

Integrated Approaches to Modeling Late Paleozoic Petroleum Reservoirs in the Greater Midcontinent

Who Should Attend:

- Geologists and engineers who are characterizing late Paleozoic reservoirs to optimize oil and gas recovery.
- Geoscientists exploring for new fields and extensions in the greater Midcontinent.

Objectives:

- Describe oil and gas plays and reservoir characterization in the context of tectonic/structural framework, sequence stratigraphy, and lithofacies distribution. Illustrate integrated geomodel development using core descriptions and analyses, wireline log analysis techniques, well tests, 3D seismic, and production histories.
- Effectively integrate recent analogs and surface exposures to define and model reservoir heterogeneity and design appropriate recovery technologies. Highlight case studies of carbonate, sandstone, and chert reservoirs ranging from Mississippian (Lower Carboniferous) through Lower Permian age.
- Integrate reservoir characterization in the context of reservoir systems and hydrocarbon accumulation - re-exploration and exploitation.
- Provide tools and insights for efficient prospecting and development for remaining oil and gas resources.

Integrated Approaches to Modeling Late Paleozoic Petroleum Reservoirs in the Greater Midcontinent

Content:

- Regional structural/tectonic framework during the late Paleozoic.
- Variations in sequence stratigraphy and reservoir architecture of late Paleozoic strata in the Midcontinent.
- Common reservoir lithofacies and their Recent analogs.
- Petrofacies and pore typing approach to quantitative reservoir analysis and modeling petroleum reservoirs, roles of diagenesis.
- Case studies based on integrated geo-engineering modeling of Mississippian, Pennsylvanian, and Permian reservoirs:
 - carbonate ooid and grainstone shoals
 - phylloid algal mounds and related lithofacies
 - incised valley and estuarine sandstones
 - Low resistivity, often low permeability spiculitic bioclastic buildups that comprise shelf and shelf margin environments.

Take Home Points of Short Course

- Basement structures and tectonic events affecting them are important in defining location and properties of reservoirs.
- Process-based field, outcrop, and Recent analogs provide more appropriate, accurate interpolation of reservoir properties.
- Late Paleozoic reservoirs are dominated by depositional fabric selective diagenesis.
- Establishing petrofacies and pore types is essential to accurate calculations of water saturations, volumetrics, ROIP, establishing permeability correlations and predicting fluid flow.
- Infill locations and new pays within oil and gas fields remain significant targets for IOR in mature regions; requires comprehensive, integrated approach.
- Re-exploration and exploitation of mature producing areas can be substantially benefited by access to and mining of large data sets – digital and electronic data – logs, production, core/samples and descriptions, in an integrated and quantitative manner.

<u>9:00-10:00 – 1. Approach to Modeling Late</u> Paleozoic Petroleum Reservoirs.

Overview:

- Similarities of Kansas and North-Central Texas petroleum geology and business
- Similar resources remaining in conventional reservoirs
- Perspective and insights from Kansas

Independents Drive Domestic Oil and Gas Business

- Mature fields, conventional oil and gas fields
- Commodity price significant impact oil and gas production
- Production responds to favorable economics & technologies
- New technologies driven by price & opportunity
- Profit margin on marginal wells has improved (average production of Kansas well ~3 BOPD/well)
- The future of domestic oil and gas industry:
 - Re-explore and redevelop old fields (*eliminate current constraints*)
 - Develop unconventional oil and gas resources
 - Utilize carbon dioxide sequestered from power plants, ethanol plants, cement plants, and other industries; Store air/gases for wind generation; participate in *linked energy systems*

				Data to File	Oil &	Gas Production			Data
nk	Operator	Production (barrels)	% of total	R	ank	Operator	Production	% of total	
	Murfin Drilling Co., Inc.	1,352,249	3.7	1	-	BP America Production Company	52.338.891	14.1	
	Vess Oil Corporation	1,343,490	3.7	2		EXXONMOBIL Oil Corp	39,829,635	10.8	
	Berexco, Inc.	1,337,947	3.7	3		OXY USA Inc.	38,319,129	10.4	
	OXY USA Inc.	\$37,047	2.3	4		Anadarko Petroleum Corporation	25,022,737	6.8	
	American Warrior, Inc.	830,390	2.3	5		Pioneer Natural Resources USA, Inc.	22,373,593	6.0	
	EOG Resources, Inc.	688,102	1.9	6		Quest Cherokee, LLC	18,377,043	5.0	
	Anadarko Petroleum Corporation	569,001	1.6	7		EOG Resources, Inc.	10,556,787	2.9	
	Ritchie Exploration, Inc.	509,008	1.4	8		Cimarex Energy Co.	9,652,616	2.6	
	Farmer, John O., Inc.	481,267	1.3	9		XTO Energy Inc.	9,535,365	2.6	
	McCov Petroleum Corporation	478,856	1.3	10)	Dart Cherokee Basin Operating Co., LLC	9,032,833	2.4	
	Hartman Oil Co , Inc	456,216	1.3	11		Merit Energy Company	7,024,332	1.9	
	Merit Energy Company	454,209	1.2	12		Chesapeake Operating, Inc.	6,104,895	1.7	
	Elysium Energy, L.L.C.	420,729	1.2	13		Lavne Energy Operating, LLC	5,387,350	1.5	
	Mull Driling Company, Inc.	404,385	1.1	14		McCoy Petroleum Corporation	3,757,500	1.0	
	Cimarex Energy Co.	403,290	1.1	15		Osborn Heirs Company, LTD	3,596,293	1.0	
	Office Description Cempany, Inc. Cemarex Energy Co. OL Ob. OPERATO Pedaction (BBL) COPERATO 100000000 10000000	404,385 403,290 R Murtin Dril	1.1 1.1 Ing Co., Inc.	Cumulative Mound Mound Mound Mound Mound		Accor Petroleum Comportaine Ochorn Heirs Company, LTD OL OPERATOR B9 America Pr Productor (BBL)	3,557,500 3,757,500 3,596,293 oduction Comp	1.0 1.0 1.0	Cumulative Schonal
	100000	£		Cate Data Cate Data Cate Data Cate Data		150000	-	~	Cintamber of W
	10000			⊛OH ⊡Gas		10000	my man	m	.con ⊖Gas
	1000			Reset Scales		1000			Reset Scales
	100			Modity Scales		100			Modify Scales

[M liq	IMBO, million barrels of oil. BCFG, billion cubic feet of gas. N	AMBNG													
liq	The second		L, million	h barrels	of natur	al gas li	quids. Res	sults sho	wn are	fully risk	ed estin	nates. Fo	r gas fi	ela	
	uids are included under the NGL (natural gas liquids) categor	ry. F95 d	lenotes a	a 95 perc	cent char	nce of a	t least the	amount	tabulate	ed. Othe	r fractile	es are de	fined si	mi	
in	actiles are additive under the assumption of perfect positive (ficates not applicable)	correlati	ion. IPS	is lotal l	Petroleur	n Syste	m. AU IS A	ssessm	ent Unit	LBG IS	coalbed	gas. Gra	ay shad	In	
-	neares not apprearies						Table		and many					_	
	Total Petroleum Systems (TPS) and Assessment Units (AU)		Oil (MMBO)				1 Totar L	Gas (B	CFG)	lices	NGL (MMBNGL)				
			F95	F50	F5	Mean	F95	F50	F5	Mean	F95	F50	F5	Π	
	Barnett-Paleozoic TPS													_	
	Paleozoic Shelf and Bank Carbonates AU	Oil	7.69	19.85	38.90	21.21	11.30	30.96	66.52	33.92	0.63	1.81	4.22	Ļ	
H			0.50	5.00	0.00	6.20	46.10	116.83	219.03	123.15	1.70	4.53	9.42	⊢	
	Mississippian Chappel Pinnacle Reefs AU	Gar	2.52	5.39	9.83	5.70	2.52	5.83	11.52	47.91	0.05	2.57	5.70	ł	
	Pennsylvanian/Permian Fluvial-Deltaic Sandatone	Oil	11.58	35.76	69.80	37.66	16.23	51.87	111.71	56.44	1.06	3.53	8.26	t	
	and Conglomerate AU	Gas	11100			01100	42.39	134.76	262.21	141.59	1.98	6.55	14.04	t	
	Barnett-Hardeman Basin TPS														
	Mississippian Chappel Waulsortian Mounds AU	Oil	7.54	21.08	39.88	22.17	2.19	6.25	12.35	6.65	0.24	0.68	1.39		
	Paleozoic Clastics and Carbonates AU	Oil	1.63	7.01	17.13	7.89	0.26	1.11	2.77	1.28	0.03	0.12	0.31		
	Pennsylvanian Bend-Broken Bone Graben TPS	1.	0.000	1000	1 Local Section						1. 101.10	2000	A search	-	
	Fluvial Sandstone-Carbonate Bank AU	Oil	1.37	3.42	7.73	3.83	1.20	3.34	8.10	3.83	0.05	0.13	0.33	Ļ	
-	Total Computing Decompose	Gas	10.00	00.51	102.22	09.40	15.02	42.23	89.50	46.00	0.53	1.51	3,30	ł	
	Parant Paleonaic TPS		32.33	92.51	183.33	36.40	154.55	437.20	874.34	450.32	1.20	21.71	47.07	-	
н	Greater Newark Fast Frac-Rarrier Continuous Ramett Shale Gas AU	Gas	-	_			13 410 69 1	4,638,36 1	5.978.42	14 659 13	406.84	573 70	809.00	T	
	Extended Continuous Barnett Shale Gas AU	Gas					8,305.14 1	1,361.66 1	5,543.04	11,569.73	282.01	445.28	703.09	t	
	Hypothetical Basin-Arch Barnett Shale Oil AU	Oil	1			N	ot quantitat	ively asse					-		
	Barnett-Hardeman Basin TPS			_		10.04								_	
E	Hypothetical Continuous Fractured Barnett Shale Oil AU	Oil				N	ot quantitat	ively asse	essed			2.2			
	Pennsylvanian-Lower Permian Coal-Bed Gas TPS									_					
	Hypothetical Pennsylvanian-Lower Permian Coal-Bed Gas AU	CBG	1	_	22 - 2	N	ot quantitat	ively asse	issed			100			
H	Total Continuous Resources				_		21,715.83	6,000.0212	1,521.46	26,228.88	688.85	1,018.98	1,512.09	11	
			32.33	92.54	183 33	98.60	21 870 20 2	6 437 33	2 205 80	20 000 20	696.12	1 040 00	1 650 70	Γ.	

		Total Petroleum System		Total Undiscovered Resources											
Assessment of		(TPS)	Type	OIT(MMBO)		1	1	6.00 (ACFG)		NGL (MMBINGL)		MENGO	0	
	-	and Accessment One (AU)	100	PM	FL8	н	Mean	FIG	FLA	15	Maan	FIX	100	B	Mean
Undiscovered Oil and		Paleozoic Composite TPS							-			_			
One December of the		Ellenberger Group Karst	01	12	40	83	43	12	40	90	44	1	3	8	4
Gas Resources of the		and boomer wo	Gas					147	4/5	\$24	490	3	11	24	12
Dermion Booin		Simpson Group Sandstones AU	Gree		3			22	63	122	16	1	2	5	2
rennian basin		Pre-Pennsulvanian Ramo and	Chi	15	48	15	51	17	58	122	61	1	4	10	5
Province		Platform Carbonates AU	Gas	1000	10-21-0		1077	91	323	664	343	3	12	28	14
FIOVINCE	_ 4	Devonian Thirtyone Formation	Chi	7	22	45	24	23	79	178	17	2	8	19	9
Examples		Chert and Carbonate AU	Gas					91	321	665	344	5	17	38	19
Fact Sheet 2007-3115		Lower Pennsylvanian	061	0	0	0	0	0	0	0	0	0	0	0	0
cited in		Sandstone and Carbonate AU	Gas					238	780	1,485	812	3	9	19	10
(USCS 2007) short		Pennsylvanian-Lower Permian	01	8	27	56	29	21	72	161	79	1	5	11	5
		Carbonate AU	Gas					-43	146	308	158	1	4	8	4
Course		Pennsylvanian-Lower Permian	01	12	40	79	42	43	150	330	164	3	10	24	11
		form and Shelf Carbonate AU	Gas					57	183	355	192	3	9	18	9
	2	Pennsylvanian-Lower Permian	air	28	93	175	96	42	143	299	154	5	17	38	18
Palasztaic Companies TPS	100	form and Eastern Shelf	Gas			1-1	1.00	15	38	69	40	0	1	3	1
	l les	Carbonate and Sandstone AU Pennedvarian J ower Permian	61			22	10	16		175	-	- 1	3		
Rivities Shell	6.81	(Wolfcamp) Val Verde Slope							~	100		^	1		_ 1
	il ani	Carbonate AU	Gas		_			183	702	1,517	758		21	74	35
Northwestam Shell	al O	Pennsylvanian-Lower Permian	01	3	12	27	13		32	83	33	0	2	5	2
Permian Basin	tion	Carbonates AU	Gas					6Z	222	481	241	2	9	20	10
Midned	1640	Abo Ruvial Sandstones All	01	0	0	0	0	0	0	0	0	0	0	0	0
Delaware Basis	G		Gas	-	-	1		0	0	23	8	0	0	0	0
Zaite Patters		Abo Shelf and Shelf Edge Carbonates All	Oil	11	39	83	42	23	83	194	53	2	6	15	1
		Leonardian MW and E Shaft	0.45	22	74	145	78	15	57	123	67	- 1	2	5	3
Press Ann		Restricted Platform Carbonates	Gan			140		0	0	0	0	0	0		0
Marghan Juli		Au	001	10	31	61	33	29	95	209	105	2	7	16	
- Contraction		form Restricted Carbonates AU	Gar	10			20	12	33	62	35	1	1	3	2
UNITED		Leonardian Midland Basin	Chi	28	93	185	98	47	161	355	175	3	10	25	12
1 H HINKO		Carbonate Sedment Gravity Flow Reservoirs AU	Gas					0	U	0	0	0	0	0	0
		Bone Spring Slope and Basin	01	15	50	100	53	55	192	423	210	2	9	21	10
		Reservoirs AU	Gas				17	0	0	D	0	0	0	0	0
		Spraberry Conventional	Oil	5	18	43	20	4	14	20	16	0	1	4	2
		aenuscones AU	Gas					0	0	0	0	0	0	0	0
		San Andres NW Shell Platform Carbonates AU	Gar	2	,			2	4			0	0		0
		San Andrea Eastern Shell	01	0	0	3	1	0	0	1	0	0	0	0	0
		Platform Carbonates AU	Gas				-	0	0	0	0	0	0	0	0

Evolving Concepts of Oil and Gas Reservoir Characterization Increasingly quantitative, refined, integrated and multidisciplinary, 3D to find subtle accumulations of remaining oil and gas in our mature areas Increasingly more quantitative information and software to process it -new Kansas rule enacted to require copies of electronic logs (image and LAS) to be submitted to the state (*industry driven*) Stratigraphic classification Lithology and lithofacies Petrofacies Mechanical stratigraphy Seismic signature/attributes Genetic units and sequence stratigraphy Sequence stratigraphy and reservoir continuity and conformance Scalable depositional sequences (Possamentier) -- sequence boundaries, flooding surfaces, and maximum flooding surfaces Key to defining, correlating, and mapping fundamental temporally distinct units and to develop high-resolution paleogeography. When have topography in subsurface units (such as along shelf margins, depositional topography, or erosional relief), filling and progradation of units is not a simple matter to resolve.

PART 1. INTRODUCTION

Petroleum Reservoir Characterization

Definition

- Reservoir characterization is the broad discipline of the process of describing and distributing properties of pores and fluids that comprise a petroleum reservoir, a geomodel, that is used for efficient exploitation of the oil and gas resources.
- Modern reservoir characterization is multidisciplinary.
- Geologists develop geomodels expressed as maps, cross sections, and now increasingly 3D models to capture structure, lithofacies, seismic attributes, statistical properties of reservoir.
- Engineers/geoscientists integrate fluid data to refine the geomodel and possibly build a reservoir simulation.
- Geophysicists ascertain interwell-scale reservoir geometries and use seismic to empirically interpolate reservoir properties (attribute mapping).

Petroleum Reservoir Characterization

- Geological Analysis -- Geological analysis is derived from data obtained from wells that are drilled to tap oil and gas.
- Data types -- sample cuttings, cores, wireline logs, fluid tests and analyses acquired during drilling. Well logs, calibrated with rock properties.

Reservoir Flow Units

- Reservoir flow units are the primary elements of the reservoir that have sufficient pore space (porosity) to store hydrocarbon and ability to transmit hydrocarbon (permeability).
- Defining flow units and correlating them between wells is accomplished using geological, geophysical, and engineering data, which becomes the essence of a successful geomodel and an important objective of reservoir characterization.
- Related "net pay" is an economic and technical definition applied to flow units as *cut-offs of key properties*, e.g., defining cutoffs of Vsh, phi, k, BVW, Sw.

Reservoir flow units (continued)

- The <u>measured parameters and rock descriptions</u> are observed in depth profiles in each well; Used to classify and subdivide the reservoir interval.
- The <u>stratigraphic divisions</u> that delineate discrete episodes of deposition are important in recognizing potential flow units.
- Lithofacies, pore types, and core analysis further aid in defining and characterizing flow units.
- Flow units reflect <u>modification of depositional fabrics</u> by diagenetic overprinting and structural deformation.
- Flow unit definition is <u>verified</u> by well test, production, volumetrics, material balance, and simulation.
- Flow unit definition is refined through time with need (cost/benefit).

Reservoir flow units (continued)

- Well-log and core data are fundamental for defining flow units, but well tests and production data and, more recently, <u>seismic attributes</u> are included.
- Digital log, core, test, and seismic data are ideally used in software to integrate and quantitatively analyze them.
- Lithofacies represent a combination of rock texture, dominant constituent particles, and pore space.
- Petrofacies extends the lithofacies definition to include pore type and quantitative attributes/parameters used to establish uniqueness.
- Petrofacies classification aids in systematizing and classifying flow units and making results more robust.

PART 1. INTRODUCTION

PART 1. INTRODUCTION

