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Computing the Location of Shallow Seismic Event 
By John R. Victorine 

 

This analysis is in support of the South-central Kansas CO2 Project, Small Scale Field Test 

Demonstrating CO2 Sequestration. This document will derive the equations that will predict the 

location of shallow seismic events below a 15 sensor array, located around the Wellington KGS 

2-32 Mississippian Injection Well. This analysis is designed to predict the location of any 

seismic event using 3 sensors to triangulate the position of the event. The solution to predicting 

the location of the seismic event is to translate from earth coordinate system to a shallow event 

coordinate system, using simple algebraic equations and trigonometry to create a series of 

equations that will give the location of the seismic event as latitude, longitude and depth with 

respect to the elevation of the sensors. 

 

Using our Sensor array it should be possible to predict the depth of the seismic 

event using simple algebraic equations from three seismic sensors around and 

above the seismic event.  The algebraic equations are three equations of a sphere, 

which theoretically can be reduced to give you latitude, longitude and depth of the 

seismic event. 

Rotate the earth coordinates through the seismic event so the z-axis is the depth 

axis and then translation to the sea level, the latitude is the x-axis and the longitude 

becomes the y-axis and the depth is computed above or below the sea level. 

 

Rotate the x-y axis about the earth z-axis to the longitude of the seismic event (q). 

 
 

Then rotate around the y’-axis down to the latitude of the seismic event.  Since the latitude is 

measured from the equator the angle  is related to the latitude () as = 


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Now combine the rotations to find x”, y”, z” coordinate to the earth’s x, y, z coordinate. 

x" = x cos cosq + y cos sinq – z sin

y” = -x sinq + y cosq 

z" = x sin cosq + y sin sinq + z cos 

 

Now replace  for latitude as = qas follows, 

x" = x sinq cosq + y sinq sinq – z cosq

y” = -x sinq + y cosq 

z" = x cosq cosq + y cosq sinq + z sinq 

 

Now translate the z-axis up to sea level z”’ = z” - Re, where Re is the radius of the earth at sea 

level, which is approximately equal to 6371 km.  Rename the x”’, y”’, z”’ to xo, yo, zo.   

The coordinate of the sensors and seismic event is in the earth coordinate systems. 

n
th

 sensor seismic event 

xn = (Re + hn) cosn cosn xq = (Re + zo) cosq cosq 

yn = (Re + hn) cosn sinn yq = (Re + zo) cosq sinq 

zn = (Re + hn) sinn zq = (Re + zo) sinq 

  

where   

  Re = Radius of earth at sea level  

  hn = Altitude of n
th

 -sensor above sea level   zo = the depth above or below sea level 

  n = latitude of n
th

 -sensor q = latitude of seismic event 

  n = longitude of n
th

 -sensor   q = longitude of seismic event 

 

The n
th

 sensor xn, yn, zn coordinates in the new rotation/translation coordinates is as follows, 

xno = xn sinq cosq + yn sinq sinq – zn cosq

yno = -xn sinq + yn cosq 

zno = xn cosq cosq + yn cosq sinq + zn sinq - Re  

 

Substituting the trigonometric relations for xn, yn, zn into the rotation/translation coordinates xno, 

yno, zno is as follows, 

 

xno = (Re + hn) [sinq cosn cos(n-q) + cosq sinn] 

yno = (Re + hn) cosn sin(n-q) 

zno = (Re + hn) [cosq cosn cos(n-q) + sinq sinn ] - Re 

 

The latitude and longitude angles differences are extremely small, i.e. n-q and n-q are on the 

order of 0.1 degrees or 0.00174533 radians.  The cosine of 0.1 degrees is essentially 1 and can be 
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set to 1.  The sine on the other hand with the product of the earth radius can’t be eliminated.  

Also notice that the altitude above sea level hn is much less than the earth radius Re (hn <<Re) for 

xno and yno, (Re + hn) ~ Re. zno has been translated up to the sea level so the radius of the earth Re is 

subtracted out so only the elevation of the nth sensor above sea level is left. The above equations 

reduces to  

xno = Re sin(q-n) 

yno = Re cosn sin(n-q) 

zno = hn 

 

The rotation of the earth coordinate system is centered on the seismic event, which reduces the 

xqo, yqo, zqo coordinates to 0.0, 0.0, zo.  zo is the depth above or below the sea level, + or – value. 

 

The equation of the location of the seismic event with respect to each of the sensors can be found 

from the equation of a sphere x
2
 + y

2
 + z

2
 = R

2
.  For the n

th
 sensor the equation is, 

(xqo – xno)
2
 + (yqo – yno)

2
 + (zqo – zno)

2
 = rn

2
 

Where xqo, yqo, zqo is the coordinates of the seismic event and xno, yno, zno is the coordinates of 

the n
th

 sensor, xqo = yqo = 0 and zqo = zo.  Also substituting xno, yno, zno trigonometric 

relationships, reduces the above equation to, 

Re
2
 sin

2
(q-n) + Re

2
 cos

2
n sin

2
(n-q) + (zo - hn)

2
 = rn

2
     (a) 

The above equation can be combined for all three sensors to find the latitude (q), longitude (q), 

and depth (zo) of the seismic event.  To make the equations manageable a number of 
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approximations must be made. The first is to set cos
2
n to an average of the sensors latitudes, i.e. 

 = (1 + 2 + 3)/3, but note that  

cosn = cos(n-) or cosn = cos(n-cossin(n-sin

In this case cos(n-and sin(n- = 0, so cosn ~ cos 

The other variable is hn which will be replaced with the average altitude above sea level, i.e. h = 

(h1 + h2 + h3)/3.  This last approximation can only be justified from the point of view that the 

sensors are basically nearly at the same elevation, but could be a real factor in zeroing in on the 

exact depth of the seismic event, which could be alleviated in the computer with some iterative 

process.  The next thing is to redefine the center of the n
th

 sensor with respect to the 1
st
 sensor,  

this will help in reducing the three equations, do the following, 

sin(q-n) = sin (q-1+1-n) 

sin(q-n) = sin(q-1) cos(1-n) + cos(q-1) sin(1-n)             

      

Again assume that cos(q-1) and cos(1-n) are effectively equal to one  then, 

sin(q-n) ~ sin(q-1)  + sin(1-n)   

The same can be done for the longitude, i.e. 

sin(n-q) ~ -sin(q-1)  + sin(n-1)   

Substituting all back into the n
th

 sensor equation (a), 

Re
2
 (sin(q-1)  + sin(1-n))

2
 + Re

2
 cos

2
 (sin(q-1)  - sin(n-1) )

2
 + (zo - h)

2
 = rn

2
 

Expanding and rearranging the equation, 

Re
2
 sin

2
(q-1) + Re

2
 cos

2
 sin

2
(q-1) + (zo - h)

2
  

   - 2 Re
2
 sin(q-1) sin

2
(n-1) - 2 Re

2
 cos

2
 sin(q-1) sin

2
(n-1) 

      + Re
2
 sin

2
(n-1) + Re

2
 cos

2
 sin

2
(n-1) = rn

2 

 

Now setting the equation for each sensor, understanding that Re
2
 sin

2
(q-1) + Re

2
 cos

2
 sin

2
(q-

1) + (zo - h)
2
 = r1

2 
. The equations for each sensor is as follows, 

(1)   Re
2
 sin

2
(q-1) + Re

2
 cos

2
 sin

2
(q-1) + (zo - h)

2
 = r1

2
 

 

(2)   - 2 Re
2
 sin(q-1) sin

2
(2-1) - 2 Re

2
 cos

2
 sin(q-1) sin

2
(2-1) 

      + Re
2
 sin

2
(2-1) + Re

2
 cos

2
 sin

2
(2-1) = r2

2
 - r1

2 

 

(3)   - 2 Re
2
 sin(q-1) sin

2
(3-1) - 2 Re

2
 cos

2
 sin(q-1) sin

2
(3-1)                                                        

      + Re
2
 sin

2
(3-1) + Re

2
 cos

2
 sin

2
(3-1) = r3

2
 - r1

2 
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Now define xnm = Re sin(n-m) and ynm = Re cossin(n-m) and substituting and rearranging 

the equations 

(1)   xq1
2
 + yq1

2
 + (zo - h)

2
 = r1

2
  

(2)   2 xq1 x21 + 2 yq1 y21 = x21
2
 + y21

2
 – r2

2 
+ r1

2
 

(3)   2 xq1 x31 + 2 yq1 y31 = x31
2
 + y31

2
 – r3

2 
+ r1

2
 

 

Solving for xq1, yq1 and zo, 

           [  x31
2
 + y31

2
 – r3

2 
+ r1

2
 ] y21 - [  x21

2
 + y21

2
 – r2

2 
+ r1

2
 ] y31   

xq1 =   -------------------------------------------------------------------- 

                                x31 y21 – x21 y31 

 

           [  x21
2
 + y21

2
 – r2

2 
+ r1

2
 ] x31  - [  x31

2
 + y31

2
 – r3

2 
+ r1

2
 ] x21 

yq1 =   -------------------------------------------------------------------- 

                                x31 y21 – x21 y31 

 

zo = h – [ r1
2 

 - xq1
2
 – yq1

2
 ]

1/2 

 

Where the latitude and longitude can be found from xq1 and yq1 as follows 

q  = 1 + arcsine( xq1 / Re ) 

and 

q  = 1 + arcsine( yq1 / (Re cos) ) 

A simple program was created to predict a seismic event from the computed distances of the 

seismic event from 3 sensors.  The test was performed on a hypothetical event under the 3 

sensors at sea level or zo = 0.0 [m]. 

Seismic Event: Latitude (q) = 37.309547
o
, Longitude (q) = -97.4367

o
, Depth (zo) = 0.0 [m] 

n latitude (n) longitude (n) Elevation (hn) [km] Distance (rn) [m] 

13 37.303385 -97.449980 0.3776472 1411.3 

15 37.307223 -97.434170 0.3785616 510.0 

6 37.318033 -97.425951 0.3907536 1395.2 

 

Inserting the latitude, longitude and expected depth of the seismic event for equation (a) at each 

sensor selected above as well as the distances expected with the selected sensors if there were no 

errors in the measured data.  The Java program displayed the following output.  



6 
 

 

Figure: The # column is the sensor number, = is the latitude, longitude and depth of the seismic event with the 
approximations applied to equation (a) and E is the actual values expected. 

The results were close to the expected values, but in some cases it could be round off error with Java 

since Java’s BigDecimal Math was not used.  There was no actual event under the 3 sensors to show how 

good the program would do in predicting a seismic event’s depth. The above algorithm is sensitive to 

the actual distances from the sensors to the seismic event, so large errors may not even be able to be 

solved with the present algorithm.  The program can be modified to assume error and with some 

iteration zero in on the depth. 

The same experiment was performed on an actual earthquake approximately 30 km from the sensor 

arrays.   The test was to see just how “good” the approximation would be for an event away from the 

sensors with very little parallax. The USGS identified a 3.1 magnitude earthquake that occurred at 9:33 

pm on 28 January 2015 at latitude of 37.093o and longitude of -97.637o.  I used Swarm to get the time 

difference from all the sensors and picked 3 sensors to predict the location of the depth, 13, 15, and 6.  

3.1 Magnitude Earthquake: Latitude (q) = 37.093
o
, Longitude (q) = -97.637

o
 

n latitude (n) longitude (n) Elevation (hn)  Distance (rn)  T from 

swarm 

13 37.303385 -97.449980 0.3776472 [km] 28.652 [km] 3.639 [sec] 

15 37.307223 -97.434170 0.3785616 [km] 29.820 [km] 3.808 [sec] 

6 37.318033 -97.425951 0.3907536 [km] 31.216 [km] 3.959 [sec] 

 

The first experiment was to set the depth at 0.0 with the above earthquake latitude and longitude and 

the distance (rn).  The result for depth zo was -1136.3 m, not even close.  Inserting the above t from 

swarm and I wasn’t able to get a result at all, because the above t’s will not define a single point. 

The present algorithm with the applied approximations can predict the location and depth of the seismic 

events under the seismic arrays.  The accuracy will depend on how well the t’s for the selected sensors 

can be determined and the average velocities of the shear (s) and compression (p) waves can be 

determined.  We have “Davies” (Kansas Sample Log Service Company) Cuttings Report and Sonic Log for 

the Wellington KGS 1-28 that can be used to compute average velocities Vs and Vp under the sensors. 


