hedke & Sanger
eter Senior	Reservoir modeling	MS student
(en Stalder	Geotech	IHR, LLC
usan Nissen	3D Seismic	Consultant
ynn Watney	Project Pl	KGS
ason Rush	Project Pl	KGS
ohn Doveton	Log Petrophysics	KGS
aul Gerlach	Data support	Consultant - Charter

Fields in study in relation to Chester Incised Valley

May 22, 2012

Integrated Multi-Discipline Project

Petrophysics:

Core K-Phi, corrected porosity, free water level, J-function

Static Model

Engineering:

PVT and fluid analysis, recurrent histories, dynamic modeling

Dynamic Model

Geology:

Formation tops, sequence stratigraphy, core lithofacies, lithofacies prediction (NNet)

May 22, 2012

Basic Workflow

Inputs

Static Model

Dynamic Model

Field Summary

Chester IV (Pleasant Prairie South) cuts through Pleasant Prairie, a faulted anticline producing from the St. Louis (34 mmbo).

Producing zone	Miss. Chester			
Discovered	1990			
Waterflood	2002			
Cumulative Oil	4.4 mmbo			
Cumulative Gas	0.7 BCF			

WF recoveryAppx 50% of cum.Oil wells total18*Current oil wells13Current wtr inj wells9*5 oil converted to injectors

Stratigraphic setting

Generalized stratigraphic column (Montgomery and Morrison, 1999).

Subcrop pattern for Mississippian strata, western Kansas (Ebanks, 1991).

Valley incision took place during exposure of the Meramecian. Subsequent Chesterian transgression, punctuated by still-stands filled the narrow, nearly linear valley with fine-grained reservoir sand.

Chester Sequence Stratigraphy

The cyclic retrogradational nature of Chester shoreline advances into Kansas are interpreted to have filled incised valleys with a series of 'back-stepping' stacked estuarine sandstone reservoirs. Red dashed lines are postulated sequence boundaries, and purple lines are possible parasequences.

May 22, 2012

Basic Workflow

Inputs

Static Model

Dynamic Model

Lithofacies in core and wireline logs

Two cores of nearly entire Chester IVF

- Lithofacies
- Petrophysics

Lithofacies in core and wireline logs

Define lithofacies in wells without core

Questions to be answered

- 1. Do lithofacies make a difference?
- 2. Can they be defined in wells without core?
- 3. Lumping and splitting decision process
 - What can be defined?
 - What makes sense petrophysically?

They do make a difference

Decided to lump

May 22, 2012

Lithofacies estimated by Neural Network

- Train Nnet on core lithofacies
- Use modified jacknife approach in training
- Could not differentiate 3 reservoir lithofacies
- Very high success rate (>90%) with four lithofacies

Predictor variables:

- Gamma Ray
- Nphi-Dphi Xplot
- Nphi-Dphi difference
- Log10 ResDeep
- PE
- Relative position

curve

Basic Workflow

Inputs

Static Model

Dynamic Model

3D Seismic Pleasant Prairie

Meramec Time Structure

- Down to west bounding fault
- Chester IV cuts Pleasant
 Prairie anticline
- IV may be associated with deeper karst in Arbuckle
- Karsted Meramec surface evident in time structure

Interpretation work by Dennis Hedke

Meramec structure in time and depth

More views

Meramec seismic depth Morrow - Meramec Isochron

Early view of some basic attributes

Meramec seismic depth

Mean amplitude 0-15ms above MRMC Mean "sweetness" 0-15ms above MRMC

Isolated compartment yet to be resolved by seismic

Model framework

- 1. Build Meramec surface with 3D tied to wells
- 2. Define PS1 and PS2 tops in 25 wells in valley and build surfaces
- 3. Define PS1 volume (Base IV to PS1 surface)
- 4. Define PS2 volume (Top PS1 to PS2 surface, bounded by IV walls)
- 5. Layer PS2 volume: layers follow base
- 6. Layer PS1 volume: layers follow top
- 7. Cell dimensions: XY=55', Z ~2 ft

Initial modeling work by Peter Senior. Geomod2 by Dubois.

May 22, 2012

Basic Workflow

Inputs

Static Model

Dynamic Model

Static Model Properties

Inputs: 25 valley wells with *Phi, Lithofacies and Sw* Import LAS curves at half-foot sample rate Upscale to layer scale (2-ft)

Model Lithofacies

- Data analysis and variograms
- Sequential indicator simulation

Model Porosity

- Data analysis and variograms by lithofacies
- Sequential Gaussian simulation by lithofacies

Calculate Kxy by lithofacies

Sandstone Conglomerate Shale

K(md)= 0.0047*PHI^3.9365 K(md)= 0.0033*PHI^2.9396 K(md)= 0.01

Estimate Sw by J-Function

Sw by Leverett J-Function

- 1. O/W contact estimated -2235. by operator confirmed Assume FWL~10ft below O/W contact (-2245)
- 2. E-Log inputs for J-Function:
 - PhiX Corrected porosity from core-log phi algorithm
 - **Kest** from empirically derived K-phi transform equations
 - **Sw_Arch** calculated Sw using standard Archies equation (m,n = 2, Rw=0.04)
- 3. Generate J-Function and apply at model cell scale
 - Model cell inputs: Phi, K, HaFwl
 - K is lithofacies sensitive, so facies is taken into account

Select 3D Grid:	🔿 💋 PiPr_	Rebuild_BEST		~			
Make J-Functions	Make Sw Property Info	5					
Vell Logs Porosity 🔿 Perm 🔿	Φ PHIX ✓ k ⁺ K_est ✓	Sw	IIs 🔿 💹 SW_r	RCH	*	Select facies for the Facies Filter:	•
Family Action	ns: 賤 🦉 🗶 📭 iolder ily 1 A=39.1 B=-0.99 Hi	wl=-684.3 Swir=	Zones V	cochore:	gments 🔽 🗌	Facies PS2_isoc	hore_m er
Color Marne: Family 1	Swir: 0.1 Swmax: 1	Hfwl:	-2245 [ft] in X-plot: 3291 r: 🐴 💦 🙆 餫	A: 39.1375 B: -0.9895	i ? 12 ₹	Auto Fit Fit J-Fun	ettings action
1500 - 						e Na culo	
0.:	1 0.2	0.3 0	4 0.5 Sw, fr	0.6 action	0.7 0	0.8 0.9	1

Upscale to coarse grid and export for simulation

Fine-grid static model 2ft *h* cells were upscaled to 10-ft *h* cells for simulation.

Fine-grid static model 2ft *h* cells were upscaled to 10-ft *h* cells for simulation.

Properties at varying scales

Lithofacies

Porosity

del upscaled ½ foot to layer

May 22, 2012

					_		
Geomod Build 2 Parameters			Volumetrics				
FVF	1.18		v C				
Swir	0.1						
Phi cut-off	0.06						
FWL	-2245						
		PV	HCPV	STOIP	Cum		
	BV [*10^3	[*10^3	[*10^3	[*10^3	Prod		
Region	RB]	RB]	RB]	STB]	[*10^3	RF	
Polygon1	14,258	1,529	990	840	208	24.8%	
Polygon2	15,742	1,639	1,184	1,004	315	31.4%	
Polygon3	11,531	1,132	547	464	36	7.7%	
Polygon4	9,396	915	515	437	98	22.4%	
Polygon5	24,363	2,757	1,915	1,623	648	39.9%	
Polygon6	19,645	2,193	1,640	1,390	530	38.1%	
Polygon7	22,854	2,618	1,955	1,656	734	44.3%	
Polygon8	29,898	3,732	2,958	2,506	715	28.5%	
Polygon9	28,098	3,334	2,603	2,206	752	34.1%	
Polygon10	16,751	1,870	1,462	1,239	331	26.7%	
Polygon11	15,600	1,849	1,385	1,173	125	10.7%	
Polygon12	1,788	183	122	103	7	6.9%	
	209,924	23,751	17,276	14,641	4,500	30.7%	

Static Model

twelve

May 22, 2012

GSOC Education 2012

North

Basic Workflow

Inputs

Static Model

Dynamic Model

Simulation modeling

Petrel export (RESCUE format) for simulation

- PVT EOS in WINPROP : Chester
 PVT reports and CO2 swelling tests at Wellington
 - IMEX Black Oil PVT for Black-Oil history match stage
- Saturation functions: Gravity Stable (VE) and Corey functions.
 - **Capillary pressure** based on RESCUE initial water saturations
- Initialization using WOC -2245 ft SS, Pressure 1389 psia at WOC
- ✓ Well production and injection data from operator records (1990-2011)

- Initial history matching using black oil simulation (IMEX) and CMOST
 - Check sensitivities to matching modifications
 - Refine well (Oil prod) matches
 - Resolve Pressure Match

Convert history matched model to EOS simulation (GEM)

 Working through convergence issues with GEM

□ Prediction cases using GEM

- NFA
- CO2 Injection Cases

Black Oil Simulation

Reservoir simulation work by Eugene Williams

General workflow

- 1. Match fluid & pressure histories (1990-2011)
- 2. Define 12 patterns (polygons)
- 3. Modify properties to attain match
 - Pore volume modifiers by polygon
 - I-Permeability modifiers by polygon
 - I and J Transmissibility modifiers (by polygon)
 - Relative permeability
 - Psuedo-functions Rocktype, VE, Stratified by polygon
 - End points (SWCR, SOWR, KRW) by region
- 4. CMOST automation to run hundreds of iterations to get close
- 5. QC and manual inputs for final

Simulation model views

Field History - review

Field-scale matches

Lighter colored are actual, darker are modeled

Example individual well matches

Discussion of modifications

Significant increase in permeability at low end

• Possibility of natural fractures (some noted in core)

Reduction in mobile oil by up to 30% by polygon (by reduction in pore volume)

- Static model pore volume to high (model geometry)
- Initial model Sw estimate too low
- Tortuosity not modeled (barriers or baffles not accounted for)
- Water bypass

Possibly several of above

- Static model RF is ~31% of OOIP
- Dynamic model RF is ~43% of "reduced" OOIP
- RF probably somewhere in between

Summary

- Characterization, modeling and black oil simulation is fair representation of reservoir
- ✓ Will proceed with CO2 EOR and storage simulation

Improvements possible

- 1. More seismic attribute work (could require extensive reprocessing)
- 2. Rebuild Petrel model for better volumetrics
- 3. Another complete iteration

On to the next field.....complete all four in 2012

Acknowledgments

We wish to thank the companies participating in the project:

Anadarko Petroleum Corp. Berexco LLC Cimarex Energy Company Glori Oil Limited Elm III Operating, LLC Merit Energy Company

And Kansas Geological Survey, through the Kansas University Center for Research and the U.S. Department of Energy

Material presented is based upon work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DEFE0000002056. This project is managed and administered by the Kansas Geological Survey/KUCR, W. L. Watney, PI, and funded by DOE/NETL and cost-sharing partners.

Disclaimer:

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.