ASSESSMENT OF OIL AND GAS FIELDS IN INDIANA FOR CO₂ SEQUESTRATION

Wilfrido Solano-Acosta, Charles W. Zuppann, and John A. Rupp INDIANA GEOLOGICAL SURVEY, 611 North Walnut Grove, Bloomington, IN 47405

MIDCARB

Midcontinent Interactive Digital Carbon Atlas and Relational dataBase

"A consortium of five state geological surveys

Atmospheric concentrations of CO₂, Earth's most voluminous greenhouse gas, are presently about 32 percent higher than at the onset of the industrial revolution, some 150 years ago. Sequestering CO_2 in subsurface reservoirs is one method that has been proposed to reduce the volume of CO₂ entering the atmosphere. The Mid-continent Interactive Digital Atlas and Relational dataBase (MIDCARB) Project, funded by the U.S. Department of Energy, is a consortium of five states (Illinois, Indiana, Kansas, Kentucky, and Ohio), that was created to construct a digital atlas containing the geological and cultural information necessary to evaluate the potential for capturing and storing CO₂ in geological formations. This atlas includes data on oil and gas fields, CO₂ sources, saline aquifers, geologic controls, and industrial and public infrastructure.

ABSTRACT

Oil and gas exploration in Indiana began in the late 1800s, and more than 600 oil and gas fields have been produced since that time. Most are at or near the end of their economic lives, having gone through primary, secondary, and even tertiary recovery. These fields are optimal candidates for the long-term storage of CO₂. A potential added benefit of storing CO₂ in nearly "dead" oil and gas fields is the recovery of additional petroleum.

will help to determine the volume of CO₂ that could be stored and also will help to assess potential challenges that may be encountered.

An inventory of petroleum reservoirs in Indiana, including their size, production histories, and reservoir characteristics

investigating geological carbon sequestration through distributed computing over the network"

Sponsored by: United States Department of Energy National Energy Technology Laboratory

INDIANA PRODUCTION MAP

The Indiana production map is based on historical records of oil and gas exploration and production that began in the late 1800s.

CURRENT O&G MAPPING FOR CO2 SEQUESTRATION

Current mapping includes data from twelve geological formations occurring within the Devonian, Mississippian, and Pennsylvanian periods. Oil pools occur mainly in clastic and carbonate facies, while gas pools include mud facies from the New Albany Shale, coal seams, and abandoned coal mines from the Pennsylvanian system.

Over 1,000 oil and gas pools digitized

GENERALIZED PALEOZOIC STRATIGRAPHY

Tir Ur	ne nit	Rock Unit			Sample or	IGS Broductivo	Popular	
Period	Epoch	Significant Member	Formation	Group	Strip Log Pick	Petroleum Horizon	Industry Terminolgy	
	ي ا	Merom Ss.	Mattoon	[~~~~~]				
	souris	Livingston Ls.	Bond	McLeansboro				
	iŝ	Vigo Ls.	Patoka]		Demosylvenien		
		West Franklin Ls.	Shelburn]		Pennsylvanian		

Dil is produced from Pennsylvanian sandstones.

Gas wells Oil wells \sim (O

RESERVOIR TEMPERATURE AND PRESSURE DETERMINATION

Surface temperature data was obtained from the normal 1971-2000 monthly mean temperatures by climate division in Indiana. Annual averages per county were selected and plotted closely as possible to the collected location per county.

Source data: http://shadow.agry.purdue.edu/sc.norm-geog.html

Oil and Gas combined

A contour grid was created and the interpolated values were used to determine the reservoir temperature using the following expression:

T = (GG*Average depth)+calculated Surface T

Based on historical temperature data from Illinois and Indiana, and from temperature logs available at the Indiana Geological Survey, a geothermal gradient map was created to calculate the average temperature of the reservoirs.

The data points used to calculate the geothermal gradient were interpolated to produce a grid of 2,250 square meter spacings for the entire area.

Pressure values are calculated using the formula

P = 0.433 * Average depth to the pool

assuming that all reservoirs occur under normal (hydrostatic pressure conditions) and that no over or under-pressure reservoirs exist.

PETROLEUM PRODUCTION IN INDIANA

Nearly 550 MMBO have been produced in Indiana since the discovery of the first oil field in the mid 1800's. 388,324,000 BO have been produced from 259 petroleum fields in SW Indiana, from the 11 Formations shown in the pie-diagrams. This is equivalent to approximately 70% of the total oil production for the state.

Production data from petroleum reservoirs can be used as a proxy for estimating the CO₂ storage capacity. Pie-diagrams indicate the proportion of oil produced by a single field. The CO₂ storage capacity is calculated using the replacement of produced oil calculator from MIDCARB web site.

PENNSYLVANIAN PERIOD

Pennsylvanian (20,805 MBO)

MISSISSIPPIAN - UPPER CHESTERIAN (Buffalo Wallow Group)

 GRAYSVILLE ST. PHILIP IONA BLAIRSVILLE CARLISLE NO LYNNVILLE W OLIVER NOR SAVAH ST. FRANCISY VAUGHN NOF BELKNAP
 VAUGHN CON EVANSVILLE

■ IVA WEST DENNY VORK FERRY LE EAST ROCKPORT SOUTH SULLIVAN CONSOL. NORTH BELKNAP EAST **WEST** DRTH OAKTOWN **SVILLE CONSOL** OLIVER □ PALESTINE GROVE IORTH BUFKIN WEST ONSOL. ROCHESTER

78 % or 3.17 MMCF approx.

MISSISSIPPIAN - LOWER CHESTERIAN

Stephensport Group

	1%
	4%
	4%
63%	6%
	7%

ST. MEINRAD SOUTH	WARRENTON N
EUREKA	BRISTOW WES
BRISTOW SOUTH	MOSELEY
UNION CHAPEL NORTH	UNION CHAPEL
SANTA CLAUS SOUTH	EVANSTON
BARRETT-MITCHELL WEST	HAUBSTADT
HAUBSTADT EAST	ST. MEINRAD E
FORT BRANCH	COLUMBIA

West Baden Group

	■ HARMON
ТН	JASPER WEST
	□ JASPER CENTRAL
6	□ JASPER NORTH
	OAK GROVE
ΙΤΗ	
	TROY EAST CONSOL.
ΤΗ	
	TRI-COUNTY
	PELZER
	SCOTT
RTH	CABORN WEST
OL.	■ ELLIOTT

HOLLAND SOUTH
CATO
LYNNVILLE
TENNYSON
SKELTON
GENTRYVILLE SOUTH
SMITH MILLS NORTH
HUNTINGBURG SOUTH
DEGONIA SPRINGS NORTH
PATOKA SOUTH
MAUCK
FULDA WEST
ST. THOMAS CONSOL.

(Sanders Group)

(Muscatatuck Group)

Preliminary calculations from production data of individual reservoirs (green boxes) indicate approximately 392.6 MMCF available for CO₂ sequestration. This calculations were made based on the replacement of produced oil with carbon dioxide.

DISTRIBUTION OF RESERVOIR CHARACTERISTICS IN SELECTED UNITS

Reservoir properties, such as porosity, structural depth, pressure, and temperature were used to produce a volumetric assessment for the CO₂ sequestration potential of petroleum producing units. This poster show examples of three distinct petroleum-bearing units in south western Indiana used in this assessment. Variability in reservoir characteristics is mainly a function of lithology and environment of deposition.

The Aux Vases Formation in south western Indiana includes dolomite, green calcareous shale, and green clacareous dolomite, all of which green argillaceous matrix. This formation may represent part of the south west. It is largely composed of oolitic, skeletal, micritic, and drilling operations through time, both Aux Vases and Ste. Genevieve

PETROLEUM RESERVOIRS WITH IP > 700 BOPD

Available reservoirs with initial open flow greater than 700 BOPD may provide an indication of good reservoir characteristics, suitable for CO_2 sequestration.

This map shows that most petroleum pools meeting this criteria lie within the south western portion of the state.

Minimum miscibility pressure tests (MMP) for oil samples from the Cypress Formation in Indiana (Gibson Co.) were conducted at the TORP laboratory at University of Kansas.

Pressure (psia)

Oil recovery results in slim-tube experiment with CO₂ displacing Indiana oil sample at 101°F.

80 Km

The MMP is about 1200 psia, based on the trend line and the definition of reaching 90% recovery at 1.2 hydrocarbon pore-volume (HCPV) of CO₂ injection.

An adequate inventory of reservoir volumetrics is necessary for the determination of CO₂ sequestration potential. However, detailed calculations on individual petroleum reservoirs are required for more comprehensive and accurate estimations.

CONCLUSIONS

AVERAGE RESERVOIR CHARACTERISTICS AND CO2 SEQUESTRATION POTENTIAL

Formation Name	Average Depth (ft)	Net Pool Area (Acres)	Avg. Porosity (%) (if available)	Avg. Reservoir Temperature (°F)	Avg. Reservoir Pressure (psi)	Avg. Reservoir Thickness (ft)	CO ₂ Phase	Produced Oil (MBO)	CO2 Sequestration Metric Tonnes -	n Volume MMCF	Reservoir Conditions
Aux Vases	2,347	8,340	14	79	1,016	10	Liquid	148,952	10,112,023	288	Critical
Bethel	629	810	(1)	64	272	11	Vapor	224.5	47,809	< 1	sub-Critical

Cypress	1,744	40,880	16	76	755	10	Vapor	145,740	12,380,950	62	Sub-Critical
Devonian	1,527	14,940	11	77	661	15	Vapor	29,516	3,669,721	10	Sub-Critical
Harrodsburg	2,292	4,400	9	86	992	9	Dense Vapor	3,472	1,007,700	2	Super-Critical
Jackson	1,085	20,719	17	70	470	11	Vapor	17,197	3,766,666	4	Sub-Critical
Pennsylvanian	1,049	35,403	18	67	448	16	Vapor	20,805	7,469,636	3	Sub-Critical
Salem	1,795	11,510	11	79	777	10	Vapor	2,132	2,396,575	1	Sub-Critical
Ste. Genevieve	2,024	37,892	8	80	876	6	Vapor	13,193	4,487,165	7	Sub-Critical
Tar Springs	1,433	16,513	17	72	620	15	Vapor	2,782	5,277,583	1	Sub-Critical
Waltersburg	1,803	10,619	17	76	781	16	Vapor	4,311	5,467,3341	2	Sub-Critical
		(1)	D '	100/							

(1) Porosity assumed to be 10%

Data on CO2 Properties from Practical Aspects of CO2 Flooding, SPE Mongraph Vol 22, Appendix F

Average values were used to calculate the CO2 sequestration volumes shown in this table. However, individual reservoir calculations must be done for proper estimation of available volumes.

- 1. A preliminary assessment for the CO₂ sequestration potential in Oil and Gas reservoirs in Indiana was made based on data from historical drilling records available at the Indiana Geological Survey.
- 2. Reservoir data along with estimated temperatures and pressure were used to calculate the volumes that could be sequestered in petroleum reservoirs, using the calculator tools provided in the MIDCARB web site http://midcarb.org/calculators.shtml
- 3. Geological and reservoir conditions indicate that CO₂ sequestration in Indiana may be accomplished economically in the south western portion of the state, where pressures and temperatures are adequate for storing significant volumes of carbon dioxide in largely depleted oil and gas reservoirs.
- 4. The total area calculated for all petroleum producing pools mapped accounts for 50,542 acres, equivalent to 24.5% of the reservoir area currently mapped (205,764 acres).
- 5. Porosity values ranges between 7.5 and 19%. However, an accurate value for porosity is lacking in most areas due to significant lateral and vertical stratigraphic variability.
- 6. Preliminary calculations from oil producing fields indicate a CO₂ sequestration capacity of 28.5MM Tons, equivalent to approximately 494 MMCF.
- 7. Laboratory experiments indicate that minimum miscibility pressures (MMP) for Indiana oils are about 1,200 psia.