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Abstract

We investigate from a theoretical basis the impacts of the number, location, and correlation
among measurement points on the quality of an estimate of the semivariogram. The unbiased
nature of the semivariogram estimat@(r) , is first established for a general random process,
Z(x). The variance ofy,(r) is then derived as a function of the sampling parameters (the num-
ber of measurements and their locations). In applying this function to the case of estimating the
semivariograms of the transmissivity and the hydraulic head field, it is shown that the estimation
error depends on the number of the data pairs, the correlation among the data pairs [which in turn
are determined by the form of the underlying semivariogrg(n) ], the relative locations of the
data pairs, and the separation distance at which the semivariogram is to be estimated. Thus,
design of an optimal sampling program for semivariogram estimation should include consider-
ation of each of these factors. Further, the function derived for the variangg( of is useful in
determining the reliability of a semivariogram developed from a previously established sampling

design.



Introduction

Given a trend-removed random field(x) , the theoretical semivariogsgifr,) , IS

defined as
V(r) = SvarlZ(x)-Z(x+1)] = 31Z(x) - Z(x+ 1))’ &)

wherex is locationy is the vector lag distanesr stands for the variance and the bracket
designates the ensemble averaging. Although the determination of the theoretical semivariogram

requires ensemble averaging, we are often limited in practice to one realization and a finite
number of measurements d@{x) . Thus, the ensemble average is commonly estimated from the
spatial average by assuming ergodicity. For example, given measurenzmt3 {i , =1, }
from a single realization, the most commonly used semivariogram estirétor, , for a specified

vectorial lag distance, ,idMatheron 1965),
N(r) 5
y(r) = M_ZI[Z(Xi)—Z(XiH)] (2)
| =
where N(r) is the number of the data paiiB(x;) anek; +r) , available fromrnthe

measurements.

The quality of the estimate of the semivariogram for a given thus depends on the bias
and precision ofy(r) , as an estimator fpfr) . Many have ulsiéd) , the number of the data
pairs, Z(x;) andZ(x;+r) , as an index for measuring the reliabilityy¢r) . For example, a

common “rule” applied to estimation of the semivariogram is that at least 30 pairs of



measurementsZ(x;) and(x;+r) , are required for each lag distance in order to ensure a

reliable semi-variogram estimate (e.gournel and Huijbregt1978). Review of the literature
indicates that this rule is derived from a simplification of earlier workNdgtheron(1965).
WebsterandOliver (1992) have studied this rule through numerical sampling of a random field
generated with a known semivariogram. Using a uniform, square sampling grid and comparing
sample semivariograms against the known underlying semivariogram, these authors argued that at
least 200-300 measurements are needed to estimate a semivariogram reliably.

This emphasis oiN(r) has also resulted in efforts to devise algorithms to maxi(ie
by adjusting the placement of a fixed number of measuremBuisso(1984) andwarrick and
Myers (1987), for example, present algorithms which optimize the location of sampling points
based on a series of constraints, including constraints on the number of sample points in each lag
distance. A recent paper b@onwell et al.(1997) extended this earlier work by taking into
account the role of measurement instruments in the sampling dédagns (1991) argued that
accurate estimation of the semivariogram depended not onl (@ but also on the correlation
among the measurements. He proposed an alternative index, the maximum equivalent uncorre-
lated pairs, as a measure of the estimation accuracy. However, this index applies only to the spe-

cial case of a concave semivariogram.

Other methods for determining the accuracy of semivariogram estimates involve Monte
Carlo simulation RusscandJury, 1987;Corstenand Stein 1994; etc.) and the subsampling
method Chung 1984;ShaferandVarljen, 1990). The Monte Carlo approach obtains the
confidence interval via repeated sampling from multiple realizations of a random field. The
subsampling method involves subdividing a measurement set into sub-samples, and then

estimating the semivariogram from each subgroup of samples, thus allowing characterization of



the variation of parameter estimates between sub-samples.

In the present paper, the variance of the semivariogram estimz'q‘,ke) , Is determined theo-
retically. This theoretical result is used to obtain a functional relationship betw%@r) and the
sampling parameters (e.g., the number of the measurements and their locations). This general
relationship then enables us to examine the interactions between the magnimzcmpf and its
various controlling mechanisms. The interactions among the number of measurements, sampling
locations, the underlying semivariogram, and measurement error are illustrated through applying
this relationship to the estimation of the semivariograms of the transmissivity and the hydraulic
head field. Finally, the implications of these results are discussed and extended to possible appli-

cations for sampling design and interpretation of the reliability of semivariogram estimates.

Theoretical Background

The bias of the semivariogram estimatg(y) , can be examined for a random field by

determining the ensemble mean value of both sides of (2). This leads to

N(r)
Y(r)0= %_;{zm)—zm N0 ®3)

1 4 2
= _I\T(—r_)z EE[Z(xi)—Z(xi+r)] N

i=1

Applying (1) to (3),

o= SRt = v @

Thusy(r) , as given in (2), is an unbiased estimatoy {o}

Sincey(r) is an unbiased estimatoﬁg(r) can then be written as,



% = O9(r) -y(n)]*0 (5)
Substituting (2) into (5) provides,
N(r) ﬁ
2 _ 1
0%y = Eﬁzw)élz(x) Z(x;+1)] } v(ngo (6)
(n 2
_ > {[zm Z(x; +1)] _y(r)}gm
N (r) 0
To simplify the notation, we define a new random variaB(&, r) , as,
S(x, ) = (£0I=Z0c+ 01 @
and obtain
[8(x, r)0=y(r) (8)
Substituting (7) and (8) into (6) results in
(1 £
0%y = fng [S(x;. 1) = 08(x;, 1) D O ©)
N(r) > N(r)N(r)-1
02 cov 9x;, ), S(x;, )]
N(r)|Z o) N()JZI |Zl j
wherecoV gx;, 1), S(xj, r)] isthe covariance betwe&(x;, r) aﬂd<j, r) : anzd(xi, 9) is

the variance oB(x;, r)

Equation (9) is essentially identical to equations provided in classical textbooks on

statistics for the variance of the sample meaugy(equation (4.1.12), Page 378Benjaminand

Cornell, 1970) with the exception that here the variabl&(s;, r) rather th@n) . The key to



understanding the importance of (9) is to determine the dependermapf x;, r), S(xj, r]

2 . .
ando”s(x,r) on sampling design.

As given in appendix, for a gaussian random variaijbe) , we can derive
1
coM §x;,r), S(x;, 1) = E[V(r +R;) +v(r—R;) _ZV(Rij)]z (10)
where Rij = Xj—X is the separation distance betw&¢x, r) $(nq, r) . Sifroe is not a

function ofx, cof §x;, r), S(xj, r)] as givenin (10) is also independentgibut depends on the
relative separation betweepandy;. It is noted further thato\ gx;, r), S(xj, r)] is anisotropic

even ify(r) is isotropic. Whelﬁ(ij = 0 in (10%has variance of

025(x,r) = GZS(r) = 2y%(r) (11)

Substituting (11) into (9), the expression tozrp(r) may now be written as

N(r)N(r)-1

P = (D), 2 co Sx., 1), S(X, 1)] (12)
TN Nz(r)JZ 2 T

>i i=1

where the expression fao\V §x;, r), S(xj, r)] isgivenin (10). A similar expressiomfzgr(r)

is used byCressie(1984) in the context of performing weighted least-square fitting.
To facilitate the comparison of variomszg(r) 's at different lag distances, we diidlg

by y(r), to obtain the coefficient of variatiop@(r)

1
N(r)N(r)—-1 2

_ 2 4




where
co X, 1), S(X, I co Xi, ), S(X;, r
cod S, 1), S, 1] = ST S0 0T _ coM S . SOy
2y*(r) 0 S(x, 1)
Hence,pw) consists of two parts. The first part is completely determined (oy , the number

of data pairs. The second part is a function of both the number of pairs and the correlation among
the S(x;, r) ’s.

In two special cases, the expression fﬁ%) can be simplified. First, whe®(ther) 'S

are independent, atlog §x;, r), S(xj, r)] ’sare equal to zero, and

_[2
Py = N (15)

In this case, the estimation accuracy depends onliNon) . This relationship is identical to the
result from classical statistics, where all the samples are taken independently. The second special

case is wher5(x;, r) ’s are completely correlated with each othecad §x;, r), S(xj, r] 'S

are then equal to one. Thp§(r) reduces to a constant as follows,

=2 (16)

02 4 TN(r)’-N(r)
Pyiry = EN(r)+ Nz(r)[ 2 }

T

That is the estimation accuracy becomes independent of sampling. An example of such extreme
cases can be found in a random field whose semivariogram grows quadratically with the

increasing separation distance.

Other than in these special cases, the estimation precisigrof (defined here as the

magnitude ofpv(r) ) is determined not only ly(r)  but also by the summation of the



cod Ix;,r), (x;,r)], the correlation coefficients among the squared increments,

[Z(x;)-Z(x; + r)]2. This correlation coefficient, according to (10), is determined by the
separation distance betwegn ade Lj(=1,...,N(r) ), the lag distance, , at which the

semivariogram is to be estimated, and the underlying semivariogram, . Thus, (13) gives an
explicit expression describing the interactions among the variance of the estimate of the
semivariogram, the number of data, and the sampling design. Itis a general relationship that holds

in any random fieldZ(x), provided that the increments () are normally distributed.

lllustration Using Hydraulic Head and Transmissivity Fields

In order to illustrate the impact of (13) on problems of interest to hydrogeologist, a
comparison is made between estimating the semivariogram of the transmisgiyind
estimating the semivariogram of the head residbali(e hydraulic head minus the mean trend in
the head). These particular parameters were chosen as they are two of the most frequently studied

spatial processes in groundwater hydrology.

For the following illustration, it is assumed thatis log-normally distributed. A new,
normally distributed random variabl¥, is therefore defined a&=In(T). It is further assumed that
Y is second-order stationary, exists within an infinite spatial flow domain, and is characterized by

an isotropic, exponential covariance function,
2 '
Yy(r) = oy[1-exp(-r)] 17)

Ir|

whereo$ is the variance of , and = X is the magnitude of the separation vector
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normalized by the integral scale, ,Yof

Dagan(1985) has presented the first and second moments of the distribution of the head
residual under mean uniform flow within the type of transmissivity field described above. Of

particular interest here Bagans expression for the semivariogram of the head residual

2,2 2
JA"o xp(=r') ((r'? + 3r' +3) — 30
Vo(r) = =5 E{(Z(cosw)z—l)gE P Hr_rSr9)=3h, (18)
r
% 210 -, . ' '
cosy) >0~ Ei(—r") + In(r') + exp(—") + (e—1)
whereJ is the magnitude of the mean regional head gradiegt , is the direction of relative to

the orientation ofl Ei is the exponential integral function, end is Euler’s constant (=0.5227).

2,2 2
JANo
Figure 1 shows plots of,(r) (normalized 10592 ) agplr) (normalized—byz—Y- )

versus the normalized separation distance . The anisot§ggig is plotted for two different
directions, one being parallel with ,i.ey, =0, and the other perpendicular to wi.e.g =

As shown in the figurey,(r) asymptotically approaches a sill as the separation distance
increases, whereag,(r)  grows logarithmically with the increasing separation disyace.

also has a finite integral scal®, , while the hydraulic head field is correlated over a much longer
distance and no finite integral scale can be defined. Hence, these two variables have

fundamentally different structure in their semivariograms.

This difference in structure has dramatic impact on the potential to estimate these

semivariograms using data collected from a single realization. In order to simplify a comparison
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of the estimation of the semivariogram for the and fields, the semivariograms are evaluated
only for the cases in which the orientation of the lag is parallel to the direction of the mean
gradient,J . (It is straightforward to extend the analysis and its results to other directions if

necessary.) Under this condition, and for fixed , the expressions for the theoretical
semivariograms {(17) and (18), respectively} can be substituted into (14) and (10) to obtain

cog §x;, 1), S(xj, r)] as a function ofRij . Figures 2a and 2b illustrate the correlation functions
for Sy(x,r) andS,(x,r) . As Rj; Is a two-dimensional vector, these are three dimensional plots

with the horizontal axes defining the directional component:RH)f , and the vertical axis
providing the magnitude of the correlation coefficient. In both figurdsas a magnitude of 10
units and is oriented parallel tb . Bof-kh and are normalized by . Figures 2a and 2b show
that the correlation structures for bo8&(x, r) agg(x, r) are anisotropic. Further, a local
maximum in correlation exists ﬁij = r . Finally, the figures show t8atx, r) Is correlated

over longer distances than$s(x, r)

The contribution of the correlation between sample pairs can be illustrated only for a given

sampling pattern. Hence, a uniform square grid sampling network is here utilized to illustrate the
cumulative contribution otod §x;, r), S(xj, r)] to the magnitude p\f/(r) . This sampling
network is set to be aligned with the directiondf , contams sample points in a square array
(wheren is the number of points at whidhandh are measured) and has minimum spaciag,
between sample points (see Figure 3 for an example in which =3&lafhd). For the
discussion below, the minimum separation distance betweef(ther) m,vi&gs set to be equal

to d. Thus, specific to this sampling scheme, it is straight forward to show that a general
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relationship between the number 8fx;, r) ’s (i.e., the number of measurement pairs for a

particularr) and the number of sample poimisgexists as

N(r) = n—% (19)
Using the sampling scheme as defined above, it is possible to calm@;e according to

(13) for a specifie. By varyingn, it is possible to adjudti(r) and evaluatepy(r) as a function of

N(r). Figure 4 showspVY(r) andvh(r) versid(r)  wherll0 along the direction af. This plot

also includes the curve fopw) = J% , the result obtained by assuming zero correlation
among theS(x;, r) ’s (see 15). From this plot, it is apparent that the correlation aB{ocng) 's
strongly influences the rate of reduction p%) with increadi{g). In order to achieve, for
example, a value fopw) of 0.8\(r) need only be around 5for both uncorrelated data and the
transmissivity field. For the head residual, this number increases to approximately 100. Hence,
nearly 20 times the data pairs are required to achieve the same coefficient of variation for semivar-

iogram of the head residuals as would be required for an uncorrelated variable or the random

fields with short correlation range.

One interesting dependence which was further investigated was the relationship between

the coefficients of variationpvy(r) andvh(r) , amdBased on the same sampling scheme with
N(r) = 64 Py (1) and Py, (ry vary withr as shown in Figure 5. Once aga'prbh(r) is consistently
larger thanpvy(r) for alk, a result of the head pairs being correlated over longer distances than

transmissivity pairs. Further, increasingppears to have a greater adverse impact on the head

residuals than on the transmissivity (i-ﬁw(r) appears to grow Nwi\thereaspwr) appears to
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be relatively insensitive to). These results imply that not only will the separation distance among
sample points need to be modified for estimating the semivariograM wdrsus the
semivariogram oh, the basic design of the measurement locations must be modified as well (with
approximately uniform distribution of data pairs among lag classe¥ &rd increasing number

of data pairs with increasing lag distance requiredhyor

Discussion and Conclusions

The theoretical analysis of the sample semivariogram shows that the semivariogram

estimator as given in (2) is unbiased, but that the coefficient of variation of the estirp%gr, ,

depends not only on the number of the data paW§:;) , but also on the correlation among the
data pairs. This correlation is, in turn, related to the form of the underlying semivariog(ain, ,
the relative locations of the data pairs, and the lag distance, , at which the semivariogram is to be

estimated. When the incremer8(x, r) ,is Gaussian, knowledgg rjf is sufficient to define

the correlation structure among the squared increments according to equation (10).

Equation (10) leads to at least three significant observations. First, the reliability of a
semivariogram estimate derived from measured data is dependent not only on the number of data
points collected, but also on the parameter being measured (through the semivariogram of that
parameter). Second, random variables exhibiting correlation over large distances are very likely to
have squared increments which are highly correlated. Thus the sample semivariogram estimate
for a random variable which is correlated at large distances will tend to be unreliable and caution
should be used in interpreting sample semivariograms exhibiting a long range correlation

structure (e.g., a power law semivariogram). Should a field data set imply such a long range
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correlation structure, equation (10), or a modification thereof for non-gaussian random variables,
should be used to determine an estimate of the coefficient of variation of the sample
semivariogram at each lag distance, thus providing a measure of confidence on the structure
observed in the sample data. Third, the optimal distribution of data pairs over the different lag
distances at which the sample semivariogram is to be estimated is also a function of the
underlying semivariogram. As was shown, a reliable estimate of the semivariogram at various lags
for the transmissivity (subject to the constraints outlined above) could be accomplished with
relatively uniform numbers of data pairs in each lag class. In contrast, estimating the
semivariogram of the head residual, with equal coefficient of variation in each lag class, would

require increasing numbers of data pairs as the magnitude of the lag distance is increased.

Appendix: Detailed Derivation for Equation (10)

Given the definition ofS(x;, r) as in (7) and its ensemble mean (8), an expression for
co §x;, r), S(xj, r)] can be written as
coV gx;, 1), S(x;, 1] (20)
1
= Z02Z06) =Z0x; + D17+ [2(x)) = Z(x; + D] T-y(1)°

Using the joint moment generating functid®gpoulis(example 7-6 in page 158,1984) shows that,
if two random variablesX; anX, , are jointly normal with zero mean, the following relation-

ship holds:

IX2X50= DKAIXAH 21X X, (21)



15

Assuming that the incremenZ(x) —Z(x +r) , is jointly normally distributed (which holds, at

least, for the case in which(x) is jointly normal), the application of (21) to (20) leads to,

coVv §x;, 1), S(xj, r] (22)
= Z0Z0x) = Z(x;+ N1+ [20¢) = Z(x; + D) Ty (1)’

:ZLrE[Z(xi)—Z(xi +1)]20e [Z(x;) —Z(x; + )]0
#3012(x) = Z(x + ] * [20x) = Z(x; + DIF -y (1)’

= %E[Z(Xi) —Z(X;+ )]+ [Z(X)) =Z(x; + r)]ﬁ

Further expandingZ(x;) =Z(x; +r)] * [Z(xj) —Z(xj +r)] into four terms results in

covf gx;, 1), S(x;, )] (23)
_ 10200 =20+ 01" 120) =206+ D17 [200) =ZO)1°_[Z(x+0) =Z(x+ 1]
-2 2 2 2 2

= JIV(r %)= X)) + V(=X %) = 2y(x; = )1

1
= 5[v(r +Ryj) +y(r -Ry) ~2y(Ry)I”

where Rij = Xj—X is the separation distance betw8ex, r) S(DIql, r)
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R.., withr = 10 along the direction df (a) For the transmissivity, (b) For the head residual.

ij o
Figure 3. An example of a uniform grid sampling network with an example in which =

36 andd = m =1.0.
Figure 4. Plots showing»vy(r) ar‘qnbh(r) vershr) witk 10 along the direction of
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