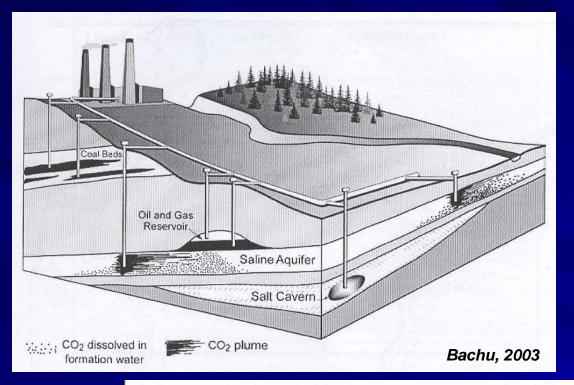
Evaluate CO₂ sequestration potential in Ozark Plateau Aquifer System (OPAS) in south-central KS - depleted oil fields and the deep saline Arbuckle aquifer


> W. Lynn Watney & Saibal Bhattacharya Kansas Geological Survey Lawrence, KS 66047

House Energy and Utilities Committee Meeting Topeka Jan 14, 2010

Relevance of CO₂ Sequestration in Kansas

- Coal-fired power plants to produce for years
 - Need to address problem of CO₂ emissions
- DOE efforts to develop carbon capture and storage (CCS) infrastructure
- Initiatives of the Midwestern Governors Association
- CO₂-EOR proven & reliable technology
 - Potential applications in many depleted KS fields
- Deep saline aquifers has potential to sequester large volumes of CO₂
 - Arbuckle saline aquifer in KS
 - Is deep and thick
 - Underlies a large area in south-central KS
- Kansas centrally located to major CO₂ emitting states and cities
- With right incentives and government support CO₂ sequestration has the potential of becoming a major industry in KS

Geologic Sequestration of CO₂

Industry participation in infrastructure development possible if CO₂-EOR is viable

Global annual CO₂ emissions – 8 * 10⁹ tons

Earth Policy Institute

Formation Type	10 ⁹ Metric Tons	%
Saline Aquifers	3,297 – 12,618	91.8 - 97.5
Unmineable Coal Seams	157 – 178	4.4 – 1.4
Mature Oil & Gas Reservoirs	138	3.8 – 1.1
Total Capacity	3,592 - 12,934	100.0

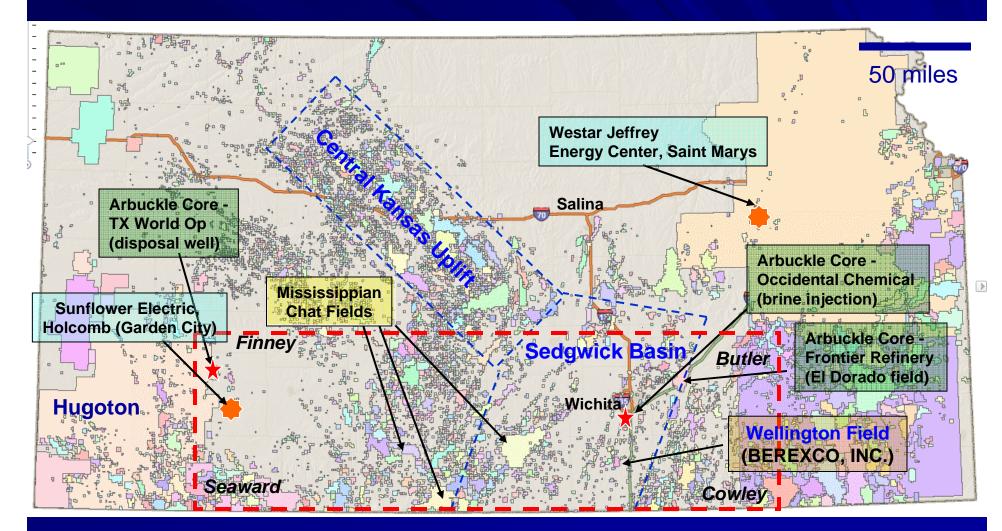
DOE & NETL, "Carbon Sequestration Atlas of the US and Canada", 2008

Potential Sequestration of CO2 in Saline Aquifers

North American Saline Basins

N=1

American Recovery & Reinvestment Act



DOE share: \$4,974,352 Cost match by KGS and partners: \$1,251,422

Principal Investigators: Dr. Lynn Watney & Saibal Bhattacharya

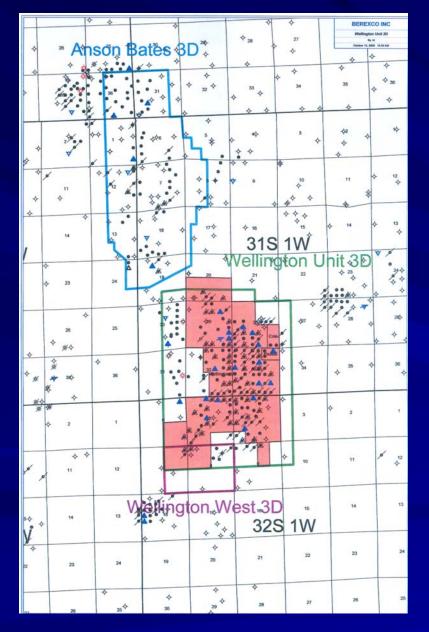
Duration: December 8, 2009 to December 7, 2012

Project Study Area Wellington Field (Sumner County) + 17 Counties

Project Objectives

- Build 3 geomodels
 - Mississippian oil reservoir at Wellington field (Sumner County) depleted
 - Arbuckle saline aquifer underlying Wellington field
 - Regional Arbuckle saline aquifer system over 17+ counties
- Conduct simulation studies to estimate CO₂ sequestration potential in
 - Arbuckle saline aquifer underlying Wellington field
 - Miscible CO₂ flood in Wellington field (along with incremental oil recovery)
- Identify potential sites for CO₂ sequestration in Arbuckle saline aquifer -17+ county area
- Estimated CO₂ sequestration potential of Arbuckle saline aquifer 17+ county area
- Risk analysis related to CO₂ sequestration
- Technology transfer

No CO₂ will be injected in this project


Subjects Outside the Purview of this Project

- CO₂ capture from point sources
- CO₂ transmission from source to injection sites

Other DOE projects, ongoing and future, relate to CO₂ capture and transportation.

KS companies are working on proposals including demonstration projects related to CO_2 sequestration by CO_2 -EOR and injection into underlying saline aquifers.

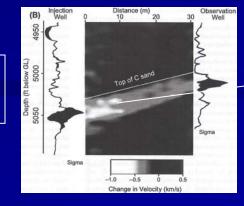
Wellington field, Sumner CO

- Discovered in 1922 (134+ total wells)
- 44 active wells, 20.5 MM bbls (oil)
- Field owned by BEREXCO unitized
- Excellent waterflood performance (no gas) great CO₂-EOR candidate
- Arbuckle aquifer 1050 ft thick (Mississippian top ~ 3650 ft, Arbuckle top ~ 4150 ft, Granite wash ~ 5100 ft)
- Considered for CO₂-EOR using CO₂ from Coffeyville plant
- Anson and Bates 6 MM bbls oil (Mississippian Chat), 3D seismic donated by Noble Energy Corp
- All three fields together could sequester ~ 30 MM tons of CO₂

Data Collection & Analysis

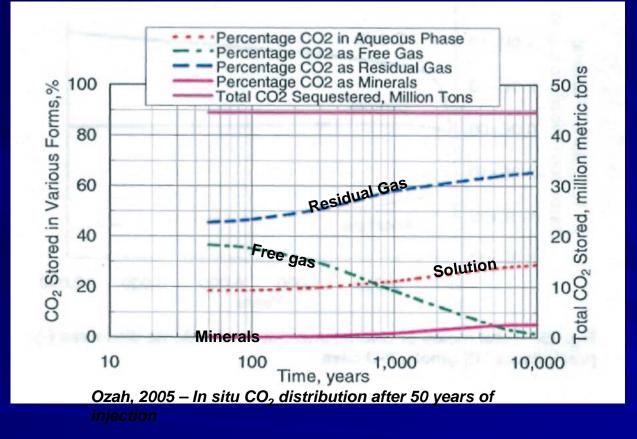
- Geophysical surveys at Wellington field
 - 3D, Gravity/Magnetic, 2D shear
- Drill, core, log, and test Well #1 to basement Wellington field
 - Collect water samples from different Arbuckle intervals
- Drill, log, and test Well #2 to basement Wellington field
 - Collect water samples from different Arbuckle intervals
- Analyze Mississippian and Arbuckle core (Well #1) & PVT
 - Integrate core data with previously taken cores
- Geochemical studies on Arbuckle water KSU Geology Dept.
- Analysis over 17 county area Regional geomodel of Arbuckle system
 - Satellite imagery
 - Gravity and magnetic
- Cap rock integrity and micro-biological studies KU Geology Dept.

Project Time Line


	Year 1	Year 2	Year 3
Regional geomodel development of Arbuckle saline aquifer			
Collect, process, interpret 3D seismic data - Wellington field	~		
Collect, process, interpret gravity and magnetic data - Wellington field	ion		
Drill, core, log, and test - Well #1	sct		
Collect, process, and interpret 2D shear wave survey - Well #1	Collecti		
Analyze Mississippian and Arbuckle core	Ŭ	ial	S
PVT - oil and water	Data	and and	l l
Geochemical analysis of Arbuckle water	Da	gtc	un
Cap rock diagenesis and microbiology		lin P	ပ်နှ
Drill, log, and test - Well #2		/el	Potential 7+ Coum
Complete Wellington geomodels - Arbuckle and Mississippian reservoirs		S'Z	4
Evaluate CO2 sequestration potential in Arbuckle underlying Wellington		Q [*]	Se
Evaluate CO2 sequestration potential in CO2-EOR in Wellington field		J	
Risk assessment - in and around Wellington field			ŭą
Regional CO2 sequestration potential in Arbuckle aquifer - 17+ counties			A
Technology transfer			

No CO₂ injection will take place in this project

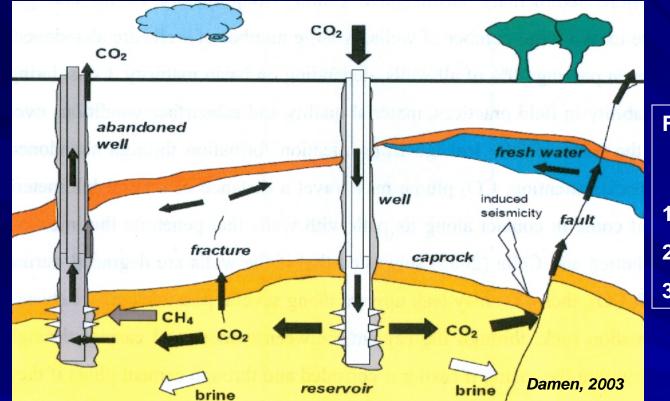
What happens when super-critical CO₂ is injected into a saline aquifer?


- 1. Part of the injected CO₂ dissolves in the surrounding brine under pressure solution
- 2. Part of injected CO₂ remains as free-phase (gas) CO₂
 - Free-phase (gas) CO₂ rises to the top of the formation (being lighter)
- 3. As free-phase (gas) CO_2 rises, additional CO_2 gets trapped in fine pores in the rock residual gas saturation
- 4. Natural movement of water in the aquifer dilutes CO₂ in solution and in free phase
- 5. Over long term (100s and 1000s of years), some of the injected CO₂ gets trapped as mineral precipitates in the aquifer

Frio Pilot CO₂ injection Project, Texas

CO₂ plume visualized by cross-well seismic tomogram

In situ entrapment of injected CO₂

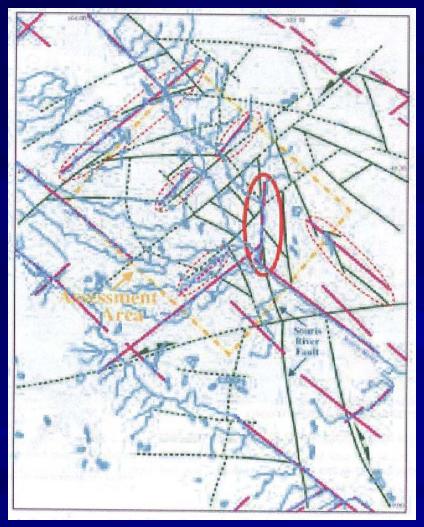


Our study will estimate the amount of CO₂ (tons) that will sequestered in various states using site-specific geology, rock, and water properties

Majority of injected CO_2 gets trapped as residual gas saturation followed by CO_2 dissolved in brine solution.

CO₂ mineralization is a slow process.

Risk Analysis – Potential leakage pathways



Faults and fractures will be mapped in the 17+ county study area:

- 1. Satellite imagery
- 2. Gravity/Magnetic
- 3. Structure maps

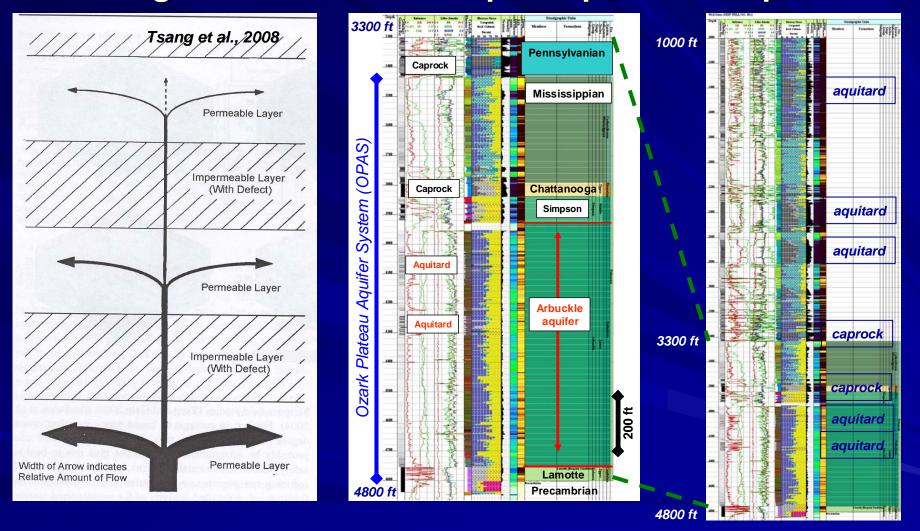
Site selection critical to minimize risks associated with CO₂ injection Not all fractures/faults reach the surface – some do and need to be identified Inventory of all plugged wells critical – REPLUG if needed.

Weyburn CO₂-EOR - Canada

IEA GHG Weyburn Summary Report 2000-04

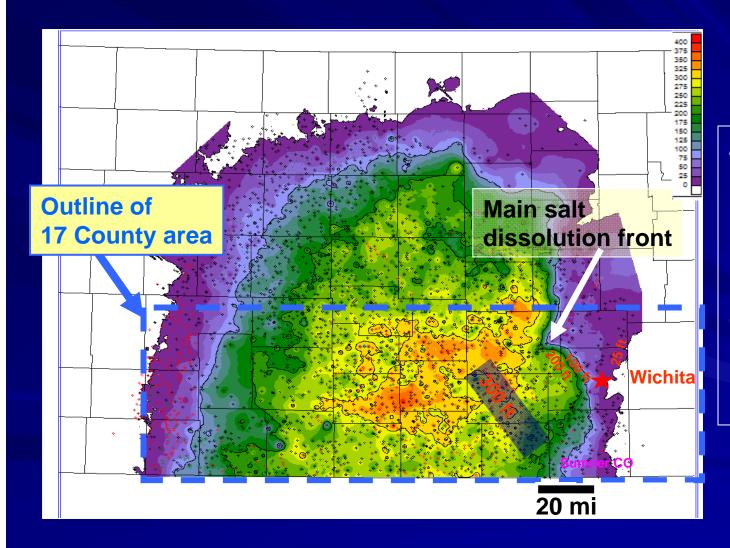
Solid Green – fault trends from seismic & HRAM

Broken Green – trends from HRAM


Purple – surface lineaments

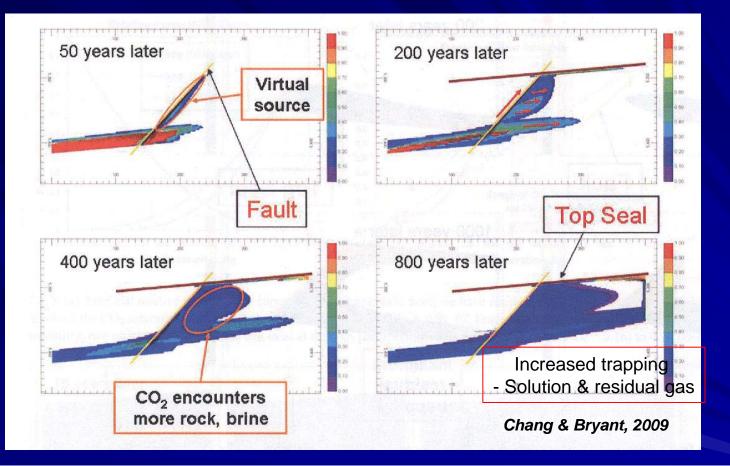
Red oval – Souris Valley fault (fault identified by seismic and HRAM coincide)

Broken Red – weak correlations between data sets


Not all Sub-surface faults/fractures reach the surface

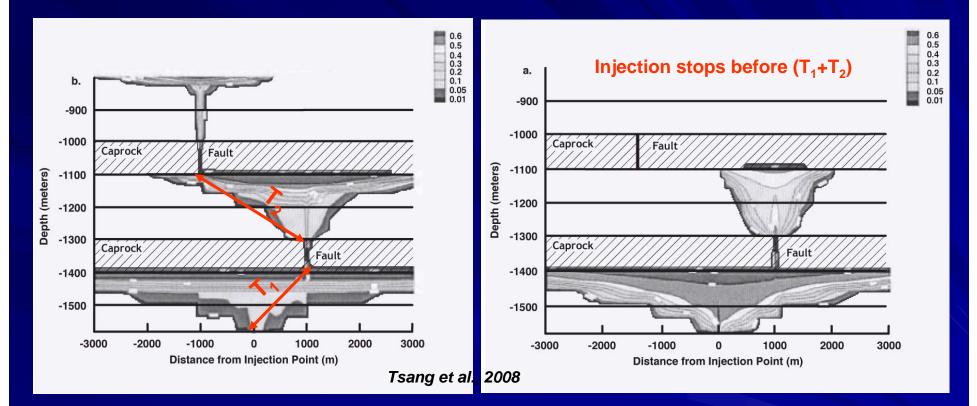
Risk Analysis <u>Leakage Retardation – Multiple Caprocks & Aquitards</u>

CO₂ plume undergoes pressure reduction and is trapped in the fine pores of caprocks and/or aquitards.

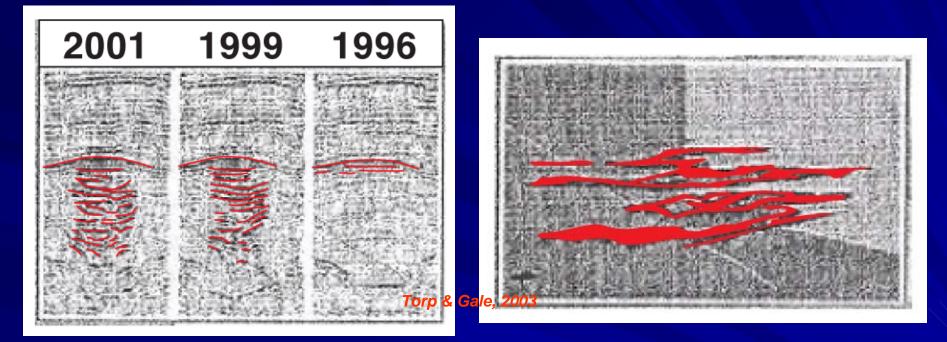

Net Halite (salt) Isopach (thickness)

Additionally, KGS maps show that total evaporite thicknesses range from 400 to 2000 ft in southcentral KS. These evaporites serve as ideal cap rocks.

Risk Analysis


Plume Intersects Inclined Fault – does not extend to surface

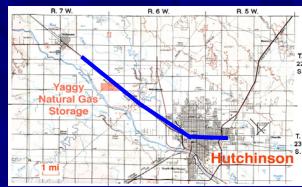
CO₂ leaks into fault and creates a "virtual CO₂ source".

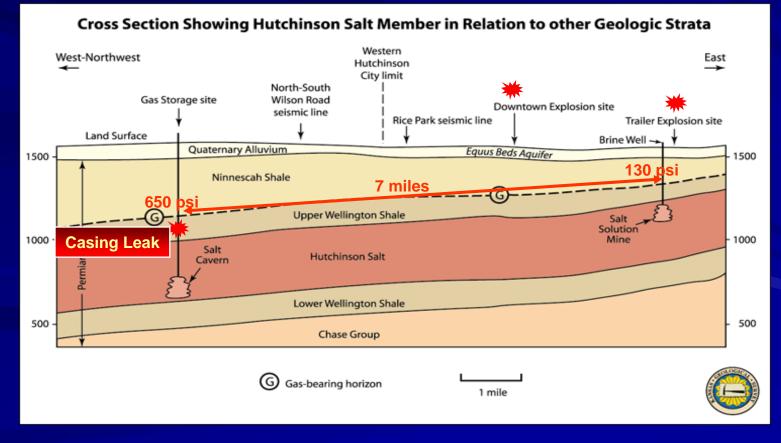

CO₂ migrates updip and gets attenuated – additional trapping in solution and as residual gas

Risk Analysis Plume Intersects Inclined Conductive Fault

If injection stops before plume reaches fault – then no leakage occurs. How much CO_2 can be sequestered before plume reaches fault? Is CO_2 sequestration tonnage economic?

Risk Analysis Seismic Monitoring Results - Sleipner field (North Sea)

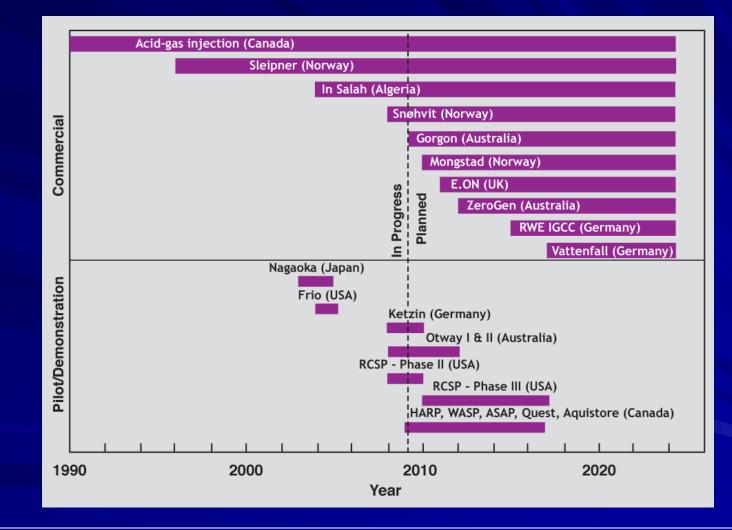



Every time the CO_2 plume met a thin shale layer, it spread out laterally. This lateral dispersion resulted in CO_2 dissolving into brine and getting trapped in fine pores of the rock.

Presence of similar thin shale layer (stratification) and aquitards are expected to be present in the Arbuckle aquifer system.

Yaggy Gas Storage Leak - 2001

Site selection for CO_2 sequestration CRITICAL, because all wells drilled in the area have to be accounted for and properly completed before onset of CO_2 injection.



CO₂ Sequestration Projects Worldwide Deep Saline Aquifers

CO₂ Sequestration Projects Worldwide Deep Saline Aquifers

Cap CO₂ & Univ. of Utah will submit proposal to DOE for field scale CO₂-EOR in Apr 2010 with KGS as a partner