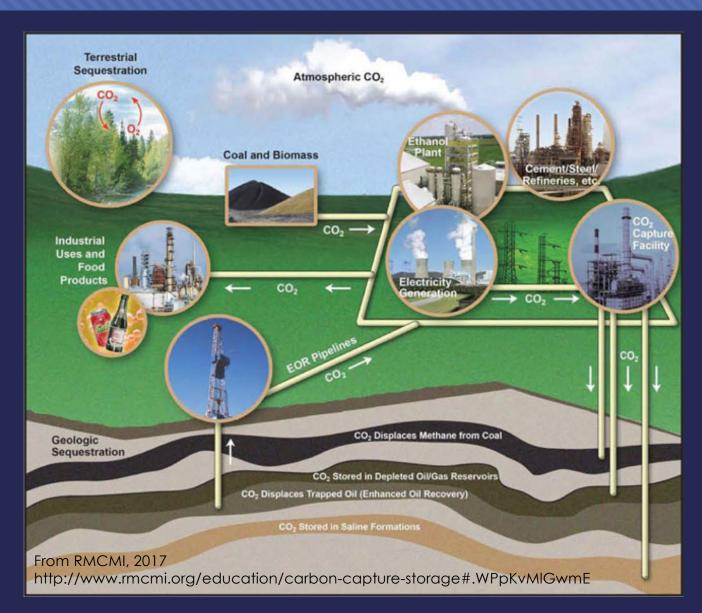
Integrated Carbon Capture & Storage for Kansas

Tandis S. Bidgoli

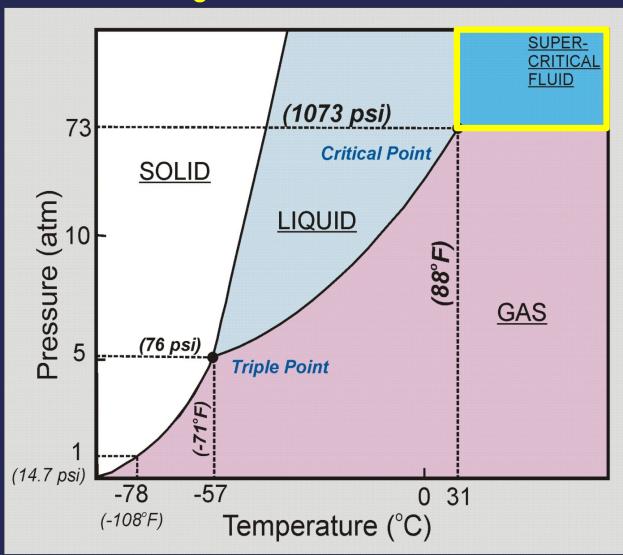
Coauthors: Martin Dubois, Eugene Holubnyak, Dave Newell

Kansas Geological Survey University of Kansas March 18, 2018



Outline

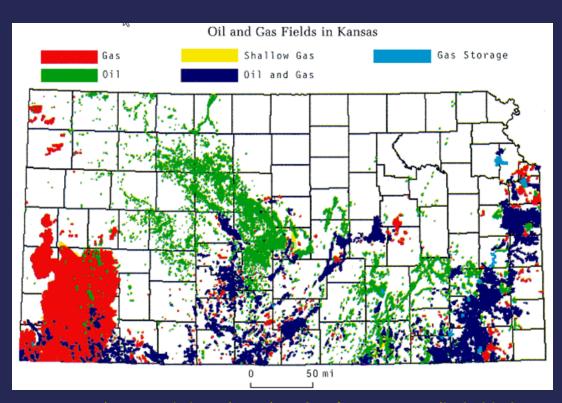
- Carbon Capture and Storage (CCS)
- Kansas resources and improving the economics of CCS
- Dept. of Energy CarbonSAFE Program
- Integrated CCS for Kansas (ICKan)
 - Scope
 - Team & participants
 - Technical & nontechnical evaluations
- Next phase of research
- Summary

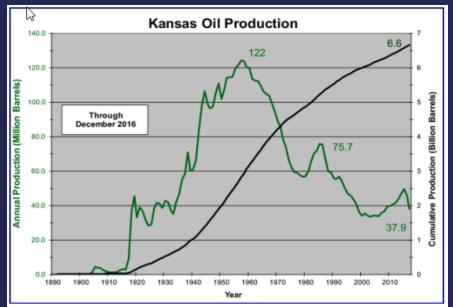

Carbon Capture & Storage (CCS)

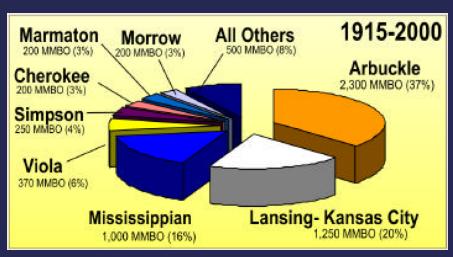
- Public
 demand for
 clean energy
 is growing
- Policies to reduce CO₂ emissions
- How do we extend our fossil energy investments?

CO₂ – the magical fluid

CO2 Phase Diagram

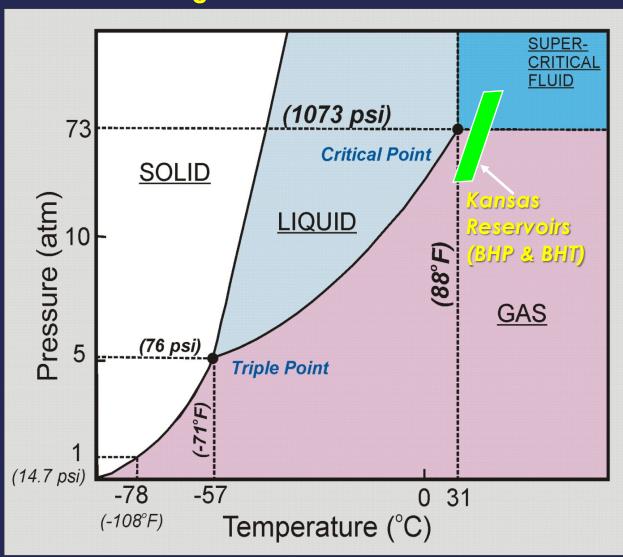

- Supercritical CO₂
- Properties change:
 - Dense like liquid
 - Viscosity of a gas
 - Occupies less volume


Hindrances to implementation


- Capture at power plants is expensive
 - Additional equipment, O&M, parasitic loads
- Suitable storage sites are not in proximity of CO₂ sources
 - CO₂ transportation <u>costs</u>
- Identification and permitting of geologic storage sites
 - Additional time and <u>cost</u>
- Need to improve the economics!

Kansas CO₂-EOR Potential

- Oil-rich, but no appreciable CO₂
 - 6.6 Billion barrels; Now at 36 mmbo/yr
- Additional 10 mmbo/yr possible
 - Most prolific are LKC and Arbuckle



Kansas Reservoir Conditions

CO2 Phase Diagram

- Many Kansas fields and reservoirs have suitable PT conditions:
 - 400 psi and 85F at 1000 ft
 - 1600 psi and 125
 F at 6000 ft

The Big Picture

- From the Midwest Governor's Association and ARI (2009)
- Kansas holds >750 million barrels of technical CO₂-EOR potential.
- Kansas has the <u>largest oil resources</u> in the MGA region.

Basin	EOR potential (Mil bbl)	Net CO ₂ Demand (MMT)	Direct Jobs Created
Illinois/Indiana	500	160 – 250	1,550 – 3,100
Ohio	500	190 – 300	1,550 – 3,100
Michigan	250	80 – 130	800 – 1,800
Kansas	750	240 – 370	2,300 – 4,600
TOTALS	2,000	670 – 1,050	6,200 – 12,400

Byrnes et al., 1999 (Kansas Geological Survey)

250 to 1,000 million barrels

"CO₂ Ready" EOR Fields

	CO2 EOR	Inject.	CO2	Primary &	CO2	
	Ready	Rate	Stored	Secondary	EOR	
	Level	(Mt/yr)	(Mt)	(mmbo)*	(mmbo	Basis for Estimate
Shuck	1	0.4	1.5	7.9	3.6	DE-FE000256
Cutter	1	0.5	1.3	5.4	2.8	DE-FE000256
N Eubank	1	0.6	1.5	7.4	4.6	DE-FE000256
Pleasant Prairi	1	0.3	0.5	4.7	2.2	DE-FE000256
Hall Gurney	1	1	11.3	62.5	26.8	DE-AC26-00BC15124 PILOT & C12 Energ
Trapp	2	0.5	4.3	31.3	10.3	KGS reports
Wellington	1	0.6	2.2	16.2	5.3	DE-FE0002056 and PILOT
		3.9	22.8	135.4	55.7	

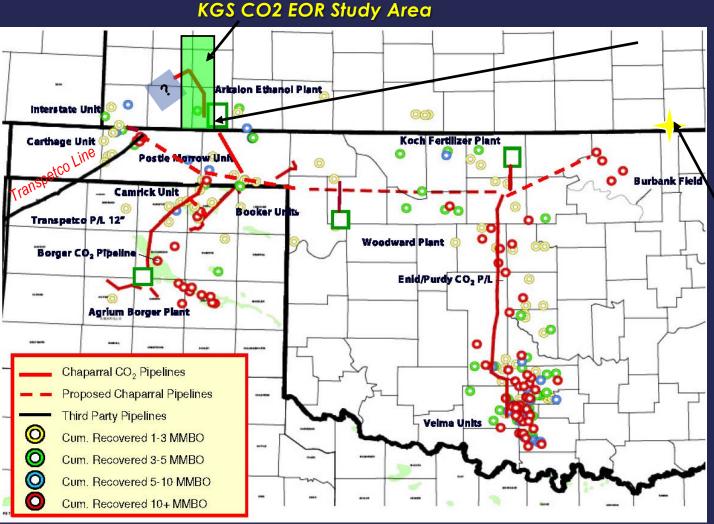
^{*} P&S production is for portion of field that could be flooded

Quality of Kansas CO₂ Sources

Kansas:

- Total 72.8 Million Metric Tons/Year
- Electric Power 37.2
 Million Metric
 Tons/Year
- Highest purity is lowest volume

	Quality	Purity*
Ethanol	High	99%
Ammonia	High	99%
Coke Gasification	High	99%
Meth. Reform.	Moderate	65%
Cement	Low	20%
Power Plants	Low	8-12%
* dry woight %		


^{*} dry weight %

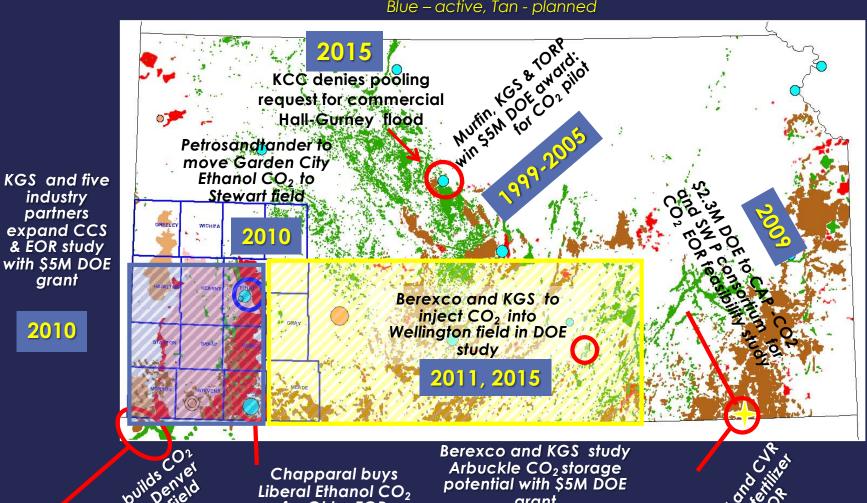
Market for CO₂ in Kansas

- 1. High purity CO₂ sources are being utilized
- 2. CO_2 from two of four viable 50mg/yr plants used for EOR
- 3. One was under contract until KCC denied pooling application in 2015
- 4. Single large fertilizer plant source (CVR) used for EOR

CO₂ Infrastructure Needs

Red solid lines currently deliver CO₂ from ethanol and fertilizer plants to oil fields

Chapparal moving CO₂ from Liberal since 2009


3/29/2011 Chapparal contract for 2000 tons/day CO₂ from CVR

Modified From: Chaparral Energy presentation at JP Morgan conference (March 2010) http://www.chaparralenergy.com/pressreleases/JP%20Morgan%20HY%20Conf%20March%202010.pdf

CO₂ EOR and CCUS in Kansas

Kansas Ethanol Plants (2008)

Blue – active, Tan - planned

2016

KGS and industry partners land \$1.5M for Phase I in DOE CarbonSAFE program

KGS and five

industry

partners expand CCS

& EOR study

grant

2010

for Okla. EOR

2009

arant

2009

CarbonSAFE

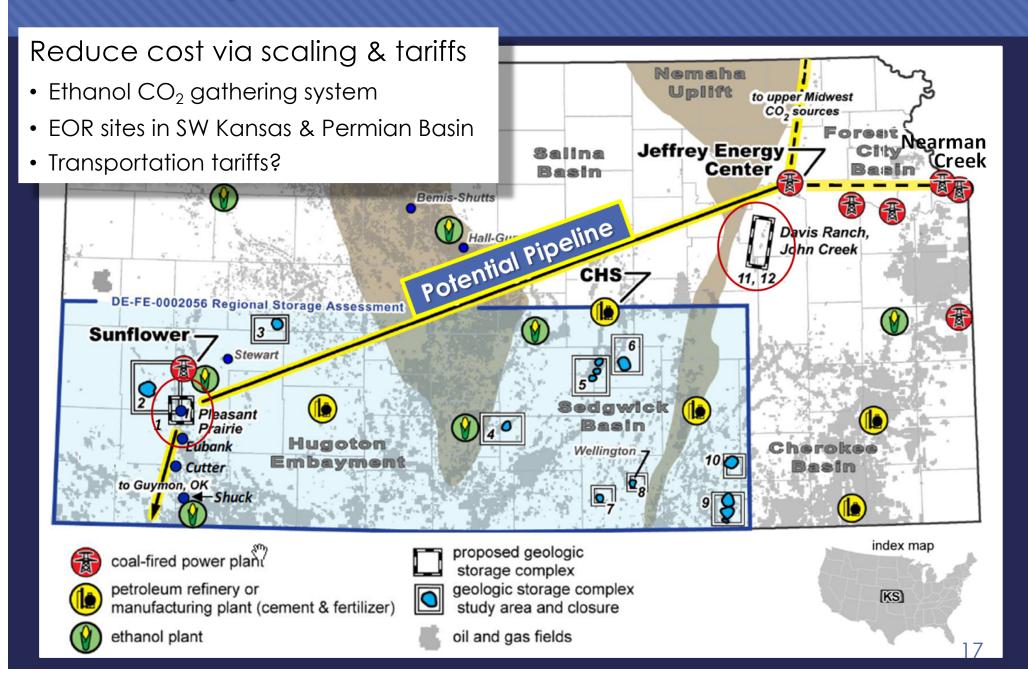
- Carbon Storage Assurance Facility Enterprise
 - DOE's Office of Fossil Energy
- Recognizes need for CCS to operate on massive scale in order achieve U.S. clean energy goals, but commerciality hindered by:
 - Lack of economic incentives for private sector
 - Identify and certify geologic storage sites
- Major goal is to develop integrated CCS storage complex
 - Constructed and permitted for operation by 2025
 - Storage of 50+ million metric tons of CO₂

4 Phases of CarbonSAFE

- I. Integrated CCS Pre-Feasibility (1.5 years) \$1.2M
- II. Storage Complex Feasibility (2 years) \$8-10M
- III. Site Characterization (2 years) TBA
- N. Permitting and Construction (3.5 years) TBA

Phase I: Integrated CCS Pre-Feasibility

Goals & Objectives:


- Form a <u>team</u> to identify and address <u>technical</u> and <u>non-technical challenges</u> of implementing commercial-scale CCS in Kansas
- 2. Perform high-level <u>technical evaluations</u> of the <u>sub-basin</u> and potential CO₂ source(s)
- Develop a <u>plan</u> (strategy) to address the challenges and opportunities for commercialscale CCS in Kansas

Project Overview: Base Case Scenario

- Capture 50 million tonnes CO₂ from one of three Jeffrey Energy Center's 800 MWe plants over a 20 year period (2.5Mt/yr)
- Compress CO₂ & transport 300 miles to Pleasant Prairie Field in SW Kansas.
 - Alternative: 50 miles to Davis Ranch and John Creek Fields.
- Inject and permanently store 50 million tonnes
 CO2 in the Viola Formation and Arbuckle Group

Jeffrey to SW Kansas

Technical Evaluations

Sub-Basinal Evaluations

CO₂ Source Assessments

CO₂ Transportation

Pleasant Prairie

- 170 Mt storage
- Viola & Arbuckle
- CO₂-EOR reservoirs
- Adequate data (core)
- Unitized; single operator

Davis Ranch-John Creek

- 50 Mt storage
- Simpson and Arbuckle
- Proximity to JEC
- CO₂-EOR reservoirs
- Adequate data
- Two operators

Westar Jeffrey Energy Center

 2.16 GW &13.8 million tons of CO₂

Sunflower's Holcomb Plant

CHS McPherson Refinery

KC Board of Public Utilities

Pipeline

- 300 km
- Oklahoma and upper Midwest connections
- Branch
 connections to
 regional
 ethanol
 producers

Non-Technical Evaluations

Implementation Plan

Economics

Legal & Regulatory

- Property rights
- CO₂ ownership & liability
- MVA requirements under UIC Class VI
- Varying stakeholder interests
- Right-of-ways

Public Policy (Public Acceptance))

- Identifying stakeholders
- Fostering relationships
- Public perception
- Political challenges
- Injection-induced seismicity

- Capture & transportation economic feasibility
- Financial backing
- Financial assurance under Class Vi
- State incentives
- Federal tax policy

ICKan Project Team

Project Management & Coordination, Geological Characterization

Kansas Geological Survey University of Kansas Lawrence, KS

Tandis Bidgoli, PI, Assistant Scientist
Lynn Watney, Senior Scientific Fellow
Eugene Holubnyak, Research Scientist
K. David Newell, Associate Scientist
John Doveton, Senior Scientific Fellow
Susan Stover, Outreach Manager
Mina FazelAlavi, Engineering Research Asst.
John Victorine, Research Asst., Programming
Jennifer Hollenbah - CO2 Programs Manager

Improved Hydrocarbon Recovery, LLC Lawrence, KS

Martin Dubois, Joint-PI, Project Manager

CO2 Source Assessments, Capture & Transportation, Economic Feasibility

<u>Linde Group (Americas Division)</u> Houston, TX

Krish Krishnamurthy, Head of Group R&D Kevin Watts, Dir. O&G Business Development

Policy Analysis, Public Outreach & Acceptance

Great Plains Institute Minneapolis, MN

Brendan Jordan, Vice President Brad Crabtree, V.P. Fossil Energy Jennifer Christensen, Senior Associate Dane McFarlane, Senior Research Analysist

Energy, Environmental, Regulatory, & Business Law & Contracts

Depew Gillen Rathbun & McInteer, LC Wichita, KS

Christopher Steincamp, Attorney at Law Joseph Schremmer - Attorney at Law

Project Partners & Representatives

CO2 Sources

Westar Energy

Brad Loveless, Exec. Director Environ. Services
Dan Wilkus, Director - Air Programs
Mark Gettys, Business Manager

Kansas City Board of Public Utilities

Ingrid Seltzer, Director of Environmental Services

Sunflower Electric Power Corporation

Clare Gustin, V.P. Member Services & Ext. Affairs

CHS, Inc. (McPherson Refinery)

Richard K. Leicht, Vice President of Refining Rick Johnson, Vice President of Refining

Regulatory

Kansas Department of Health & Environment

Division of Environment

John W. Mitchell, Director

Bureau of Air

Rick Brunetti, Director

Kansas Oil & Gas Operators

Blake Production Company, Inc.
(Davis Ranch and John Creek fields)

Austin Vernon, Vice President

Knighton Oil Company, Inc.
(John Creek Field)

Earl M. Knighton, Jr., President

Casillas Petroleum Corp.
(Pleasant Prairie Field)

Chris K. Carson, V.P. Geology and Exploration

Berexco, LLC

(Wellington, Cutter, and other O&G fields)

Dana Wreath, Vice President

Stroke of Luck Energy & Exploration, LLC (Leach & Newberry fields)

Ken Walker, Operator

Storage Site Evaluations: Methodological Approach

Reservoir seals

Characterize primary and secondary seals

Fault reactivation & induced seismicity*

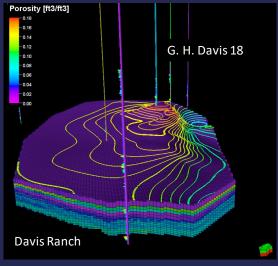
Map faults, characterize stresses, fault slip and dilation tendency analysis

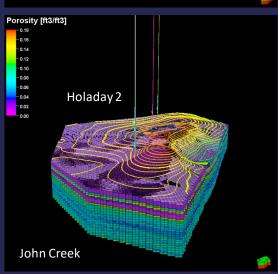
Wellbore risk

Evaluate existing and plugged well construction, plugging records, and estimate risk

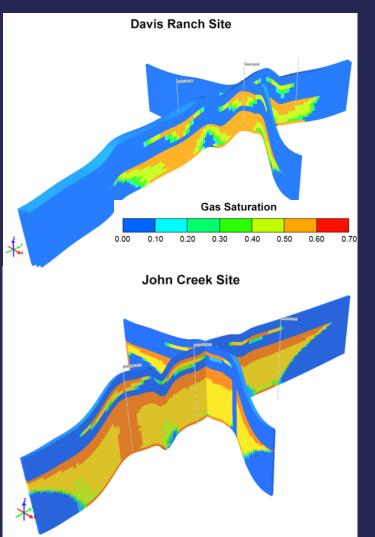
3D cellular geologic model

Utilize existing well and engineering data, 3D seismic, to build cellular static models


Reservoir simulation model

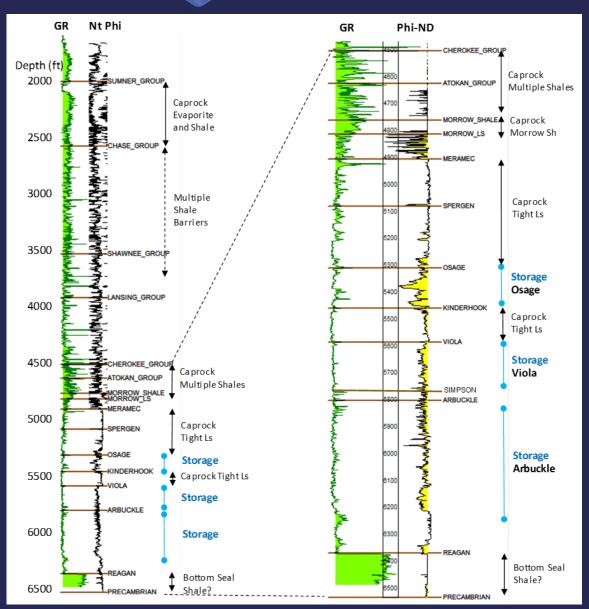

Use a compositional simulator to analyze capacity, injection rates, and pressure constrained by reservoir seal, fault and seismicity risk, and wellbore risk studies

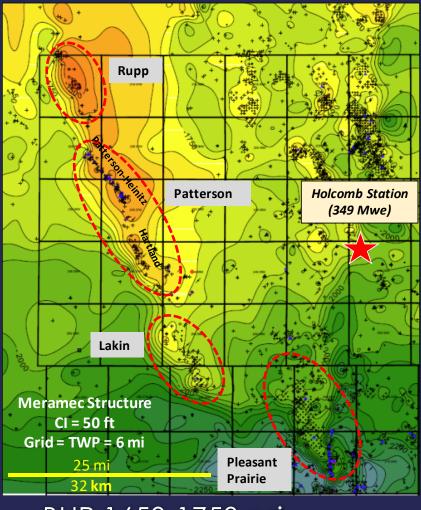
*Induced seismicity risks for CO2-EOR sites are significantly lower


Storage Site Evaluations: Davis Ranch & John Creek

Static 3D cellular models: Porosity & permeability in 3100-3400 ft-deep res.

Dynamic models: analyze injectivity and storage capacity in Simpson and Arbuckle



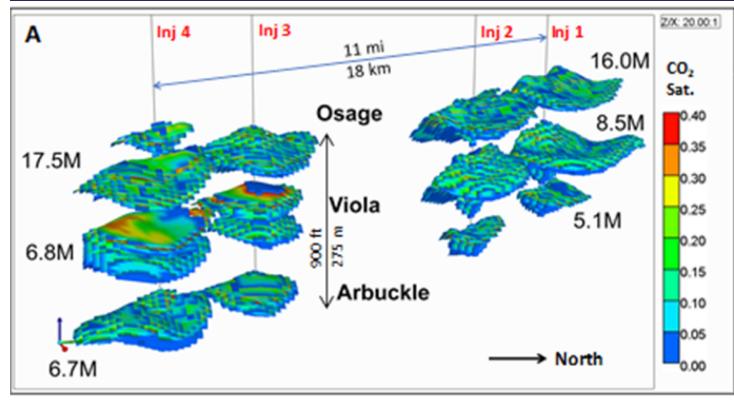

Two largest fields in FCB, located ten miles apart 40-50 miles SW of JEC

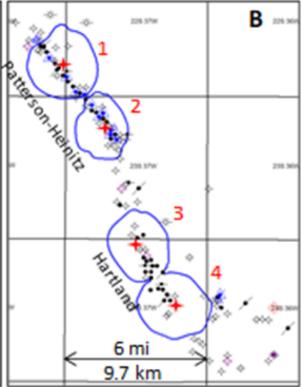
Results:

- ✓ Injected for 25 years
- Combined injection rates: 2350 to 4000 tonnes/day
- ✓ Storage: 24.6 million tonnes
- ✓ Injection rate satisfactory
- Storage is half the 50Mt target

Storage Site Evaluations: North Hugoton Storage Complex

- BHP 1650-1750 psi
- BHT 130-135F


Storage Site Evaluations: Patterson-Heinitz-Hartland Fields


Static 3D cellular model:

- Few wells penetrate saline storage zones (21 wells total)
- Properties established from limited core and injection test

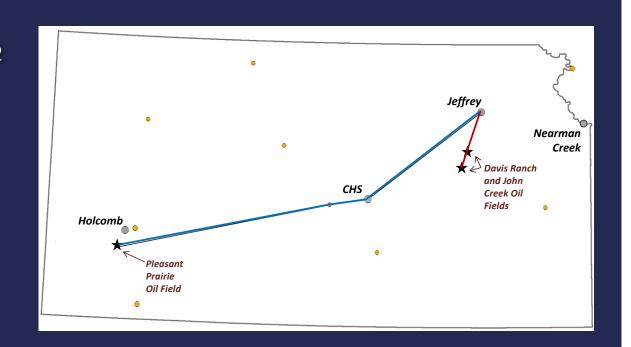
Initial simulation:

- ✓ Inject 5,800 metric tonnes/day
- √ 60.6 Mt in 30 yrs
- ✓ Four wells, three zones
- ✓ Additional work to optimize injection

CO₂ Sources

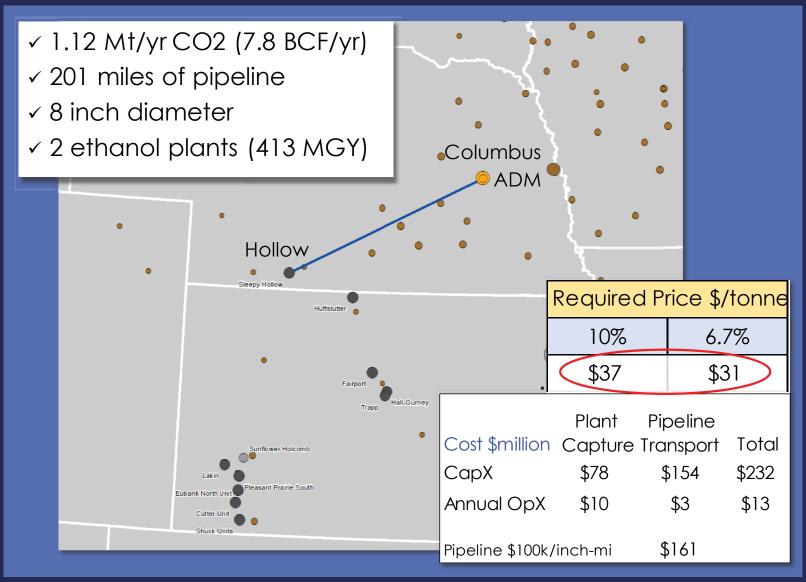
Jeffrey Energy Center, St. Marys, KS

- 3x 800 MWe plants with annual CO₂ emissions of 12.5 million tonnes
- Partial capture of flue gas (~350 Mwe) can meet needs over 20 years
- Optimize: waste heat

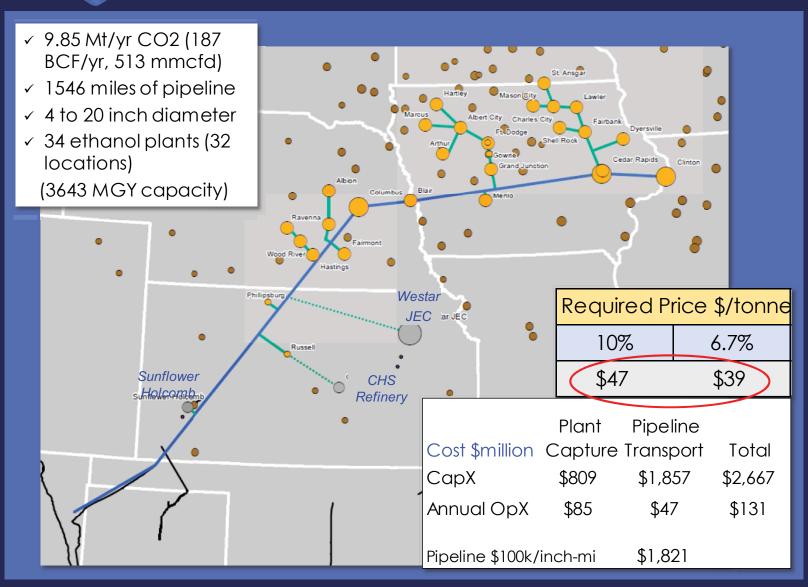


CHS Refinery at McPherson, KS

- Flue gas: ~760,000 tonnes/yr (30% of the project needs)
- Solvent-based postcombustion capture process
 - 90% reduction in CO2 emissions
- Optimization via centralized steam generation possible


CO2 Transportation Assessment

- Modified FE/NETL CO₂
 Transport Cost Model
 (Grant & Morgan,
 2014)
- 7 inputs (e.g., length, pumps, capacity, pressures, etc.)
- 12 outputs, including CapEx and OpEx



	Scenario	Distance (mi)	Distance (mi) X 1.2	Volume (MT/yr)	Size (inches)	CapEx (\$M)	Annual OpEx (\$M)
Jeffrey to MidCon Trunk	part of 1	151	181	2.5	12"	\$164	\$3.8
Jeffrey to Davis Ranch and John Creek	2	42	51	2.5*	12" & 8"	\$47	\$1.3
Jeffrey to CHS and Pleasant Prairie	3	294	353	3.25**	12"	\$323	\$8.0
Jeffrey to Pleasant Prairie	4	294	353	2.5	12"	\$322	\$7.2

Transportation Scenarios: Large point-to-point

Transportation Scenarios: Large-scale capture, 10 Mt/yr

White paper

- Multi-state group that launched in 2016
- Working to expand carbon capture, utilization, and storage
- Critical to passage of 45Q

http://www.betterenergy.org/blog/capturing-utilizing-co2-ethanol-adding-economic-value-jobs-rural-economies-communities-reducing-emissions/

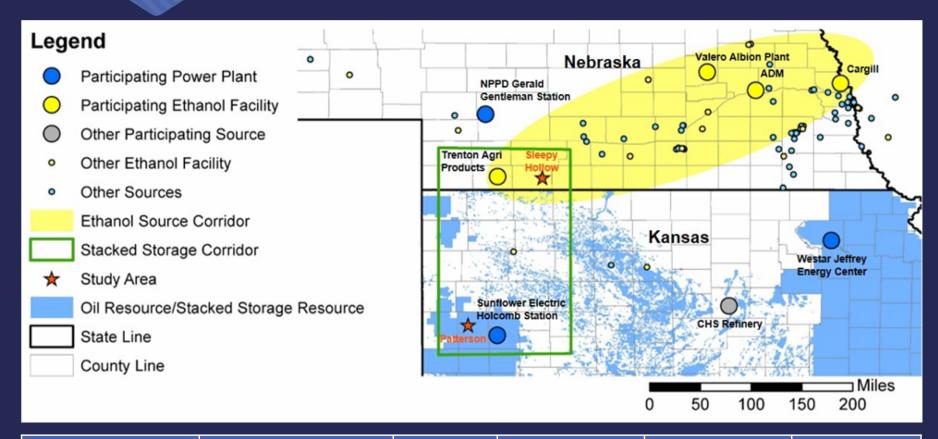
Capturing and Utilizing CO₂ from Ethanol:

Adding Economic Value and Jobs to Rural Economies and Communities While Reducing Emissions

White paper prepared by the State CO₂-EOR Deployment Work Group

December 2017

Remaining work & next steps


- Economic analysis of integrated project
 - Capture and compression, transportation, and storage site preparation and operations
 - Implications of 45Q tax credit
- Development of an implementation plan
- Phase II application submitted
 - Battelle, KGS, and EERC

CO2 price for 6.7% ROR

	Pipeline	Ethanol	Total		
CapX (\$/T)	\$17.92	\$7.81	\$25.73		
OpX (\$/T)	\$4.77	\$8.58	\$13.35		
Total (\$/T)	\$22.69	\$16.39	\$39.08		
Total (\$/mcf)	\$1.19	\$0.86	\$2.06		
With 45Q					
Total (\$/T)	\$5.00	\$8.68	\$13.68		
Total (\$/mcf)	\$0.26	\$0.46	\$0.72		

Current CO2 value = \$22.80/tonne (\$1.20/mcf)

"Midcontinent Stacked Carbon Storage Hub" BATTELE THE UNIVERSITY OF KUNSAN THE UNIVERSITY OF KANSAN THE UNIVERSITY OF THE UNIVERS

		Ethanol			
Agency	NGO/Association	Producer	Electric Utility	Oil Producer	Other
KS Gov. Colyer	Clean Air Task Force	ADM	NPPD	Berexco	ION Engineering
NE Ethanol Board	Great Plains Institute	Cargill	Westar Energy	Merit Energy	MV Purchasing
NE Dept. of Agriculture	Kansas Independent Oil	Trenton Agri	Sunflower Electric	Great Plains Energy	The Linde Group
	and Gas Association	Products	Power		
NE Dept. of	NE Petroleum Producers	Valero	Kansas City Board of	Casillas Petroleum	
Environmental Quality	Association	Renewables	Public Utilities		
NE Corn Board	Renew Kansas	Pacific Eth.		Central Operating	
NE Energy Office					

Acknowlegements

Industry and regulatory partners in study

ICKan team: L. Watney, S. Stover, J. Hollenbach, J. Doveton, J. Victorine, M. FazelAlavi, E. Ansari, & J. Rush (now with OXY), K. Krishnamurthy, K. Watts, M. Byron, C. Steincamp, J. Schremmer, B. Jordan, D. McFarlane, J. Christensen, B. Crabtree, & A. Dirkswager

Graduate students: Andrew Hollenbach and Jeff Jennings

Funding: DOE-NETL Grant DE-FE0029474

Disclaimer:

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Questions?

