Evaluation of Carbon Sequestration in Kansas --Update on DOE-Funded Project

W. Lynn Watney and Saibal Bhattacharya

Kansas Geological Survey Lawrence, KS 66047

GEOLOGY SECTION FALL 2010 SEMINAR AN EXAMINATION OF ENERGY, WATER AND ENVIRONMENTAL TOPICS Sedgwick County Extension Education Center Wichita, Kansas September 9, 2010

Outline

Study Goal

Evaluate CO₂ Sequestration Potential in KS

- Deep Saline Arbuckle Aquifer in south-central KS
- Select depleted mature oil fields

Start Date - Dec 2009

No CO₂ will be injected in this 3-year project.

- Overview DOE-funded Project Watney
- Subsurface fate of injected CO₂ Saibal
- Update GeoModeling Studies Watney
- Update Reservoir Simulation Studies Saibal

http://www.kgs.ku.edu/PRS/Ozark/index.html

DOE-CO2 Project Study Area Wellington Field (Sumner County) + 17+ Counties

Contours = thickness of Arbuckle Group (100 ft C.I.) Regional study → ~20,000 sq. miles

50 miles

Relevance of CO₂ Sequestration in KS

- Coal-fired power plants to produce for years in Kansas
- DOE efforts to develop carbon capture and storage (CCS) infrastructure
- Initiatives of the Midwestern Governors Association
- CO₂-EOR proven technology for EOR- select depleted oilfields
- Deep saline aquifers potential to sequester large volumes of CO₂
 - Arbuckle deep saline aquifer underlies large areas in south-central KS
- KS centrally located to major CO₂ emitting states and cities
- CO₂ sequestration potential to become a major industry in KS
 - Government incentives
 - Value of CO₂ as commodity
 - Infrastructure
 - Maturation of technology and regulations

CO₂ Sequestration Target Arbuckle Saline Aquifer

<u>Red Areas</u> – Sequestration capacity - at least 480 thousand metric tons/mi² CO₂ emissions - US coal fired power plants 1,787,910 thousand metric tons ^{DOE Report 2000}. Average coal plant of 1.3 million megawatt-hr/yr – 1.2 million metric tons CO₂/yr (\approx 3 mi²)

Project Objectives

Build 3 geomodels

- Wellington field (Sumner County)
 - Depleted Mississippian oil field
 - Underlying Arbuckle saline aquifer
- Regional Arbuckle saline aquifer 17+ counties (south-central KS)
- Conduct simulation studies to estimate CO₂ sequestration potential
- Arbuckle saline aquifer 17+ county area
 - Identify potential sequestration sites
 - Estimate sequestration capacity of Arbuckle saline aquifer in KS
- Risk analysis related to CO₂ sequestration
- Technology transfer

Subjects Outside the Purview of this Project

- CO₂ capture from point sources
- CO₂ transmission from source to injection sites
- Who owns the pore space?
- CO₂ injection regulations
- Leakage monitoring
- Liability

Other DOE projects, ongoing and future, relate to CO₂ capture and transportation.

Newly funded DOE Project at KGS – "Prototyping and testing a new volumetric curvature tool for modeling reservoir compartments and leakage compartments in the Arbuckle saline aquifer: Reducing uncertainty in CO2 storage and permanence"

Pls: Jason Rush & Saibal Bhattacharya

Industry Partner: Murfin Drilling Co. (Wichita)

Newly Funded Project – Validate Volumetric Curvature Tool to Model Compartments & Leakage Pathways in Arbuckle Saline Aquifer

Project Time Line Dec '09 – Dec '12

Year 1 Year 2 Year 3 Regional geomodel development of Arbuckle saline aguifer Data Collection Collect, process, interpret 3D seismic data - Wellington field Collect, process, interpret gravity and magnetic data - Wellington field Drill, core, log, and test - Well #1 Collect, process, and interpret 2D shear wave survey - Well #1 2-Seq Potential Analyze Mississippian and Arbuckle core Wellingtor PVT - oil and water Geochemical analysis of Arbuckle water Cap rock diagenesis and microbiology Drill, log, and test - Well #2 0 C **Complete Wellington geomodels - Arbuckle and Mississippian reservoirs** Evaluate CO2 sequestration potential in Arbuckle underlying Wellington Evaluate CO2 sequestration potential in CO2-EOR in Wellington field **Risk assessment - in and around Wellington field Regional CO2 sequestration potential in Arbuckle aquifer - 17+ counties Technology transfer**

17+ Counti

buckle

Seq Potentia

http://www.kgs.ku.edu/PRS/Ozark/index.html

KANSAS STATE UNIVERSITY

KU KANSAS

Department of Geology

HEDKE-SAENGER GEOSCIENCE, LTD

HALLIBURTON

Bittersweet Energy Inc.

Charter Consulting Integrated Geology & Geophysics

Subsurface fate of injected CO₂

Preeminence of Deep Saline Aquifer

Industry participation in infrastructure development possible if CO_2 -EOR is viable

Global annual CO₂ emissions ≈ 8 * 10⁹ tons Earth Policy Institute

>400 vrs	Formation Type	10 ⁹ Metric Tons	%
Current →	Saline Aquifers	3,297 – 12,618	91.8 - 97.5
Global	Unmineable Coal Seams	157 – 178	4.4 - 1.4
emissions	Mature Oil & Gas Reservoirs	138	3.8 – 1.1
	Total Capacity	3,592 - 12,934	100.0

DOE & NETL, "Carbon Sequestration Atlas of the US and Canada", 2008

Effectiveness of Injecting Supercritical CO₂

In situ fate & entrapment of CO₂

Injected CO₂ entrapped in 4 different ways

- some dissolves in brine
- some gets locked as residual gas (saturation)

(depth/pressure and temperature)

- some trapped as minerals
- Remaining CO₂ resides as free phase
 - Sub- or super-critical as per in situ conditions

CO₂ Entrapment Audit:

- 1. Residual gas
 - Start 45% to End 65%
- 2. Solution
 - Start 18% to End 28%
- 3. Minerals
 - Start negligible to End 5%
- 4. Free Phase
 - Start 37% to End 2%

Dissolution of CO₂ in Brine Convection Cycle increases entrapment

CO₂ Entrapment as Residual Gas

CO₂ Entrapment as Minerals

Frio Pilot Injection (Texas) -- free phase supercritical CO₂ plume

Current tools (geologic modeling, reservoir simulation, wireline logging, 3D seismic) are capable of <u>tracking subsurface CO₂ migration</u>.

Hovorka et al., 2006, 4-20-06 NETL Fact Sheet & Daley et al., 2007

CO₂ Injection Strategies

Level I Trap – solubility in oil and water, CO_2 pressure under cap rock, plume contained, CO_2 breakthrough at producing wells

Level II Trap – solubility in brine (convection), CO₂ pressure under cap, plume contained – HIGH RISK

Level III Trap – solubility in brine (convection), entrapment as residual gas, upward migration and dissolution of plume – LOWER RISK (in absence of conduits to surface)

Leakage Pathways Conduits to the Surface

Faults and fractures will be mapped in the 17+ county study area:

- 1. Satellite imagery
- 2. Gravity/magnetic

3. Structure, isopach, and petrophysical maps

Site selection critical to minimize risks associated with CO₂ injection Not all fractures/faults reach the surface – some do and need to be identified Inventory of all plugged wells critical – REPLUG if needed.

CO₂ Sequestration in Heterogeneous Aquifer Seismic Monitoring Results - Sleipner field (North Sea)

Every time the CO_2 plume meets a thin shale layer (< 5 m), it spread out laterally. This lateral dispersion results in additional sequestration and plume degradation - CO_2 dissolving into fresh brine and getting trapped in fine pores of the rock. *Torp & Gale, 2003*

Shale layers (stratification) and aquitards – are present in the Arbuckle aquifer system.

Hydrostratigraphy – Project Study Area Multiple Caprocks & Aquitards - Leakage Attenuation

350 325 300 275 250 225 200 175 150 125 100 **Outline of** 17 county study area Wichit _iberal 20 m Watney et al. (1989)

Net Halite (salt) Isopach (thickness), CI 100'

Total Permian evaporite thickness ranges from 400 to 2000' in south-central KS. These evaporites serve as ideal cap rocks being located between shallow freshwater aquifers and hydrocarbon bearing strata and deeper Arbuckle saline aquifer.

Yaggy Gas Storage Leak - 2001

Site selection for CO_2 sequestration CRITICAL, because all wells drilled in the area <u>have</u> to be accounted for and properly completed before onset of CO_2 injection.

Update on Geomodeling Studies

Areas of Interest CO₂ sequestration in Arbuckle Saline Aquifer

Bittersweet subcontract : Tom Hansen (manager)

3rd Order Structural Residual - Top Arbuckle

Color based on gravity, "relief" based on magnetics

Interactive Project Map Viewer Well Data and Analyses, Georeferenced Maps, Cross Sections, Remote Sensing, Seismic, Gravity-Magnetics, Simulation Results

Koger and Baker- geol Killion - mapper http://maps.kgs.ku.edu/co2/?pass=project

Wellington Field Sumner County

Depth Converted Structure Comparisons Drum/Dewey Limestone

Fairfield

Echo

Gravity Data - Wellington Field Aug. 2nd (Lockhart)

Residual Bouguer Gravity (reduction density 2.45 g/cc)

Coherency Attribute Time Slice – Wellington Field Possible structural/ stratigraphic anomaly

Preliminary interpretation A. Raef, KSU – preliminary analysis, July 28, 2010

Simulation Model Area - Southern Sedgwick County

Arbuckle Structure of top flow unit JCC 4 (Layer L1 in simulation)

- 9 townships
- 660 ft grid cells
- five flow units (*layers*)

Flow Unit Analysis saved/archived as LAS 3.0 file

~IQ_Flow_Data | IQ_Flow_Definition

KEY ZONE STRT STOP ROCK H2O A M N RW RSH PHISH L_RT L_VSH CLEAN SHALE L_PHIT L_PHI1 L_PHI2 GRAIN FLUID PHI_VSH PHI_SH PHI_SH2 L_2ND 2_GRAIN 2_FLUID 2_VSH 2_SH C_PHI C_SW C_VSH C_BVW P Q R V_THK V_FT V_PAY V_PHI V_SW "100727101550","JCC 4",3918.0,4027.0,"Dolomite","Archie",1.0,2.0,2.0,0.05,0.0,0.0,"RES","GR",20.0,70.0,"RHOB","RHOB","-999.25",2.8,1.0,"NO",0.0,0.0,"DT",47.5,185.0,"NO",0.0,0.08,0.5,0.3,0.08,8581.0,4.4,2.0,109.0,1533.58,42.5,36.14,0.39 "100727102039","JCC 3",4027.0,4137.5,"Dolomite","Archie",1.0,2.0,2.0,0.09,0.0,0,"RES","GR",20.0,70.0,"RHOB","RHOB","-999.25",2.8,1.0,"NO",0.0,0.0,"DT",43.5,189.0,"NO",0.0,0.08,0.5,0.3,0.08,8581.0,4.4,2.0,110.5,0.12,1.75,0.14,0.47 "100727103220","JCC 2",4137.5,4243.5,"Dolomite","Archie",1.0,2.0,2.0,0.05,0.0,0.0,"RES","GR",20.0,70.0,"RHOB","RHOB","-999.25",2.8,1.0,"NO",0.0,0.0,"DT",47.5,185.0,"NO",0.0,0.08,0.5,0.3,0.08,8581.0,4.4,2.0,110.6,0.65,9.5,0.12,0.41 "100727103920","JCC 1",4243.5,4308.0,"Dolomite","Archie",1.0,2.0,2.0,0.08,0.0,0.0,"RES","GR",20.0,70.0,"RHOB","RHOB","-

999.25",2.8,1.0,"NO",0.0,0.0,"DT",47.5,185.0,"NO",0.0,8.0,0.5,0.3,0.08,8581.0,4.4,2.0,64.5,0.0,0.0,0.06,0.91

"100727105840","JCC-Rou 1",4308.0,4725.0,"Dolomite","Archie",1.0,2.0,2.0,0.08,0.0,0.0,"RES","GR",20.0,70.0,"RHOB","RHOB","-999.25",2.8,1.0,"NO",0.0,0.0,"-999.25",-999.25,"999.25,"NO",0.0,0.0,1.0,1.0,1.0,8581.0,4.4,2.0,417.0,16.1,394.75,0.09.0.62

~IQ_Pfeffer_Parameter

#MNEM .UNIT	VALUE : DESCRIPTION	{FORMAT} ASSOCIATION
IQKGS .	: Profile Web App Saved Data	a Indicator {S}

~IQ_Pfeffer_Definition

#MNEM .UNIT	VALUE : DESCRIPTION		{FORMAT} ASSOCIATION
FKEY .	: Unique Identifier	{S}	
DEPTH .F	: Depth	{F}	
THK .F	: Thickness	{F}	
RT .OHM-M	: Total Resistivity	{F}	
PHIT .PU	: Total Porosity	{F}	
VSH .FRAC	: V-Shale	{F}	
PHI1 .PU	: 1st Porosity	{F}	
PHI2 .PU	: 2nd Porosity	{F}	
RWA .OHM-M	: Water Resistivity	{F}	
RO .OHM-M	: Water Saturated Ro	ock Resistivi	ty {F}
MA .FRAC	: Archie Cementation	{F}	
SW .FRAC	: Water Saturation	{F}	
BVW .PU	: Bulk Volume Water	{F}	
PAY .F	: Pay {F	=}	

~IQ_Pfeffer_Data | IQ_Pfeffer_Definition

FKEY DEPTH THK RT PHIT VSH PHI1 PHI2 RWA RO MA SW BVW PAY "100727101550",3918.0,0.25,5.577,0.172,1.203,0.182,0.0,0.164,1.69,2.678,0.55,0.094,0.0 "100727101550",3918.25,0.25,5.405,0.179,1.175,0.174,0.0,0.173,1.56,2.722,0.537,0.096,0.0 "100727101550",3918.5,0.25,5.184,0.187,1.147,0.166,0.0,0.181,1.429,2.768,0.525,0.098,0.0 "100727101550",3918.75,0.25,5.012,0.195,1.125,0.158,0.0,0.19,1.314,2.818,0.512,0.099,0.0 "100727101550",3919.0,0.25,4.977,0.201,1.117,0.151,0.0,0.201,1.237,2.867,0.498,0.1,0.0 "100727101550",3919.5,0.25,5.153,0.203,1.121,0.145,0.0,0.212,1.213,2.906,0.485,0.098,0.0 "100727101550",3919.5,0.25,5.624,0.201,1.131,0.14,0.0,0.227,1.237,2.943,0.469,0.094,0.0 "100727101550",3919.75,0.25,6.523,0.195,1.138,0.137,0.0,248,1.314,2.979,0.448,0.087,0.0 "100727101550",3920.0,0.25,8.075,0.187,1.141,0.135,0.0,0.282,1.429,3.032,0.42,0.078,0.0 "100727101550",3920.5,0.25,1.0605,0.177,1.143,0.134,0.0,0.332,1.595,3.093,0.387,0.068,0.0 "100727101550",3920.5,0.25,14.331,0.168,1.152,0.133,0.0,0.404,1.771,3.171,0.351,0.059,0.0

🛎 PfEFFER: JCC-Rou 1		
File RT VSH F	PHI Sw Model Sw Model	
A M N Rw Rsh PHIsh	Rt Vsh Clean Sha	ale PHIt
	RES GR 0	150 AVERAGE
Parameters Computation Second Porosity		
Flow Unit	Start Depth End Depth	
JCC-Rou 1 Parameters	4705.5	4725.5
Archie Equation Parameters	Cut-Offs	
Water Model Used: Archie	PHI Cut (Porosity):	0.0
A (Archie Constant): 1.0	Sw Cut (Water Saturation):	1.0
M (Cementation Exponent): 2.0	Vsh Cut (Fractional Shale):	1.0
	Bvw Cut (Bulk Volume Water):	1.0
N (Saturation Exponent): 2.0	Curriulative Unit Values (Computed)	
Rw (Water Resistivity): 0.05	CTHK (Columns as Thickness):	20.0
Rsh (Shale Registivity):	FTOIL (Oil-Feet or Gas-Feet):	0.09
	PAYFEET (Pay Zones):	13.75
PHIsh (Shale Porosity): 0.0 📏	AVPHI (Average Porosity):	0.04
· · · · · · · · · · · · · · · · · · ·	AVSW (Avg. Water Saturation):	0.8
Wyllie-Rose Equation Parametes		
P: 8581.0 Q:	4.4 R:	2.0
1.5 ft log analvs	Cumulative & A Properties	verage

Input to Simulation - Isopachs of Layers (Flow Units)

JCC 4 Isopach (L1)

JCC 2 Isopach (L3)

12 miles

- 6 townships
- 660 ft grid cells
- five flow units
 - (layers)

10 contour interval

Ν

Update on Simulation Studies

9 Township Model

Porosity - Current 2010-01-01

Simulation Inputs

Layer	H, ft	Phi	K (md)	Pr, psi
L1	109	0.12	100	1288
L2	110.5	0.05	0.001	1337
L3	106	0.12	20	1386
L4	64.5	0.06	0.001	1424
L5	139	0.09	9	1470
L6	139	0.09	9	1532
L7	139	0.09	9	1595

Pressure Change with Injection

CO₂ Injection Rate & Cum – 50 yrs

Free Phase Gas Saturation (Supercritical)

Greater vertical grid resolution required to model movement of freephase CO₂ plume

Residual Gas Trapping – Hysteresis Dependent on input – Max Residual S_a

Hysterisis effect in K_{rg} modeled using maximum residual $S_g = 0.25$ ($S_{gcrit} = 0.2$) Residual gas trapping increases: 1) WAG, 2) simultaneous water injection, 3) higher maximum residual S_q

Mole Fraction of CO₂ in Water - Solubility

Project Schedule

Sep 2010 - Wellington field geomodel - Shoot two 2D lines - Wellington field Nov 2010 – 1st well drilled at Wellington - Drill to basement, core, & log - Case, perforate, and test Arbuckle - pr/fluid Feb 2011 – 2nd well drilled at Wellington Drill to basement and log Apr 2011 – Core analysis data from lab May 2011 – Geochemical analysis from lab Jun 2012 – Reservoir simulation studies

Thank you