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Abstract

We investigate from a theoretical basis the impacts of the number, location, and corre

among measurement points on the quality of an estimate of the semivariogram. The un

nature of the semivariogram estimator, , is first established for a general random pro

. The variance of is then derived as a function of the sampling parameters (the

ber of measurements and their locations). In applying this function to the case of estimatin

semivariograms of the transmissivity and the hydraulic head field, it is shown that the estim

error depends on the number of the data pairs, the correlation among the data pairs [which

are determined by the form of the underlying semivariogram, ], the relative locations o

data pairs, and the separation distance at which the semivariogram is to be estimated.

design of an optimal sampling program for semivariogram estimation should include cons

ation of each of these factors. Further, the function derived for the variance of is use

determining the reliability of a semivariogram developed from a previously established sam

design.
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Introduction

Given a trend-removed random field, , the theoretical semivariogram,

defined as

(1)

where is location, is the vector lag distance, stands for the variance and the br

designates the ensemble averaging. Although the determination of the theoretical semivar

requires ensemble averaging, we are often limited in practice to one realization and a

number of measurements of . Thus, the ensemble average is commonly estimated fro

spatial average by assuming ergodicity. For example, given measurements { , =1,.

from a single realization, the most commonly used semivariogram estimator, , for a spe

vectorial lag distance, ,is (Matheron, 1965),

(2)

where is the number of the data pairs, and , available from the

measurements.

The quality of the estimate of the semivariogram for a given thus depends on the

and precision of , as an estimator for . Many have used , the number of the

pairs, and , as an index for measuring the reliability of . For example

common “rule” applied to estimation of the semivariogram is that at least 30 pair

Z x( ) γ Z r( )

γ r( ) 1
2
---var Z x( ) Z x r+( )–[ ] 1

2
--- Z x( ) Z x r+( )–[ ]2〈 〉= =

x r var

Z x( )

n Z xi( ) i n

γ̂ r( )

r

γ̂ r( ) 1
2N r( )
--------------- Z xi( ) Z xi r+( )–[ ]2

i 1=

N r( )

∑=

N r( ) Z xi( ) Z xi r+( ) n

r

γ̂ r( ) γ r( ) N r( )

Z xi( ) Z xi r+( ) γ̂ r( )
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measurements, and , are required for each lag distance in order to ens

reliable semi-variogram estimate (e.g.,Journel and Huijbregt, 1978). Review of the literature

indicates that this rule is derived from a simplification of earlier work byMatheron(1965).

WebsterandOliver (1992) have studied this rule through numerical sampling of a random f

generated with a known semivariogram. Using a uniform, square sampling grid and comp

sample semivariograms against the known underlying semivariogram, these authors argued

least 200-300 measurements are needed to estimate a semivariogram reliably.

This emphasis on has also resulted in efforts to devise algorithms to maximize

by adjusting the placement of a fixed number of measurements.Russo(1984) andWarrick and

Myers (1987), for example, present algorithms which optimize the location of sampling po

based on a series of constraints, including constraints on the number of sample points in ea

distance. A recent paper byConwell et al.(1997) extended this earlier work by taking int

account the role of measurement instruments in the sampling design.Morris (1991) argued that

accurate estimation of the semivariogram depended not only on but also on the corre

among the measurements. He proposed an alternative index, the maximum equivalent u

lated pairs, as a measure of the estimation accuracy. However, this index applies only to th

cial case of a concave semivariogram.

Other methods for determining the accuracy of semivariogram estimates involve M

Carlo simulation (RussoandJury, 1987;CorstenandStein, 1994; etc.) and the subsamplin

method (Chung, 1984;ShaferandVarljen, 1990). The Monte Carlo approach obtains th

confidence interval via repeated sampling from multiple realizations of a random field.

subsampling method involves subdividing a measurement set into sub-samples, an

estimating the semivariogram from each subgroup of samples, thus allowing characterizat

Z xi( ) Z xi r+( ) r

N r( ) N r( )

N r( )
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the variation of parameter estimates between sub-samples.

In the present paper, the variance of the semivariogram estimate, , is determined

retically. This theoretical result is used to obtain a functional relationship between an

sampling parameters (e.g., the number of the measurements and their locations). This g

relationship then enables us to examine the interactions between the magnitude of a

various controlling mechanisms. The interactions among the number of measurements, sa

locations, the underlying semivariogram, and measurement error are illustrated through ap

this relationship to the estimation of the semivariograms of the transmissivity and the hydr

head field. Finally, the implications of these results are discussed and extended to possible

cations for sampling design and interpretation of the reliability of semivariogram estimates.

 Theoretical Background

The bias of the semivariogram estimator, , can be examined for a random fiel

determining the ensemble mean value of both sides of (2). This leads to

(3)

Applying (1) to (3),

(4)

Thus , as given in (2), is an unbiased estimator for .

Since  is an unbiased estimator,  can then be written as,

σ2
γ̂ r( )

σ2
γ̂ r( )

σ2
γ̂ r( )

γ̂ r( )

γ̂ r( )〈 〉 1
2N r( )
--------------- Z xi( ) Z xi r+( )–[ ]2

i 1=

N r( )

∑〈 〉

1
N r( )
------------ 1

2
--- Z xi( ) Z xi r+( )–[ ]2〈 〉

i 1=

N r( )

∑

=

=

γ̂ r( )〈 〉 N r( )γ r( )
N r( )

----------------------- γ r( )= =

γ̂ r( ) γ r( )

γ̂ r( ) σ2
γ̂ r( )
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Substituting (2) into (5) provides,

(6)

To simplify the notation, we define a new random variable, , as,

(7)

and obtain

(8)

Substituting (7) and (8) into (6) results in

(9)

where is the covariance between and , and

the variance of .

Equation (9) is essentially identical to equations provided in classical textbook

statistics for the variance of the sample mean (e.g., equation (4.1.12), Page 378 inBenjaminand

Cornell, 1970) with the exception that here the variable is rather than . The ke

σ2
γ̂ r( ) γ̂ r( ) γ r( )–[ ]2〈 〉=

σ2
γ̂ r( )

1
2N r( )
--------------- Z xi( ) Z xi r+( )–[ ]2
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N
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2
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 

2

〈 〉

=

=
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2
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1

N
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N
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and  on sampling design.

As given in appendix, for a gaussian random variable , we can derive

(10)

where is the separation distance between and . Since is n

function ofx, as given in (10) is also independent ofx, but depends on the

relative separation betweenxi andxj. It is noted further that is anisotropic

even if  is isotropic. When  in (10),S has variance of

(11)

Substituting (11) into (9), the expression for  may now be written as

(12)

where the expression for is given in (10). A similar expression for

is used byCressie (1984) in the context of performing weighted least-square fitting.

To facilitate the comparison of various ’s at different lag distances, we divide

by , to obtain the coefficient of variation, ,

(13)

cov S xi r,( ) S x j r,( ),[ ]

σ2
S xi r,( )

Z x( )

cov S xi r,( ) S x j r,( ),[ ] 1
2
--- γ r Rij+( ) γ r Rij–( ) 2γ Rij( )–+[ ]2

=

Rij x j xi–= S xi r,( ) S x j r,( ) γ r( )

cov S xi r,( ) S x j r,( ),[ ]

cov S xi r,( ) S x j r,( ),[ ]

γ r( ) Rij 0=

σ2
S x r,( ) σ2

S r( ) 2γ2 r( )= =

σ2
γ̂ r( )

σ2
γ̂ r( )

2γ2 r( )
N r( )

----------------
2

N
2 r( )

-------------- cov S xi r,( ) S x j r,( ),[ ]
i 1=

N r( ) 1–

∑
j i>

N r( )

∑+=

cov S xi r,( ) S x j r,( ),[ ] σ2
γ̂ r( )

σ2
γ̂ r( ) σγ̂ r( )

γ r( ) ργ̂ r( )

ργ̂ r( )
2

N r( )
------------

4

N
2 r( )

-------------- coe Sxi r,( ) S x j r,( ),[ ]
i 1=

N r( ) 1–

∑
j i>

N r( )

∑+

1
2
---

=
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(14)

Hence, consists of two parts. The first part is completely determined by , the num

of data pairs. The second part is a function of both the number of pairs and the correlation a

the ’s.

In two special cases, the expression for can be simplified. First, when the

are independent, all ’s are equal to zero, and

(15)

In this case, the estimation accuracy depends only on . This relationship is identical t

result from classical statistics, where all the samples are taken independently. The second

case is when ’s are completely correlated with each other; all

are then equal to one. Thus  reduces to a constant as follows,

(16)

That is the estimation accuracy becomes independent of sampling. An example of such ex

cases can be found in a random field whose semivariogram grows quadratically wit

increasing separation distance.

Other than in these special cases, the estimation precision of (defined here a

magnitude of ) is determined not only by but also by the summation of

coe Sxi r,( ) S x j r,( ),[ ]
cov S xi r,( ) S x j r,( ),[ ]

2γ2 r( )
------------------------------------------------------

cov S xi r,( ) S x j r,( ),[ ]

σ2
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------------------------------------------------------= =
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2
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------------=

N r( )
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ργ̂ r( )
2
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------------

4

N
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------------------------------+
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, the correlat ion coeffic ients among the squared incremen

. This correlation coefficient, according to (10), is determined by t

separation distance between and ( ), the lag distance, , at which

semivariogram is to be estimated, and the underlying semivariogram, . Thus, (13) giv

explicit expression describing the interactions among the variance of the estimate o

semivariogram, the number of data, and the sampling design. It is a general relationship tha

in any random field,Z(x), provided that the increments ofZ(x) are normally distributed.

Illustration Using Hydraulic Head and Transmissivity Fields

In order to illustrate the impact of (13) on problems of interest to hydrogeologis

comparison is made between estimating the semivariogram of the transmissivity (T) and

estimating the semivariogram of the head residual (h, the hydraulic head minus the mean trend

the head). These particular parameters were chosen as they are two of the most frequently

spatial processes in groundwater hydrology.

For the following illustration, it is assumed thatT is log-normally distributed. A new,

normally distributed random variable,Y, is therefore defined asY=ln(T). It is further assumed that

Y is second-order stationary, exists within an infinite spatial flow domain, and is characteriz

an isotropic, exponential covariance function,

(17)

where is the variance of , and is the magnitude of the separation vecto

coe Sxi r,( ) S x j r,( ),[ ]

Z xi( ) Z xi r+( )–[ ]2

xi x j i j, 1 … N r( ), ,= r

γ r( )

γY r( ) σY
2

1 r '–( )exp–[ ]=

σY
2

Y r' r
λ
-----= r
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normalized by the integral scale, , ofY.

Dagan(1985) has presented the first and second moments of the distribution of the

residual under mean uniform flow within the type of transmissivity field described above

particular interest here isDagan’s expression for the semivariogram of the head residual

(18)

where is the magnitude of the mean regional head gradient , is the direction of relat

the orientation of ,  is the exponential integral function, and  is Euler’s constant (=0.5

Figure 1 shows plots of (normalized by ) and (normalized by

versus the normalized separation distance . The anisotropic is plotted for two diffe

directions, one being parallel with , i.e., = 0, and the other perpendicular to , i.e.,

As shown in the figure, asymptotically approaches a sill as the separation dist

increases, whereas grows logarithmically with the increasing separation distance.

also has a finite integral scale, , while the hydraulic head field is correlated over a much lo

distance and no finite integral scale can be defined. Hence, these two variables

fundamentally different structure in their semivariograms.

This difference in structure has dramatic impact on the potential to estimate t

semivariograms using data collected from a single realization. In order to simplify a compa

λ

γh r( )
J

2λ2σy
2

2
-------------------- 2 ψcos( )2

1–( ) r '–( ) r '
2

3r ' 3+ +( ) 3–⋅exp

r '
2

--------------------------------------------------------------------
 
 
 

ψcos( )2 1
2
---– 

  Ei r '–( )– r '( ) r '–( ) e 1–( )+exp+ln+

+⋅=

J J ψ r

J Ei e

γY r( ) σy
2 γh r( )

J
2λ2σY

2

2
---------------------

r ' γh r( )

J ψ J ψ π
2
---

γY r( )

γh r( ) γY r( )

λ
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of the estimation of the semivariogram for the and fields, the semivariograms are eval

only for the cases in which the orientation of the lag is parallel to the direction of the m

gradient, . (It is straightforward to extend the analysis and its results to other directio

necessary.) Under this condition, and for fixed , the expressions for the theore

semivariograms {(17) and (18), respectively} can be substituted into (14) and (10) to o

as a function of . Figures 2a and 2b illustrate the correlation functi

for and . As is a two-dimensional vector, these are three dimensional p

with the horizontal axes defining the directional components of , and the vertical

providing the magnitude of the correlation coefficient. In both figures,r has a magnitude of 10

units and is oriented parallel to . Both and are normalized by . Figures 2a and 2b

that the correlation structures for both and are anisotropic. Further, a l

maximum in correlation exists at . Finally, the figures show that is correla

over longer distances than is .

The contribution of the correlation between sample pairs can be illustrated only for a g

sampling pattern. Hence, a uniform square grid sampling network is here utilized to illustrat

cumulative contribution of to the magnitude of . This samplin

network is set to be aligned with the direction of , contains sample points in a square

(where is the number of points at whichT andh are measured) and has minimum spacing,d,

between sample points (see Figure 3 for an example in which =36 andd=1.0). For the

discussion below, the minimum separation distance between the ’s,m,was set to be equal

to d. Thus, specific to this sampling scheme, it is straight forward to show that a gen

Y h

r

J

r

coe Sxi r,( ) S x j r,( ),[ ] Rij

SY x r,( ) Sh x r,( ) Rij

Rij

J Rij r λ

SY x r,( ) Sh x r,( )

Rij r= Sh x r,( )

SY x r,( )

coe Sxi r,( ) S x j r,( ),[ ] ργ̂ r( )

J n

n

n

S xi r,( )
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relationship between the number of ’s (i.e., the number of measurement pairs

particularr) and the number of sample points,n, exists as

(19)

Using the sampling scheme as defined above, it is possible to calculate accord

(13) for a specificr. By varyingn, it is possible to adjustN(r) and evaluate as a function o

N(r). Figure 4 shows and versus whenr=10 along the direction ofJ. This plot

also includes the curve for , the result obtained by assuming zero correla

among the ’s (see 15). From this plot, it is apparent that the correlation among

strongly influences the rate of reduction of with increasingN(r). In order to achieve, for

example, a value for of 0.8,N(r) need only be around 5for both uncorrelated data and

transmissivity field. For the head residual, this number increases to approximately 100. H

nearly 20 times the data pairs are required to achieve the same coefficient of variation for se

iogram of the head residuals as would be required for an uncorrelated variable or the ra

fields with short correlation range.

One interesting dependence which was further investigated was the relationship be

the coefficients of variation, and , andr. Based on the same sampling scheme w

, and vary withr as shown in Figure 5. Once again, is consisten

larger than for allr, a result of the head pairs being correlated over longer distances

transmissivity pairs. Further, increasingr appears to have a greater adverse impact on the h

residuals than on the transmissivity (i.e., appears to grow withr whereas appears to

S xi r,( )

N r( ) n
r n⋅

d
--------------–=

ργ r( )

ργ r( )

ργ̂ Y r( ) ργ̂ h r( ) N r( )

ργ̂ r( )
2

N r( )
------------=

S xi r,( ) S xi r,( )

ργ̂ r( )

ργ̂ r( )

ργ̂ Y r( ) ργ̂ h r( )

N r( ) 64= ργ̂ Y r( ) ργ̂ h r( ) ργ̂ h r( )

ργ̂ Y r( )

ργ̂ h r( ) ργ̂ Y r( )
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be relatively insensitive tor). These results imply that not only will the separation distance am

sample points need to be modified for estimating the semivariogram ofY versus the

semivariogram ofh, the basic design of the measurement locations must be modified as well

approximately uniform distribution of data pairs among lag classes forY and increasing number

of data pairs with increasing lag distance required forh).

Discussion and Conclusions

The theoretical analysis of the sample semivariogram shows that the semivario

estimator as given in (2) is unbiased, but that the coefficient of variation of the estimator,

depends not only on the number of the data pairs, , but also on the correlation amon

data pairs. This correlation is, in turn, related to the form of the underlying semivariogram,

the relative locations of the data pairs, and the lag distance, , at which the semivariogram is

estimated. When the increment, , is Gaussian, knowledge of is sufficient to de

the correlation structure among the squared increments according to equation (10).

Equation (10) leads to at least three significant observations. First, the reliability

semivariogram estimate derived from measured data is dependent not only on the number

points collected, but also on the parameter being measured (through the semivariogram

parameter). Second, random variables exhibiting correlation over large distances are very lik

have squared increments which are highly correlated. Thus the sample semivariogram es

for a random variable which is correlated at large distances will tend to be unreliable and ca

should be used in interpreting sample semivariograms exhibiting a long range correl

structure (e.g., a power law semivariogram). Should a field data set imply such a long r

ργ̂ r( )

N r( )

γ r( )

r

S x r,( ) γ r( )
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correlation structure, equation (10), or a modification thereof for non-gaussian random vari

should be used to determine an estimate of the coefficient of variation of the sam

semivariogram at each lag distance, thus providing a measure of confidence on the str

observed in the sample data. Third, the optimal distribution of data pairs over the differen

distances at which the sample semivariogram is to be estimated is also a function o

underlying semivariogram. As was shown, a reliable estimate of the semivariogram at variou

for the transmissivity (subject to the constraints outlined above) could be accomplished

relatively uniform numbers of data pairs in each lag class. In contrast, estimating

semivariogram of the head residual, with equal coefficient of variation in each lag class, w

require increasing numbers of data pairs as the magnitude of the lag distance is increased

Appendix: Detailed Derivation for Equation (10)

Given the definition of as in (7) and its ensemble mean (8), an expression

 can be written as

(20)

Using the joint moment generating function,Papoulis(example 7-6 in page 158,1984) shows tha

if two random variables, and , are jointly normal with zero mean, the following relati

ship holds:

(21)

S xi r,( )

cov S xi r,( ) S x j r,( ),[ ]

cov S xi r,( ) S x j r,( ),[ ]

1
4
--- Z xi( ) Z xi r+( )–[ ]2

Z x j( ) Z x j r+( )–[ ]2•〈 〉 γ r( )2
–=

X1 X2

X1
2
X2

2〈 〉 X1
2〈 〉 X2

2〈 〉 2 X1X2〈 〉2
+=
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Assuming that the increment, , is jointly normally distributed (which holds,

least, for the case in which  is jointly normal), the application of (21) to (20) leads to,

(22)

Further expanding  into four terms results in

(23)

where  is the separation distance between  and .
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Z x( ) Z x r+( )–

Z x( )

cov S xi r,( ) S x j r,( ),[ ]

1
4
--- Z xi( ) Z xi r+( )–[ ]2

Z x j( ) Z x j r+( )–[ ]2•〈 〉 γ r( )2
–

1
4
--- Z xi( ) Z xi r+( )–[ ]2〈 〉 Z x j( ) Z x j r+( )–[ ]2〈 〉•

1
2
--- Z xi( ) Z xi r+( )–[ ] Z x j( ) Z x j r+( )–[ ]•〈 〉2 γ r( )2

–+

1
2
--- Z xi( ) Z xi r+( )–[ ] Z x j( ) Z x j r+( )–[ ]•〈 〉2

=

=

=

Z xi( ) Z xi r+( )–[ ] Z x j( ) Z x j r+( )–[ ]•

cov S xi r,( ) S x j r,( ),[ ]

1
2
---

Z xi( ) Z x j r+( )–[ ]2

2
--------------------------------------------------

Z x j( ) Z xi r+( )–[ ]2

2
--------------------------------------------------

Z xi( ) Z x j( )–[ ]2

2
-----------------------------------------–

Z xi r+( ) Z x j r+( )–[ ]2

2
----------------------------------------------------------–+〈 〉

1
2
--- γ r x+ j xi–( ) γ r x j– xi+( ) 2γ x j xi–( )–+[ ]2

1
2
--- γ r Rij+( ) γ r Rij–( ) 2γ Rij( )–+[ ]2

=

=

=

Rij x j xi–= S xi r,( ) S x j r,( )
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